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ABSTRACT

A general class of Markov switching regime time series models is presented that
allows one to estimate the nontrivial interdependencies between different types of
cycles which make the economy grow at an unsteady rate. The paper further explores
results obtained in Ghysels (1991b) suggesting that the economy transits from
recessions to expansions with an uneven propensity throughout the year. It is also built
on the work of Hamilton (1989) who proposed a stochastic switching-regime model
for GNP and has important connections with hidden periodic structures discussed by
Tiao and Grupe (1980) or Hansen and Sargent (1990), for instance. The time series
models we present may have periodic transition probabilities and the drifts may be
seasonal. In the latter case, the model exhibits seasonal dummy variation that may
change with the stage of the business cycle. While the model is intrinsically nonlinear
and stochastic, it produces a linear representation with seasonal effects that appear to be
deterministic. The paper provides an elaborate discussion of the regularity conditions
for a weli-defined covariance structure including explicit formula for characierizing
first and second moments. Finally, we present empirical evidence using U.S. GNP data
series which tends to support a periodic structure for switching probabilities. The most
_significant result is the following : it is found that the seasonal in GNP growth
“signiﬁcantly affects switching probabilities for regime switches in the nonseasonal
growth of GNP. We also analyze the out-of-sample forecast performance of the
different models and find that the models exploiting seasonality in transition
probabilities perform best.
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1. INTRODUCTION

It may be convenient to assume that the sources of growth cycles and seasonal
fluctuations are independent. In reality, all sources of fluctuations are most likely not
independent and, even if they were, economic propagation mechanisms would make it
hard to disentangle them.! Yet, assuming the independence of cyclical and seasonal
fluctuations is often made for the sake of convenience. As we like o focus on cyclical
fluctuations, this may be a reasonable abstraction of reality, both for the formulation
and/or estimation of structural models as well as the prediction and analysis of cyclical
and long-run phenomena with (nonstructural) time series models.

Assuming independence of cyclical and seasonal fluctuations or ignoring, for
instance, seasonality even if there is dependence might be convenient. But what if the
economy recovers from a slump much easier when seasonals are at their peak? What if
bankruptcies tend to be posiponed until after a shopping season and hence delay
economic activity of going bust? What if credit crunches, financial panics, stock
market crashes, etc. tend to cluster around the fall or any other season? Is there any
reason to believe this is tue? If so, is there any way of modeling such
interdependencies in a simple fashion? | ‘

The purpose of this paper is to present a class of modeis that would allow one to
estimate parametrically the nontrivial (nonlinear) interdependencies between the
different patterns of growth fluctuations just described and to allow one to test for such
interdependencies. Hence, this paper breaks with a long established tradition of
viewing seasonal fluctuations as separate and orthogonal to all other movements in the
economy. Two types of models are considered. The first one we analyze generalizes
the periodic switching-regime model described in Ghysels (1991b). It has important
connections and also builds further on the switching-regime model of Hamiiton (1985)
as well as the hidden periodic structures presented by Tiao and Grupe (1980} and
Hansen and Sargent (1990). The second class of models we consider is inspired by
Filardo (1991) and Diebold et al. (1992) who considered switching-regime models with
(stochastic) time-varying transition probabilities using logistic functions.

This is why in models based on the impulse propagation framework introduced by
Siutsky (1927) and Frisch (1933) it is difficult to maintain the univariate orthogonal unobserved
component statistical decomposition of time series underlying seasonal adjustment procedurcs
{see Ghysels (1990a) for further discussion].
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We provide an elaborate discussion of the stochastic process theory of periodic
Markov switching-regime models, spelling out regularity conditions for the existence
of a well-defined covariance structure with formula that allow one to characterize first
and second moments of any given periodic switching-regime model with time-varying
coefficients. We also discuss a simple classical LM test for periodicity which is gasy
to use and, among other attractive features, has the advantage only to require
nonperiodic switching-regime model parameter estimates.

This paper also further explores results obtained by Ghysels (1991b, 1992),
where it was argued that the NBER business cycle chronology appeared to exhibit an
unequal distribution of cyclical turning points and cycle dorations. The empirical
section of the paper covers MLE and Bayesian estimation of periodic and time -varying
transition probability Markov switching-regime models using US post-WWII GNP
data. The empirical results can be summarized as follows : if we allow the transition
probabilites to differ every quarter, we obtain boundary parameter estimates. Indeed,
large samples would be required to estimate a fully unconstrained model. We consider,
in turn, two ways of constraining the transition probabilities throughout the year. One
strategy consists of relying on Bayesian techniques to smooth transition probabilities
with a common prior for each quarter. While there is enough evidence 1o suggest
heterogeneity of stochastic switching throughout the year, it depends unformmnately
quite critically on the formulation of the prior. A second route that is pursued appears
more promising and also yields the most significant empirical results of the paper.
Namely, we consider a time-varying transition probability structure where the
prbbabilities of switching in GNP are allowed to depend on the seasonal fluctuations in
GNP. It is found that the seasonal in GNP growth significantly affects the switching
probabilities (at the conventional 5 % level). There is evidence suggesting that during
expansions, the probability of switching is inversely related to the season. Hence, in
high season it is less likely to enter a recession. In contrast, as recessions do not cover
many data points, we could not uncover a statistically significant relation.

The structure of the paper is as follows. Section 2 deals with the stochastic
process theory. Estimation and hypoihesis testing are covered in section 3 and, finally,
empirical results are discussed in section 4. Section 5 deals with seasonal adjustment
and forecasting. Section 6 concludes.
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2. STOCHASTIC PROCESS THEORY OF PERIODIC MARKOV SWITCHING-
REGIME MODELS

A general class of periodic Markov switching-regime models is presented in this
section. Special cases of this class include the (aperiodic) switching-regime models
considered by Hamilton (1988, 1989, 1990), Garcia and Perron (1989), Phillips (1991),
McCulloch and Tsay (1992), Albert and Chib (1993), among others, as well as the
periodic Markovian switching-regime structure presented by Ghysels (1991b, 1992)
which was used to investigate the nonuniformity of the distribution of the NBER
business cycle turning points. The discussion will focus first on a simplified illustrative
example to present some of the key features and elements of interest. The main
purpose of this example is to appeal to intuition for presenting the basic insights,
deferring all technical and formal discussion to a later section. Section 2.1 sets the
scene, iniroducing some of the notations as well as the specific model which is an
AR(1) stochastic switching-regime model with a periodic Markov chain. Section 2.2
elaborates on the linear ARMA and linear periodic representation of the (nonlinear)
stochastic switching regime AR(l) model. Properties such as the periodic duration
distribution and seasonal conditional heteroskedasticity are highlighted in section 2.3.
A general framework and characterization for the class of periodic Markov
switching-regime models is presented in section 2.4,

2.1 A univariate AR(1) model as illustrative example

The purpose of this section is to provide motivation and insights by first using a
simple model. Namely, consider a univariate time series process denoted {yt}. It will
typically represent a growth rate of, say, GNP. Moreover, for the moment, it will be
assumed the series was seaéonally adjusted via a procedure like the X-11 program of

the U.S. Bureau of the Census. Furthermore, let {yl} be generated by the following

stochastic structure :
@) [y, - MG, o)1) = 8]y, - HIG,_p.s,_ )] +e,

where ¢l < 1, € is i.i.d. N(O, 02) and uf-] represents an intercept shift function. If

(=], ie., a constant, then (2.1) would simply represent a standard linear stationary
Gaussian AR(1) model. Instead, we assume that the intercept changes according to a
Markovian switching-regime model, following the work of Hamilton (1989). The
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"state -of-the-world" process is different, however, from that originally considered by
Hamilton. In (2.1) we have s = (it, 4,), namely the state of the world is described by a
stochastic switching regime process {it} and a seasonal indicator process, ie.,
4, =1 mod( ¢¥) where ¢ is the frequency of sampling throughout the year, e.g., ¢/ =4
for quarterly sampling. The {it} and {4(’} processes interact in the following way,
assuming that ite{O, 1}vte:2

0 _ 1
@2 0 q(4) 1-q(4)
1 1 - p(at) p(4)

where the transition probabilities q(+) and p(-) are allowed to change with 4, i.e., the
season. As 4 ( is a mod ¢ series, there are, of course, at most ¢ values for q(-) and

p(-), ie., q(at) S {ql, oy qey} and p(at) 3 {pl, o p"Y} where q(dt) = q“ and

p(4t) = p“ for 4 = 4 ¢ Naturally, when :

23) p(-)=pandg(-)=q,

then we obtain the standard homogeneous Markov chain model considered by
Hamilton. However, if for at least some s, the transition probability matrix differs, we
have a situation where a regime shift will be more or less likely depending on the time
of the year. Since it e {0, 1}, we have a two-state Markovian chain with periodic
variation in the transition probabilities, and define the mean shift function :

24) ps)=pll,s N=oy+oni, 0 >0.

Hence, the process {y[} takes on a mean shift o, in state 1 corresponding to i = 0 and
0y + O in state 2,3 Equations (2.1) through (2.4) are a version of Hamilton's model
with a periodic stochastic switching process. If state 1 is called a recession, as it has a
low mean drift and state 2 an expansion, then according to (2.2) we stay in a recession

or move to an expansion with a probability scheme that depends on the season.

2 In order to avoid too cumbersome notation, we did not introduce a separate notation for the
theoretical representation of stochastic processes and their actmal realizations.

Note in (2.4) that the mean shift function only depends on it and not on 4, though in later

developments this restriction will be removed.



2.2 Linear ARMA and periodic ARMA representations of a period Markov switching
regime process

The structure presented so far is relatively simple, yet as we shall see, some
interesting dynamics and subtle interdependencies emerge. It is worth comparing the
AR(1) model with a periodic Markovian stochastic switching-regime structure, as
represented by (2.1) through (2.4), and the more conventional linear ARMA processes
as well as the periodic ARMA models discussed in Tiao and Grupe (1980), Todd
(1983, 1990), Osborn (1988), Osborn and Smith (1989) and Hansen and Sargent (1990),
among others. Let us perhaps start by briefly explaining intuitively what drives the
connections between the different models. The model described in section 2.1, with Y,
typically representing a growth series, is covariance stationary under svitable regularity
conditions discussed later. Consequently, the process has a linear Wold MA
representation. Yet, the time series model presented in the previous section provides a
relatively parsimonious structure which determines nonlinearly predictable MA
innovations. In fact, there are two layers beneath the Wold MA representation. One
layer relates to hidden periodicities, as described in Tiao and Grupe (1980) or Hansen
and Sargent (1990), for instance. Typically, such hidden periodicities can be uncovered
via augmentation of the state space with the augmented system having a linear
_representation. However, the periodic switching-regime model imposes further
structure even after the hidden periodicities are uncovered. Indeed, there is a second
layer which makes the innovations of the augmented system nonlinearly predictable.
Hence, the model described in the previous section also has nonlinearly predictable
innovations and features of hidden periodicities combined.

To develop this more explicitly, let us first note that the switching regime
process {it} admits the following AR(1) representation :

@5) i =1 -q(a)} + Aa) i | +v(4)

where }»(dt) =-1+ p(dt) + q(4t) and hence A(:) € {2.1, l@ﬂ} with-l(.gl) = A< for
4,= 4.

Moreover, conditional on i, =1,

(1 -p(s)) with probability p(4 )
(2.6a) Vt(dt) = :
- p(4 t) with probability 1 - p(4)



while conditionaloni , =0,

- (1~ q(at)) with probability q{ 4 t)
(2.6b) vt(at) =
q(4 t) with probability 1 - Q(Jt)

Equation (2.5) is a periodic AR(1) model where all the parameters, including
those governing the error process, may take on different values every season. Of
course, this is a different way of saying that the “state-of-the-world” is not only
described by {it} but also {dt}. If all superscripts were absent from equations (2.5)
and (2.6), then we would recover the nonperiodic AR(1) representation of Hamilton's
stochastic switching-regime model as it appears in equations (2.3) and (2.4) of his 198-
9 paper. Equation (2.5) resembles the periodic ARMA models which were discussed
by Tiao and Grupe, Todd, Osbom and Hansen, and Sargent, among others, yet, it is
fundamentally different in many respects. The most obvious difference, of course, is
the innovation process which has a discrete distribution. There are more subtle
differences as well, but we shall highlight those as we further develop the model.
Despite the differences, there are many features that equation (2.5) and the more
standard periodic linear ARMA models have in common. Following Gladysev (1961},
we can consider time invariant representations of (2.5) which are built on stacked,
skip-sampled vectors of observations. In particular, let us assume we dispose of a
sample of length ¢ T, ie., T noumber of years. Let us define the stacked vector of
seasons which is sampled at an annual frequency :

QM) =0 o rar Lorp otz e

el 2 &
(2.7b) Y= v ST Sl ST Y e?"r)

so that 7 represents annual time accounting. Following equation (2.5), we can write the
DGP for the vector defined in (2.7a) as follows :

(10 00. .ol [i-¢d] fo..a
%1 00. .0 1-q?
2.8) =] ¥ i
0 10 :
K Y 11-q7}) o 0




There are two features about (2.8) which we would like to highlight and digress
further on. The first is the appearance of seasonal mean shifts, i.e., what is typically
called "deterministic seasonality”, the second is the basis of a time~invariant Wold MA
" representation for the (scalar) {it} process described by (2.5). We shall focus first on
the latter, followed by a discussion of the former.

The purpose of stacking the process {il} into annual vectors is to exhaust all
possible parameter variation appearing in (2.5) and (2.6). It is easy to see that the
VeCtor process {ir} has a covariance stationary representation now (again under suitable
regularity conditions discussed later) as the coefficient matrices in (2.8) are time
invariant, yet, as we know, of course, each component of the vector still has a different
unconditional mean, variance, etc. Through (2.8) one can derive the Wold
representation of {it}. This is usually referred to as the Tiao-Grupe formula. As we
will be explicitly using this formula, we will briefly discuss it.# Assume that the Wold
decomposition representation for the vector process {i-*r} can be written as follows :

23 i, =MD o +u

where sz:(mdf(rqm o coeﬁ_)', U= (ul . ..,uey,)'. Then the covaﬁance
generating function for the (i, - 1) process is defined as

(2.10) S,(2) = M@ MEY' .

From the covariance generating function of the vector process {i 1,'_}, we can obtain the
covariance generating function for the scalar stochastic switching regime process {it},
by using the Tiao~-Grupe formula :

For a more elaborate discussion, se¢ Tiao and Grupe's original paper of Hamsen and Sargent
(1990, Chap. 10). Loosely speaking one way of viewing the {‘Lc_} process is to say that it is a

discrete siate Markov ¢hain with 2 & possible states. When o < qd, pd <1 for all
d=1,. ., o, we know such process has a well-defined and unique steady state distribution
[see, e.g., Billingsley (1961) or Doob (1953)]. Since Markov chains which have an
asymptotically stable distribution are covariance stationary processes, we know from the spectral
representation theorem that the {Lr} must have a well~defined spectrum. The {i[} process has

an asymptotically stable distribution as well, since we can marginalize out the seasons from the
stcady state distribution of the {iﬂ:} process. In fact, by using the spectral representation of both

{it} and {it}. we can easily find the correspondence between the two linear time series

representations of the switching regime process, namely one that ignores the hidden periodicity
and one that builds on the periodic structure via the vector representation appearing in (2.8).



@11, (2 = Q@ 5, ¥) QY

where Q(z)= & '1‘{2[1 Z .. ZJ-I]. From (2.11), one can calculate a spectral
representation of the {1t} process or we can derive the linear time domain
representation of the process.

Now that we have obtained a linear univariate time invariant representation for
the stochastic switching regime process i, in this case a finite order ARMA process as
we shall explain shortly, what can be sa1d about it? First, one should note that the
process will certainly not be represented by an AR(1) process as it will not be
Markovian in such a straightforward way when it is expressed by a univariate AR(1)
process, since part of the state space is "missing”. A more formal argument can be
derived directly from the analysis in Tiao and Grupe (1980) and Osborn (1991).5 The
periodic nature of autoregressive coefficients pushes the seasonality into annual lags of

the AR polynomial emerging from (2.11) and substantially complicates the MA
component.

Uliimately, we are, of course, interested in the time series properties of {yt} asit
is generated by (2.1) through (2.4) and how its properties relate to linear ARMA and
periodic ARMA representations of the same process. Since,

(2.12)y, = oy + o, + (1 - oLy g,

and €, was assumed Gaussian and independent, we can simply view {yt} as the sum of
two independent processes : namely, a nonlinear time series process { it} and a linear

process (1 - <;>L)'1 €. Clearly, all the features just described about the {it} process will
be translated into similar features inherited by the observed process y,, while y, has the '
following linear time series representation :

(2.13) sy(z):otzs(z)+ll ' Hr.

5 Osbom (1991) in fact establishes a link between periodic processes and contemporaneous
aggregation and uses it to show that the periodic process must have an average forecast MSE at
least as small as that of its univariate time invariant counterpart. A similar result for periodic
hazard models and scoring rules for predictions is discussed in Ghysels (1991a).



This linear representation has hidden periodic properties which can be derived

from (2.10) and a stacked skip sampled version of the (1 - ¢L)‘1 €, process. Finally,
the vector representation obtained as such would inherit the nonlinear predictable
features of {it}.

Let us briefly return to (2.9), or alternatively to (2.8). We observe that the linear
representation has seasonal mean shifts that would apper as a "deterministic seasonal”
in the univariate representation of Ye Hence, besides the spectral density properties
appearing in (2.13), which may or may not show peaks at the seasonal frequency, we
note that what looks like seasonal dummies appear in the univariate representation.
This result is, of course, quite interesting since intrinsically we do have a purely
random stochastic process with occasional mean shifts. The fact that we obtain
something that resembles a deterministic seasonal simply comes from the unequal
propensity to switch regime (and hence mean) during some seasons of the year. While
it is a purely random and nonlinear model, the periodicity in the Markov chain makes
linear representations appear to have a deterministic seasonal mean shift.

2.3 Some properties of interest

So far, we established some of the characteristics of the stochastic switching
regime AR(1) process with periodic transition probabilities. In particular, in the .
previous section, we described how to obtain a linear time series representation and
how it entails hidden periodicity and nonlinear predictability. In this section, we
further digress on some of the stochastic properties of the processes that are of interest.
Three properties will be of special interest and thus highlighted in this section. They
are : (1) seasonal conditional asymmetries; (2) the periodic duration distribution; and
{3) the seasonal impulse response functions. We shall discuss each of these separately.

(1} Seasonal conditional asymmetries

Consider the conditional variance of the innovation process appearing in (2.5). It
can be written as :

pla) (L -p(a)) ifi =1

I EW?) | i L _
Q(ét') (I-qs) if By = Q

t—l'dt] =
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We observed that the variance of the stochastic switching regime process,
whether it be presented as a scalar or vector, displays heteroskedasticity, conditional
not only with regard to the season but also to the regime shifts. The former source of
heteroskedasticity, namely the seasonal variation in (conditional) second moments, is a
natural byproduct of the hidden periodicity and also features in the processes studied by
Tiao and Grupe, Todd, Osborn, Hansen and Sargent, among others. However, what is
different is the asymmetry in conditional second moments blended with the periodic
structure.b In section 2.4, we will further elaborate on these issues.

The seasonal asymmetry in the first moments mentioned earlier, as advanced and
empirically documented in Ghysels (1990b), also emerges in some sense from our
model, though only in the following conditional way :

o
215 E(y, | i pap={ ° -
oy + o, (1 - qs)) ifi =0

va p(s) ifi =1

so that the size of the (predicted) seasonal mean will depend on whether we are in
either one of the two states. In section 2.4, we shall introduce other forms of
asymmetries in seasonal first moments.

{2) Periodic duration distribution

This feature highlights a characteristic proper to periodic Markov chains that was
exploited in Ghysels (1990b) to test the presence of periodicity via exact small sample
rank-based nonparametric statistics. When a Markov chain is periodic, as in (2.5),
then the distribution of the length of time spent in any particular regime depends on the
starting season.

Depending on whether the switch into a new regime occurred in the first, second
or any other scason will affect the expected length of the regime’s lifetime. To see this,

conditional on being in, say, state it = 0, the expected duration of the low growth sate
will be :

The motion of "seasonal asymmetries”, i.e., seasonal patterns which do not appear the same
during expansions and recessions was advanced in Ghysels (1990c). While the emphasis was
slightly different in that paper as it dealt with unconditional asymmetries and was almost
exclusively on seasonal mean shifts, i.e., first moments, the possibility of asymmetries in other
moments was also raised. The AR(1) periodic switching regime indeed yields asymmetries in
the seasonal conditional heteroskedasticities.
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0

k-1T1 o o
I [ 21(1 dt+j) q(“t) ‘El(lawk) (1- q(“t)) :

k;l j=1 &

For the purpose of illustration, take the simple example where ¢ = 2, i.e., when only
two seasons occur, then the expected durations are respectively :

kEI(CI(I) Q@) [(1 +2k) (1 - q)) + @ + 2K) (1 - q(2)) q()]

kEI(Q(Z)Q(I DA+ 2K) (1 - g@) + @+ 2K) (1 - (1)) g2)]

which will differ for q(1) # q(2). The dependence of the duration distribution on
starting seasons using the NBER Business cycle chronology was studied in detail in
Ghysels (1990b).

(3) Seasonal impulse response functions

The purpose here is only to draw attention to the fact that due to the hidden
periodicity, there is, in fact, also a periodic impulse response scheme that goes with the
Wold decompositions conditional on the season as presented in (2.11). Hansen and
Sargent (1990) study in detail how the impulse response mechanisms operate in a
periodic (linear) environment. We can only refer the reader here to the detailed
exposition they presented. It should also be emphasized that Hansen and Sargent
provide several examples of economic structural models which yield a linear periodic
representation. Similar attempts were made by Todd (1983, 1990) and Osborn (1988),
though Hansen and Sargent provide a unifying general equilibrium approach.

2.4 A general class of periodic Matkov stochastic switching -regime models

Having mostly relied on intuition and a specific example so far, we will now
turn our attention to generalizations. All technical material is conveniently presented at
the end of the paper in Appendix A.1. Here, we shall only point to the different
directions in which one can generalize the model and discuss how they can be formally
treated.
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Consider the set ¥ of R"-valued discrete time vector processes defined on the

probablity space (Q,.€,%#) where for each we Q, {yt(a))} ¢ y is generated as
follows :7

L

L bj(lt, 4p2) [yt_j - b0(1t_j, 4y zt_j) X

(2.16) Y, = bo(it, s zt) Koo+ i

i+ Ot—j] +4,.

Equation (2.16) is an explicit fepresentation of the vector process, showing that
possibly all coefficient matrices bj(-), j=0,1, ..., L are random and depend on the state
process (it, 4o zt), where {i} follows 2 Markov chain with transition probability matrix

"P(4 ¢ z[) and 4,= t mod o as defined before, while Z, is a set of variables affecting the

transition probabilities similar to Filardo (1991) and Diebold et al. (1992). The
TeZIessors X, in equation (2.16) are fixed, namely consisting of either a constant or a
constant and o - 1 seasonal dummies, while the error process St is i.i.d. N(O, A).

A brief digression on the Markov process {it} will be helpful before discussing
the matrix functions bj(-), j=0,.., L It will be assumed that there are r "primitive”
states describing each of r possible regimes. As there are £ lags in equation (2.16), the

L+1

Markov process will have r states each season. Hence, the Markov chain

throughout the year is described by the set {P(4, zt), é=1,. . &} where P(4, zt) isa

1 B4 pansidion probability matrix. Following Filardo (1991) and Diebold et al.
(1992), one can consider the transition probabilities to be time-varying, -evolving as
logistic functions of z'[ 'yi( 4), 4 =1, .., ¢. Hence, in state i, a different vector ¥(-)
applies to each season. To illustrate this further, just let L = O and r = 2 for the
moment. Then we have :

0 1
0 exp(z’[-yo(dt)) . exp(z'tyﬁ(at))
1+ CXP(Z;YO(dt)) 1+ exp(z;}'o(dt))
(2.17)
- exp(z,7,(4,)) exp(z,7,(4)) |
1+ exp(z't'yl(dt)) 1+ exp(z,7,(4 )

7 To save on notation again, we substitute y, for yt(co), etc.
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A special case of (2.17) is where z, is just a constant. Then the transition matrix
simply becomes a function of 4 ( only, which is what appeared in (2.2). As 7.1(-)
becomes a scalar in such a case, one can simply express the transition probabilities p(-)
and q(-) in (2.2) via the logistic function g(4 t) = exp(‘yo(d)) /(1 + exp(yo(a)) and
p(a) = EXp(’}’l(J)) /1 + exp(ys( 4)). Another special case of (2.17) which is also of
particular interest for empirical work is the case where P(dt, zt) = P(zt), ie.,
independent of 4 ¢ Of course, this corresponds exactly to the analysis in Diebold et al.
(1992). Yet, unlike Filardo or Diebold et al., it is important to observe that z may
contain seasonal processes. Hence, the transition probability matrix becomes stochastic
and seasonal instead of deterministic and seasonal, as in the case in the purely periodic
transition scheme of section 2.1.

The matrix functions b,(-) through bl(') appearing in (2.16) are nXn
polynomial lag matrices which are allowed to shift with the regime. It was noted that
the set of regressions X0t consisted of a constant with or without seasonal dummies.
With only a constant in Xoe ie., Xt = 1Vt and bo(i[, 4 l) only depending on { it}, we
recover the most familiar case where {yt} is driven by a stochastic mean shift which is
a function of a latent Markov process determining the regime switches. It should be
noted though that y, can be a n x 1 vector process, so that bO(-) determines a nx 1
vector of mean shifts depending on {it} for the joint multivariate process. When X ot
also includes seasonal dummies, several new issues emerge. In particular, until now,
we have not really made explicit whether the {yt} process is seasonally adjusted or not,
using conventional methods such as the X-11 procedure of the U.S. Bureau of the
Census. The effect of such filters on a process generated by (2.16) is a matter of
discussion which will be deferred to later. For the moment, suffice it to say that such
filters are usually inspired on and defined in terms of linear time series unobserved
components which do not involve any periodic or nonlinear features. To bypass these
questions, let {yt} be an unadjusted series. We noted in section 2.2 that the periodic
nature of the Markov chain already induced a "seasonal dummy"-type behavior in a
linear representation where the seasonal mean shifts are entirely govemned by the
transition probabilities P(4), V4. Yet, as these transition probabilities determine quite a
lot of features ranging from seasonal asymmetries in conditional variance to periodicity
in duration length, as discussed in section 2.3, it is reasonable to introduce seasonal
dummies separately. It not only relaxes the burden of a tightly parameterized model,
but more importantly leads to testable hypotheses.
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Augmenting the model with seasonal dummies, makes bo(*) a nX of matrix
function. An interesting proposition, already mentioned in section 2.3, is whether there
are seasonal asymmetries in mean shifts, that is to say, coefficients in bo(»)
corresponding to the seasonal dummies which depend on {it}. If so, then seasonal
mean shifts depend on the stage of the business cycle, as suggested in Ghysels (1990c).8

Obviously, equation (2.16) contains many features all at once, making it
potentially a richly parameterized model that will be too demanding for most data sets
to be inferred from. As bl, bf.(') and bo(-) are allowed to depend on {it} and { 4 [},
one can indeed produce some quite complex dynamics in polynomial lags, seasonals
and regimes.?

So far, we have presented a vector stochastic switching-regime process with
possibly seasonal transition properties, both periodic through 4 . and possibly stochastic
through z, with fixed regressors and an AR(L) polynomial autoregressive structure.
When is such a process stable? When does it have finite moments, like a well-defined
covariance structure, for instance? Discussing regularity conditions requires a fair
amount of notation and elaboration. To avoid interrupting the flow of the paper, we
refer the reader to Appendix A.1 which contains a formal discussion of regularity
conditions under which the processes will be well behaved, that is to say,
asymptotically stable and having at least finite second moments. It should be noted
though that our formal treatment only covers the case where z, is a constant, hence the
transition matrix P(-) is nonrandom, yet possibly periodic.10 It is shown that (periodic)
Markov switching-regime processes can be treated as doubly stochastic vector AR(1)
processes, using the terminology coined by Tjgstheim (1986). Our formalization then

One parameterization, leading to a convenient testable hypothesis would be as follows :
bO(lt, dt) = (ao + 0(1(1(), am + all(nt), . ao oF-1 + Otl e?’—I(lt)) where L € {0, 1} Yt and
alj(it) = aljit‘ Hence, for alj =0Vj=1 .. ¢- 1, none of the seasonal mean shifts depend

on {it]’ €.g., the stage of the business cycle. In contrast, when for some j alj # 0 then
depending on whether it = 0 or 1, the seasonal mean shift will be an + alj respectively.

See, for instance, Hansen (1991) and McCulloch and Tsay (1992) for switching regime models
with state-dependent AR polynomials.

I00 A formal treatment of such regularity conditions has been absent from the literature on

Hamilton-type models. Since periodic Markov switching -regime models cover as special cases
an aperiodic homogeneous Markov scheme, it should be noted that the regularity conditions
apply to a large set of applications hitherto treated informally.
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relies on Tjgstheim (1990) and Karlsen (1990) to characterize the necessary conditions
for weak stationarity. A general linear representation is discussed highlighting

attributes such as the appearance of seasonal mean shifts and periodic autocovariance
structure.

3. ESTIMATION AND HYPOTHESIS TESTING

Estimating Markov switching-regime model is mostly likelihood based, either
via classical methods like in Hamilton (1989) among others, or via Bayesian methods
following the work of Albert and Chib {(1991) and McCulloch and Tsay (1992). We
will proceed along those same lines, namely focus on classical MLE as well as Bayes
estimation using a Gibbs sampler approach.!! This section is structured as follows. We
shall first discuss the formulation of the likelihood function in section 3.1. The next
section is devoted to classical hypothesis testing. Anticipating some of the empirical
results, we shall devote special atiention to “boundary problems" in section 3.2 as well.
The Bayesian approach to estimation is covered in section 3.3.

3.1 The formulation of the likelihcod function

The estimation of Markov switching-regime models is covered in detail in
Hamilton (1989, 1991b) for the case where the Markov chain is homogeneous and in
Diebold et al. (1992) for time-varying transitions. Therefore, we shall restrict
ourselves here to a brief discussion, only highlighting new features occurring because
of periodicity. In general, we seek to estimate the parameter vector © governing the
coefficient matrices bj(-), j=0,1,..,¢ and the covariance matrix A from
equation (2.16). We will make some concessions regarding generality and focus
instead on the special case of two primitive states with a simple periodic Markov chain,
like in (2.2), involving a scalar stochastic process Yy ie., n= 1. Given a sample of size
T, i.e., T full years of data points, the log-likelihood function can be written as :

& T
(3.1) L(Y,. &)= ):1 logp(ytEYt_l; 9)
t=

11 It should be noted that a method—of-moments approach based on the results obiained in
Appendix A.1 (Theorem A1) is also a feasible estimation strategy. A full discussion of such an
approach is beyond the scope of this paper.
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where p(- | Yt—l; @) represents the probability distribution of Yo given observations up
tot-1,1ie., ‘J(t_1 = {(yt_j, 41_j),j 2 1}. Hamilton (1989, 1991b) goes into detail how to
formulate p(-1Y, ;) via a filtering algorithm to calculate the distribution of the
time t state given Yt, denoted p(§tIYt), and future observations of Yy in case of
smoothed inference. The key clement of interest is the probability of the unobservable
state process s = (ﬁt, 4. at any given point in time. This probability can be written
as:

(3:2) pls, =Gy 4) | Y ©)

where j can be smaller, equal or greater thant. The algorithm starts out with the
unconditional probability. The first observation is drawn from T, with 4 = 4 and z,
being determined by (2.31). When it e {0, 1}, the initial unconditional probability
would be, using (2.2) to describe the transition probabilities :

1-ple))

(3.3) p(st=(1, 41)) == q(dl) + 1 - p(dl)) .

Furthermore, the joint probability of s, and s, can be written as

1- p(dl)
G4 plsy =L a5y =L s N =Pl) Toqrz T+ T = p(a)”

Iterations similar to (3.4) can be computed for an initial segmentt=1, ..., L + 1,
where £ is the lag length of the AR polynomial in (2.16). Then, the density of the
£ + 1 sample points conditional on (s, ..., 5, ) can be written as :

(35) P(Yg, 18,1 =5 ®) = en®D? g1,

<L L TR AS e ] L =Ly
XPUT 41 = B Cup ) Y A Oy~ B Gy 4, Y

where 37% is as defined in (A.1.6). Then, the conditional distribution of the £ + 1 first

states, given data points in Y g4 Can be expressed as :
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36) Py, 8y | Yy =

POy | Spays o8P Pgyyr -0 8

K
z

STe

X PYy,y | 8gp = Ky 8y =KD PG =Kg o8 =K
1 L+1

using (3.4) and (3.5) to formulate the conditional and unconditional densities appearing
in (3.6). The latter starts off an algorithm that is applied iteratively throughout the
sample, beginning with :

(3.7 p(s

w1 =& 48, =0 4 1Y) =1 E W4, _4)pk(“)]p(s]Y)

4=1

where 1(4t = 4) is a seasonal indicator function used quite extensively in the remainder
of the paper, namely

1 if 4 (=4
l(dl = 4) =
0 otherwise

Next, one can write :

s, Y. )~

(3.8) p(yt+llst+l’ t il

N ) Koy * z b,

a1’ e’ Foral wt® Sut) [(yt1+l boliier Srjet) Fojerd N

Finally, yielding

3.9) p(st+l

= 4 )lYt+1

t+1

4
p(yt+llst+1’ Y) {JEI 1(“t+1 =4) pkj(d)] p(st =G “t)lYt)

K
L

L
PY 18500 Sy Y)
=1 v=1 t+1' t+1 4

li M@%

| 1(s = 4) puv(d)] p(s[= (v, 4 t)!Yt)]
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The expression in (3.9) together with (3.1) yields the desired log-likelihood function.
One important feature about (3.9) will be most useful in the next section, in particular
with respect to the derivation of an LM statistic. Namely, it should be noted that only
the p(4) for 4,1 = 4 appears in the recursion formula for fa(sm I Yt+l)' All other
transition matrices p(4) with 4 # 4 il do not appear directly, though they affect, of
course, p(st ! Yt+1) on the right-hand side of (3.9).

3.2 Classical hypothesis testing

Based on the log-~likelihood function specified in the preceding section, we can
construct a number of tests. As general specification tests were developed elsewhere,
we will not devote much attention to their presentation. Indeed, Hamilton (1991c)
developed tests for omitted autocorrelation, omitted ARCH and misspecification of the
Markovian dynamics. Such tests can easily be applied to the framework of section 2.
Instead, we will focus exclusively our attention on the principal hypothesis of interest,
namely the periodicity of the Markov structure appearing in (2.2). The hypothesis of
no periodic structure can be formally stated as follows :

(3.10) H, .‘pij(d)=§ij _ ' Vi je(l,..,K},s4=1, .., &

This hypothesis is "standard”, and hence does not involve issues like testing
when nuisance parameters are not identified under the nuil and issues which emerge
when testing model (2.16) against a linear time series model, for instance.12

We first use a LR test which can be formulated as follows :
A A d ‘
(3.11) LR = -2[L(y., 8) - L(yp, 8] — % (df)

A A
where 6 and o_are the unrestricted and restricted ML estimates respectively, df is the
number of degrees of freedom equal to (& - 1) X K.

12 Hansen (1991) discusses testing Hamilton's model against a linear time series model. Using a
standardized LR test, he was unable to reject the hypothesis of an AR(4) in favor of Hamilton's
model. Instead, he found supporting evidence for a mixture model with a state-dependent AR(2)
model. It is beyond the scope of our paper to reassess Hansen's finding assuming Hamilton's
model exhibits periodic Markovian features.
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Next, we consider a LM test for the same hypotheses. A LM test has several
advantages over the LR test. We will only estimate the restricted, i.e., nonperiodic

model, and evaluate the score function of the periodic model evaluated at gc. The fact
that one has to estimate the model only once is one advantage. But the most important
advantage is that the parameter space is greatly reduced to the simple aperiodic model
for which estimates are readily available, like the estimates obtained by
Hamiiton (1989) for the case of unadjusted quarterly GNP. The LM test is also elegant
because of its structure. In the previous section, it was shown that the conditional
probability p(st+1 IYM) appearing in (3.9) only involves pij(d) for 4= 4 Because
of this feature the LM test will consist of a system of o stacked score functions
involving only transitions from a particular season. More specifically, in case there are
two states, i.e., K =2, we have fori=1, 2 :13 '

(3.12) ri‘i(l) =dlogp(y,|Y, ;s M)/ dpys)=

-1

(s, = @D P s, =G0 4)s_1G s _P1Y)

+(1 - pii(d))“l PGS, =G 4).8_y =G 4_DIY)]

L ft=1

+ (p(a) [ 22 (s, = OpG, =G )5, =G 4, _PIY)
n=

- p(sn = (i, An), S 1= {, dn__l) I Yt)]

t-1
+(1 -‘pii(at))".l {nzz s, = a)pls =G s s, =G 4 DY)
- p(Sn = (j’ dn)’ sn—l = (i, dn—l) IYt)]]

P, =0, 4)1Y ) - p(s; =G, )Y _))
+1(s, = &) 1 ' R

1-p;,(4)
fortz2 whilefort=1:
13 The details of the derivations are omitted here : they appear in Ghysels and Hall (1992) for the

general nmonlinear standard asymptotic distribution theory case. Linear sysitems with K1)
processes are also deait with in that paper.
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pls; = @ 4 IY) - [ - py () - pyla) + 1 - pi(a))]
1-p;(8)

B13)r Q) = 1(4; = )
where j=2wheni=1andj=1 fori=2. From (3.13) and (3.14), we define :

rft ().)'
(3.149) R4(A) =
' £y ()

and Rt(l) = (R:(Z,)' R‘ty(?.)‘)'. The latter is a stacked system of score functions for
each season involving only transitions from that season. The score test can then be

formulated as :

#T ST A
315 MY = oIV D) . RAIW/T) 3 Rt(ic) RA )1 (Vo)
t=1 =1 |

ST , d
I RGN = (& - DxK).
t=1

3.3 Bayesian inference using the Gibbs sampler

In a series of recent papers Albert and Chib (1991) and McCulloch and
Tsay (1992) discuss Bayesian estimation of Hamilton-type model using Gibbs sampling
techniques. The usefulness of Gibbs sampling as a simulation tool has been shown in
many statistical applications, see, e.g., Geman (1984), Gelfand et al. (1990}, Gelfand
and Smith (1990) and Casella and George (1992), and econometric applications, see,
e.g.., Chib (1991), Geweke (1991a, b, 1992), McCulloch and Rossi (1992) among
others. The appeal of the Gibbs sampler is twofold, first like Hamilton's algorithm, it
also avoids direct calculation of the likelihood function and second, it is particularly
suited for computing joint posterior distributions from conditional distributions of
subsets of the pzirameters. The basic idea to make the Gibbs sampler work is to view
the unobserved state process {ét} as missing data points through the entire sample and
treat them alongside the unknown parameters to compute posterior densities.

Our setup follows closely the approach pursued by McCulloch and Tsay (1992},
though their formuiation is more general and includes Hamilton's model as a special
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case. Again, with the particular application in mind covered in the next section, we
tailor their seiup to our specific model specification used for the empirical
investigation.14 All details are deferred to Appendix A.2 except for an important key
aspect of the formulation of the prior, namely the prior for the parameters governing
the periodic Markov chain. We confine our attention again to a two-state process,
i.e., r = 2, then adopting the notation of (2.2), the priors are formulated as follows :

(3.16) 1 - q(4) ~ Beta(a,, a s=1,.,

02)

(3.17) 1 - p(4) ~ Beta(a s=1,., &

11 312

Hence, we attribute the same prior mean and dispersion throughout the year in
each of the two primitive states. This prior formulation seems fairly patural, not
favoring any particular season a priori, and extends the standard Bayesian Beta
distribution prior to the case of periodic Markov chains,

4. EMPIRICAL RESULTS

We now turn our attention to estimation and testing Markov switching models
with periodic or stochastic seasonal transition features using U.S. post-WWII GNP
data. Before estimating the (nonlinear) Markov switching mddel, we study some of its
implications as they emerged from the stochastic properties discussed in section 2. A
first subsection is devoted to this type of preliminary analysis. Then, we move on to
ML estimation of Markov switching-regime models in section 4.2. Section 4.3 covers
Bayesian inference using the techniques described in section 3.3. A final section 4.4 is
devoted to forecasting, seasonal adjustment and other matters indirectly related to the
switching-regime model.

4.1 On periodic features

The purpose of this section is to conduct a preliminary and exploratory analysis.
Namely, we test whether the linear representation of GNP series exhibits periodic
features. In section 2, it was noted, both with the illustrative example and the general
framework, that a periodic stochastic switching-regime model implies a periodic

14 Bayesian statistical inference for a general class of periodic Markov switching regression models
based on the Gibbs sampler is discussed in detail in Ghysels, McCulloch and Tsay (1992).
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structure in the linear representation. Hence, a first task will be to test periodicity in
linear representations of GNP series. The second task will be to study seasonal patterns
in the nonlinear predictability .of the linear projection innovations.

Table 4.1 : Wald Tests of Linear Periodic Structures in U.S. Post-WWII GNP

Seasonally Unadjusted Data 51:1-84:4

4
Estimated model : A log GNPI;ISA =0, + 2 1(4t = 4)%

0 4=2

8 SA 8 4 SA

+3 6. AlogGNPPA L 3 3 6% (1(4 . = 4) Alog GNPTOY

j=1 1 o gm1a=m24 Y by
Q2 Q3 Q4
" lags 1-8 0,09 0.32 0.00
lags 1-4 0.30 0.36 0.33
lags 5-8 0.22 0.40 0.00

Joint tests of all seasons : lags 1-8 : 0.00 / lags 1-4 : 0.38 / lags 5-8 : 0.00

Tests for periodicity in linear models for U.S. GNP appear in Table 4.1. The
results reported were obtained from unadjusted series. For the sake of convenience, we
report Wald tests for periodicity, i.e., estimate an AR(p) model with the cross-product
of GNP growth series and seasonal dummies included and test zero restrictions on their
coefficients.!3 The model specifications appear explicitly in Table 4.1. It should be
noted that the model specification with unadjusted data is one where the growth of
GNP is projected on a constant and seasonal dummies and lags of GNP that ignore the
possibility of roots on the unit circle at the seasonal frequencies.1¢ Of course, the linear
specification adopted is one that follows from the periodic stochastic switching regime
specification presented in section 2.

15 For applications of Wald tests for periodicity, see, e.g., Osborn (1988) and Franses (1992),

16 An important issue is whether U.S. GNP series are better described by a model with roots on the
unit circle at the seasonal frequencies. It appears that for the sample covered in Table 4.1, there
is evidence of a root at the seasonal bi—annual! frequency. This result is fairly robust, in the
sense that tests proposed by Hylleberg, Engle, Granger and Yoo (1990) applied to GNP series
yield the same conclusion, regardless of the AR avgmentation chosen or sample sizes typically
used [see, for instance, Ghysels, Lee and Siklos (1992) for a more elaborate discussion]. One
should note though that the use of the tests proposed by Hylleberg, Engle, Granger and Yoo, are
not explicitly constructed to have power against periodic alternatives. See Ghysels and
Hall (1952) for further discussion of this point.
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Let us first concentrate on the unadjusted series covering the 51:1-84:4 sample.
Hence, this sample is the same as that covered by Hamilton (1989), yet unadjusted
rather than adjhsted series are investigated. There is a fair amount of evidence favoring
a periodic structure in the linear representation, as shown in Table 4.1. Joint tests
involving lags 1-8 or lags 5-8 reject the null of periodicity, particularly for Q4. The
seasonal adjustment procedure destroys the periodic pattern, however. Though not
reporied in Table 4.1, we also conducted the same tests with the adjusted data used by
Hamilton, for instance, and found no evidence for periodicity.l? Hence, if any
peﬁodicity is left after filtering with X-11, it must appear in nonlinear features of the
data. Let us therefore investigate such features, without actually estimating the Markov
model. Namely, we tumn our attention to regression models involving P, = G, =11 Y[)
computed from Hamilton's aperiodic model using seasonally adjusted data.l8 The
following regression is obtained :

A log GNPSA = -0.194 -0.070 A log GNP ~0.017 A log GNP}A
(0.293) (0.164) L (o.101)

-0.152 A log GNP}, -0.195 A log GNP, +1.527 p,
(0.093) 3 (0.092) (0.643)

+0.111 p?) -0.106 p*) +0.672 p'*)
(0.304) 71 (0.300) ! (0.304)

R2=024 DW.=203

where p?) = 1(4 . = i)yp ; If we ignore the fact that P, is a generated regressor and just
use significance levels from the estimated standard errors, we not only find, as
Hamilton did, nonlinear predictability in the sense that P is significant, we aiso find

a significant individual seasonal effect for Q4. Moreover, the joint test that pE i i = (),
i=2,..,4 has a p-value of 0.06. Of course, one has to discount the fact that P, is a
generated regressor, as noted before, yet it is remarkable how such a result is obtained
with seasonally adjusted data. It is, of course, easy to understand following the

17 Asymptotically, one should still find evidence of periodicity after linear filtering, yet the power
of tests in sample size commonly used is dramatically reduced because of seasonal adjustment
[see Ghysels and Hall (1992} for further discussion],

18 Please note that the state of the world is simply described by it as 4 t does not figure in such a
model. )
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discussion in section 2 regarding the stochastic features of a periodic Markov
switching-regime model. Hamilton attributed the significant coefficient for P, a8
supporting evidence of the nonlinear Markov switching-regime model. Likewise, one
can make a similar argument for the periodic model on the basis of this preliminary
investigation.

Hamilton also investigated whether the squared estimated residvals obtained

from an AR(4) model for A log GNP?A were predictable using D,y Again, such
finding would be supportive of a Markov switching structure. Would there be any
periodicity in this relationship? Consider the following regressions :

&= 1564 -0.805p
(0.299) (0.370)

€= 1587 -0529p , -0.785 p{%) -0.279 p3) -0.116 p*)
0300) (0.441) "1 (0.431) V7 (0.427) Y (0.441)

where g% is the estimated residual squared from an AR(4) model for A log GNP?A It

is interesting to note that becomes insignificant once the (1) are included and
g Piyq g p

t-1
fal
that pE%; seems to carry the predictive power for e% rather than the overall p, _, series.

Here, again, the periodic features transpire, despite seasonal adjustment of the series.
Obviously, seasonal adjustment filters, while destroying all of the linear productivity do
not completely phase out nonlinear periodicity.

4.2 Classical maximum likelihood estimation of Markov switching models

We consider two types of models. Both relate to the general framework
discussed in section 2.5. The first model is a simple periodic version of Hamilton's
original model, as discussed throughout section 2. The AR polynomial expansion is of
order 4, hence :

4
SA _ ) SA .
(4.1) Alog GNP = o, + o i, +j§1(A log GNP[_J. o allt_j) + €,

with i € {0, 1} govemed by the Markov chain appearing in (2.2), i.e., a 2X2 transition
matrix potentially different each quarter. The second type of Markov
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switching-regime model considered differs from the first with regard to the Markov
chain dynamics. Indeed, it is assumed that

exp(z, ¥)

(4.2) p(it =1il it"l = i, Zt) = mm

with i = 0, 1, which is a special case of (2.17) assuming 7;(-) independent of 4 v Of
course, it is the choice of the elements entering the vector Z, that is important. Here,
we consider two specifications. First, it will be assumed that z, = (1, zh), where

z,, = (1, Alog GNP >% - A log GNPA,), yielding :

exp(y,, + 7, (AlogGNPY > - AlogGNP}2 )

43)pi =i, , =i, z)= ,
vl 1+exp(y, +7, l(AlogGNPl:‘%';‘ - AlogGNP?fl))

Consequently, when Y 0 for either i = 0 or i = 1, then the seasonal component of
GNP growth affects the transition probabilities for the seasonally adjusted growth rate
in GNP. The hypotheses of interest then become %y = 0 fori=0and/ori=1. Again,
when Y= 0 for both i= 0 and i = 1, we recover Hamilton's original model, except that
the transition probabilities have been reparameterized to p = exp(Y,,) /{1 + exp(*yw))
and q = exp(yoo) Q1+ exp(yoo)). The second specification we considered involves

z, = (1, ) where 7, = (1, (1 - L?) log GNPY°4 - (1 - L) log GNP$ ). There is
only one difference between this specification and the previous one. As there appears

to be fairly strong evidence of a bi-annual umit root in GNPTSA,- as noted in
footnote 14, a removal of such a root is considered. While we did not explicitly
discuss ergodicity conditions for a process driven by a Markov chain, as specified in
(4.2), it is clear that a nonstationary z, process would not be acceptable. Hence, by

applying (1 + L) and (1 - L) or (1 - L2) o the log GNPTSA, we ensure stationary
behavior of the transformed series in the event a bi—annuval root is present. Of course,
as will be discussed later, it should be noted that the seasonal behavior of (1 - L) log

GNP and (1 - L)1 + L) log GNPY>4 is very different.

The left panel of Table 4.2 summarizes the results of what might be called the
two most extreme model specifications, one representing the aperiodic model of
Hamilton and the other being a periodic Markov chain model with each p and q
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varying with the season, i.e., involving eight instead of two transition probabilities,
Hamilton's original model involved nine parameters, namely four polynomial lag
parameters ¢1 through ¢4, two mean shift parameters @, and o defined in (4.1), the
innovation variance o and, finally, the Markov process parameters p and g. The latter
two are replaced by p, through p, and g, through g, in the periodic model
specification. The LM test for periodicity based on the parameter estimates of
Hamilton's model as well as the LR test for periodicity are also reported in Table 4.2.

The results in the left panel of Table 4.2 may perhaps be labeled as a mixture of
pleasant and unpleasant surprises (we did not report standard errors in the table for the
periodic model, an issve that will be dealt with later). First, it should be noted that the
parameter estimates other than those pertaining to the Markov chain are statistically,
insignificantly different. This means, among other things, that the two states may still
be labeled as "recession" and "expansion” states. The surprise is, of course, the
multiple boundary parameter estimates. The LM test for periodicity strongly rejects the
aperiodic specification. The LR statistic is borderline. If we rely on the standard errors
of the aperiodic model, there is also a strong indication that the model is periodic in the
sense that the latter parameter estimates are not within two standard errors of the
Hamilton model estimates of p and q. We cannot formulate a formal Wald test in this
case.’d In the next section, we shall return to the boundary issue (and, in fact, the right
panel of Table 4.2). First, however, we turn to equation (4.3).

Let us now turn to the second model specification appearing in (4.3) with
estimates reported in Table 4.3. The nonseasonal model, ie., withl700= 2.243 and
Yo = 1.124 corresponds to a reparameterization of Hamilton's model as
0.904 = exp(2.243) / (1 + exp(2.243)) and 0.755 = exp(1.124) / (1 + exp(1.124)). The
- same estimates are obtained for the other parameters. We consider first the logistic

seasonal model involving z;, and notice that ?'01 = (0.470 is significant at 3 %, while

,’}11 = -0.209 is not significantly different from zero. The opposite sign of r,he.t'wo

19 What is probably most surprising is the pattern of boundary estimates. In all but the first
quarter, we tend to switch to recessions. In all quarters except the first and fourth, we tend to
leave expansions. That many boundry estimates is clearly an exageration. Yet, if we let the
data speak, only GNP of course, this cxageration emerges as a result. 1t is clear that less of a
case of boundary solutions would accur if we were to rely on more series besides GNP, at least
that can be implicitly derived from the fact that the NBER chronology for the comparable period
of the post-WWII era yields only two boundary parameter estimates, both for recessions
(q1 and q2) See Ghysels (1990b, Table 5.1).



Table 4.2
Classical ML and Bayes/Gibbs Estimates of Aperiodic and Periodic Markov Switching Regime Models

Classical ML Estimates of Aperiodic

and Unrestricted Periodic Models : Mean and Standard Error of Bayesian Posterior
Hamilton Model Unrestricted Aperiodic Model Periodic Models
(Aperiodic) ' Periodic Model
1-p ~ Beta (5, 45) 1-p~Beta(l, 9) 1-p ~ Beta (5, 45)
1-q ~ Beta (13,37) 1-q ~ Beta (6, _18) 1-q ~ Beta (10, 30)
Estimates Standard Estimates Mean Standard Mean Standard Mean Standard
Error _ Error ' Error Error

o - 1.164 0.074 1.178 0.925 0.167 0.968 . 0.150 0.957 0.152
&, ~-0.359 0.265 ~0.192 -0.331 0.244 -0.264 0.201 -0.275 0.199
¢1 0.013 0.120 0.077 0.214 0.082 0.214 0.081 0.203 0.07%
q)2 -0.058 0.138 -0.025 0.167 0.077 0.175 0.077 0.167 0.074
q)3 -(0.247 0.107 -0.249 -0.102 0.075 ~0.097 0.083 -0.101 0.078
¢4 -0.213 0.111 . -0.191 -0.121 0.075 -0.121 0.076 -0.123 0.074
o] 0.765 0.103 0.786 0.880 0.063 0.860 0.060 0.871 0.062
p 0.904 0.038 - 0.906 0.036 - - - -~
1 - - 0.684 - - 0.802 0.122 0.876 0.044
2 - 0.999 - - 0.923 0.075 0.909 0.039
3 - 0.999 - - 0.903 0.084 0.907 0.037
4 - ~ 0.999 - - 0.943 0.055 0.915 0.036
q 0.755 0.097 - 0.722 0.057 - - - -
| - - 0.568 - - 0711 0.093 0.726 0.070
2 - - 0.99% - - 0.754 0.088 0.743 0.065
3 - - 0.999 - - 0.768 0.079 0.757 0.067
4 - - 0.369 - - 0.732 0.084 0.740 0.069
Log likelihood -60.88 -55.79
Notes : There are no standard errors in the unrestricted periodic model. Apart from the Beta distributions, specified in the left panel of the table, all

other priors involved in the Bayes/Gibbs estimation setup were taken from McCulloch and Tsay (see Appendix A.2).



Table 4.3
ML Estimation of Logistic Nonseasonal and Seasonal Markov Switching Regime Models

Nonseasonal Unrestricted Restricted Unrestricted Restricted
Model Seasonal Model Seasonal Model ' Seasonal Model Seasonal Model
with z, = (1, th) with z, = (1, th) with Z,= a, z2t) with z, = (1, zzt)

Estimates Standard Estimates Standard Estimates Standard Esgtimates Standard Estimates Standard

Error Error Error Error Error
o 1.164 0.074 1.153 0.060 1.152 0.061 1.164 0.080 1.152 0.075
&, -0.35% 0.265 -0.304 0.135 -0.306 0.141 -0.349 0.211 -0.448 0.261
tpl 0.0135 0.123 -0.039 0.097 -0.039 0.096 0.023 0.128 0.021 0.127
<p2 -0.058 0.138 -0.042 0.099 -0.05% 0.097 -0.05%9 0.127 -0.081 0.143
(b3 -0.247 0.107 -0.313 0.090 -0.303 0.091 -0.231 0.111 -0.248 0.118
¢4 -0.213 0.111 -0.234 0.093 -0.236 0.093 - -0.205 0.116 -0.214 0.112
(o 0.769 0.103 0.781 0.085 0.783 0.087 0.601 0.109 0.583 0.109
Y0 2.243%* 0.435 3.140** 0.771 3.146%%* 0.779 1.746%* 0.592 2.335%* 0417
i - - (0.470%* 0.222 0.473%* 0.225 0.144 0.142 - -
Yoo 1.124%* 0.521 1.505%* 0.534 1.372%* 0.451 - 0.975* 0.569 0.889 0.577
Y01 - - -0.209 0.306 - - 0.236* 0.143 0.217 0.138
Log —60..88 -59.76 -60.00 -58.49 ~-58.96
likelihood
LR test 2.240 - 1.760 4.780* 3.848**
| (periodic vs 0.336 0.185 0.090 0.050
| aperiodic) '
Seasonal means 2" Q1 = -0.071; Q2 = 0.051 Seasonal means Zy, 01 =0013 Q2 = 0.042
Q3 = 0.004; Q4 = 0.058 Q3 = 0.078; Q4 = 0.082
Notes : * Significant at 10 %; ** significant at 5 % (applicable to Markov chain parameters only). :
The model that is estimated appears in (4.3), where z, = A log GNPT?? - A log GNP?}I and z, = {a- L2) log GNPT-S_? = Alog GNP?'?I. the

latter removing the bi—annual unit root in GNPI:ISA.
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coefficients is interesting, although one is not significant. Indeed, as the seasonal
increases, then the probability of staying in an expansion increases while the
probability of staying in a recession decreases. A priori this result is perfectly
plausible, though it should again be stressed that Yo1 is not significant. The fact that
the latter is not significant is not surprising, as there are relatively few observations
during recessions, an issue to which we shall return. On the down side, it should be
noted that according to the LR test, even if we reestimate the model, only including 7,,
as the next set of columns {labelled restricted model with z, t) indicates, does not favor
the seasonal model as it only yields a p-value of 0.185.

There are two plausible explanations for the conflicting inference drawn from the
Wald statistics and the LR tests. As the logistic seasonal model is nonlinear, it is
known that the sampling distribution of Wald tests is not as well approximated by the
asymptotic distribution as is the case with the LR test [see, e.g., Gallant (1987) or
Gallant and White (1988) for further discussion]. This would imply that we reject the
seasonal model. Another possibility is that z,, is in fact nonstationary, involving a
bi-annual unit root, as previously discussed empirical evidence suggests. In that case,
neither the Wald nor the LR tests probably have the correct size asymptotically. To
control such a possibility, we consider the specification involving Zoe The drawback of
this specification is that one breaks the usual seasonal pattern. Indeed, as reported at
the bottom of Table 4.3, we notice that the seasonal means now appear to be low in the
first two quarters and high in the second half of the year.20 With z,, entering the
logistic function, the LR test tends to support the seasonal logistic model, while the
individual Wald tests do not. The latter, however, is not surprising perhaps as the
seasonal pattern of Zy which was straightforward to interpret, has been reshuffled via
the (1 + L) operator for the removal of the bi-annual root. In fact, we find more
evidence that o1 is significant, though this disappears with restricted models.

4.3 Bayes estimation of periodic switching-regime models

We now retuin to the periodic specification reported in Table 4.2. The
unconstrained periodic switching-regime model is overparameterized for the amount of

20 We report seasonal means both for Zy, and Zay yet it should be noted that when there is a

seasonal unit root, the OLS estimates of the seasonal means of zl ¢ are inconsistent and their

distibution actually diverges asymptotically (see, for instance, Lee and Siklos (1992) for further
discussion).
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data available. In a sample of forty years, not enough switches are observed to
estimate all eight switching probabilities. Larger data sets would, of course, be more
desirable, yet pre-WWII data are not so coherently available. Moreover, the "Great
Depression” does not appear to fit easily in the two-state framework of expansion and
recession.  One possible way to smooth the transition probabilities and hence obtain
interior solutions is to adopt a Bayesian estimation strategy. This approach is pursued
in this section. It will allow us to tie down the transition probabilities through a
common prior, as formulated in (3.16) and (3.17). Indeed, with a Beta prior, one can
strike a balance between the desire to smooth the transition probabilities and
nevertheless allow for periodic heterogeneity. Preventing transition probabilities from
taking extreme values, via smoothing, is a priori reasonable on the basis that
irrespective of the season, the economy may always change regime, and hence no
season has "absorbing state” features where the economy would be trapped in either
one of the regimes. Of course, the choice of the prior is always critical in Bayesian
analysis. As smoothing of p(4) and q(4) across 4 is critical it will be important to
control for the dispersion of the Beta prior. If the Beta prior is very tight, then with 44
years of sample data spread over four quarters and two regimes we may not expect
much action in the posterior other than the information in the Beta prior. Hence, a very
tight prior induces extreme smoothing and yields essentially on aperiodic models in
moderate sample sizes. As the prior is. more dispersed, we express more a priori
uncertainty about the transition probabilities, though they are tied down by the same
prior each quarter. With more uncertainty, heterogeneity in transition probabilities will
come more into play. Of course, the extreme of loosening the prior is a complete flat
prior, in which case the sample likelihood function determines the shape of the
posterior, which, as we know from the previous section, yields comer solutions.
Hence, the tightness of the prior will play a crucial role. We considered two prior
specifications for 1 ~ p(4), 4 =1, ..., 4 : namely, we set 4, = 5 and a, = 45 which
implies a prior mean for p(4) = 0.89 for all seasons with the 1st percentile at about
0.80 and the 99th percentile at about (.97, and a, = 1 and a, = 9 yielding the same
prior mean for p(s) but the 25th percentile is now at about 0.85, while the Ist
percentile is at about 0.60. Consequently, we accept a wider range of possible
outcomes each season. This range, however, is not unreasonable, if we consider the
parameter estimates appearing in the last column of Table 4.2. Similarly, for 1 - q(4),
we set a,, = 10 and a02=30 yielding a prior mean of 0.67 for q(4) with a 1st
percentile at about 0.60 and 4y = 6 and a,, = 18 yielding the same prior mean yet with
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a larger dispersion. Again, the range is not unreasonable, particularly in the context of
the MLE results in Table 4.2.21

Table 4.2 summarizes the results from the Gibbs sampler estimation procedure
described in section 3.3. A first observation to make is that all parameters other than
Markov chain parameters have posterior distributions very much like the ones
McCulloch and Tsay (1992) found with their nonperiodic setup which for convenience
sake are also reported in the first column of the right panel of Table 4.2.22 Before
discussing the most important aspect, namely the Markov chain parameters, let us
briefly point out some of the similarities and differences betwen the MLE results and
the means of the Gibbs sampler posteriors. While most of the parameters appear in the
same range, it is worth noting that the AR polynomial has a slightly different shape
when compared to the MLE estimates obtained by Hamilton.23 With the loose prior, the
estimates of p vary from about 0.80 to about 0.95, i.e., a 15 % range, throughout the
year, with the smallest occurring during the winter and the largest during the fall, The
fact that the smallest posterior mean occurs during the first quarter should be no
surprise, given the pattern of MLE estimates. The standard error of the posterior
distribution is also the largest for the first quarter, resulting from the smoothing effect
of the prior and the tendency of the likelihood to seitle on a much smaller value,
namely 0.684. Again, with the relatively loose prior, the means of the posteriors for
the recession transition probabilities q(4) range from about 0,71 to about 0.77, or 6 %
range. Here, of course, the range is much smaller and closer to the posterior mean of
the aperiodic model reported in Table 4.3. The last two columns of Table 4.2 report
resuits with a tight pror. Clearly, the posterior distributions of the transition
probabilities cluster more around those of the aperiodic model as would be expected.
The moderate size of the sample implies that the information in the likelihood function
cannot overturn the strong common prior for p and q.

21 We set the priors for the other parameters of the model exactly as in McCulloch and
Tsay (1992). Hence, as in the previous section, we followed a similar strategy, namely, we
made our setup similar to that of existing estimates of a nonperiodic version of the Markov
chain model. Like McCulloch and Tsay, we took a slightly longer sample, though this is
inconsequential for all practical purposes. Namely, the data set covers 47:2-21:1, again
seasonally adjusied series.

22 ‘This, of course, is very similar to the MLE results reported in Table 4.2 comparing Hamilton's
original estimates with those obtained from the periodic model.

23 Indeed, the third~ and fourth—order lag coefficients, which as Hamilton noted were telatively
large (despite X-11 seasonal adjustment), appear much smaller, though still considerable.
Conversely, the first-order lag coefficient is larger now than with MLE estimation and appears
"significant” according to the posterior standard ermrors.
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To visualize the contrast between the prior and posterior distributions, let us
report our results in two figures. Each figure has five distributions plotted. First, we
plot the prior, then we plot the four posterior distributions, one for each quarter. Let us
first turn to Figure 4.1. It displays the loose prior for 1 ~ p(4) and the four posteriors
for 1 -p(4), 4=1,..,4. First, the fourth quarter very much has a concentrated
posterior, relative to the prior, with a higher posterior mean as well. Hence, expansions
seem to go through the fall wit.hbut much risk of staling. We also note that the
posterior for the first quarter contains far more evidence now that the probability of
staying in an expansion is much lower. The spring and summer show less risk of
switching again, yet not as strong as the fourth quarter. As we noted before, the
difference between the posterior means p(1) and p(4) is about 15 %, which can be
considered as quite significant not only statistically but also economically. Note also
that this pattern corresponds to the logistic seasonal model estimates where we found
that during “high" seasons, like the fourth quarter, the probability of leaving an
expansion decreased. Let us now focus our attention on the recession switching
probabilities, appearing in Figure 4.2. Here, the results are far more unsetiled. The
prior and posterior look very much the same, ie., the sample information has little
impact. There are simply not enough recessions to provi'de enough sample information,
similar to the inprecise estimates of %1 in the logistic secasonal models. There is some
movement away from the prior when it is loosely specified, in particular, regarding that
the summer has a higher probability of staying in a recession, as the posterior shrinks,
relative to the prior. However, the evidence is admittedly not so strong.

5. SEASONAL ADIJUSTMENT, FORECASTING AND REGIME-SWITCHING
MODELS :

One is constantly plagued in econometrics by the perenial questions regarding
the purpose, the desirability and the scope of seasonal adjustment. In this section, we
will briefly touch on yet another issue regarding seasonal adjustment emerging from the
setup of section 2. Then we will move on to practical issues like forecasting turning
points of the business cycle with empirical models presented in section 4.

Usually, seasonal characterizations of data are confined to linear structures. The
models in section 2 feature nonlinear seasonality, an area relatively unexplored so far.
What consequence does this have for the usual approach to seasonal adjustment? In
section 4.1, it was noted that some linear features of GNP suggested that periodicity
was not fully removed by seasonal adjustment filters. The best way to clarify this is to
compute the spectrum of the estimated {it} process using (2.11). More specifically, we
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rely on 3(4) and a(d) in Table 4.2 to characterize the multivariate process in (2.8) and
then via Tiao-Grupe's formula obtain its nonperiodic representation. Figure 5.1a
displays the spectrum computed from the means of the posterior densities for the
switching probabilities, while Figure 5.2b displays those of the MLE estimates
(involving the boundary estimates). Clearly, the former has a smooth spectrum, despite
differences in p(1) and p(4) up to 0.15. Any usuval approach to adjustment would not
recognize this as a process with seasonal features. With more exireme values, obtained
from MLE, the spectrum displayed in Figure 5.1b shows a dip at the quarterly seasonal
frequency., Dips in the spectrum at seasonal frequencies have typically been associated
with "overadjustment”.

The fact that seasonal adjustment filters do leave traces of periodicity is a
fundamental issue, yet a more important question and practically more relevant one
regards the forecasting performance of the different models. We consider two types of
forecast comparisons, one involving out-of-sample predictions and the other an
in-sample comparison of the estimated probabilities that GNP is in a low-growth state.

Table 5.1 reports an out-of-sample performance of four models for seasonally
adjusted GNP growth. The four models are : (1) a linear AR(4) model, (2) Hamilton's
model, {3) the seasonal logistic modpl with . and (4) the one with Zy: Using the
parameter estimates reported in Table 4.3, covering the sample 51:2-84:4, we produced
5 years of one-step-ahead predicitions. For the switching-regime models, we relied
on P[it =0 Yy -lto calculate the predictions.24 For the 20 one-step-ahead predicition
errors, we calculated mean absolute error and mean squared error measures of
accuracy. When we take the linear model as a bench mark, we find that the aperiodic
model appears to do worse in predicting GNP growth, while the seasonal models
outperform the linear model. Of course, the logistic seasonal models are implicitly
multivariate models, since they involve a second series besides GNP growth. Yet, in
this particular case, the second series is actually the seasonal component of the series
being predicted.

Figure 5.2 reports the inferred probability of the low-growth siate over the

estimation 53:2 - 84:4 sample obtained from Hamilton's model and the logistic

24 This procedure gives a slight advantage to the switching-regime models, in comparison to the
linear AR(4) model, by incorporating Y in the conditioning set.
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Table 5.1 : Out-of-Sample Prediction Performance
85:1 - 89:4, A Log GNPYA

Estimation Sample : 51:2 - 84:4
One -Step-Ahead Prediction Error

Linear  Switching Regime  Logistic Seasonal Logistic Seasonal

Model Model with z,, with Zo,
M.AE. 0.551 0.626 0.424 0.370
M.S.E. 0.303 0.439 0.255 0.187

seasonal models.25 The three models are plotted side-by-side. Visual inspection of the
plots indicates that the logistic seasonal models appear less erratic, considering, for
instance, their behavior during the sixties and mid-seventies. Both are expansion eras
where the evidence of seasonal variation was found, which as it appears is taken into
account in the logistic seasonal model. QOverall, all models track the NBER chronology
fairly closely. Besides visual inspection, let us evaluate these models with some formal
measures of forecast accuracy. Here, again, we assume that the NBER chronology is
the bench mark and compute measures-of-fit for probability forecasts, similar to the
analysis of Diebold and Rudebusch (1989). The goodness-of-fit measure is the
quadratic probability score (QPS).26

From Table 5.2, we leamn that with concurrent data (ie, k = 0), the logistic
seasonal model with zZ, does slightly better than the aperiodic model during NBER
recessions, but conversely does worse during NBER expansions. This is not surprising
as can be seen in Figure 5.1, since the logistic model has a better coverage of the
NBER recessions, particularly during the late fifties, early sixties and early seventies.
The logistic seasonal model with z, does not fare as well, however. It is very
interesting to note that all models in Table 5.2 do remarkably worse with k = 4 and, in

25 The logistic seasonal models considered are the restricted ones reported in Table 4.3. The
NBER chronology used in the quarterly are reported, for instance, in the Appendix of
CITIBASE. We did not report the findings for the Bayes/Gibbs model, since they were close to
those of the second logistic seasonal model,

26 For exact definitions and further discussion, we refer the reader to Diebold and
Rudebusch (1989). It is similar to mean—squared error calculations.
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fact, worse than with k = 0. Hence, more data tends to smooth the P[it =01 Yk ]
away from the chronology. How about considering the smoothed probabilities using
the entire sample? We notice that all models move closer again to the NBER
chronology, yet only one model improves relative to the top panel of Table 5.1, i.e., the
concurrent probability assessment. It is the logistic seasonal model with z, s

assessment of recessions is improved, while its assessment of expansion eras
deteriorates.
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Table 5.2
Quadratic Probability Scores for P[it = QOly ok’ Tee-1° ...J Chronology
Against NBER Aperiodic and Logistic Seasonal Models

NBER Aperiodic Logistic Seasonal Logistic Seasonal

with zlt - with z2t

k = 0 (Concurrent)

Dep. 0.158 0.166 0.270
Exp. 0.088 ' 0.118 0.092
k = 4 (One Year Later)
Dep. 0.913 0.896 0.994
Exp. 1 0.426 0.435 0.381
. Smoothed
Dep. 0.201 0.148 0.255
Exp. 0.166 0.242 0.187

Obviously, this forecasting excercise has the drawback that it relies on the
NBER chronology, which is an estimate probably as good, or perhaps worse, than any
of the other ones emerging from the models. However, using the chronology as a
bench mark, it is clear that using seasonal features, one way or another, appears to
improve in some respects the historical record of assessing business cycle phases.2?

6. CONCLUSIONS

This paper dealt with the possibility of nontrivial interactions between cyclical
variation and the repetitive intra-year dynamics of the economy. The presence or
absence of such interactions is a fundamental issue. It would be relatively easy to deal
with many key issues in macroeconometrics if long spans of uniformly measured time
series were available. The parametric structures we presented in this paper lead to
straightforward hypotheses one can test regarding periodic features in stochastic regime
switching. Like testing for cointegration, long memory, unit roots, mean reversion,

27 The finding that the estimated probablities move away from the NBER chronology may be
explained by the fact that the latter relies on the level rather than the growth rate of the series to
assess turning points. We made a comparison of the estimaied probabiliies with the
growth—-cycle chronology suggested by Moore and Zarnowitz (1986, Table A.8) but found
results similar to those reported in Table 5.2.
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etc., to name a few key issues, we are hampered by relatively short data sets, like only
forty or fifty years of data for GNP with not so many regime switches. It is therefore
understandable that empirical results are not overwhelmingly conclusive. Yet, the
empirical evidence does indicate the presence of interactions between phases of the
business cycle and seasonals. For the post-WWII era, the seasonal in GNP growth,
with or without taking into account the presence of unit roots at seasonal frequencies,
affects regime-switching probabilities in (seasonally adjusted) GNP growth. In terms
of forecasting turning points of the economy, there is also evidence of exploiting
information contained in the seasonal djnamics. Moreover, a simple assessment of the
nonlinear predictability in seasonally adjusted GNP growth also suggests periodicity.
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APPENDIX A.1

In this appendix, we discuss the regularity conditions for asymptotic behavior of
the vector process Y, appearing in (2.16) under the restriction that the transition matrix
P(at, zt) is independent of z. We shall introduce a doubly stochastic vector
autoregressive representation to conveniently describe the regularity conditions and
follow the example of Tj@gstheim (1986) and Karisen (1990).

First, an autoregressive representation for it, similar to equation (2.5) yet more
general will be the most convenient representation for our purposes. To do this, let us
transcribe the definition of i using a slightly different notation. Namely, consider the

identity matrix of dimension r*

rf.+l

L and let the i® column be denoted bye fori=1,..,

+ Then, e, will represent the state of the world, namely i =i & £ =e.. Similar to
stacking it over an entire year as in (2.7a), we can also obtain :

ALY £=E g - Ero)

where ﬁT is an & x (rﬂ""1

) vector containing o entries equal to one. The process {£}
will have an homogeneous vector autoregressive representation of order one as it
corresponds to a Markov chain with an homogeneous transition probability matrix

obtained from the set {P(4) 4 =1, ..., &}. More precisely :

I 0 01°! [0 - Fl
B, I . o 90
(Al2) §.= " N E A
0
F, . 1
L J"l y -0 0 J

where F _ is entirely determined by P(4) for each 4 =1, ... ¢/, and Y, is uncorrelated
with §t_i for i> 0.1 Note that in order to obtain an homogeneous Markov chain
representation of a periodic switching-regime model with £ autoregressive lags; one

needs 1o consider a oxr*! state system.

1 The correspondence between FJ and P(4) is relatively simple and can be found, for instance, in
Hamilton (1991d, p. 30).
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We now define the by now familiar stacked ship-—sampled versions of the series

{yt} and {6 }. Moreover, we also introduce the processes y,, 0 5" Y and their stacked
counterparts, namely :

(A.1.3) §t =y, - by, 4) X,

(A.1.4)3;'; =[5 VT (AL5) 8L=[80., ;T

ALOTE = UG gy~ T ALY =18t ) @ T

(A LBBYE, 5) = [0fi, 4)%0)" Oy 1l

L - L)
(A19) BHE) =BG 4y 1u o)) - BLG ]

where the latter two are stacked versions of the intercept process bo(it, 4t). Finally, it
is straightforward to also define : '

(A.1.10) y% = Bg(ct,dt) + §% (A.L11) LL,E 33(51) + i&

From (2.16) and the processes defined in (A.1.3) through (A.1.9), we can
Characterize now a doubly stochastic representation.

a11§t= 2ke) it + &

{ -
In 0 -1{0 B (5@%&)
where ,ﬂl’ @'r) =t -B™(& ey(t_l)ﬂ,l) In
0 Ble, oL 0 0
bl(i[’dt) . bf,(it’ dt) '
with BYE, 4) =

R
n

and E gtsty = 1 4© AL where AL = E sf(af)' .
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Notice that 4 , no longer appears in .5’"(-) as it is absorbed through stacking.

The regularity conditions for the existence of a well-defined autocovariance
structure for a general periodic Markov switching-regime process can be presented
now. Several formulae that characterize the autocovariance structure are introduced,

- with each entailing different computational operations. The structure is as follows :

(1) basic assumptions are presented first, (2) the steady state of the Markov process is
discussed next and, finally, (3) a theorem then summarizes the main resuit.

(1) Basic assumptions

AssumptwnAI The processes {y,c} {6} and { gr} are defined on a common
probability space (L2, ¢ o e,,)

Assumption A.2 : The process {§1} is a Markov chain which is stationary and ergodic

with a finite number of states defined on the state space S with dimension @’(rl"'l) It
has a transition matrix denoted by 2

For convenience of notation, we shall denote rf'J’1 by K so that the number of

states in S equals ¢*K.2 To proceed with the next assumption, let us define the sigma
algebra :

E{Xu,llst}

Assumption A.3 : The matrix functions BQ(-) and .92'(-) appearing in (2.28) are of
dimension (nt)x(ni); ( &nl)x(e’nl) respectively and are measurable functions with

respect to £ ;‘,y. Likewise, the matrix functions BO(-) and .S‘g( -) are also measurable
with regard to same sigma algebra.

2 The probability space used in Assumption A.1 is appropriate to deal with stacked skip—sampled
vectors where stacking is based on seasons. In particular, € o TEPresents a sigma algebra

based on sampling events conditional on the seasons they occur in with the associate probability
measure P o The formal discussion presented here includes as special case models which do

not involve periodic Markov chains. This is indeed easy w see, simply replace "T° by "t" in
(A.15), and replace the probability space (Q, € P ) by (§,.6.P) while the number of

states in Assumption A.2 equals r2'+1. See Hansen and Sargent (1990, chap. 10, appendix) for

further digressions on the measure theoretic issues involved,
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Assumption A.4 : The process { é'r.} is a martingale difference sequence with regard to

T [ 20 -

./{d,yandE§f§¢_I@,_@A < o,

As the estimation will be likelihood-based, we shall in fact assume that 4_31 is iid.

N, I o ® A) (as we did in equation 2.16). Yet, the analysis in this section may be

used to construct a Generalized Methods of Moments estimator [cfr. Hansen (1982)].
Finally, we also assume :

Assumption A.5 : The processes { §*t} and { §1:} are mutually independent.

(2) The covariance structure

The basic question of interest is under what circumstances are {yt} and its
derived processes integrable in quadratic mean, that is to say {yt(m)} belongs to the

usual Hilbert space LZ(Q, ., P) or {Et(w)} belongs to LZ(Q, o/ pBy). As all processes
have a doubly stochastic representation, we rely on the analysis in Karlsen (1990) to
develop necessary conditions for the existence of a well-defined covariance structure.

We shall begin with a discussion of the first moments. Hence, we are interested
in the mean of {yt} as it appears in (2.16). This, of course, means we want to analyze
the cross-product of the stochastic process bo( -) and the fixed regressors Xy From
Assumption A.2, we know that the Markov chain process has a unique steady state
distribution. For each season 4 =1,... .. , &, we characterize the steady ‘state
distribution as the solution T, t0:

(A.1.13) T, = F r

.y é=1,.., &

where the matrices Fl, ey B o 2Te given in (A.1.2) and several methods can be used to
compute [see, e.g., Hamilton (1991d, p.27)]. Moreover, the steady-state
distribution & of the skip-sampled Markov chain 'g’r can easily be obtained either via
computing & = Fr or else :

ALdr= & \(x] .. .. ')

Consider now the seasonal sampling of the X, Drocess, and let its limit be
denoted :



T

1 34 —
(A.l. 15)'}‘-1;13 T E x(}(e?’(r-l)+4)'x a=1,.., &

if x,, is just a constant then of course X includes seasonal

4 =
h =x0V4, yet when X0

‘dummies then 'x'; represents a different n X 1 vector each season. Let

(A.1.16) blg(a) = By (LOXS, . .., B, X) =1, ..,

be the matrix of all K possible mean shifts each secason 4, then the mean of Y,
conditional on season 4 is expressed as follows : A

—hK =
(A1.17) Eyt |4 = b,(4) z, a=1,.., &
while the mean uncondmonal of 4 is simply Ey ! ):. Eyt | 4

Some special cases of (A.1.17) are worth pointing out. For instance, when X is

just a constant and blé( 4) is not a function of 4, as for instance is the case in

Hamilton (1989) then Eyt] 4 is simply the cross-product of z, with blg, i.e., the
expected mean shift under steady state distribution . Hence, as observed in section 2
for a specific case, with switching probabilities changing periodically, one generates a
seasonal mean-shifting behavior in linear representation. Of course, it was also noted
that this seasonal dummy behavior is tightly parameterized as it is entirely determined
by the switching probabilities of the Markov chain. When X0t includes dummies, a .

seasonal mean-shifting behavior naturally arises with a more flexible parameterization.

Having determined the mean of Yy conditional or unconditional on the season,

we furn our attention next to the second moments of the demeaned process ')7 as
specified in (A.1.5), as well as the second moments of the b (1 4,) process. To
streamline its characterization, we rely on the doubly stochashc representation
appearing in (A.1.12). We are interested in the following objects :

(A.L18a)T(H) = E (yT+ ) H=0,1,..

L :
(A-L18DT,(H) = E (BFED (B (& 1)
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(A119a)y (h) = Ey (y for Vtsuchthatt=7% & ~ 1)+ sandh =0, 1, ...

t+h)

(A1.19byy, () = EBL(E, &) BHE,,, 9) for Vtsuch thatt=1(o - 1) + 4,

where 4 =(4 +h - 1)mod #andh =09, 1, ..

The formula in (A.1.18) represents the covariance structure for the stacked

skip-sampled vector process yi‘, In contrast, the formula in (A.1.19) represents the

covariance structure, conditional on a particular season, of the nonstacked yt’ process.
Once the formulae in (A.1.18) and (A.1.19) are well defined and characterized, one can

again invoke the Tiao-Grupe formula appearing in (2.11), this time applied to the yi‘

process, yielding expressions for :
(A.1200)%h) = E yt (y " Vtandh=0, 1,...

(A1.200)y,0) =EBLE, ) BhE .. ) Viandn=0,1,...

t+h’
The existence and characterization of (A.1.18) through (A.1.20) is determined as
follows :

Theorem A.1 : Let Assumptions A.l through A.5 hold. Then stochastic processes {yg_}
and {B{(£)} are covariance~stationary with ['0) and T',(0) finite if :

@  Max (T eI )[diag(Bg(k, 8L K 10, 61

) <w
45 ¢ @l @ly?

®  plidiag(2tw e SANTK) (201 <1
- (/nly

where p(-) is the spectral radius while lj and Ij are respectively a 1 X j vector of ones
and an identity matrix of dimension j. ‘The matix £ is defined in Assumption A.2.
Moreover,

Al2DveeTE) =0 oI ) M L

_1 1
~-F)  F.vecl e A



(5 _r‘,

”~

A-7

#K K PN
(A.1.22) vec T (H) = )‘. n'k ): (plc - ) By By

where Eilj is the kj-th element of 2% and where the matrices F L1=0,1 and 2 are as
follows :

F _“31(4 l’.)

—_ 3 2' 4 K ' '
F, = diag®, , o BN Mwel el 4

= [diag{ 2 {k)@ 3 (k)k 1](1:@ 1’ )'@I(an.

Finally,

71(9}0 ' Yl(GJ’H -+ 1)
(A123)TH) =
Y&(@’H-ef'ﬁl) Tec/(‘-’yH)

with a similar relation applying to I“O(H) and Yoj (-), while

(A.1.24) vec }'d(h) = 1:L el . 2[diag(Bf'(k, -:i) ® Bf'(k, })')I‘Ll] vec Yd(h - 1)
4 {nl)

+ vec Al.

Proof : By formulation equation (2.16) as a doubly stochastic vector AR(1) process, we
can use Theorem 4.1 of Karlsen (1990) spelling out the conditions for a well-defined
second-order structure when the parameter process in a doubly stochastic vector AR(1)

process is governed by a finite Markov chain. Condition (a) applies to the {Bg}
process second-moment structure, while condition (b) applies to the de-measured

process ?i’, . The bounded spectral radius condition follows from (4.2) in Theorem 4.1
of Karlsen (1990). Likewise (A.1.21) and (A.1.22) follow from formulae (4.3) and
(4.5). Equation (A.1.23), establishing the relationship between I'(-) and 74(-), follows

from from the stacked skip-sampling structure of {y%;}' Finally, equation (A.1.24)
follows from the doubly stochastic representation of the same process, without stacking,
however.
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APPENDIX A.2

In this appendix, we briefly summarize the basic features of the Gibbs sampler
used in the paper. As noted in the main body of the paper, our approach closely
follows that of McCulloch and Tsay (1992).

We shall first discuss the formulation of the prior as well as the conditional
posterior distributions which are easy 10 obtain from traditional Bayesian analysis.
Next, we discuss how to compute the joint posterior distributions.

Let us consider again equation (2.16). For the purpose of formulating the prior,
let us assume that :

. c u g
(A.2.l)b0(1t, At) X, = b0 Xo * b (1 4t) Xo b (lt, 4[)

where by is common to all states, by, in contrast is state-specific yet unconstrained while
bg is also state-specific but subject to inequality constraints like b2 (1 4) < bt (] )

V4, ¢ and i and j given with i # j. This yields the following priors on the parameters
governing the mean-shift function of the {y[} process :

. c |
(A.2.2) b0 ~ N (bm, Ac )

u u ]
bo(], D.. . bo(l, )
! . . u -1
(A.2.3)vec : : -~ N(bm, Au )
u u
LbO(K’ ... bO(K’ d’)‘

'bgu, D). b1, of)
. . _ g 'l

(A24)vec|: : N, Ag ) I(T!g)
bg(K, ... bg(K, )

where b_, b, bE are hyper-parameter vectors of dimension nx 1 and twice
(K o n) x 1 respectively describing the prior mean, Likewise A, A and Ag are
hyper-parameter matrices describing the dispersion of the prior. Fmally, I(n }isa
(K s4n)yx 1 indicator function whose elements equal 1 if the imposed mequahty-



constraints are satisfied and zero otherwise. The prior for the inverse of the innovation
variance A” is assumed to'be Wishart distributed W(A™, ), which in the univariate

case, i.e., n = 1 implies o*~v '61)53 where 0 and v are again hyper-parameters. The
polynomial lag bj(it, 4 t) for j=1, .., L appearing in (2.16) are assumed independent of
(it, 4t) and governed by the prior distribution :

(A2.5)vec(b,, ... by) ~ N(b_, A"

again controlied by a set of hyper-parameters. Finally, and more importantly, we
consider the prior for the parameters governing the periodic Markov chain, as discussed
in the main body of the paper. We confine our attention again to a two-state process,
ie., r =2, then adopting the notation of (2.2), the priors are formulated as follows :

(A2.6)1 - 1(4) ~ Beta(am, aoz) a=1,., &

(A2.D1 - p(4) ~ Beta(all, alz) 4 =1, d’

From the aforementioned priors, one can compute conditional posterior
distributions which will be used for the Gibbs simulations. McCulloch and Tsay (1992)
describe in detail how to compute the following conditional posterior distributions :

p(x | Y . [0\{x]]) where x = b, vec(b, ..., by) and A while [e\{x}] represents the
parameter vector © excluding the elements appearing in x. The former two conditional
posteriors are normal, the latter is inverted Wishart. Moreover, let I[s {it-j’ 4 t_j),
t>j2 1} pretending as if states were observable, then using similar arguments, one can

also compute the conditional posterior densities p(x | gﬂ. E,yr [e\{x}]) where x = bg

and bg, the former being a normal distribution while the latter is truncated normal

because of the inequality constraints appearing in (A.2.4). Finally, it is worth

discussing briefly the conditional posterior distributions for q( 4) and p(s). They are :
p(P(s) | L) ~ Beta(ay, ef (4), ap, ef (4))  a=1,., &

P(4) | L,p) ~ BetaGa,,, ef, (4), 2., ef (&) 4=1., &

where efij(a) is the number of "jumps" from i to j in season 4 given the history of
states described by L,- Note that unlike the classical MLE, the conditional posterior
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mean will not be at the boundary in any given finite sample even with efij(a) =0 for
any given i, j and 4.

Of course, we are not directly interested in the conditional posterior distributions,
but instead the analytically intractable joint posterior for the entire set of parameters as
well as the history of unobserved states Lo~ Al this stage, we rely on the Gibbs
sampling principle as a simulation tool. Since this technique is now widely used and
well documented, notably in the survey paper by Casella and George (1992), we refrain
from repeating the iterative steps of computing a conditional posterior distribution. The
outcome, provided mild regularity conditions are satisfied [see, e.g., Geman and
Geman (1984)] is the joint posterior density of interest.





