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ABSTRACT

The paper discusses a new, fully recursive approach to the adaptive modeling,
forecasting and seasonal adjustment of nonstationary economic time-gseries.
The procedure is based around a time variable parameter (TVP} version of the
well known "component" or "structural' model. It employs a novel method of
sequential spectral decomposition (S3D), based on recursive state-space
smoothing, to decompose the series into a number of duasi-orthogonal compo-
nents. This 35D procedure can be considered as a complete approach to the
problem of model identification and estimation, or it can be used as a first
step in maximum likelihood estimation. Finally, the paper illustrates the
overall adaptive approach by considering a practical example of a UK unemploy-
ment series which exhibits marked nonstationarity caused. by varilous economic
factors.
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1. INTRODUCTION

Recursive estimation has a long history. Karl Freidrich Gauss, first derived the recursive least squares
algorithm over one hundred and fifty years ago (see Appendix 2 in Young ,1984, where Gauss's "long
hand" derivation is compared with the modern matrix approach) But the recent popularity of recursive
estimation was undoubtedly stimulated by the appearance, in 1960, of the now famous paper on state-
variable filtering and prediction by the system's theorist Rudolph Kalman. Since the 1960's and 70's,
the significance of such recursive estimation and forecasting procedures to economic modelling and
econometrics has became ever more apparent, and it is now quite common to see detailed references to
the Kalman filter in standard econometric and statistical text books (see e.g. Harvey, 1981; Priestley,
1981). During this same time, systems research workers have been actively concermned with the
development of recursive methods for the identification and estimation of parameters in the more
common, linear representations of discrete time-series, such as the AR, ARMA, ARMAX and Box-
Jenkins models (see e.g. Young, 1984; Ljung and Soderstrom, 1983).

In the present paper, we exploit the excellent spectral properties of certain special recursive estimation
and smoothing algorithms to develop a practical and unified approach to adaptive economic
forecastmg and seasonal ad]ustment The approach is based around the well known "structural” or
"component" time-series model? and, like grewous similar, state-space solutions (e.g. Harrison and
Stevens, 1976; Kitagawa, 1981, Harvcy, 1984), it employs the standard Kalman filter-type recursive
algorithms. Except in the final forecasting and smoothing stages of the analysis, however, the
justification for using these algorithms is not the traditional one based on "optimality" in a prediction
error or maximum likelihood (ML) sense. Rather, the algorithms are utilised in a manner which allows
for straightforward and effective sequential spectral decomposition of the time series into the quasi-
orthogonal components of the model. A unifying element in this analysis is the modelling of
nonstationary state variables and time variable parameters by a class of second order random
walk models. As we shall see, this simple device not only facilitates the development of the spectral
decomposition algorithms but it also injects an inherent adaptive capability which can be exploited in
both forecasting and seasonal adjustment.

2. THE COMPONENT TIME SERIES MODEL
Although the analytical procedures proposed in this paper can be applied to multivariable (vector)
processes {see Ng et et al,1988), we will restrict the discussion, for simplicity of exposition, to the
following two component models of a univariate (scalar) time-series y(k),

y(k) = t(k) + p(k) +e(k) (1)

y(k) = t(k) + n(k) + e(k) @)

1. The Civil Service Coilege, 11 Belgrave Rd., London SWIV 1RB.
2. The term “structural™ has been used in other connections in both the statistical and economics

literatures and so we will employ the former term.
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where, t(k) is a low frequency or trend component; p(k) is a periodic or seasonal component; n(k) is
a general stochastic perturbation component; and e(k) is a zero mean, serially uncorrelated white

noise component, with variance o The model (1) is appropriate for economic data exhibiting
pronounced trend and periodicity and is the main vehicle utilised in the present paper for the
development of adaptive seasonal adjustment procedures. The second model (2) can aiso be vsed to
represent such heavily periodic time-series but it has much wider applicability to quasi-periodic and
non-periodic phenomena. It is the utilised here mainly for the development of recursive state-space
forecasting algorithms. Both models, however, are special cases of the general component model
discussed in detail by Young (1988) and Ng and Young (1988).

Component models such as (1) and (2) have been popular in the literature on econometrics and
forecasting (e.g. Nerlove et al, 1979; Bell and Hillmer, 1984) but it is only in the last few years that
they have been utilised within the context of state-space estimation. Probably the first work of this kind
was by Harrison and Stevens (1971,1976) who exploited state-space methods by using a Bayesian
interpretation applied to their "Dynamic Linear Model" (effectively a regression model with time
variable parameters). More recent papers which exemplify this state-space approach and which are
particularly pertinent to the present paper, are those of Jakeman and Young (1979,1984), Kitagawa
(1981), Kitagawa and Gersch (1984), and Harvey (1984).

In the state-space approach, each of the components 1(k), p(k) and n(k) is modelled in a manner which
allows the observed time series y(k) to be represented in terms of a set of discrete-time state equations,
And these state equations then form the basis for recursive state estimation, forecasting and
smoothing. Before we investigate the use of these analytical techniques, therefore, it is appropriate to
consider the specific form of the models for ((k), p(k) and n(k).

2.1 The Trend Model
1t is assumed that the low frequency or trend behaviour t(k) can be represented by one of the family of

stochastic, Generalised Random Walk (GRW) models. In practice, the most important of these is the
second order GRW which can be written in the following form,

x(K) = F, x,(k-1) + G, 1,(k-1) 3)

where,

x (k) = [ (k) d(k) IT and MK = [, (k) N,k I

1 0
t 0 "Y L 0 1

Here, 1,,(k) and n,(k) represent zero mean, serially uncorrelated, discrete white noise inputs, with the

and,

vector 1),(k) normally characterised by a covariance matrix Q,, i.e.,
1 for k=j

E(n®n®’) = Q38 ; 8= {
0 for k+#j

where, Sk ¥ is the Kronecker delta function. Unless there is evidence to the contrary, Q, is assumed to be
diagonal in form with unknown elements q,,, and q,,,, respectively.




This GRW model subsumes, as special cases (see e.g. Young,1984): the very well known and used
Random Walk (RW: o=1; B=y=0; 1,,(k)=0); the Smoothed Random Walk (SRW: [=y=1; O<

0<1.0; M, (k)=0); and, most importantly in the present paper, the Integrated Random Walk (IRW:

o=P=y=1; 1,,(k)=0). In the case of the IRW, we see that t(k) and d(k) can be interpreted as level and
slope variables associated with the variations of the trend, with the random disturbance entering only

through the d(k) equation. If n,;(k) is non-zero, however, then both the level and slope equations can

have random fluctuations defined by 1,,(k) and T]tz(k), respectively. This variant has been tenmed the
“Linear Growth Model" by Harrison {1967), Harrison and Stevens (1971,1976).

The advantage of these random walk models is that they allow, in a very simple manner, for the
introduction of nonstationarity into the time series models. By introducing a trend model of this type,
we are assuming that the time-series can be characterised by a stochastically variable mean value, The
nature of this variability will depend upon the specific form of the GRW chosen: for instance, the IRW
model is particularly useful for describing large smooth changes in the trend; while the RW model
provides for smaller scale, less smooth variations (Young,1984). As we shall see later in Section 2.5,
these models can also be utilised to allow for similar behaviour in the parameters (coefficients) of the

component models for n{k} and p(k). And, by defining the stochastic inputs 1,,(k) and (k) in a

specific manner, we shall also see how the same models can be usged to handle large, abrupt changes in
the level and slope of either the trend or the model coefficients.

2.2 The Periodic or Seasonal Model

It is assumed that the periodic component in model (1) can be defined by the following Dynamic
Harmonic Regression {(DHR) relationship,

i=F

PIO = D, 0,0 cos 2uEK) + 0,,(0 sin(fk) @

i=1
where the regression coefficients Gji(k), =12 and i=12,...,F, may be constant (i.e, jS(k)=9.i for all k),
when the mode! is simply the conventional harmonic regression in F different but constant f’requencies;
or time-variable, in which case the model is able to handle nonstationary seasonality, as discussed later
in Section 6.1. This latter version, in which the parameter variations are modelled as GRW processes,
is extremely useful for time-series which exhibit amplitude modulated periodic behaviour, such as the
growing amplitude seasonality of the airline passenger dara in Fig.]1 and the heavily modulated
seasonality in the unemployment series shown in Fig.3(a) (see later), Since there are two parameters
associated with each frequency component, the changes in the amplitude A(k) of each component, as

defined by,
/ 2 2
Ai(k) = Oli(k) +92i(k)

provides a useful indication of the estimated amplitude modulation.

2.3 The Stochastic Perturbation Model

In order to allow for general stochastic perturbations with decaying or growing amplitude, n{k) and
e(k) are combined and represented by 2 stochastic General Transfer Function (GTF) model: this is
similar to the well known ARMA model employed in Box-Jenkins forecasting (Box and Jenkins, 1970),
but no stationarity restrictions are applied. The GTF model is best identified, and its parameters
estimated, within a traditional transfer function framework. In order to consider the model in state-
space form, however, it is most convenient to assume that the sum of the stochastic perturbation and
the white noise component constitutes an ARMA process with the same white noise input e(k), ie.,




-1
Ak + o) = e ey )
C(z )
where,
CaN=1+czl+ez?+ , + c,zP

D=1+ dzt+dr ., + dz?
Note that, for convenience, the order p is assumed the same for both polynomials: different orders can,
however, be introduced simply by assuming that appropriate trailing coefficients are zero. Similarly,
"subset” models (see e.g Whittle,1952; Priestiey,1981) can be specified by constraining the selected
intermediate coefficients to zero value.

It is now straightforward to transform the model (5) into the following "innovations” state-space form
(e.g. Astrom,1970), defined completely by the estimated parameters of the GTF model, i.e.,

x, () = F, x_(k-1) + G, e(k-1)

a(k)={100... 01 x (K +e(k)
where,

%,(K) = [ n(K) (1) ..... n 1T

and F, and G_ have the canonical form,

<, 10..... 0] glq
-C, o1..... 0 g,
1 .0
F = ;7 G =
n 1 0 n
.1
-C, 00 . 0- gp

where,
gi = dl - ci M i=1 ,2,...,1)

with the order p defined by some form of statistical identification criterion (e.g. Akaike, 1974). This is
the general state-space form for a GTF or ARMA muodel; if an AR or subset AR model is identified for
the perturbations, then the g; parameters are identically equal to the negative of the AR coefficients, ie

-G

2.4 The Complete State-Space Model

Having defined state-space model structures for all of the components of the model, it is straight for-
ward to assemble these into the following aggregate state-space form,
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x(k) = F x(k-1) + G n(k-1) (D

: } @ -
y(1) = Hx(k) + e(k) i (i)

where the state vector x(k) is composed of all the state variables from the component sub-models; and
the ohservation vector H is chosen to extract from the state vector x(k} the appropriate structural
components t(k), p(k), or (k) and n(k) in equations (1) or (2), respectively. In other words, depending
on which model is being considered, either equation (1) or equation (2) will appear as the observation

equation (7)), The disturbance vector n(k) is defined by the disturbance inputs of the constituent sub-
models. In the case of equation (2), for example, the state space model (7) can be represented in the
following partitioned form,

F, 0 G 0

L

x(k) = 0 Fn x(k-1) + 0 Gn nk-1)

y(k) = H x(k) + e(k)

where,
x(k) = [ x,7(k) x, 717
&) =17k e 17
H={10100..0]

This particular form of the model with IRW trend and GTF or AR stochastic disturbance components is
quite useful for general univariate economic and business forecasting applications (see Ng and
Young,1988). As we shall see later, the alternative model (1) is more appropriate in seasonal
adjustment applications when there is sustained, nonstationary periodicity.

2.5 Parametric NonStationarity and Variance Intervention

In the present context, the GRW model (3) is important not only as a convenient representation of the
trend component, but also because we exploit it in the development of Time Variable Parameter
(TVP) models. Here, it is assumed that any model parameters, such as the harmonic regression coeffi-

cients §,; and 8,,, i=1,...,F in equation (4) or the coefficients ¢;, d;, i=1,...,p, in the GTF model (5), are

potentially time-variable, with stochastic variations that can be represented by the GRW?3, In other
words, the time-series y(k), in either of the models (1) and (2), may possess a wide variety of nonsta-
tionary characteristics.

In general, we might assume that economic and business time series are particularly appropriate for the
TVP approach to modelling. In the long term, the sociceconomic system is clearly nonlinear and
subject to many changes caused by factors such as: variations in social behaviour and attitudes;
modifications in government policies; and changes in the methods of acquiring, measuring and
interpreting social statistics. It seems reasonable, therefore, to assume that even the small perturbational
dynamic behaviour of such a system (i.e the fluctuations about the long term trends) will only be
described adequately by linear models if we allow for the possibility of changes in the model
parameters over the passage of time.

But the nature of such parametric variation is difficult to predict; while modifications in the
socioeconomic system are often relatively slow and smooth, more rapid and violent changes do occur
from time-to-time and lead to similarly rapid changes, or even discontinuities, in the related time series.
Typical examples are shown in Figs. 2 and 3(a): Fig.2 is a plot of monthly car driver casualties in the

3. in the case of Regression relationships, they are termed "dynamic" models; i.e Dynamic Linear,
Harmonic or Auto-Regression (see e.g. Young,1988, Young and Benner, 1988),
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U.K over the period 1970 to 1984 (Harvey and Durbin,1986) in which changes of level, due to both the
oil crisis of the 1970's and recent changes of U.K Govemnment legislation on seat belts, are clearly
apparent; Fig.3(a) shows the monthly variations in the unemployment figures for school leavers in the
U.K. over the same period. These have been drastically affected by the oil crisis, changes in
Govemnment and several fairly major modifications in the method of measurement after 1979.

The GRW model is well able to characterise changes such as those shown in Figs.1 to 3. If the
variances q;, i=1,2, are assumed constant, then the model, in its various RW, IRW and SRW forms,

can describe a relatively wide range of variation in the associated trend or model parameters.
Moreover, if we allow these variances to change over time, then an even wider. range of behaviour can
be accommodated. In particular, large, but otherwise arbitrary, instantaneous changes in G,y; and gy
(e.g. increases to values > 102) introduced at selected "intervention" points, can signal to the

associated estimation algorithm the possibility of significant changes in the level or slope, respectively,
of the modelled variable at these same points. The sample number associated with such intervention
points can be identified either objectively, using statisiical detection methods (e.g. Jun,1988;
Tsay,1988); or more subjectively by the analyst (see Young and Ng, 1988).

It is interesting to note that this same device, which we term variance infervention (Young and
Ng,1988) can be applied to any state-space or TVP model: Young (1969,1970,1971,1981), for
example, has used a similar approach to track the significant and rapid changes in the level of the
medel parameters of an aerospace vehicle during a rocket boost phase. It is straightforward to develop
similar TVP versions of the instrumental variable (IV) and approximate maximum likelihood (AML; or
extended least squares, ELS) algorithms for transfer function model estimation (see Section 6.2 and
Kaldor,1978; Norton,1975).

3. THE RECURSIVE FORECASTING AND SMOOTHING ALGORITHMS

In this paper, recursive forecasting and smoothing is achieved using the state-space (Kalman) filtering
and fixed-interval smoothing algorithms. The Kalman filtering algorithm (Kalman,1960) is, of course,
well known (see e.g. Young,1984) and can be written most conveniently in the following general
"prediction-correction” form,

Prediction :
X(k/k-1) = F x(k-1)

(&)
P/k-1)=FP&k-1)FT+ G [Q] GT
Correction :

X = RKD) + POADHTL+H PAAD HT T { v - H x(k/k-1) }

¢4}
P(k) = P(k/k-1) - PO/k-1)HT{1 + HP(k/k- I)HT]'lll P(k/k-1)

3 A - - » -
In these equations, we use x(k) to denote the estimate of either one of the state vectors associated with
the structural components (i.e X, and x_ as defined in equations (3) and (6)) or the composite state

vector x of the complete state-space model (7)). The other matrices are defined accordingly, with Q,
denoting the covariance matrix of the input white noise disturbances, i.e.,

EMmEnGT) = Q, &

where SkJ is the Kronecker delta function.




Given the nature of the structural models (1) and (2), it is clear that this assumption of white
observational etrors will not apply unless we consider all the components simultaneously. 1t is this
assumption that makes the analytical procedures presented here sub-optimal in a strict maximum
likelihood and Bayesian sense. This in no way negates the wtility of the proposed approach, however,
since we do not view the algorithms from such a theoretical standpoint. Rather, we justify their use on
the basis of their spectral properties which, as we shall see, are particularly attractive for achieving
spectral decomposition,

It will be noted that, since the random walk class of models are all characterised by a scalar observation
equation, the filtering algorithm has been manipulated into the well known form (see e.g. Young,1984)
where the "noise variance ratio” (NVR) matrix Q, and the P(k) matrix are both defined in relation to

the white measurement noise variance o2, i.e.,

Q, = Q/o?; P(k) = P*k)/o? (10)

where P*(k) is the error covariance matrix associated with the state estimates. In the RW and IRW,
models, moreover, there is only a single white noise input term, so that only a scalar NVR value has to
be specified by the analyst.

There are a variety of algorithms for off-line, fixed interval smoothing but the one we will consider

n
here utilises the following backwards recursive algorithm for the smoothed estimate x(/N),

subsequent to application of the above Kalman filtering forwards recursion (see e.g. Norton,1975;
Young,1984),

A q A
X(/N) =F [ x(+1/N) + G QG L) ] 1)
where,
LN)=0;
N is the total number of observations (the "fixed interval™); and
L) = [1-PC ) HTH T {FL&+D - H [ y(0)- HEF x(6) ] }

is an associated backwards recursion for the “Lagrange Multiplier” vector L{k) required in the solution

of this two point boundary value problem. Finally, the covariance matrix P*(k/N) = 62P(k/N) for the
smoothed estimate is obtained by reference to P(k/N) generated by the following matrix recursion,

PN =Pk + P(k)FT[P(kH/k)]'1 [ P(k+1/N)-P(k+1/10)} [P(k-[-llk)]‘1 FP{k) (12)
while the smoothed estimate of original series y(k) is given simply by,
YAN) = M x(/N) (13)

i.e., the appropriate linear combination of the smoothed state variables.

As we shall see in the next Section, these recursive smoothing equations for the various component
models are exploited to decompose the signal y(k) into its various quasi-orthogonal elements. In this
manner, the component models are identified and estimated and it is possible to formulate the complete
discrete-time, state-space model (7). The procedures for smoothing and forecasting of y(k) then follow
straightforwardly, once again by the application of the state-space filtering/smoothing algorithm but
this time applied, in their more general form, to the complete state equations (7). This then allows for
the following operations:-




(1) Forecasting The f step ahead forecasts of the composite state vector x(k) in equation (7) are
obtained at any point in the time series by repeated application of the prediction equations (8) which,
for the complete model, yields the equation,

;(k-i-ffk) = Ff;(k) (14)

where f denotes the forecasting period. The associated forecast of y(k) is provided by,

YA = TL x(k+F7K) as)

with the variance of this forecast computed from,

var {y(k+/0} = o[ 1+H P+{OH ] (16)
where f(k-{-f/k) is the f step ahead prediction error, i.e.,
y(k+fK) = y(k+6) - y(k+£/K)

In relation to more conventional alternatives to forecasting, such as those of Box and Jenkins, the
present state-space approach, with its inherent component decomposition, has the advantage that the
estimates and forecasts of individual component state variables can be obtained simply as by-products
of the analysis. For example, it is easy to recover the estimate and forecast of the rend component,
which can be considered as a simple, on-line estimate of the “seasonally adjusted” series and provides
a measure of the underlying "local” trend at the forecasting origin,

{2) Forward Interpolation Within this discrete-time setting, the process of forward interpolation,
in the sense of estimating the series y(k) over a section of missing data, based on the data up to that
point, follows straightforwardly: the missing data points are accommodated in the usual manner by

replacing the observation y(k) by the predicted value ;(kjk-i) and omitting the correction ¢quations

(9. Such a procedure can be used for the complete model (7) or for the component sub-models
discussed in Section 2.

{3) Smoothing Finally, the smoothed estimate YK of y(k) for all values of k is obtained

directly from equation (13); and associated smoothed estimates of all the component states are
available from equation (11). Smoothing can, of course, provide a superior interpolation over gaps in
the data, in which the interpolated points are now based on all of the N samples. As in the case of
forward interpolation, suboptimal smoothed estimates of the structural model components can be
obtained by applying the same two-pass smoothing algorithm separately and sequentially to the
component sub-modeis; indeed this is precisely the procedure utilised in the spectral decomposition
technique discussed in the next Section of the paper.

4. IDENTIFICATION AND ESTIMATION OF THIE STRUCTURAL MODELS

The problems of structure identification and subsequent parameter estimation for the complete state
space model (7) are clearly non-trivial, From a theoretical standpoint, the most obvious approach is to
formulate the problem in Maximuom Likelihood (ML) terms. If the stochastic disturbances in the state-
space model are normally distributed, the likelihood function for the observations may then be obtained
from the Kalman Filter via “prediction error decomposition” (Schweppe,1965)). For a suitably
identified model, therefore, it is possible, in theory, to maximise the likelihood with respect to any or
all of the unknown parameters in the state-space model, nsing some form of numerical optimisation.

This kind of maximum likelihood approach has been tried by a number of research workers but their
results (e.g. Harvey and Peters,1984) suggest that it can be quite complex, even if particularly simple
structural models are utilised (e.g. those containing merely trend and seasonal models, in which the
only unknown parameters are the variances of the stochastic disturbances, and where no stochastic
perturbation component n{k) is included). In addition it is not easy to solve the ML problem in
practically useful and completely recursive terms; i.e. with the parameters being estimated recursively
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