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ABSTRACT

This paper studies the accuracy of two versions of the procedure proposed by Kydland and
Prescott (1980, 1982) for approximating the optimal decision rules in problems in which
the objective fails to be quadratic and the constraints linear. The analysis is carried out
in the context of a particular example: a version of the Brock-Mirman (1972) model of
optimal economic growth. Although the model is not linear quadratic, 1ts solution can
nevertheless be computed with arbitrary accuracy using a variant of the value function
iteration procedures described in Bertsekas (1976). I find that the Kydland-Prescott
approximate decision rules are very similar to those implied by value function iteration.
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1, In

The linear—quadratic (LQ) method proposed by Kydiand and Prescott
(1980,1982) for approximating the solution to non-linear quadratic optimization
problems has been applied by a wide variety of authors.! Little is known about the
accuracy of this method in general. The purpose of this paper is to provide some
evidence of its accuracy within the context of a particular example. This is done by
comparing the LQ approximate solutions with the solutions obtained by discretizing
the underlying state space and applying a variant of the value function iteration
methods described in Bertsekas (1976). Since the grid for the endogenous variables
in the state space i8 very fine, I expect that the solution obtained by value function
iteration approximates very closely the solution in the version of the problem in
which the endogenous state variables take on a continuum of values.

The example used in the paper is a version of the Brock Mirman (1972)
one sector stochastic growth model. A solution to the model is a set of two decision
rules. These relate end—of—period capital and current consumption to the current
period state variables, respectively. There are two state variables,
beginning—of-period capital and the current period's technology shock, which is a
realization from a stationary stochastic process. Two versions of the
linecar-quadratic approximation are studied. The first relates end of period capital
linearly to the state variables, and is called the linear LQ approximation. This is
the original method used by Kydland and Prescoit (1980,1982).} The sceond
approximation used is log linear in end-of—period capital and the state variables,
and i3 therefore called the log—linear approximation method. It is applied in

1See, for example, Altug (1986), Christiano (1987c,1988), Cooley and Hansen (1988), Hansen
(1985), Hansen and Sargent (1988) and King, Plosser and Rebelo (1988).
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Christiano {1987a,c;1988) and King, Plosser and Rebelo (1988). This method has
the virtue that in the special case in which the model of the paper does admit an
analytic solution, then the log-linear decision rules and the exact decision rules
coincide (see Proposition 1). This case is the model studied by Long and Plosser
(1982) in which the depreciation rate on capital is 100%, the production function is
Cobb~Douglas, and utility is logarithmic in consumption.

The accuracy of the approximate decision rules is evaluated on four
dimensions. First, [ compare the LQ decisions with those of the (approximately}
exact solution at selected points in the state space. Then, I compare the LQ
decision rules' implications for several first and second moments with those of the
exact solution. This comparison is of particular relevance since first and second
moments play an important role at the parameter selection and model evaluation
stages, respectively, for many who use LQ approximations. Third, I report the
amount, expressed as & fraction of the initial stock, that a planner who only knows
the LQ decision rule, would be willing to pay to "learn” the exact decision rule.
This is a measure of how close to optimal the LQ decision rules are. Finally, graphs
of the steady state distribution of consumption and capital as implied by all three
solutions are presented.

The results suggest that the LQ approximation is remarkably accurate for
the example at hand. In addition, they show that the log-linear and linear LQ
approximations are roughly equally accurate. This latter finding illustrates that the
relative accuracy of the two decision rules is context specific. For ¢xample, in
Christiano (1987a,b) and Christiano (1988,ftn.18) I show that in a model similar to
the one in this paper, but with a productivity shock that is a logarithmic random
walk, the two approximations are dramatically different. Christiano (1987a) shows

that the difference reflects the accuracy of the log-linear approximation and the




very poor accuracy of the linear approximation in that context.

The plan of the paper is as follows. In section 2 I present the growth
model that is studied, and its LQ approximate solution. Section 3 formulates the
optimization problem ags a dynamic programming problem and discusses its solution
by value function iteration. Details of the algorithm appear in Appendix A. To my
knowledge, the algorithm I use has not been used before. The appendix compares
the computing times of the algorithimn I use with other existing algorithms. Section
4 describes the model parameters used in the experiments. Section 5 presents the

comparison of the LQ and value function iteration solutions. Section 6 concludes.




2. ThePr I i LQ Approximgation

The problem I consider is the one good growth model in which the

planner maximizes

@1)  Ey=_, -0t 4

subject to
(2.2) C, + K, - (1-6)K, ; = exp(xJK{ ;.

Here, Ct and Kt are date t consumption and the end-of-period f capital stock,
respectively. Also, 6, « and 7 are the rate of depreciation on capital, the share of
income due to capital and risk aversion, respectively. We that assume that X, is a

realization irom an n, state, first order Markov chain with

(282) x, == {ii,...,g%;lx}
Probability {x
Ext = 0.

p1 = Fl X = F} =1

At times it is convenient to refer to the model for Xy in terms of its first order

autoregressive representation:
(23b)  x, =px,_; + €,

where € is mean zero with variance 03 and is uncorrelated with x;_y- Further
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detalls about n, 7 = [?rij] and $are given below.

A solution to this problem is a function relating the date t decision, K £
to the date t information variables, X and Kt—l' The exact solution is known only
for the case 7 = 6 = 1 (see Long and Plosser [1982].) The rest of this section
describes two variants of the linear quadratic (LQ) approximation method proposed
by Kydland and Prescott (1980,1982). The first of these, the linear LQ method,
approximaites the decision rule for Kt by one that is linear in X, and Kt-—l‘ The
second, the log-linear LQ method, approximates it by one in which the log of Kt is
related linearly to Xy and the log of Kt-—l' The decision rule delivered by the
log-linear LQ method has the virtue that it coincides with the exact decision rule

when 6= r=1.
2.a The Linear L.Q Approximation.

Express the problem as a standard calculus of variations problem by

substituting (2.2) into (2.1):
_ t
(2.4) maximize By ZF_q Fu(K, ;K x,)
subject to X and K_; given. Here,
25  uKKx) = 1= exp(x)K® + (1-9K - K177,

The linear LQ method approximates the solution to (2.4} by the solution

to the following linear quadratic optimization problem:




(2.6)  maximize By BY_o fU(K, K, x),

-

*
where U is the second order Taylor series expansion of u about Kt—l = Kt =K

* * *
and X =X . Here, K and x are the steady siate values of Kt and X, of the
*
nonstochastic version of (2.4) obtained by setting ¢ =0 for all t. Trivially,x = 6.

Algo, it is easy to verify that

(2.7) Kﬂzg%g%éLwﬂkﬂ_

~ *
It is convenient to define K, = Kt - K . At date t, the first order

necessary condition for K, to solve (2.6) is

(28  EX,, 6K, + %} K, ; =—a/8)x,

Here,
Upy + B u _ * %
(2.9) ¢=—3%HE—£=1+KLH%%U—&ﬂﬂ®/RL

* %
where C /K is the steady state consumption to capital ratio, given by

(2.10) C /K = g - L+ di-a)

th th

In (2.9), U is cross derivative of u with respect to its i"" and j arguments,

evaluated at steady state. It can also be shown that




(211) q= @u—fﬂi: B0+ + B 1+ S5 3K
12 K K

Let A be the unique number which satisfies |A] < 1 and A% — ¢A + (1/6) = O.

Then, the unique solution to (2.6) is the rule:

A1 A
Ki=AK, | +amx %y

or,
* A

= Q& -1 %e)

*
say, where flinLQ(K’x) = (I-AYK + MK + [gA/(1-BpA)]x.  Substituting this
decision rule into (2.2), we get the linear LQ approximate decision rule for

consumption, innLQ:
— = 144 - — 4
(213)  Cy =gy 1Ky _yxp) = exp(x Ky + (1-0K_y — 1,7 oKy _pxy)-

This decision rule gets its name from the fact that the decision rule for K, is linear

in its arguments. Clearly, 8linL.Q is not itself linear.
2.b The Log—Lincar 1.Q Approximation.

Let k; =log(K,) and define:




(2'14) r(k7k’ 3X) = u(exp(k) 3e‘xp(k’)3x)?
where u is given in (2.5). Then, an equivalent way to write (2.4) is as follows:
(2.15)  maximize By B_ fr(k, .k, x,),

with respect to decision rules for kt‘ The Log-Linear 1L.Q method approximates this

decision rule by the one that solves
(2.16)  maximize Eg 5%_ 6'R(k,  k,x,),
*
where R is the second order Taylor series expangion of r about kt—l = kt, = log(K )}
* ~ * ~
and x; = x . Let k, = kt —k . The first order necessary condition for k, to solve
(2.16) is

(217) Bk - ok + (1/0k,_; =T0/(FK k.

where ¢ and q are as defined in (2.9) and (2.11), respectively.? The solution to
(2.16), then, is

. oy
k= Ak + (07K ) =gpx %y

2In this case, ¢ is —(r22 + fFr11)/(fBri2), where rij is the cross derivative of r with respect to its
*

ith and jf’h arguments, evaluated at kg1 = k¢ = log{K ). The statement in the text follows from
the facts (rz2 + B r11)/(Br12) = (22 + B wi)/(Bus2) and (ras + Bpris)/mz = (uas +

Bpuys)/ a1k ).




or,

(218) K, = (X )““Mexp[gg—t[:gaxd K}

= foqroFi1%)

*)(I—A)

*
When 7 = § = 1, then A = @, /K = (1-fpa}/0e, and (K = @f, so that

(2.18) reduces to
(219) K, = aﬁexp(xt)Kf_l,

which is the exact solution to {2.4) {see Long and Plosser [1982].) This proves the

following Proposition:

Propogition 1:
Ifr=6=1,

then the Log-linear approximation is exact.

An analogous proposition can be proved for the linear LQ decision rule. In
* *

particular, when 7 = § = 1, then (2.12) reduces to K, = (I~)K + aK, , + K x.

But, this is the first order Taylor series expansion of the right side of (2.19) about

*
x, =0and K, =K. Thus, we have:




Proposition 2:
fr=46=1,

then the linear LQ decision rule is the first order Taylor series expansion
of the exact decision rule about the steady state values of x; and K, ;.

Denote the log-linear L{Q) decision rule by fl 0gLQ’
(2200 K, =f (K, 1x) = (K )T Nexpix g /[K (1-8o2)]} K
) t 7 TlogLQ\ =177t CXP1X;q P t-1"
The implied log-linear decision rule for consumption is g 0gLQ’
— — a’ — —

Unless 7= =1, g, 2LQ is not itself log linear.
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3. Th i V. g ion I A

In the problem posed in the previous section only the exogenous shock,
X;, was assumed to lie on a discrete grid, & In particular, the capital stock was
implicitly assumed to be able to take on a continuum of values. Value iteration
methods require that the capital stock lie on a discrete grid and therefore do not,
strictly speaking, apply to the problem posed in section 2. However, onc expects
that by choosing a sufficiently fine grid for K, J%, an arbitrarily accurate
approximation o the underlying continuous problem can be obtained. In the
calculations of this paper J%is in fact extremely fine. The following discussion is
informal. Details of the solution method used appear in the Appendix.

Problem (2.4} is expressed as a dynamic programming problem as follows:

(3.1) (K, ,,x,) = max {u(K, ;.K,.x.)+ B v(K, x )},
=17t KtEA(Kt_l?xt) A R A b "t +1

subject to {x,} having Wold representation (2.3). Finite state Markov chains
having this property wiil be described shortly. In (3.1), A denotes the feasible set of
possible choices of Kt‘ Feasibility is determined by the non-negativity constraint

on Ct and by the requirement that Kt € J Formally:
(3.2) AKx) = [K’ € &: exp(x)K% + (1-6)K — K~ > 0].
The set J%is a discrete interval of positive numbers which is described below.

One value function iteration method, standard vaelue iteration, proceeds

by starting with some initial v function on the right of (3.1), say v P then evaluating
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the expression to the right of the equality in (3.1) and calling the result Vi1 Then
Vi ig replaced by Vitl and the procedure is repeated to yield Vipor This continues
until there is little change in the vj's. Call this converged Vj’ v. In practice, it is
possible to speed up the above contraction iterations along the lines suggested in the
introduction (see the Appendix.) The function v is used to compute the decision

rule for capital, fDP’ as follows:

(3.3) fap(K, ;,x,}) = argmax {u(K, {,K,,x.)+ BEv(K,,x, )}
DP* -1 KtEA(Kt_l’xt) =107 t 41

The decision ruie for Ct can then be obtained from fDP* the decision rule for K (@8

follows:

(3.4) gpp(K_p»%,) = exp(x JKE | + (1=K, ; - fyp(K,_1.x,)-

Let x and X denote the smallest and largest possible values of x,,
respectively. Also, let K be the limit of the sequence {K.}, where K is the smallest
element in Fand K; = fDP(Ki_l,g, i=1,2,.... Similarly, K is the limit of the
sequence ]E{j defined by the condition that K, is the largest clement in JFand K i=
fDP(Kj_l,EE), j = 1,2,... . Then, since fDP(-,x) is increasing in x for all examples
studied, it follows that &np = {K e #%: K <K < K} forms an ergodic set relative to
the DP decision rule. That is, if Kt € Jshould start out outside this set, it moves

into it and once in it, it stays there. The steady state probability of Kt lying

outside this set is zero. In a similar way, the linear and log—linear L.Q decision rules
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also imply ergodic sets, which I label &; nLQ and &'lOqu, respectively.3

One way to choose the grid, J% is to make its smallest (largest) point
slightly less (greater) than the lowest (highest) value in &hp- Since knowledge of
a'DP requires the decigion rules, one could proceed by first getting a rough guecss of
&np based on decision rules obtained using a coarse grid, and based on glinLQ or
& 0gLQ" The second stage calculations can then be based on a very fine grid which
contains few points outside 5op- This is the strategy followed for the calculations

in this paper.

3Using (2.12), it is easy to confirm that glinLQ = {K*+§q/\/[(l—5pA)(1—/\)} ,

* L : , ,
K +xqA/{(1-BpA)(1-A)]}. A similar calculation can be used to compute 5103 using (2.18).

LQ
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4. M. rization.

This section reports the model parameterizations used in the experiments.

First, I describe the Markov Chain models used to model the exogenous shock.
4.a Markov Chain Models for {x;}.

In the experiments described below, I used two Markov chain models for
{x}: a two state model (nx = 2) and a three state model (nX = 3). The Markov
chain is completely described by the state space of X & and the fransition

probability matrix, #.
The Two Sigte Markov Chain Model for {:ci}_
In this case
1) 7= [1_‘?_5¢ 1;4’}, F= {-0,0}.
The AR(1) representation associated with this Markov chain is (2.3) with
(4.2) p=2¢-1,E[¢]x, ;] =0, E[c%]xt_l] = ai‘; = 02(1—;)2).

Also, the steady state probabilities of X =0 and X, = oarel /2 each. Evidently,
values for p and a% completely determine the parameters of the two-state Markov
2 )2

chain. In the experiments below, I set o, = (.01)2 and (.10)°, and p = .95. This

implies ¢ = .032 and .32, and ¢ = .975. Prescott (1986,p.15) argues that a value of
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o, a little under .01 is empirically plausible. The large value of o, (.10) was
alsoused in order to get an idea of how large the shocks have to be before the LQ
approximation deteriorates significantly. The large value of p corresponds well with
Prescott's (1986) empirical finding that technology shocks are highly serially

correlated.
The Three State Markov Chain Medel for { g_:t}_

In this case

[ o ¥ 1—¢'—7} [ —X}

(4.3) 7= B 129 g , F=| 0.
1

The Wold representation corresponding to this markov chain is also (2.3), and

(4.4) p =24+ 7-1, Elglx, 1] = 0, s = 1+5y/¢, Var(x,) = x2/k,
0% = Var(x)(1-"),
where £ = E(xf) / [E(x%

= 0, and x, = x, are, respectively, P, (1-2P), and P, where P = (21‘5)_1. To

)]2 is kurtosis.# The steady state probabilities for x, = —x, x;
determine this model, four parameters must be assigned values: ¢, 7, ¥, and x.

Thus, unlike in the two state case, values for ai and p are not sufficient. To

determine values for this markov chain example, I set crg, g, k, and 7. In the

4Unlike in the two—state model, the innovation in the three state model is conditionally
heteroscedastic.
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experiments below, I set 02; = (.01)2 and (.10)2, p= .95 k=3, and 7= .040.5 I

SIn this case, for both values of 0'3

.9565 .040 .005
® = | .010 .980 .010 |.

005 .040 .955
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set & = 3 so that the mode!l would resemble the normal distribution, for which & =

3.
4.b Other Model Parameters.

I analyzed five parameterizations of the model. The first four set § = .98,
r=.5, p = .95, & = .33 and incorporate one of the four Markov chains models for X,
described above: the low (o, = .01) and high (o, = .10) variance two-state Markov
chain and the low and high variance three—state Markov chain. Comparing results
for these models permits judging their robustness to the number of states in the
Markov chain and to the variance of the technology shock innovation. A fifth model
was studied to determine the impact of risk aversion on the results. In that model,
rigsk aversion is very high, with 7 = 3. Otherwise, the fifth model is parameterized
in the same way as the model with 7 = .5 and a three state, low variance, Markov
chain model for x,.

The ergodic sets associated with each of the three capital decision rules
corresponding to each of my five models are reported in Table 1. It is striking how
similar é’l 0gLQ and gDP are. In contrast, giinLQ ig shifted to the left of gDP in
the high shock variance cases. Table 1 also reports the boundaries of the capital
grid, J% used when solving each model by value function iteration. In each case, &
containg 20,000 points. The interval between grid points is reported in column 5 of
Table 1. Column 6 of Table 1 reports the number of minutes of central processor
time used in solving the model by value funciion iteration. The time used to solve
the three state exogenous shock models exceeds by about 50 percent the time
required for the two state exogenous shock models. This reflects that the number of

points in the state space of the three shock models (60,000) exceeds that in the two
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shock models (40,000) by 50 percent. In each case, the value function iterations
were gtarted with vy = 0 and where considered to have converged when

sup {\vj ~Vi1 ‘”anl {}%100 was less than .000001.
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This section reports comparisons of the LQ and DP decision rules, for
each of the five models defined in section 4.b and column 1 of Table 1. There seems
to be no best metric for comparing decision rules, and so I use several. The first
compares the LQ and DP decision rules directly by tabulating their values at
alternative points in the state space. The second compares several first and second
moment properties of the decision rules. The third measures the amount an agent
who uses an LQ decision rule would be willing to pay (expressed as a fraction of
initial capital) to learn the DP decision rule. This is a direct measure of how close
to optimal the LQ decision rules are. The fourth compares the steady state

distribution of Ct and Kt. implied by the LQ and DP decision rules.
5.a Tabulation of Decision Rules

Tables 2 and 3 tabulate the DP and two LQ approximate decision rules,
at various points in the state space, and for the five models for which solutions were
computed. The (Kt—l’xt) combinations represented in Tables 2 and 3 include all
possible x,'s in the relevant markov chain and five representative K;_,'s. Of these,
the middle one is always K’k and the least and greatest ones are the end points of
gDP’ taken from Table 1. The other two points are half way between K’k and these
end points. To aid in comparing the LQ and DP decision rules, cases where they
differ by between 1 and 10 percent are indicated by a *, cases where they differ by
between 10 and 20 percent are marked by a 1, and cases where they differ by more
than 20 percent are marked by a 7.

Consider first Table 2, which reports results for the two two state
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Markov chain models. Panel A in that table shows that the DP rule and the two
LQ decision rules are all approximately identical in the low variance case. In
particular, if the capital and consumption decisions are rounded to one digit after
the decimal the decisions are identical. Not surprisingly, the decision rules diverge
somewhat for the high variance two state Markov model, results for which are
reported in Panel B. The divergence is fairly minor in the case of the capital
decision, where a difference exceeding 1 percent occurs only once. The differences
are larger in the context of consumption, where the level of consumption implied by
the LQ decigion rules tend to overstate optimal consumption, in one case by over 20
percent.

It is also interesting to compare the decision rules according to whether
they are increasing or decreasing in the state variables. In all cases in Table 2 the
DP decision rules for C, and K, are increasing over the reported values of x; and
Kt—l‘ This property is shared by the LQ decision rules for Kt’ a fact that can be
verified analyticaly from the appropriate formulas in section 2.6 Over the reported
values of x;, K, ;, the LQ decision rules for Ct are also increasing in K, ;.
However, only the linear L.Q decision rule for Ct is increaging in Xy In particular,
in the high variance case the log-linear decision rule for C, is decreasing in x, for
Kt—l = 86.14 and 108.60.

Next consider Table 3, which reports results for the three state Markov
chain models. Basically, the same picture that emerged from Table 2 emerges there

as well. In particular, for the low variance version of the model with 7 = .5 (Panel

6The linear LQ approximate decision tule is not monotone in €y when p = 1 and the
approximation is taken by first transforming the model so that the planner's choice variables are
¢t = Cifexp(xt), ky = Kifexp(xy). Then, even though ki is monotone in €4, Ky is not. The
log—linear LQ approximate decision rule for K¢, by contrast, is monotone in this case. For a
fuller explanation and a demonstration of the quantitative significance of these differences, see
Christiano (1987b;1988,ftn 18).
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A), the DP and LQ decision rules are virtually identical. As in Table 2, the
differences show up in the high variance case, principally in the consumption
decision rule. Panel C shows that the high accuracy of the LQ decision rule when 7
= .5 and g, =.01 also obtains when r= 3.

All decision rules in Table 3 are monotone increasing over the reported
values of the state variables, with the exception of the LQ decision rules for Ct in
the high variance version of the model (Panel B.) Those rules are monotone
increasing in K 1 but they fail to be monotone increasing in Xy Since they differ
in this respect from the corresponding DP rules, this reflects approximation error.

A feature of the three shock models that the two shock models lack is
that both the low and high variance models with 7 = .5 share some common points
in the state space. One of these, (K, ;%) = (63.69,0.0), Is reported in Table 3.
Because their construction imposes certainty equivalence, the LQ decisions for Ct
and Kt at this point is the same for both the low and high variance models.
However, the exact problem does not satisfy certainty equivalence, and so there is
no reason to expect the DP rules to share this property. In fact, Table 3 indicates
that fDP(63.69,0.0) is 63.69 and 63.68 for the low and high shock models,
respectively. Also, gDP(63.69,0.0) is 3.94 and 3.95 in these two cases. Thus, while
certainty equivalence does not to hold exactly, it appears to do so approximately.”
This may be one of the reasons why the LQ approximations are so accurate.

In sum, the evidence in Tables 2 and 3 suggest that for reasonable shock
variance (eg., the low variance case), the LQ approximation is very accurate, even

with high risk aversion, 7 = 3. When the shock variances get very large, then—not

TA factor which complicates interpretation of this exercise is that althhough it involves a
mean—preserving spread on xi, the experiment does not involve a mean preserving spread on

exp(xt). By inducing a mean—preserving spread in xi, the result describes the response to the
shift in the mean of the distribution of exp(x¢), in addition to its variance.
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surprigingly—the quality of the approximations begin to detericrate. Based only on
the evidence in Tables 2 and 3, it is hard to say which approximation—the linear, or
log-linear LQ—performs better in the high variance case. On the one hand, there is
evidence that the log-linear LQ approximation performs poorly at more points in
the state space. For example, there are more f's associated with the logLQ results
than with the linL.Q results in Tables 2 and 3. On the other hand, there is evidence
that the states in which the log-linear LQ decision rules perform worst have lower
probability than the states in which the linear LQ decision rules perform poorly.
This is suggested by the fact that the logLQ decision rules perform worst in states
with (low K, high x) and (high K, low x) combinations, whereas the reverse is true
for the linLQ decision rules. Given that Kt——l and X, are positively corrclated
(which the must be, given the high positive autocorrelation of x,), then—other
things equal—this would cause the log-linear decision rule to dominate the linear

one in a weighted overall sense.
5.b First and Sccond Moment Implications of LQ and DP Decision Rules

Tables 4 — 7 report seiected first and second moment properties of the DP
and LQ decision rules, obtained by Monte Carlo simulation. I simulated 100 data
sets on Ct, Kt’ Yt = Ct + Kt - Kt—l’ the rigsk free rate of interest, Rt’ and the
marginal product of capital, MPk " Each data set has length 10,050, but the first

?
50 observations were discarded prior to computing first and second moments. The

risk free rate of interest, R,, i3 defined in the usual way, as R’t =

tﬂ
u(C,)/[Eu(Cy, {)] — 1, where the conditional expectation is evaluated relative
to the appropriate consumption decision rule and Markov chain probabilities, and

u(C;) = CEI_T)/(lwr). The marginal product of capital is MPk,t = 0Y, /K,
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where Yt = exp(xt)Kf‘__l ig output.

In executing the simulations I found that the linear LQ decision rule
occasionally implies a negative value for Ct‘ This happened only when the
exogenous shocks were drawn from the three-state, high variance markov chain. To
accommodate this, I redefined flinLQ and 8inLQ in such a way that whenever they
implied a negative Ct’ Ct was set to .01 and Kt was adjusted appropriately. These
redefined linear LQ decision rules where algo used in computing the risk free rate of
interest. Of the 1 million total values of Ct computed, 92 had to be adjusted in this
way. Similarly, negative values of Ct where encountered in computing .67% of the

i
Rt 8.
First Momenls

Table 4 reports first moment properties of the DP and LQ decision rules
for the 7 = .5 models, as indicated in the column headings. The first column
containg the variable whose mean is reported in the remaining columns. Those
columns contain the average, across 100 simulations, of the mean value of the
variable. Numbers in parentheses in columns 2 — 13 are the standard deviation
across the 100 simulations. The small size of the standard deviations reflects the
large number of observations per simulation (10,000.) Numbers in parentheses in
the first column are steady state values of the associated variable. Comparison of
the first moment properties of the DP rules with the corresponding steady states
permits agsessing an assumption implicit in many applications that utilize the LQ
approximation. This assumption—that steady states and unconditional means
roughly coincide—plays 2 role in two places in applied work. First, there would be

little sense in approximating a model about steady state if the model's variables did
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not fluctuate about this point in the stochastic version of the problem. Second,
many empirical researchers who use the LQ approximation select model parameter
values by equating nonstochastic steady state properties of their model with
corresponding sample statistics (Christiano [1988] and Kydland and Prescott
[1982].) This method of assigning parameter values would be inappropriate if the
nonstochastic steady state diverged substantially from the mean of the stochastic
version of the model.

Consider first capital, consumption and output. Table 4 indicates that,
for the high vartance economy, the mean of these variables is roughly 10% higher
than their steady state values. In addition, the mean of the capital output ratio is
about 7% higher than its steady state value. Presumably, the larger average capital
stock in the stochastic economy reflects households' efforts to insure themselves
against the risk associated with the production technology. Recall, however, that
the innovation to the technology shock in the high variance economy is more than
10 times what 1 plausible empirically. In the empirically more plausible low
variance economy, EKt/Yt N K*/Y*, EK, ¥ K*, EC, C* and EY, o Y (stars
indicate steady state quantities.)

The mean value of capital implied by the linear LQ decision rule is
roughly equal to K*, as it must given that it is linear. The log-—linear LQ decision
rule implies a larger mean value of Kt in the high variance economies because of the
convexity of the exponential function. Thus, in the high variance economies, the
mean of the logl.Q capital stock lies in between that of the DP and 1inl.Q decision
rules. The same is true for C, Y and K/Y.

Next consgider Rt and MPk,t' In nonstochastic steady state these
quantities are both g1 — 1 = .0204. In the stochastic version of the model one

expects EMPk g > ERt‘ This reflects that MPkt is the return on a riskier
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investment than is Rt since the states in which the former pays off the most are
those in which consumption is valued least, ie., COVt(MPk,t’u’(Ct 1) < 0. Asit
turns out, both ERt and EMPk,t are approximately 1 — 1, even in the high
variance model. The fact that the average equity premium, E[Mpk,t - Rt]’ is
roughly zero in this model is reminiscent of a similar result obtained by Mehra and
Prescott (1985) for an endowment economy.

In sum, the evidence in Table 4 for the four v = .5 models suggests that
the steady state properties of the nonstochastic version of the model approximate
closely the corresponding first moment properties of the stochastic version of the
model, as long as the innovation variance to the technology shock is of plausible
magnitude (i.e., o = .01.) Table 7 reports first moment results for the 7 =3, low
variance model. Like in the 7 = .5, low variance models, there ig little difference

between steady states and unconditional means in the 7 = 3 model.
Second Moment Properties

Tables 5 — 7 report second moment properties of the models. There, -
denotes the standard deviation of the variable w,. In addition, pX,y(T) denotes the
correlation between x, and Yi_p and Ac, signifies C; — C;_y- Numbers not in
parentheses are the average of the associated statistic, across the 100 data sets.
Numbers in parentheses are the corresponding standard deviation.

Consider first Table 5, which reports results for the = = .5 models. A
striking feature of that Table is that the results differ so little between decision rules
and models. The only quantitatively meaningful differences lie in ar/ay and
Py, Ac(ﬂ)' With regard to the former the standard deviation of crr/ I is higher for

the linLQ decision rule and the high variance, three shock economy than for the
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other cases. With regard to Py, AC(0), the LQ versions of that statistic are smaller
in the high variance models while the DP versions appear scale independent.® Since
the LQ and DP versions are equal for the low variance economies and scale
independence seems plausible, I interpret this to reflect approximation error in the
LQ approximation.

Next, consider the dynamic correlations for the 7 = .5 economies reported
in Table 6. As in the other tables, there are few significant discrepancies between
solution methods and models. One discrepancy is that the correlations based on the
linLQ solution to the high variance, three state markov model are all smaller than
the other correlations, presumably reflecting approximation error.  Another
discrepancy is the scale dependence in the LQ versions of that p Ac,A c(i), i=1,2.

Table 7 contains the second moment results for the 7 = 3 model. There
are virtually no noticeable discrepancies between LQ and DP second moments. One
exception is p Ac,r(g)’ which is lower for the DP decision rule than for the LQ
decigion rules.

An interesting feature of the results in Table 7 is that the correlations
between consumption changes and lagged variables is close {0 zero when 7 = 3 and
much further from zero in the r = .5 case. In this respect, the 7 = 3 results are
close to what I found in a version of this model that I have studied elsewhere (see
Christiano [1987a,c]) in which p = 7 =1, § = .018, 8 = .99, and in which hours are
variable. In that model, consumption changes are also approximately uncorrelated

with lagged variables.

8The importance of the very fine grid used in the paper showed up in these second moment

calculatiops. For example, when I computed the DP decision rnles with a grid of .01 between

capital points, then I got the foilowing results for ,r:)r Ac(o) in the four T = .5 models: .787
H

(.0086), .365 (.006), .780 (.007) and .406 (.013) in the high and low variance, two state models
and the high and low variance three state models, respectively. Thus, using a grid coarser than
the one underlying the results in Table 5 I found that the DF rules imply some scale dependence.
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To summarize, in the low variance economies the first and second
moment properties implied by the LQ approximations and the value function
iteration solution are roughly identical, even with high risk aversion. Discrepancies
occur for very large shock variances. An interesting feature of the results is that
gecond moment properties seem relatively insensitive to whether the exogenous

shock is drawn from a two or three state Markov chain.
5.c The Value of the DP Rule to an 1.Q Decision Maker

Table 8 reports the amount, as a fraction of K that a planner using an

=1’
LQ decision rule would be willing to pay to learn the DP rule in the four 7 = .5
models. This quantity was computed for the same (Kt-—l ,xt) combinations used in
Tables 2 and 3. Following is a discussion of how this was done.

In order to place the LQ and DP decision rules on a comparable basis, I
redefined the LQ rules slightly. Instead of allowing flogLQ and flinLQ to map
(Kt—l’xt) onto the real line, for purposes of the computations in Table 8§,
flogLQ(Kt—-l’xt) and fﬁnLQ(Kt—l’xt) were Teplaced by the nearest point in
A(Kt_l,xt), defined in (3.2). Given the fine grid, J%, this adjustment presumably
has negligible effect.

I computed the VlogLQ and VIinLQ functions that solve the following

functional equations:

G- Ve Xy) = W& _phioerKimpXpXe) + PEVioer oKXy 1)

and
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(52) K%)= 0 pfiny Ko Xehxy) + BBviny (KX 1),

for u defined in (2.5). In each case, the expectation operator was evaluated relative
to the relevant 2— or 3— state Markov chain with high or low variance (I do not
index the v functions by the Markov chain model in order to avoid complicating the
notation.)

Relative to a given model (defined by the markov chain for the exogenous
shock) and specified initial conditions, I computed the loss of using the LQ decision
rules as follows. Lt v**= ogrQKy-1%)- Then, Tt K" be defined by the
property VDP(K X)) = v ,ie, K is that level of capital (K < Kt—l) such that a
planner starting with K', Xy and knowing the DP rule achieves the same utility as a
planner starting with Kt—l’ X, who uses the log—LQ decision rule. Evidently, the
LQ planner would be willing to pay no more than Kt__l-K' in order to acquire
knowledge of the DP rule. The table reports this as a percent of Kt—l’ ie.,
[(Kt_l——K’)/Kt_l]xIOO. Similar calculations were carried out for the linear LQ
decision rule.

It is not surprising, in view of the preceding results, that for the low
variance shock distributions with 7 = .5, the LQ planner would not pay anything to
acquire the DP decision rule (see Table 8, panels A and C.) Thus, for these shock
digtributions, the LQ rules are roughly optimal. I obtained exactly the same results
for the low variance, 7 = 3 model as for the low variance, 7 = .5 models.

With high shock variances, the results in Panels B and D show that the
LQ planner would pay a positive, though still very small, amount to acquire the DP
rule. Except when very far from steady state, the planner would pay less than 1%

of initial capital.
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5.d Steady State Capital and Consumption Distribution

Figures la and b plot steady state capital and consumpéion, respectively,
for the high variance, two state markov chain model for = = .5. The same is done in
Figures 2a and b for the high variance, three state markov chain model. The Jow
variance steady state distributions are not plotted because they actually coincide.

A distinguishing feature of these figures is the bi-modal distribution when
the Markov chain has two states and the uni-modal distribution for the three state
markov process. In the two state case, note the pronounced lack of symmetry in all
but one of the distributions. This reflects the nonlinearity of all but one of the
decision rules. The exception, flinLQ’ produces a roughly symmetric steady state
distribution for capital.

An interesting feature of these charts is the left shift in the linLQ
distributions for Ct and Kt relative to the logl.Q and DP distributions. In view of
this, it is not surprising that the non-negativity constraint on G, proved to be
occagionally binding when the three state, high variance Markov chain version of

the model was solved by linear LQ) approximation.

27




6. Conclugion. R

The purpose of this paper was {o evaluate the accuracy of two methods
for approximating the consumption and capital decision rules that solve a version of
the Brock and Mirman (1972) optimal growth problem. The strategy taken was to
define the growth problem in such a way that numerical dynamic programming
methods could be used to obtain arbitrarily accurate approximations to the exact
decision rules. This involved, first, positing a discrete distribution for the exogenous
shocks of the model and, second, forcing the capital stock to lie on a very fine grid.
The accuracy of the LQ approximate decision rules was evaluated by comparing
them along four dimensions with the presumed exact solutions obtained by dynamic
programming (DP) methods.

1 found that the LQ approximation works well in the model economy
studied in this paper. In this respect the conclusions are similar to those reached by
others (eg., Christiano [1986,1987a] and Danthine, Donaldson and Mehra [1988]),
who looked at different examples.

An interesting feature of the model economies considered is that increased
risk aversion widens the ergodic set for capital and reduces the correlation between
consumption changes and lagged variables. It would seem worthwhile to explore the

economics underlying this result.
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Table 1: igion ation!

CPU

Model ﬁlO%LQ —glinLQ —é:DP J% Increment Time
(1) (2) (3) (4) (5) (6) (M

Two-gtate,
cr€=.10 oo - - -
T=.5 {37,110} {29,98} {37,109} {35,115} .00400 213.84
Two-state,
g, = .01 - ,
T=.5 {60,67} {60,67} {60,67} {55,70}  .00075 214.02
Three-state,
o, = 10
r=.5 {25,163} {4,123} {25,161} {20,165} .00725  310.58
Three-state,
o, = 01
r=.5 {58,70} {58,70} {58,70} {55,75} .00100  314.80
Three-state,
o, = .01

r=3.0 (49,83} {47,80} {49,83} {4585} .00200  342.08

1Column I: Number of states and c:r.S value indicate the Markov chain model of the

%xt's. The only other parameter that differs between models is 7.

Columns 2—4: First and second numbers associated with & are the upper and lower
boundaries, respectively, of the ergodic set associated with the lnLQ, loglQ, or DP
capital decision rules, as indicated by the subscript.

Column 5: The first and second numbers associated with ¥ are the boundaries of the
capital grid used in the value function iteration calculations.

Column 6: Increment between adjacent values of capital in J&

Column 7: Time, in ceniral processing unit minutes, used to solve the associated model
by wvalue function iteration on the Federal Reserve Bank of Minneapolis' Amdahl dual
580 mainframe computer. Details of the solution method are described in the Appendix.
In the case of the first four models, p = 10 for all j, using notation presented in the
appendix. In the case of the last model, p = 10 for j = 1,...,108 and p = w for | =
109,...,,118, whereupon convergence occured. The convergence criterion is reported in
section 4b,
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Kt—l grid |  x=-03 x=.03 x=03 x:=.03 x=-03 x;=.03

—pp ~ogLQ g —
60.32 60.32 60.53 60.32 60.52 60.31 60.53
62.00 61.95 62.16  61.95 62.16 61.05 62.16
63.69 63.58 6379  63.58 63.79 63.58 63.79
65.46 6530 65.51  65.20 65.51 65.30 65.51
67.23 67.01 67.23  67.01 67.23 67.02 67.23

——EppT T BlglQ —OlinLQ
60.32 375 3.78 375 3.79 375 3.78
62.00 3.83  3.87 3.83 3.87 3.84 3.87
63.69 3.92  3.96 392 3.96 392 3.96
65.46 401 4.05 402 4.05 401 4.05
67.23 4.10 4.14 4.11  4.14 4.10 4.14

Panel B: o,=.10, 7=.5

Kt—l grid | X=-.32 xt=.32 x=—32 x¢=.32 %p=—.32 xt=.32

—fpp 1 7o E s 11 o
36.78 3678 3863 3679 38.05%  36.55 38.70
50.24 4079 51.82 4976 5147 49.58 51.73
63.69 6277 64.95 62,62 6477 62.61 64.76
86.19 . 8145 86.85  83.95 86.83 84.41 86.56
108.69 106.11 108.60  105.11 108.72  106.21 108.36

&pp ~BlogLQ T BinLQ

36.78 239 2.68 9.38 325 262+ 2.61*
50.24 3.09 343 312 378t 3.30+ 3.52*
63.69 378 4.16 3.03% 4.34% 303% 4.35%
86.19 490 533 5.40t 5.35 494 5.62%
108.69 509  6.47 6.991 6.45 5.80% 6.80*

IThe table reports capital and consumptio'n-decisions for various points in the state space
based on the DP, loghQ and linLQ decision rules. Rows correspond to values of initial
capital and columns correspond to technology shock values, as indicated.

21t 2 denote the ratio of an LQ decision to a DP decision at a given point in the staie
space. Let z’ be [(z-1)x100|, rounded to the nearest integer, where | -] denotes the
absolute value operator. Then, ' indicates 1 < z* < 10, '" indicates 10 £ z’ < 20,
and 'T1' indicates 2’ > 20.
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Panel A: o,=.0L,T1=.35

Kt | Xy=—06 K= 0 x;=.06 xt=—006 K= 0 xi=-06 x{=-.06 X= 0 x¢=.06

bp fl0gLQ finLQ
57.96  57.96 58.14 58.32  57.96 58.13 58.30  57.95 58.14 58.32
60.82  60.73 60.91 61.10  60.73 60.91 61.09  60.73 60.91 GL.10
63.60 6351 63.69 63.88  63.50 63.60 63.87  63.50 63.60 63.87
66.82  66.54 66.72 66.92  66.53 66.72 66.92  66.54 66.73 66.91
69.96  69.58 69.76 69.96 69.55 69.76 69.96  69.58 69.77 69.95

SDP SlogLQ SlinLQ
57.96  3.61 3.64 3.67  3.61 365 370  3.62 3.64 3.67
60.82 3.76  3.79 3.82 3.76 3.79 3.83 377  3.79  3.82
63.69 391 394 397 391 394 398 391 394 3.98
66.82 407 4.10 4.13 408 410 4.13 407 4.10 4.14
$9.96 423 4.26 4.29 4.25 427 4.29 423 4.26 430

Panel B: o, = .10, 7 = 5

Ke1 | X==55 xt=.0 xt=.55 x=—055 x;=.0 x,=.55 x=—55 xt=.0 xy=.55

f f f

"DP “logLQ 1inLQ
24.60 24.60 25.65 27.53 24.61 25.34* 26.09* 23.95% 25.81 27.68
44.14 43.45 44.71 46.97 43.36 44.65 45.97* 42.89*% 44.75 46.61
63.69  62.27 63.68 66.20 61.85 63.69 6558  61.82 63.69 65.55
112.26  108.95 110.63 113.64 107.12*110.30 113.57 108.89 110.75 112.61
160.84  155.60 157.48 160.84 151.76*156.26 160.90 155.95 157.81 159.67

€pp T SloglQ T SEaLQT
2460 165 1.83 208  1.64 214t 3.52tF  2.30ff 1.66% 1.93*
44.14 269 2.92 325 278 298+ 4.251t 3.261 2.88% 3.61t
63.69  3.68 3.95 434  4.10f 3.94 4977 412t 394 5.00f
112.26  6.04 6.38 6.90  T7.87f1 6.71* 6.96  6.10* 6.26¢ 7.92%
160.84 830 870 9.31  12.15t1 9.92f 9.25  7.96% 8.37* 10.47%

Panel C: o, =401, 1= 3.0

Kia | X¢=—006 = 0 xt=.06 x;=—06 Xe= 0 x=.06 Xg== 06 Xg=. 0 x;=.06

‘DP ‘IogLQ ‘hnLQ
48.95 48.95 49.09 49.23 48.95 49.07 49.19 48.93 49.09 49.24
56.32 5625 56.39 56.54  56.25 56.38 56.52  56.23 56.390 56.54
63.69 63.54 63.69 63.85 63.53 63.69 63.84 63.53 63.69 63.84
73.24 7299 73.15 73.32 7296 73.14 7332 7299 73.15 73.30
82.78 82.44 82.61 82.78 82.38 82.58 82.78 82.45 82.61 82.76

48.95 3.42 3.48 3.54 3.42 349 3.58 3.43 347 3.53
56.32 3.65 3.71 3.78 3.66 3.72 3.80 3.66 3.71 3.78
63.69 3.87 3.94 4.00 3.88 3.94 4.01 3.88 3.94 4.01
73.24 4.15 4.21 4.28 4.17 422 428 414 421 4.29
82.78 4.41 447 4.54 4.46 4.49 4.54 4.39 4.47 456

iSee notes to table 2.
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Table 4

First Moment Properties: .5 Economy*
Two-State Two-State Three-State Three-State
a ¢ = .01 g = .10 g = .01
€ E € E
Statistic** DP Log DP Log Lin Log Lin DP Log Lin
C 4,34 .27 3.94 3.94 3.94 .24 I.96 3.94 3.94 3.94
(3.94) (.15)  (.15) (.014) (.01%) (.01L) (.13) (.13) (.012) (.012) (.012)
Y 4,34 4,27 3.94 3.94 3.94 .24 §.16 3.9k 3.94 3.94
(3.94) (.15) (.15) (.014) (.014) (.014) (.13)  (.13) (.012) (.012) (.012)
70.85  67.61 63.78 63.75 63.72 67.06 63.42 63.73 63.70 63,66

K
(63.69) (2.64) (2.65)

K/Y 17.30  16.73
(16.17) (.068) (.059)

MP 0204 0211
(.Bo0t) (. 65E-1)(.78E-L)(.13E-3)

R .0204  .0203
(.0204) (.88E-4)( .12E-3)( .94E-Y4)

(.25) (.25) (.25)

16.18 16,18  16.17
(.005) (.005) (.005)

.0204 0204  .0204
(.66E-5)(.67TE-5)(.67E-5)

L0204 (0204  .0204
( .90E-5)(.89E-5)( .90E-5)

(2.25) (2.10)

16.71  15.99
(,006) (.131)

0211 .0224

(.55E-4)(.86E-4)(.35E-3)

0203  .0200

(. THE-4)(.14E-3)(.T2E-3)

(.21)  (.21) (.21)

16.18  16.17  16.17
(.ool) (.o0k) (.005)

L0204 0204 0204
( ,5BE-5)(.57E-5)(.60E-5)

.0204 .0204  .0204
(.75E-5)( .T5E-5}( .T5E-5)

¥Results based on 100 data sets each of length 10,000, using the indicated solution (DP, log-linear LQ, or linear LQ) to
the version of the growth model which incorporates the indicated probabiiity model for the exogenous shoek, x. (two- or

three-state Markov chain, with high or low variances).
deviations across simulations appear in parentheses,

m*o_m.m‘m_xmw denote the means of C
e

steady state values.

g2 Y¢o Key Ry, and zmw*n. respectively.

Initial conditions were randomized across simulations. Standard
For parameter values, see section 3 in the text.

Numbers in parentheses in this column are




Table 5

Second Moments: 1 = .5 Economy¥

Two-State Two-State Three-State Three-State
g = .10 g = .01 c = .10 g = .01
E £ € E
Statistic DP Log Lin DP Log Lin DP Log Lin pp Log Lin
g,/ .78 .79 .78 .78 .78 .78 LTT .78 .80 .78 .78 .78
y (.02) (.02) (.02) (.02) (.02) (.02) {(.02) {(.02) (.02) {.02) (.02) {.02)
QQW\Q .ma .W.N .m:. -mm omm .mm -mm .mh_. .m; .mm .mm -mm
y (.02) (.02) (.02) (.02)  (.02) (.02) (.02) (.02) (.02) (.02)  (.02) (.02)
o, /0 .003  .003 004 .003 .003 .003 ,003 .003  .002 .003 .003 .003
y (,0001)(.0001) (.0002) (.0001) (.0001) (.0001) (.0001) (.0002) (.017) {.0001) (.0001) (.0001)
o 162 1.6t 1.59 455 155 .155 1.77 174 1.69 55 155 155
y (.02) (.02) (.02) (.002) (.002) (.002) (.10)  (.10) (.08) (.007) (.007) {.007)
pp o(0) -, 05 =-,08 -,06 -.05 -.05 ~.05 ~.05 -.12  -.,05 -.05 -.05 -.05
! (.01) (.03) (.01) (.013) (.013) (.013) (.02) (.,03) (.07) (.016) (.016) (.017)
Pak.ol0) .11 .06 11 .10 .10 10 R .09 W13 .10 .10 .10
! (.005) (.010) (.007) (.005) (.005) (.005) (.008) (.015) (.022) (.007) (.007) (.00T)
0 (0) .80 49 .55 .81 .82 .82 .78 .32 .01 .81 .81 .80
riac (.006) (.015) (.01%4) (.004) (.007) (.005) (.007) (.019) (.073) (.005) (.007) (.008)
*au denotes the standard deviation of ﬁxnw. ox_wﬁev denotes the correlation between xw and mn:a. LI denotes oa - nwnﬂ,

Qrﬁ = mﬁ - Nﬂl@.

See also the notes to Table 4.
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Table 6 Dynamic Correlations: 1 = ,5 Economy*

N Two-State Two-State Three-State Three-State
y a, = .10 o, = .01 o = .10 o, = .01
Statistic DP Log Lin Dp Log Lin DP Log Lin DP Log Lin
o (1) 53 .51 .47 54 .54 54 52 .39 .1b 4 .54 .53
Ae,r (.04 (.027) (.022) (.014) (.016) (.014) (.016) (.021) (.065) (.018) (.018) (.020)
p,. (2) 48 A5 43 g .50 .50 .48 .34 .13 49 49 g
Ac,r (.016) (.024) (,020) (.017) (.018) (.017) (.018) (.020) (.057) (.019) (.020) (.021)
o (1) g .23 .30 i R A5 45 13 .08 Ay i 43
Ac, hc (.014) (.021) (.022) (.o14) (.017) (.01h) (.018) (.022) (.013) (.018) (.019) (.021)
o (2) 10 .21 .28 i A A 41 11 .07 Jbo o .39
Ac, e (.016) (.018) (.022) (.015) (.017) (.016) (.020) (.022) (.013) (.020) (.021) (.022)
p,. 1) .27 .ol .22 .27 .28 .28 .28 .16 .07 .27 .27 .27
Ac,y (.012) (.021) (.017) (.012) (.013) (.012) (.013) (.017) (.014) (.012) (.013) (.01W)
o (2) .23 .20 .18 .23 .23 .23 .23 .13 .05 .23 .22 22
A,y (.011) (.018) (.015) (.011) (.012) (.011) (.012) (.015) (.013) (.012) (.012) (.013)
0. (1) 48 U6 2 .49 g .49 A7 .35 12 49 g 9
y)r (.028) (.040) (.026) (.028) (.028) (.028) (.034) (.025) (.053) (.033) (.033) (.034)
oy p(2) A7 45 Ry 48 .48 .48 U6 .34 .12 7 A7 A7
¥ (.027) (.039) (.026) (.027) (.027) (.027) (.033) (.024) (.052) (.032) (.031) (.033)
oy (3 45 43 o U6 6 6 i .33 .12 .ug 6 U6
¥s (.027) (.039) (.026) (.027) (.027) (.027) (.032) (.023) (.051) (.030) (.030) (.032)

— D -

¥50e notes to Tables 4 and 5.




Stochastic Properties:

Table 7

£

Three State, ¢ = .01, t = 3.0 Economy*

Statistic

DP Log Lin

Statistics

DP  Log Lin

Statistic

Dp Log Lin

c
(3.94)

Y
(3.94)

K
(63.69)

K/Y -
(16.17)
MP
A.mmocu

R
(.0204)

3.94 3,94 3.94
(.020) (.020) (.020)

3.9% 3,94 3.94
(.020) (.020) (,020)

63.97 63.72 63.61
(.59) (.59} (.59)

16.22  16.17 .16.16
(.059) (.069) (.069)

L0204 ,0204 0205
( .86E-U)(.87E-U)( ,88E-4)

L0204  .0204 0204
(.88E-4)(.87E-4)(.89E-4)

QO\q<

Q.n:ﬁ.\ﬁu“<
qw\qw

%y

Pr,o(0)
baw_oﬁov

uw,baﬁov

.76 16 .76
(.026) (.026) (.026)

49 49 .48
(.022) (.,022) (.022)

006,005 ,005
{.0001)(.0001)(.0001)

L7000 169 169
(.010) (.010) (.010)

-.h0  -.47 -.u8
(.o49) (.057) (.062)

.26 26 .26
(.022) (.022) (.022)

.25 .30 .30
(.012) (.015) (.017)

(1)

upo,w

(2)

Prc,r

opo,boﬂﬂv

n>0,>oﬁmv

n>o,mAAv

upo_wﬁmv

(1)

Py,r

ow.wﬁmu

107  ,090 .090
(.012) (.011) (.012)

053 ,087 .087
(.011) (.0o11) (.012)

026  .028 .028
(.011) (,011) (.011)

L0284 .023  .024
(.013) {(.014) (.013)

-,005 -.005 -,005
{(.008) (.009) (.009)

-.009 -.,009 -.009
(.008) (.008) (.009)

-.031 -,035 -.041
(.069) (.082) (.089)

-.036 -.042 - 0u7
(.068) (.081) (.088)

%The model economy underlying the simulations in this table is the same as the "three-state low variance" economy in

Tables 4~6, with the exception that here, 1 = 3.0.

details of the simulation experiments.

See notes to Tablea 4 and § for further information on notation and




1 in £ f Uging L. Decigio 1
(How Much an LQ Planner Would Pay to Learn the DP Rule)

Panel A: o, = .01, 2-state Markov chain, 7 = .5

xt=-.032 xt=.032

Ky LOg Lin LOg Lin
60.32 0.0 00 0.0 0.0
62.00 00 00 0.0 0.0
63.69 00 00 00 00
65.46 00 00 0.0 0.0
67.23 0.6 60 00 00

Panel B: o, = .10, 2-state Markov chain, 7 = .5

Xi=—232 x4=0.32

K¢ Log Lin Log Lin
36.78 03 03 06 0.3
50.24 62 03 02 02
63.69 0.1 062 01 0.2
86.19 0.2 0.2 01 0.2

108.69 0.3 01 02 0.2

Panel C: o, = 01, 3-state Markov chain, 7 = .5

x=—06 Xt,=0.00 X4=0.06

Kt Log Lin Log Lin Log Lin
57.96 0.0 00 00 00 0.0 0.0
60.82 g0 00 00 00 0.0 0.0
63.69 00 00 00 00 00 0.0
66.82 00 00 00 0.0 00 0.0
69.96 00 00 00 00 00 0.0

Pancl D: ¢ = .10, 3-state Markov chain, 7 = .5

X=-.55 Xt=0.00 xt=0.55

K¢-1 Log Lin Log Lin ZLog Lin
24.60 1.0 26 11 12 51 1.5
44.14 63 20 03 08 1.1 1.2
63.69 0.3 12 02 06 04 1.1

112.26 0.7 05 02 04 02 08

160.84 14 03 04 03 03 06

et v = VLQ(Kt.—LXI;): for given Ki-1, xt, where LQ refers either to log-—linear LQ or linear
LQ, as indicated in the column headings. Let K* be such that VDP(K*,Xt) = v¥*. The
entries in the table are [(Ki-1—K*)/Ky-1]»100.
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endix 1: nction I i

This section describes in detail the value iteration method used to solve
the dyramic programming problem, (3.1). Although the example in the text is a
simple one, the discussion that follows is quite general. In particular, the discussion
generalizes {rivially to the case where K and x are vectors. In addiiion, the absence
of choice variables (like hours worked) which affect u but not v directly does not
limit the generality of what follows, since one is free to think of u as the indirect
utility function obtained after maximizing out such control variables. Finally,
Christiano and Fitzgerald (1983) show how a problem with multiple decisions and
exotic information constraints also fits into the following framework. The first part
of this appendix discusses several value iteration methods used to solve the
discretized model. The second part of this section reports the computing times used

by each.
A.1 Three Value Iteration Methods

To apply value iteration methods, the optimization problem first has to
be expressed as a dynamic programming problem. The notation is simplified if (3.1)

is expressed without time subscripis:

(A.1) v(Kx) = Iél%}E{A(K’x}{U(K,K’,X) + ﬁE,[V(K',x’) [x]}.

The relationship between the variables in (A.1) and their time subscripted
counterparts is as follows. The variables K and x correspond to Kt—l and X
respectively. The variables K- and x’ correspond to K, and x, L1 respectively.
The expectation in (A.1) is over values of x* conditional on x and the Markov chain

model in (2.3). Algo, A denotes the feagible set of possible choices of K-, given the
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state, K, x. 1t is formally defined in (3.2), which is reproduced here for convenience:
(A.2) AKx) = {K’e H:exp(x)K¥+ (1-0)K - K~ > 0}.

The set Jis the capital grid discussed in section 3.
Because J&'x %Fis a discrete set of ;= n, X points, it follows that v can
be represented as a point in R™, Here, ny and n denote the number of elements in

Jb and B respectively. In particular, let

[(-Dny ] = (FpB) 5 1= Loty = Loty
(A.3)

S= (81',...,8m’)’.
Then S is a 2m x 1 vector enumerating all the possible states. The mx1 vector v is:
(A.4) V= (V(8g)seev(8,)) -

The expression on the right hand side of (A.1) defines a function, T, from
R™ into itself. From this perspective, the optimization problem is solved by first

finding a v ¢ R™ such that
(A.5) v =T(v).

The existence and uniqueness of a v ¢ R™ satisfying (A.5) is an implication of the
contraction mapping theorem (Sargent [1987,p.343]) and the fact that T is a
contraction mapping. The latter in turn is readily established by confirming that T
satisfies Blackwell's sufficient conditions to be a contraction (Sargent

[1987,p.344-45]). After finding v, the decision rule sought is given by:
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(A.6) fDP(K,’x) = I%EEIX%I)&,X){U(K’K',X) + ﬁEIV(K"x/)]xH.

Value function iteration methods for finding a point v satisfying (A.5) share the

characteristic that starting with an initial Vg € R™, they compute a sequence Vi €
R™ and set v = lim v;. Following are three such methods.
JFe

Standard Value Iterations

The simplest value iteration method is stendard value tterafion. It
generates the sequence {vj} by iterating on T: vj = T(Vj—l)’ j=1,2,3,..., usually
with vg = 0. Convergence of this sequence to v in the sup norm sense is guaranteed
by the contraction mapping theorem. The method is also called the method of
successive approzimation (Bertsekas [1976, p.237]) or contraction iterations (Rust
[1987,19882,1988b).) It is useful to express the j+1st iterate explicitly as a function
of Vj‘ First, let the m=m matrix Gj denote the state transition probability matrix
implied by 7 and the decision rule, f]BP(K,x) computed by replacing v by v in
(A.6). Specifically, the £uth element of Gj is the probability that (K- ,x’) = s

given (Kx) = s, Also, let U be the mxl vector u =

[u(sy+f3 p(8; ), u(B0.f p(89)),-wsuls Fhp(s, )] In this notation, it is easy to

confirm:
AT ) = u. V..
(A7) T(VJ) u; + ﬁGij

The standard value iteration method algorithm can be slow to converge,

and this has stimulated interest in computationally more efficient algorithms.
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Newton Value Funclion Iterations

One alternative to iterating on T by standard value function iterations
uses Newton's method. Given Vi this method equates Vil with the fixed point of
the linear Taylor series expansion of T about v = vj. Specifically, the linearized T
function is T(vj) + T’(vj)(x - vj), where T'(vj) is the derivative of T(x) with
respect to x, evaluated at x = A Since small perturbations in v; have no effect on

ff)P’ and therefore u_j and Gj’ it follows from (A.7) that,
(A.8) T'(vj) = 6Gj.

Then, Vil is by assumption the fixed point of this function, i.e., Vigl = % + [ -
T’(vj)]'l[T(vj) - vj]. For reasons made clear below, I use T to signify this

operator:

(A.9) Too(vj) =vi+ - T’(vj)]“i[T(vj) - vj]

=[I- ﬁGj]‘luj.
The expression after the second equality was obtained by substituting T’(vj) and
T(vj) out of the expression after the first equality using (A.8) and (A.7),
respectively.® The existence and uniqueness of Tm(vj) in (A.9) follows from the facts
that 0 < § < 1 and that the modulus of the largest eigenvalue of Gj is unity. The
latter is an implication of the fact that Gj is a transition probability matrix (sce
Nobel [1969,p.458].) 1 elaborate on this in the proof to Proposition 3 below.

Because in a discrete state space there exists only a finite set of feasible

SRust (1987,19882,1988b) iterates on value functions using the operator to the right of the
identity sign in (A.9) and calls the method Newlon—Kaniorovich ileration, whereas one of
Bertsckas' suggested value iteration methods is defined by the operator to the right of the
equality sign in (A.9). Bertsekas (1976,p.246) calls this value function iteration method the
policy iteretion algorithm. The policy iteration algorithm is also known as the Howard policy
improvement algorithm (see Sargent [1987,p.47].) The identity in equafion (A.9) establishes the
mathematical equivalence of these algorithms.

40




decision rules, it follows that the set of objects G i and uj consistent with feasibility

is also finite. As a resuli, the sequence of Newton iterates, {vj, j=1.} 18
contained in a finite set of points in R™, Moreover, a simple argument (sce
Bertsekag [1976,p.246]) establisheg that Vis
iterations converge in a finite number of steps to a v such that v = Tw(v). This in

1 2 Vj for j 2 1. Consequently, Newton

turn implies that v = T(v), and is therefore the object sought {to see this, just set
Tm(vj) = in [3.9].)

There are two difficulties with the Newton value iteration method: one is
only apparent and the other real. Although the notation used in {A.9) suggests that
the method requires a huge amount of computer storage, in fact [I — T’(vj)] is
composed mostly of zeroes, and these do not need to be stored. A more substantive
problem with the method is the requirement of solving the m equations [I -
ﬁGj]Tm(vj) = U in the m unknown elements of Tm(vj)' Unless the structure of the
optimization problem is such that some recursive algorithm for doing this rapidly is
available, then direct application of the procedure is computationally prohibitive.
We therefore seek computationally efficient ways to approximate the solution to
these equations. The following value function iteration method is one way to do

this.
Hybrid Value Function Iterations

Denote the value of using the feasible policy f for one period given that
next period's state variables are valued according to the value function x by Tf(x}.

By construetion, T, [,) (vj) = T(vj). Let T% ﬂ)P(Vj) =T, ]'BP[Tf 1'5 (vj)] be the value
P P

of following policy fIBP for two periods given that the subsequent period's state is

valued according to Vi and define Tg 15 (vj) gimilarly, for p = 2,3,... . The third
P

value function iteration method computes v.

+1 from v f as follows:
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(A.10) Vig1 = Tp(vj) = Tlgﬂ)P(vj).

I call the value iteration method which uses Tp hybrid value function iteration.
When p = 1, then this method reduces to the standard value function iteration
method, i.e., T1 = T. In addition, for sufficiently large p, hybrid value iterations

approximate Newton value iterations arbitrarily well. That is

Proposition 3: for any Vj ¢ R™

(A11) T (v)— IlmTp( ,])

P

where T and T p &I defined in (A.9) and (A.10), respectively.

Proof:
It is easy to confirm, using the fact that the modulus of the maximal root
of ﬁ(}j is B, that Tf ]'5 satisfies Blackwell's sufficient conditions to be a contraction
P

mapping. Consequently, by the contraction mapping theorem, there exists a unique
x ¢ R™ with the properties:

(A.12) X = Tf]SP(X)

(A.13) x—lzm be ) for any x, ¢ R™
Since (A.13) is valid for x5 = Vi it can be rewritten:

(A.14)  x=lim ’I‘p(v ).
P
Writing (A.12) out explicitly,

(A..15) X = U.j -+ ﬁij.

Since the x ¢ R™ that solves (A.15) is unique and (A.9) defines Tm(vj) as a solution
to (A.15) it follows that

(A.16) x= Tm(vj).

Equations (A.14) and (A.16) imply (A.11). Q.E.D.
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What hybrid policy iteration does, essentially, is to approximates the
matrix [I — T’(vj)]'1 by its pth order series expansion: I + T'(vj) + T'(vj)2 + ...+
T’(vj)p.

A.2 Some Computational Results.

Table Al reports the results of some experiments comparing the
efficiency of the standard, Newton and hybrid value function iteration methods.
The calculations were done for the three state, low variance, = = .5 version of the
model in the text. Since o = 20,000, n, = 3, the state space is composed of m =
60,000 points. The convergence criterion used in the calculations in Table Al is
that the maximum percent difference between v; and Vi be less than .1x107" and
there be no difference between fp, and f) 5. This criterion is tighter than the one
underlying the calculations underlying Table 1, which is reported in section 4.b.

The first row in Table Al reports results for solving the model by
standard value iterations, i.e., with p = I throughout the calculations. Convergence
occured at j = 947 steps in 414.11 central processor unit (CPU) minutes. Upon
inspecting the output I found that the decision rule had actually stopped changing
after the j = 300 step, so that after this, the algorithm was essentially iterating on

T¢3 00. This suggests that setting p = « later in the calculations would improve

DP
things. I modified the routine so that it triggered into Newfon iterations (i.e., p =

w) when the decision rule failed to change at 10% of the points in the state space.
The results of this appear in row 2 of Table Al. That row shows that triggering
into Newton iterations at the end reduced the number of steps required for
convergence by a factor of about 9. However, the amount of CPU time used only
fell by about 25 percent, reflecting the greater cost per step of doing Newton rather
than standard iterations. Row 3 reports the consequences of setting p = 10 at the

start of the iterations, and then triggering into Newton iterations when the
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algorithm i8 close to convergence. This resulted in a further slight reduction in
CPU time of roughly 7%. The bottom row in Table Al shows the effect of setiing p
= 10 thoughout the calculations, and not triggering into Newton iterations at the
end. That results in about the same computer time when the trigger is applied (row
3).

I conclude that hybrid policy iterations with p = 10 are an improvement
over standard value iterations, and that triggering into Newton ifterations at the end
makes little difference. Although the 25% improvement in CPU time relative to
standard value iterations is useful, the results using hybrid value iteration obtained
here are not as dramatic as those reported in Christiano and Fitzgerald (1988). In
that paper, hybrid value iterations led to more than a 10 fold reduction in CPU
time and triggering into Newton iterations at the end reduced CPU time by another
factor of 3. The difference in the results probably reflects that the maximization in
(A.1) is very inexpensive in the example of this paper, whereas in Christiano and
Fitzgerald (1988) it is more costly because four control variables rather than one are

involved.
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Table Al

Computational Costs of Alternative Versions
of Hybrid Policy Iterations!

CPUs

p? Triggers Stepst Time
no 947 414.11

1 6000 165 : 356.57
10 6000 . - . 118 332.77
10 no 101 -324.78

ICalculations based solving the three state, low variance, T = .0 model
using a tighter convergence criterion than the calculations underlying
those in Table 1. The convergence criterion underlying the calculations
here was that the maximum percent difference between vj and vj-1 be less
than .1x10"7 and that there be no change in the decision rule.

2V alue of p in hybrid value function iteration for j = 1, 2, 3, ..., until the
decision rule changes at less than frigger points in the state space, which
is itself composed of 60,000 points. After this, p = w. When p = 1 the
method corresponds to standard value function iterations. When p = o
the method represents Newton value function iterations.

3A no in this colupmn means no trigger was used.
4Number of value function iteration steps.

5Central Processing Unrit minutes on the Federal Reserve Bank of
Minneapolis' Amdahl dual 580 mainframe computer.
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