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1 Introduction

Many high frequency financial time series show time varying volatility. The most
popular way to describe the time variation is the AutoRegressive Conditional Het-
eroskedasticity (ARCH) model introduced by Engle (1982), or one of its variants
(GARCH, Bollerslev (1986), EGARCH, Nelson (1991)). An alternative approach,
which has become more popular recently, is the stochastic volatility model, where the
variance is modeled as an unobserved component that follows some stochastic process.
It has been proposed because it directly connected to the type of diffusion processes
used in asset pricing theory in finance (see, e.g., Melino and Turnbull (1990)). Initial
research in these directions was performed by Clark (1973) and Tauchen and Pitts
(1983). It has been advocated in econometrics by Taylor (1986), Harvey, Ruiz and
Shephard (1994), Andersen (1994a), and many others. The relations between the
ARCH and stochastic volatility approaches have recently been analyzed by Andersen
(1992, 1994b) and others.

From an econometric viewpoint the practical drawback of the stochastic volatility
model is the intractability of the likelihood function. Because the variance is an
unobserved component, the likelihood function is only available in the form of a
multiple integral. Also, Quasi Maximum Likelihood (QML) and Method of Moments
estimators are not very reliable, see Jacquier, Polson and Rossi (1994) and Andersen
(1994). Exact likelihood oriented methods require simulations and are thus computer
intensive, see Danielsson (1994) and Jacquier, Polson and Rossi (1994).

The first purpose of the paper is to compare different estimation techniques applied
to an empirical dataset consisting of weekly exchange rate changes for six currencies
over a 20 year period. The estimation techniques differ in their distributional as-
sumptions about exchange rate innovations. Most of the computational problems
stem from the assumption that the innovation of the underlying variable has a nor-
mal distribution, which translates to an awkward log chi-square distribution when
the model is written in a linear state space form. This implication is ignored in the
QML method, but fully implemented by Jacquier, Polson and Rossi (1994) and Kim
and Shephard (1994).

The normality assumption is not only computationally impractable, it is proba-
bly also empirically unjustified. The distribution of exchange rate news is fat-tailed
as is widely established in the literature. Like ARCH models, stochastic volatility
can explain part of the fat-tailedness. But given the evidence for ARCH models one
would expect that time varying volatility does not fully account for the tail behav-
ior, in line with Baillie and Bollerslev (1989) and Bollerslev and Engle (1986). The



second purpose of this paper is to replace the normally distributed innovation with a
specification that is computationally more tractable and empirically viable.
Estimation of stochastic volatility models consists of two stages: parameter esti-
mation, and estimation of the latent volatility time series. Methods that work well for
estimating the parameter vector, are not necessarily also good in estimating the latent
time series. For finance applications the main interest is in the volatility time series
itself. The series is estimated by some smoothing algorithm, which also produces
standard errors of the volatility estimate. This enables us to compare the different
models and estimation techniques with respect to the estimated volatility series. Fo-
cussing directly on the output of the model - the volatility series — sheds light on issues
like the efficiency gain from a simulation smoother over the Gaussian linear Kalman
smoother, and the effect of some forms of misspecication. Because the interest is in
estimating the latent volatility series at every time period, asymptotic arguments are

of limited value. Consequently distributional assumptions become important for this
purpose.

Like the GARCH(1,1) model in the conditional heteroskedasticity literature, most
work on stochastic volatility deals exclusively with the basic univariate first order au-
toregressive volatility model. Tor stock prices Gallant, Hsieh and Tauchen (1994)
conclude that this basic model is severely misspecified, not only because of distri-
butional assumptions on innovations, but also because of its dynamic specification.
Similar results might hold for exchange rates. The third aim of the paper is to per-
form a battery of diagnostic LM-tests to search for deviations of the basic stochastic
volatility model.

The remainder of the paper is organized as follows. The model specification

and the estimators are discussed in section 2. We consider four different estimators:
Quasi Maximum Likelihood, two different simulated EM techniques, and a Bayesian

method based on the Gibbs sampler. Section 3 describes the exchange rate data.
Section 4 contains the parameter estimation results. Section 5 reports the results for

the estimation of the latent volatility series. Section 6 concludes.

2 Models and Estimators

Let S; be a bilateral exchange rate, and define s; = Aln ;. Assuming that the change
in the log of the exchange rate is unpredictable, the standard stochastic volatility

model is written
S = exp(ht/Q)et (1)



he =B+ plhey — B) + e, (2)

where exp(h,) is the variance of s, at time £, and where the innovations ¢; and n; have
mean zero, with variances equal to one and o respectively. The usual assumption is
that e, and 7, are normally distributed. The exchange rate then obtains its fat tailed
distribution by the mixing of €; and exp(h;/2).

The estimation of stochastic volatility (SV) models has been the main obstacle for
application of this type of model. Because of the latent volatility, likelihood analysis

amounts to evaluating an integral with dimension equal to the number of observations:
L(¥r30) [ §(¥rlXr,6)f(Xzl6)dXr, (3)

where Y7 contains all the data, X is the vector with all the latent volatilities and @
contains the parameters of the SV model. In this equation the second density in the
integral can be considered as a prior over Xr, specified by the transition equation {2).
From a computational viewpoint specification (1) with normality for ¢, is inconvenient,
since the likelithood function can only be written in integral form.

The most straightforward way to estimate the SV model is Quasi Maximum Like-
lihood (QML). This is the approach followed by Harvey and Shephard (1993a,b), Ruiz
(1993), Harvey, Ruiz and Shephard (1994), Taylor (1994) and Mahieu and Schotman
(1994). The QML method starts by transforming the measurement equation (1). Let

y: = In s%, then (1) can be written in the linear form
Ye = he + &, (4)

where ¢ = Inel. In the QML approach the density of ¢ is approximated by a
normal density with mean -1.27 and variance 7%/2. QML estimates can be then
obtained by standard numerical optimization techniques, since the full likelihood
becomes Gaussian. The QML estimator is not efficient, since the transformed error
term & will be extremely skewed to the left, if the underlying ¢; is normal. Not
only can this result in inefficient parameter estimates, but the standard Kalman
smoother might also produce poor estimates for the state variable #; conditional on
the parameters of the process. Some of the drawbacks of QML have been documented
by Andersen (1994) and Jacquier, Polson and Rossi (1994). The latter also document
the performance of the (Generalised) Method of Moments estimator. The problem
with the GMM estimator for the stochastic volatility model is that it 1s sensitive to

the number and choice of sample moments, and that some moments depend on the



distributional assumptions regarding ¢.'

Recently, several methods have been developed to deal with the multiple integra-
tion problem in (3). These methods heavily rely on simulation techniques. Danielsson
(1994) and Danielsson and Richard (1993) develop an importance sampling technique
to estimate the integral. This method 1s still very computer intensive. Furthermore,
extensions to multivariate models are not straightforward.

Jacquier, Polson and Rossi (1994) combine a Gibbs sampler with the Metropolis
algorithm to obtain the marginal posterior densities of the parameters in (1) and (2),
and also the exact posterior distribution of the variance series given the observed
data s;. They show that simulation from the exact densities can be done. Still
the approach remains computationally demanding, and tailor made designed for the
specific likelihood.

Shephard (1993b) and Kim and Shephard (1994) retain the convenient linear form
of the state space form, and approximate the log-chisquared distribution of £ by a
prespecified mixture of seven normals. Shephard (1994) describes efficient algorithms
for statistical inference in this class of what he calls partial non-Gaussian state space
models, and provides examples of how to take advantage of the linear and Gaussian

parts. The mixture is specified as
§t = 5(2&), thl,z,...,M ’ (5)
€1y ~ N(pu,w) (6)

Using the mixture model the value of the likelihood is estimated using the multimove
.Gibbs sampler (see Tanner (1991)). Conditional on a time series of indicators z,
(t=1,...,T), the standard Kalman recursions can be used to simulate the states A,
from the conditional density f(Xr|Yr, Z7,8). Conversely, given a time series for the
states, a posterior odds calculation gives the multinomial distributions f(z:\Yr, X7, 9),
from which new regime indicators can be drawn. This method iteratively evaluates the

conditional densities of the random variables in the model. Details of the iterations
are given in appendix A. Tanner (1991) and Zellner and Min (1992) discuss some

convergence criteria for the Gibbs sampler.
From a statistical viewpoint there is however no reason to insist on the log chi-
squared distribution of &;, and neither on normality of ¢, In this paper we make a

slight generalization of the mixture framework by allowing ¢, to be generated by a

10ptimal choices of moments are discussed in Gallant, Hsieh and Tauchen (1994), and require
simulation estimators of the likelihood and score of an auxialiary model.

There are economic reasons though to be more concerned about the normality, since without
normality some of the motivations for the stochastic volatility model like in Clark (1973) and Tachen

and Pitts (1983), lose much of their appeal.



Table 1: Mixture parameters
for log chi-squared distribution

i weight P ag;

11]0.70 -0.2172  1.1052
21025 -3.0461 1.5705
310.05 -6.4818  3.0002

flexible mixture of normals. If the distribution of €, is symmetric, there is in principle

no loss of information, since it is always possible to calculate the implied distribution

of |&]| = \/exp(&). The mixture can generate densities with a wide range of third and
fourth moments.

The main feature of the data are the "inliers”, i.e. observations with almost zero
change for which the log transformation generates large negative outliers. Even as
few as two normals can model the empirically observed (and also expected) negative
skewness of £. A mixture with the first normal centered around zero, covering the
bulk of the data, and the other centered around a large negative mean to accommodate
the outliers, seems a good candidate for the distribution of &. Its main drawback
is that such a distribution is likely to be bimodal. After some experimentation we
therefore settled for a mixture of three normals with weights p = (0.70,0.25,0.05).
The middle element in the mixture provides a smooth blending to a unimodal density.

With three elements in the mixture the error distribution contains six free para-
meters. More than three elements in the mixture causes problems for the convergence
of the estimator due to overparameterization. The weights p; of the different elements
of the mixture are specified a priori, as inference on these parameters is intractable.

A mixture of three normals is also not a serious limitation in case the error dis-
tribution happens to be log chi-squared. We performed a small simulation study

to estimate the optimal parameters for data generated by a log chi-squared. The
resulting mixture distribution parameters are given in Table 1. Figure 1 plots the
mixture distribution together with the actual log chi-squared distribution. The main
difference is the slightly higher mode of the mixture distribution. It looks like a three
elernent mixture strikes a balance between flexibility and the number of parameters,

Although the transformation from §; back to ¢, is well defined, it is very sensitive
to exact specification of especially the right tail of the density of {. For example,
under the QML assumption & ~ N(—1.27,72/2), the implied kurtosis of ¢ is equal
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Figure 1: Densities of measurement error



to exp(n?/2) = 139 instead of 3.* For the mixture in Table 1 the implied kurtosis
is 15.% In general the tails of ¢; become fatter the larger the variance of &, ceteris
paribus, but given the sensitivity it is hard to draw firm conclusions.

Since the unconditional mean of the measurement error §; is a free parameter in
the mixture distribution, the constant term in the transition equation {2) becomes

unidentified. We therefore respecify the variance dynamics without a constant term:
Ty = pTey + 7y, (7)

where z; = h; — B. Similarly the measurement equation (4) is also redefined as
Yo =T + oo

The models will be estimated by simulation. We compare three different estima-
tors. The first is the simulated EM algorithm described in Kim and Shephard (1994),
which converges to the maximum likelihood estimator. With this estimator (SIEM1})
the parameters of the mixture are fully specified a priori to mimic the log-chisquared
distribution. An alternative is the simulated EM method (SIEM2) with free para-
meters in the three elements of the mixture. The SIEM2 model allows flexibility in
the error distribution, and can accommodate fat-tailed distributions of the underly-
ing exchange rate innovation €. Since both SIEM1 and QML are nested within the
general STEM2, these two specification can be tested by a likelihood ratio test.®

We estimate the likelihood value by decomposing the likelihood function as in
Kim and Shephard (1994)

log L(8|Y7) = log Pr(Z7) ~ log Pr(Z¢|Y7; 80) + log f(¥Y7iZ7; 0) (8)

Only the second term on the right hand requires extra simulation fromn the multimove
Gibbs sampler. The relatively straightforward way to compute the likelihood value
allows us to get standard errors for the parameters. We can numerically differentiate
the likelihood under the null hypothesis and consequently find both the gradient and
hessian. Furthermore LM tests can be performed.

Collecting all the parameters in the vector & the expectation step of the simulated

EM algorithm gives a new estimate 6*,

1N : .
0 = argmax — " log Fvr| X9 z9 ), (9)

1=1

3%ee appendix B for a derivation.

“Increasing the number of elements in the mixture does not seem to make much difference. The
seven elermnent mixture reported in Kim and Shephard (1994} also implies a kurtosis of 14 for the

normal random variable ¢;, although their mixture excellently describes the first four moments of &;.
SQML is nested within SIEM2 by having the same parameters in each piece of the mixture.

7



where the superscript denotes the :th drawing from the Gibbs sampler. Performing
the maximization in (9), the parameters p and ¢? (and 8 in the case of fixed mixture
parameters) can be found by doing an OLS regression of z; on z,_, {see appendix A.
New mixture parameters are found as the conditional means of the measurement
error £(z; = 1). After estimating the parameters the multimove Gibbs sampler is
used again to get new state vectors X7. This procedure is repeated until convergence.
Parameter estimates for the model with a fixed mixture distribution for £ are obtained
analogously.

The final estimation method we consider is the Bayesian Gibbs sampling algo-
rithm, in which we cycle through simulating the states, the mixture indicators, and
the parameter vector #. In the Bayesian procedure we assume very diffuse proper
conditionally conjugate priors. The prior means of y; and w; are set at the values
of the approximating mixture in Table 1. The prior mean of p is equal to one. The
prior variances of the p;'s and p are equal to 1000, while the prior degrees of freedom
in the inverted gamma priors for w; is equal to 3. We need proper priors in order to
ensure a proper posterior. With an improper prior on w; the posterior does not exist,
and 1t is this pathology that we must avoid. Simulation from the conditional density
of § given the states and the data works well, since the model is linear. Again all

details are in appendix A.

3 Data

The data consist of weekly observations of the bilateral exchange rates among the
major currencies (US dollar, UK pound sterling, Japanese yen, and German deutsche
mark). The sample period is January 3, 1973 until February 9, 1994 (1102 observa-
tions). The original data are in pound sterling; cross rates have been constructed. All
data are taken from DATASTREAM and are sampled on Wednesdays. If Wednesday
is a holiday Thursday is taken. The data are transformed to ¥ = In[(Aln S, — 5)?],
where 3 is the sample mean of Aln S,.

Table 2 provides summary statistics. The main features of the transformed data
are the negative skewness, and the persistent autocorrelations. Negative skewness is
implied by the log transformation, and related to the "inlier” problem. The variance
of the transformed data is much higher than that of a log-chisquared {which is equal
to 72/2)), so that either the volatility series h; is itself highly volatile or normality of



Table 2: Summary statistics of y: = In[(Aln S; — 5)?]

JP/US GE/US UK/US GE/JP UK/JP GE/UK
mean -1.203 -0.770  -1.003  -0.926 -0.979 -1.494
variance 6.555 5.954 6.383 5.318 6.461 5.817
skewness 0.971  -1.202 -0.968 -1.257 -1.278 -0.904
kurtosis 1.225 1.022 0.895 2.850 2.731 1.181
minimum -13.03 -13.15 -11.80 -15.04  -14.93 -11.83
maximum 4.871 4.129 4.310 3.613 4.525 3.853
normality 246.7* 4527  208.7*  662.6* 641.8*  214.0"
LB(10) 219.2*  65.65*  277.7*  34.33*  34.90* 67.95*
LB(20) 383.6~ 127.1 4139  54.87  609.24* 94.10*
Autocorrelations y;

1 0.184 0.080 0.172 0.078 0.074 0.132
2 0.142 0.098 0.170 0.071 0.081 0.096
3 0.163 0.115 0.152 0.105 ¢.064 0.090
4 0.167 0.055 0.202 0.047 0.077 0.114
5 0.127 0.096 0.123 0.063 0.016 0.035
10 0.104  0.027 0.129 -0.012  0.019 0.053
20 0.087 0.062 0.073 0.097 0.040 0.002

NOTES: The kurtosis is measured as excess kurtosis. Normality is
the Jarque-Bera test for normality. LB(m) is the Ljung-Box test
taking m autocorrelations. '’ denotes significance at a 1% level.

the measurement error in (4) is violated.
We include all six possible bilateral rates, because in this way we can model
all variances and all possible covariances. For example, the covariance between the

yen/pound and mark/pound can be written as the identity

- 1 .
Cov(Aln §YF/VK Aln SOE/VEY = 3 (Var(Aln GIPIVK)
+Var(Aln SSE/VEY _ Var(Aln SJP/GE)) ’

which shows that the covariance between two pound denominated exchange rates can

be obtained through the variance of the cross rate.

4 Parameter Estimates

Tables 3 and 4 summarise the parameter estimation results of the four estimators/
models: QML, simulated EM with fixed mixture (SIEM1), simulated EM with flexible

9



mixture (SIEM2), and the Bayesian Gibbs sampler (BAYES).

In general the parameter estimates are similar, both across currencies as well
as estimators. This is as expected due to the large sample of more than twenty
years of weekly data and the tight parameterization. The high value of p imnplies
persistent logarithmic volatility series. However, when the measurement error is kept
fixed (QML and SIEM1) the persistence is much lower for some series, notably the
pound/yen and pound/mark series. This might be due to outliers, which are harder to
accomodate by QML and the fixed mixture. Another explanation is the importance
of the identifying restriction w? = 7%/2 in QML and SIEM1, as we will discuss later in
this section. In general the persistence of the volatility rises when the measurement
error distribution is flexible. Also, when p is small, the estimate of the volatility
innovation variance o? increases. The estimates of p are never significantly different
from unity using Dickey-Fuller critical values. The Bayesian posterior means of p are
somewhat lower than the ML estimates in SIEM2. This is reflected in the marginal
posterior densities of p in Figure 2, which are all skewed to the left.®

Since the SIEM2 model nests both the QML and the SIEMI1 model, likelihood
ratio tests can be computed. As reported in Table 5 both the normal (QML) and the
log-chisquared distributions can be firmly rejected in every case against the free six
parameter mixture. The QML and SIEMI estimators restrict the second and higher
moments, while the first moment is unrestricted (because of 3). Since the tésts solely
involve the shape of the measurement error distribution, it is of interest to compare

the first few moments of the mixture distributions. The formulas for the moments of
a mixture of normals are listed in appendix B. Table 6 reports the implied moments

of the measurement errors. Overall the implied variance estimates of the flexible
mixture are larger than those of the log-chisquared distribution. The high variance
of the measurement error £, suggests that the distribution of the ¢ in (4) has fatter
tails than the normal.” The BAYES moments are computed by averaging over the
conditional moments in a run of the Gibbs sampler. The BAYES moments are mostly
close to the maximum likelihood results, although the implied variances are somewhat
smaller. There is no discernible pattern of differences for the higher order moments

for the six series. Figure 3 shows a plot of the estimated measurement densities.® The

80One way to increase the posterior mean is by adopting a different prior, for instance one that
is proportional to (1 — pz)—1/2_ Such a prior would implicitly arise, if it is assumed that the initial
condition in the state vector has variance proportional to (1 — p?)~! (see Schotman (1994) and Kim
and Shephard (1994)).

“Gallant, Hsich and Tauchen (1994) reach a similar conclusion in an application with stock price
data.

87The Bayesian densities are obtained as the average of the conditional densities over a run of the
Gibbs sampler.

10
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Figure 2: Posterior densities of p

These posterior densities are based on a single run of 5000 iterations from the Gibbs
sampler.
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Table 3: Parameter estimates of stochastic volatility model

Y = hy + & £~ ZP:’N(}H,W?)

he = B - p)+ phioi + e e~ N(0,07)

JP/US GE/US UK/US GE/JP UK/JP GE/UK

Quasi Maximum Likelihood (QMEL})

p 0976  0.967 0.960 0985  0.653 0.884
(0.015) (0.027) (0.015) (0.009) (0.391) (0.061)

Js) 0.050 0.482 0.238 0.369 0.292 -0.226
(0.211) (0.199) (0.258) (0.190) (0.101) (0.130)

o 0.225 0.198 0.311 0.092 0.842 0.419
(0.081) (0.097) (0.055) (0.027) (0.612) (0.142)

Simulated EM, fixed mixture (STEM1)

p 0.878 0.928 0.952 0.921 0.584 0.768
(0.019) (0.018) (0.010) (0.021) (0.048) (0.034)

B 0.150 0.591 0.395 0.362 0.349 -0.194
(0.138) (0.123) (0.200) (0.111) (0.068) (0.090)

o 0.558 0.293 0.330 0.285 0.822 0.650
(0.040) (0.036) (0.029) (0.039) (0.055) (0.050)

Simulated EM, flexible mixture (SIEM2)
p 0979  0.975 0.967  0.954  0.957  0.930
(0.008) (0.010) (0.009) (0.016) (0.016) (0.020)
a 0.190 0.148 0.251 0.200 0.190 0.285
(0.029) (0.027) (0.028) (0.035) (0.040) (0.042)
p1 -0.042 0410 0.205 0.102 0.133 -0.353
(0.266) (0.176) (0.227) (0.137) (0.140) (0.129)
o -3.122 0 22,724 -2.190 0 -2.547  -2.736 0 -3.441
(0.282) (0.199) (0.230) (0.156) (0.174) (0.144)
us  -6.651  -6.877  -6.561 -6.819 -7.355  -6.048
(0.429) (0.416) (0.282) (0.344) (0.447) (0.244)
wy  1.755 1.281 1.417 1.277 1.775 1.512
(0.097) (0.075) (0.081) (0.080) (0.105) (0.090)
wy  2.578 2.759 1.537 2.040 3.439 1.436
(0.230) (0.234) (0.133) (0.182) (0.297) (0.144)
ws 6.134 7.981 2.005 5.865  10.085 2.385
(1.214) (1.520) (0.377) (0.865) (1.840) (0.403)

NQTES: Numbers in parenthesis are robust standard errors. Pa-
rameters in fixed mixture are as given in Table 1. The mixture
weights were set to (0.70, 0.25, 0.05). In the QML model & has
mean -1.27 and variance 7%/2. In the SIEM2 model $ is restricted
to zero for identification.

|
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Table 4: Gibbs Sampler: Bayesian Posterior Moments

vy = ht+ & & ~ ZP:‘N(#iaw?)

hy = phii+m 1~ N(0,0)

b JP/US GE/US UK/US GE/JIP UK/JIP GE/UK

p 0.971 0.938 0.963 0.912 0.924 0.862
(0.013) (0.022) (0.014) (0.041) (0.033) (0.050)

o 0.274 0.267 0.285 0.300 0.270 0.454
(0.046) (0.047) (0.044) (0.082) (0.059) (0.101)

p1 -0.091 0.359 0.188 0.092 0.113 -0.390

pe -3.137 0 -2.778 -2.800  -2.587 -2.796 -3.415

ps -6.389  -5.906 -6.727 -6.574  -6.807 -6.883

w  1.315 1.113 1.208 1.108 1.305 1.174

we  1.691 1.754 1.366 1.474 1.847 1.374

ws  2.706 2.979 3.182 2.534 3.220 2.146

NQTES: Posterior means and standard deviations (in parentheses) of*

the parameters are based on a run of 5000 simutations from the Gibbs

sampler. The weights of the mixture are (0.70, 0.25, 0.05).

Table 5: Likelihood Ratio Tests

JP/US GE/US UK/US GE/JP UK/JP GEJUK

OML (normal)  153.0  263.6 1344  227.0 2442  109.0
SIEM1 (In(x?)) 1534 760 424 504 2344  108.2

NOTE: The likelihood ratio statistic has a x?(5) distribution for both
hyvpotheses. The 5% and 1% critical values are 11.1 and 15.1 respectively.
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Figure 3: Implied measurement error densities

The figures show the mixture densities from the SIEM2 and Bayesian algorithms
compared with the log chi-squared.
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Table 6: Moments of Measurement Error Distribution

JP/US GE/US UK/US GE/JP UK/JP GE/UK SIEM1 QML

Variance

SIEM2  5.524 5.778 5.042 4.830 6.276 5.289 4.843 4.935
BAYES 5.511 5.349 5.087 4.767 5.987 4.937

Skewness

SIEM2 -1.094 -1.500 -1.082 -1.482 -1.512  -0.681 . -1.478 0
BAYES -1.133 -1.386  -1.106  -1.475 -1.436 -1.142

Excess Kurtosis

SIEM?2 1.847 3.244 2.129 3.454 3.776 0.842 3.514 0
BAYES 2.045 2.741 1.608 3.422 3.457 1.860

NOTES: The SIEM2 moments are computed using the parameter estimates in Table 3.
The SIEM1 moments are the same for all exchange rates and were fixed in advance
using the parameters in Table 1. The BAYES moments are computed as the average
of the conditional moments over the iterations of the Gibbs sampler. Skewness and
| kurtosis are normalized, and the reported kurtosis is in excess of the normal kurtosis.

BAYES densities have a somewhat sharper mode, and are sometimes still bimodal.

In Table 7 we present some selected moment statistics of the actual data in order
to further compare the four models. The main conclusion from the table is that all
four estimators/models fit well for the mean and variance of the log transformed data.
Major differences between the estimators show up for the excess kurtosis, where the
BAYES estimator implies much less kurtosis than is actually in the data.

The implied autocorrelations are curious. For example, QML and SIEM1 provide
the lowest estimates of p for the pound/yen volatility in Table 3. But even so they
imply the highest first order autocorrelations for the data. The explanation is that the
measurement error variance has been fixed for QML and SIEM1, and 1s much lower
than the unrestricted estimate of SIEM2. Since y, follows an ARMA(1,1) process,
parameterized by p, ¢? and w?, restricting w? = 7%/2, as in QML and SIEM1, will

affect the estimates of the remaining two parameters p and ¢?, even asymptotically.

The first order autocorrelation of y; is

2

o
AR(1) = corr(ys, yi1) = ;Qp_%_—xwg—

Keeping the variance of y, fixed, Var(y) = o2 + w?, we obtain
AR(1) = p(1 — w*/Var(y)) (10)

From (10) we see that increasing w? must lead to a larger value of p to keep the

sample first order autocorrelation AR(1) constant. This is exactly what we find in
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Table 7: Data and implied model moments

JP/US GE/US UK/US GE/JP UK/JP GE/UK
Mean
ln(yz) -1.203  -0.770 -1.003 -0.926 -0.979 -1.494
QML -1.220  -0.788 -1.032 -0.901 -0.978 -1.496
SIEM1  -1.088  -0.647  -0.843 -0.876 -0.889 -1.432
SIEM2  -1.142  -0.738 -0.732  -0.906 -0.959 -1.410
BAYES -1.167 -0.738  -0.905 -0.911 -0.960 -1.471
Variance
In(y?) ~6.555 5054 6383 5318 6461 5817
QML 6.002 5.539 6.168 5.219 6.171 5.738
SIEM1 6.201 5.463 6.007 5.377 5.868 5.875
SIEM2  6.435 6.117 6.013 5.275 6.704 5.889
BAYES 6.629 5.995 6.322 5.349 6.530 5.779
Skewness
In{y?) -0.971  -1.202  -0.968  -1.257 -1.278 -0.904
QML 0 0 0 0 0 0
SIEM1 -1.020 -1.234 -1.070 -1.264 -1.108 -1.106
SIEM2 -0.886 -1.402 -0.831 -1.230 -1.369 -0.580
BAYES -0.865 -1.177  -0.800 -1.252  -1.273 -0.907
Kurtosis )
ln(yz) 1.225 2.022 0.895 2.850 2.731 1.181
QML 0 0 0 0 0 0
SIEM1 1.127 2.244 1.441 2.350 1.598 1.363
SIEM2  0.649 2.583 1.786 2.457 2.959 0.039
BAYES 0.337 1.544 -0.123 2.065 2.385 0.356
First order autocorrelation
1 In(y?) 0.184 0.080 0.172 0.078 0.074 0.132
QML 0.174 0.105 0.192 0.054 0.131 0.124
SIEM1 (.192 0.105 0.184 0.091 0.102 0.135
SIEM2  0.132 0.071 0.156 0.080 0.061 0.095
BAYES 0.164 0.101 0.189 0.099 0.077 .125
Second order autocorrelation
In(y?) 0.142 0.098 0.170 0.071 0.081 0.096
QML 0.170 0.102 0.184 (.053 0.086 0.104
SIEM1 0.169 0.098 0.176 0.084 0.060 0.104
SIEM2  (.129 0.069 0.151 0.077 0.058 0.088
BAYES 0.160 0.095 0.182 0.091 0.071 0.108

NOTES: QML, SIEM1, SIEM2, BAYES represent the Quasi Maximum
Likelihood, the Simulated EM with fixed and free mixture parameters
and the Bayesian methods for estimating the univariate SV model, re-
spectively. See text for details on computing moments.
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Table 8 Diagnostic LM tests
JP/US GE/US UK/US GE/JP UK/JP UK/GE

Cross volatility tests

JP/US — 634 449 449 732 0.70
GE/US  0.88 — 957 489 129  0.68
UK/US 339  5.78 — 307 927 1.3
GE/JP 061 88  1.92 — 779 3.84
UK/JP 456 196 441 1652  — 8.24

UK/GE 017  0.17 1.04 174 2.92 —
Higher order dynamics
Tig 63.11 68.78 98.39 82.35  73.45 85.56

NOTES: The LM statistics test for inclusion of a cross-volatility z}_;,
or a further lag of own volatility in the volatility equation (z,—5). The

scores are all computed by simulation under the null hypothesis of
the free mixture model.

the estimates in Table 3, and most clearly for the pound/yen rate. In general w? will

be higher than 7%/2 if the distribution of the underlying exchange innovation ¢ has
fat tails. This way the distribution of €; and the estimates of the volatility persistence
are connected. QML and SIEMI can be seen as a restriction on one of the parameters
in an ARMA(1,1) process.’

An ARMA(1,1) process is fully identified by the variance and the first two auto-
correlations. Ignoring all distributional identifying restrictions one could estimate the
parameters of the stochastic volatility model from these three moments. However,
the second order autocorrelation is larger than the first order autocorrelation, so that
the implied estimate p = AR(2)/AR(1)} is larger than one and thus infeasible. This
means that a GMM estimator with more moments is required. Given the number of
observations the GMM criterion function will reject the overidentifying moment con-
ditions, implying misspecification of the simple first order stochastic volatility model.
The same concluston also follows from comparing the sample autocorrelations and
the implied autocorrelations in Table 7. None of the estimators provides a uniformly

good fit for all six exchange rates.!®

$0ne could consider a modified QML estimator where the measurement error variance w? is a free
parameter. This estimator was used in Mahieu and Schotman (1994). The modified QML estimator
does yield higher estimates of the volatility persistence p, but generally not as high as SIEM2. The
implicit outlier correction of SIEM2, due to the high estimated kurtosis, must explain the remaining
(small) differences.

10Gince the madel does not seem to fit the lower order moments care must be taken in a Generalized
Method of Moments estimation. Both the choice and the number of moments seem to be important.

Gallant, Hsieh and Tauchen (1994) develop a statistical method to choose the moments. The score
function of an auxiliary probability model is used to employ a standard GMM analysis. Melino and
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Instead of a GMM based misspecification analysis, we computed a set of Lagrange
Multiplier test, taking the free mixture SIEM2 model as the null hypothesis. The tests

take the form of adding an explanatory variable in the volatility equation (2),
Ty = pxe1 + 25, + e (11)

where z}_, is the additional variable. Candidate additional variables are a second lag

of the own volatility (z;_2) of a currency in order to test for dynamic misspecification,
and the lagped volatility of another exchange in order to test for spillover effects.
We computed LM statistics using the simulated states from the SIEM2 model and
numerical differentiation of the likelihood. The scores were then computed from
a simulation with the multimove Gibbs sampler under the null hypothesis. The
statistics are asymptotically distributed as a chi-square with one degree of freedom.

The table shows that spillovers seem to be present in a number of cases, especially
for the problematical pound/yen rate. Note also that among exchange rates that do
not have a certain currency in common (the anti-diagonal in the table) no evidence
for spillovers exist. These results direct the interest towards a multivariate model of
exchange rates as in Mahieu and Schotman (1994). Dynamic misspecification of the

volatility process is rejected overwhelmingly for all series.

5 Volatility Estimates

Even though the first order stochastic volatility model appears misspecified, it has
a strong theoretical appeal in finance applications, and remains an improvement on
the assumption of constant volatility. It is therefore of interest to investigate the

estimated volatilities of the different estimators.
The volatilities can be estimated in three different ways. Conditional on the pa-

rameters the Kalman smoother produces estimates under the assumption that the
measurement error £, is normally distributed. An alternative is to run the Gibbs
sampler conditional on the parameters. The Gibbs sampler alternates between simu-
lating from the states using f(Xr|Zr,#) and the mixture indicators f(Z¢| X, 8) like
in the moment steps of the Simulated EM algorithm. The third volatility estimate
is the Bayesian posterior mean of X7, which 1s obtained as part of the full Gibbs

sampler in the BAYES estimator. The first two volatility estimates are conditional

Turnbull (1690) use 47 moments in estimating a simple SV model.

18



Table 9: Summary statistics of volatility estimates

JP/US GE/US UK/US GE/JP UK/JP GE/UK
SIEM?2 simulation estimates: &;
SD(z,) 0.837 0.576 0.938 0.540 0.508 0.586
Oy 0.932 0.666 0.985 0.667 0.655 0.775
Standard errors of @, P,
SIEM2 0.421 0.343 0.459 0.394 0.408 0.487
BAYES 0.549 0.485 0.578 0.497 0.497 0.626
SIEM2 (simulated) minus SIEM2 (Kalman)
std. dev.  0.244 0.266 0.244 0.241 0.505 0.240
AR(1) 0.082 0.121 0.041 0.067 0.647 0.063
SIEM2 (simulated) minus QML (Kalman)
std. dev.  0.248 0.267 0.270 0.385 0.330 0.264
AR(1) 0.156 0.213 0.195 0.512 0.321 0.254
SIEM2 (Kalman) minus QML (Kalman)
std. dev.  0.082 0.111 0.121 0.250 0.450 0.159
AR(1) 0.018 0.004 0.085 0.038 0.759 0.061
SIEM2 (Kalman) minus BAYES
std. dev.  0.091 0.145 0.103 0.106 0.082 0.166
AR(1) 0.110 0.379 0.075 0.230 0.136 0.445
NOTES: SD(,) is the sample standard deviations of the time series #,
of estimated log-volatilities, using the multimove Gibbs sampler as the
smoothing algorithm; o, is the estimated standard deviation of z; using
the parameter estimates in table 3; F; is the square root of the sample
mean of the estimated error variances of z; — #;. The lower part of the
table provides information on the time series of differences between the
SIEM2 simulated states and estimates obtained by the standard Kalman

smoother. AR(1) is the first order autocorrelation of the series of devia-
tions.

on the parameters, while the Bayesian estimate incorporates parameter uncertainty.
The simulation estimators also provide estimates of the actual variances exp(z;).}

In table 9 we present the some summary statistics of the estimated log-volatilities.

2

2 can approximately be split in two components,

The total variance o
o2 = Var(z,) + P?,

where P? is the sample average of the variances of the estimation errors (z; — ;)

which is obtained for each period ¢ as the variance of the simulated a:ti). All three

11 BRecause the unconditional mean # is not identified in the BAYES and SIEM2 models, we subtract
the sample mean of the smoothed 2;. Similarly we also correct the sample mean of the estimated
exp(z;) by multiplying with a constant such that it equals the unconditional sample variance of the

exchange rates Aln S;.
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components are reported in table 9. The lowest relative estimation error variance
P2/c2 is obtained for the dollar/pound rate, where the sample variance of &, accounts
for 90% of the total variation of the volatility. The highest error ratios are for the
cross rates, where the sample variance of £, is only between 60% and 70% of the total
variance. The estimation error, conditional on the parameters, is also big in absolute
value. Noting that the numbers refer to log-volatility we find that an average 95%
confidence interval for a weekly volatility ranges roughly from a half to two times the
estimated volatility. The BAYES estimator has even larger standard errors as it also
incorporates the parameter uncertainty. For any financial application this is a very
wide range, and would also lead to enormous price ranges for implied option prices.
These numbers are further evidence for the scope for much improvement in volatility

models.
The lower part of the table considers the differences between the SIEM2 simulation

smoother, and alternative smoothing algorithms. Given that all series have mean zero
by construction, we use the standard deviation of the time series of the difference
between two series as a distance measure. These standard errors are large. Even if
the same parameters are used, the Kalman smoother produces a series that deviates
strongly from the simulation smoother. The differences between the BAYES estimator

and the SIEM2 simulation smoother are much smaller. There are also much smaller
differences between the two series produced by the Kalman smoother. From this

we conclude that the issue of the right smoother is much more important than the
parameter estimator in this model with such long time series.

Table 9 also shows that the dollar/yen and dollar/pound exchange rates exhibit
much wider fluctuations in the volatility than the other four series. The fluctuations
are shown in figures 4 to 9, which present the smoothed log volatilities z; of the
BAYES estimator in the top panel, and the actual volatilities exp(z¢) (scaled to
match the unconditional sample variance) in the lower panel.'? The dollar/pound
volatility has a large dip in 1977, when the exchange rate was very stable. The peaks
of the dollar /pound volatility in 1985 and 1993 appear very sharply in the lower panel.
The high pound volatility starting in the fall of 1992 is also visible in the pound/mark
and pound/yen rates, identifying this episode as pound volatility.

12The smoothed volatilities in the lower panel have been obained as the average of the simulated
exp(zt"’) over a run of the Gibbs sampler.
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6 Summary and Conclusions

In the paper we empirically studied the performance of the first order stochastic
volatility model using a dataset of weekly exchange rates over the last twenty years.
The model has been estimated by estimation methods that differ in the specification
of the distribution of the standardized exchange rate innovations. Our first finding
is that for the number of observations we employ the estimation is of secondary
importance for the problem of estimating the key parameters. The only empirical
regularity is that the point estimates of the persistence of the volatility increase if the
error distribution is explicitly modelled through a mixture of normals.

The other results of the paper pertain to the estimation of the time series of
volatilities. First we find that different smoothing algorithms produce very different
estimates, even if the parameters of the underlying process are the same. Again the
differences arise from explicit consideration of the measurement error density in the
state space model for the log volatility. The most disturbing finding is that even
the most efficient simulation smoothers produce very large standard errors for the
volatility estimates. From this we conjecture that implied option prices in various
finance applications will also be subject to large estimation error. We leave the
finance implications for future work.

Finally, diagnostic tests reveal several forms of misspecification of the.standard
stochastic volatility model. Multivariate specifications and higher order dynamics

seem particularly attractive empirical extensions.

APPENDIX

A Simulation Algorithms

The algorithms listed below draw heavily on Shephard (1993b, 1994). The Bayesian Gibbs

sampler for the stochastic volatility model has the following steps:

1. Let py = pt;, and wi = wft, t =1,...,T be the mean and variance associated with the

current draw for the index of the element of the mixture distribution. Conditional
on z; and the parameters o, u, and «w the Kalman filter produces an estimate of the

filtered states &; = E[z4|Y;]. The recursion is

2
P
w

B o= pEo 4 =y — pEio1 — 1) (A1)

27



2 = wi(p*p?_, + 0?)
i ppl | ¥ ol 4 w?’

(A2)

where p? is the conditional variance of &;. The initial conditions of the filter are:

1 n— M

P = o
. Given the filtered estimates &7 and pr, the final state z7 is generated as a draw from

N(&r,pr). A backward recursion produces the new time series of simulated states.

The recursion is taken from Shephard (1994). Fort =T —1,...,1, generate

pp} o’
Ty~ N | + W(:BH-I — P\’Et) s W (A3)
. Given a simulation for the time series X7 = (21,...2r) a new draw for the au-

tocorrelation parameter p is generated from the conditional posterior of p, which is
truncated normal with mean and variance parameters p and 5 5 that are obtained by
the QLS regression of #; on x;_y. Since the prior of p is truncated to the interval

(-1,1) a draw from the conditional normal is only accepted if it falls in this region.

. Given p and X7 a new value for ¢ is drawn from the inverted Gamma distribution
with degrees of freedom (7T — 1+ dp) and sum of squares (sg + SSR), where SSR is
the sum of squared residuals of the regression of z; on z;—1 in 3, and where dy and

so are the prior degrees of freedom and prior sum of squares in the prior on o.

. Conditional on the data Y7 and the states X7, the innovations £; are observable as
1 — ;. Given the regime indicators z;, the posterior of the means y; (i = 1,2,3) of

the mixtures is implicitly given by the regression models
£(3) = pit + v(d), (A4)

where £(4) denotes a vector of length T; with elements corresponding to z; = ¢, and
where ¢ is a T; vector of ones. The error term in this model has mean zero and
variance w?. Since the prior on y; is N(m;, V), the conditional posterior of p; is also

normal with mean and variance given by

- -1
TVEE: + wim, 1 T;
- : i d ot
M="Tyiyer @ ™ Etz) o

1

respectively, with £; the sample mean of £(i). These densities are used to draw new

values for the ;. The unconditional mean 3 of £ follows as 8 = }:f‘;l Pifti-

28



6. Analogolously to drawing ¢ we draw w; from an inverted Gamma distribution, in this

case with degrees of freedom parameter (7; — L +dp) and sum of squares (wg; +SSR).

7. The joint distribution of £; and z is given by

(f,z)ochexp( (£2wp")), if z=4, i=1,...,N

t

with the same constant of proportionality for all ¢ = 1,..., K. The conditional

distribution of z given £ is multinomial and follows from the posterior odds ratios

P! (6 —w)? | (£ )’
K== 2 - : A5
Y F; mj‘l eXp ( 2wf + 2w32- (A3)

Conditional on £; we draw a new value for 2z, by drawing a uniform random number
1, and inverting the cumulative distribution for each {. Defining K;; = 1 the posterior

probabilities of z = ¢ follow as

K -1
= (Z K,ij) (AG)

This completes a single iteration of the Gibbs sampler. The results in the empirical appli-

cation are based on a single run of 5200 iterations, of which the first 200 were discarded.
The Simulated EM algorithm (SIEM) with free and fixed mixture parameters is set out

below. Like in the Bayesian case this algorithm is an application of the multimove Gibbs

sampler.

1. Conditional on the parameter vector § the simulation smoother, consisting of repeat-
ing steps 1, 2 and 7 above, is executed in N parallel runs, each run taking 5 steps
starting from the Kalman smoother solution. This way we obtain simulated states
0.

2. New estimates of the parameters in the transition equation are obtained as (see Shep-

hard (1993a)):

. z:J y T, el
i}
j:l Z::z (xgi)ljg

=1 1=2

(A7)

|
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3. New estimates of the mixture parameters are obtained from the conditional moments

of the simulated measurement errors given the mixture indicators:

. Tiet el &
M= TSN 40 (A9)
i=1ti
» >, Etg‘(n(ég“” - )?
wy = ZNIT-U) ) (A10)
J= t

where It-U) ={t: zij) =1}.

The number of iterations N of the Gibbs sampler at each iteration of the Gibbs sampler
was set at 128 initially, increased to 1024 when the parameter estimates had reached a
stable region. The starting values for the SIEM1 algorithm (which does not contain step 3)
are at the final QML estimates. The starting values for the SIEM2 estimator are the final
estimates of the SIEM1 estimators.

B Moments

The first four non-central moments of a random variable z distributed as a mixture of

normals with means and variances g; and w?,{(i=1,..., K) are given by
_ K
E[#’] = Zp,’(j‘h moment of N(u;,w?)),
=1

where p; is the weight of the i** normal density in the mixture. This results in the following

four moments

K

my=E[n] = Y puu
=1
K

my = Elef) = Y pi(wl+ad)
1=1
K

ms = Elf] = 3w (3md + ) (B1)

i=1

.
my = E[z]] = Zpi (3‘*’? + 6pfw? ‘|‘:U"?)

=1
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The non-central moments of the independent variable of the simple univariate stochastic

volatility models can be found using the moments above. Consider the model

Y = T+ &
Ty = prg_1+ (B2)

where £ is independent of r; at all leads and lags. The first four unconditional moments of

y; and the first two time series moments are given by

Ely] = my

Ely;] = oi+mg

El?] = 3mol4 ms

Ely)] = 30} +6mgo. + my (B3)
Elyyi] = mi + pol
Elyeyi—2] = mi+pal,

where o2 = 0?/(1 ~ p?). In case the measurement equation contains the constant term g
one should replace all g; in (B1) by p; + 8. The central moments can be computed from
these moments in the usual way.

To obtain the moments of ¢, = +e4t/? we assume that the distribution of €, is symmetric
so that all odd moments are zero. The even moments are found analogous to (B1) by using

the properties of the individual elements in the mixture:

K
Elef] = Efe%] =) piexp(p +w}/2)

i=1

K
Ele}] = E[e*}= Zp,- exp(2pt; + 2w?) (B4)

i=1

References

ANDERSEN, T.G. (1992), Volatility, working paper 144, Northwestern University.

ANDERSEN, T.G. (1994a), Return Volatility and Trading Volume: an Information
Flow Interpretation of Stochastic Volatility, working paper, Northwestern Uni-
versity.

ANDERSEN, T.G. (1994b), Stochastic Autoregressive Volatility: a Framework for
Volatility Modeling, Mathematical Finance, 4, 75-102.

31



BAILLIE, R.T. AND T. BOLLERSLEV (1989), The Message in Daily Exchange Rates:

A Conditional Variance Tale, Journal of Economic and Business Statistics, 7,
297-305.

BOLLERSLEV, T. (1986), Generalized Autoregressive Conditional Heteroskedasticity,
Journal of Econometrics, 31, 307-328.

Cragrk, P.K. {1973), The Subordinated Stochastic Process Model with Finite Vari-
ance for Speculative Prices, Feonometrica, 41, 135-155.

DANIELSSON, J. (1994), Stochastic Volatity in Asset Prices: Estimation with Simu-
lated Maximum Likelihood, Journal of Econometrics, 61, forthcoming.

DANIELSSON, J. AND J.-F. RICHARD (1993), Accelerated Gaussian Importance
Sampler with Application to Dynamic Latent Variable Models, Journal of Ap-

plied Fconometrics, 8, 153-173.

ENGLE, R.F. (1982), Autoregressive Conditional Heteroskedasticity with Estimates
of the Variance of United Kingdom Inflation, Econometrica, 50, 987-1007.

ENGLE, R.F. AND T. BOLLERSLEV (1986), Modeling the Persistence of Conditional
Variances, Econometric Reviews, 5, 1-50.

GALLANT, A.R., D. Hsiet, AND G.E. TAUCHEN (1994), Estimation of Stochastic
Volatility Models with Suggestive Diagnostics, working paper, Duke University.

HarvEY, A.C., E. RUIZ, AND N. SHEPHARD (1994), Multivariate Stochastic Vari-
ance Models, Review of Fconomic Studies, 61, 247-264.

Harvey, A.C. AND N. SHEPHARD (1993a), The Econometrics of Stochastic Volatil-
ity, working paper, Nuffield College, Oxford.

HARVEY, A.C. AND N. SHEPHARD (1993b), Estimation and Testing of Stochastic
Variance Models, working paper, Nuffield College, Oxford.

JACQUIER, E., N.G. PoLsoN, AND P.E. Ross1 (1994), Bayesian Analysis of Sto-
chastic Volatility Models, Journal of Economics and Business Stalistics, forth-
coming.

KM, S. (1993), Persistence in Conditional Variance: Estimation using a General

Stochastic Volatility Framework, working paper, Princeton University.

KiM, S. AND N. SHEPHARD (1994), Stochastic Volatility: Optimal Likelihood In-

ference and Comparison with ARCH Models, working paper, Nuffield College,
Oxford.

MAHIEU, R.J. AND P.C. SCHOTMAN (1994), Neglected Common Factors in Ex-
change Rate Volatility, Journal of Empirical Finance, 1, 279-311.

MELINO, A. AND S.M. TURNBULL (1990), Pricing Foreign Currency Options with
Stochastic Volatility, Journal of Econometrics, 45, 239-265.

NELSON, D.B. (1991), Conditional Heteroskedasticity in Asset Pricing: a New Ap-
proach, Econometrica, 59, 347-370.

32



Ruiz, E. (1993), Stochastic Volatility versus Autoregressive Conditional Heteroskedas-
ticity, working paper 93-44, Universidad Carlos III de Madrid.

ScHOTMAN, P.C. (1994), Priors for the AR(1) Model: Parameterization Issues and
Time Series Considerations, Econometric Theory, 10, 579-595.

SHEPHARD, N. (1993a), Fitting Nonlinear Time-Series Models with Applications
to Stochastic Variance Models, Journal of Applied Econometrics, 8, 135-152,
special issue.

SHEPHARD, N. (1993b), Maximum Likelihood Estimation of Regression Models with
Stochastic Trend Components, Journal of the American Statistical Association,
88, 590-595.

SHEPHARD, N. (1994), Partial Non-Gaussian State Space, Biometrika, 81, 115-131.

TANNER, M.A. (1991), Tools for Statistical Inference: Qbserved Data and Data
Augmentation Methods, Lecture Notes in Statistics 67, Springer-Verlag.

TAUCHEN, G.E. AND M. PITTS (1983), The Price Variability-Volume Relationship
on Speculative Markets, Feonometrica, 51, 485-505.

TAYLOR, S.J. (1986), Modelling Financial Time Series, Wiley.

TAYLOR, S.J. (1994), Modeling Stochastic Volatility: a Review and Comparative
Study, Mathematical Finance, 4, 183-204.

ZELLNER, A. AND C. MIN (1992), Gibbs Sampler Convergence Criteria (gsc?), work-
ing paper, University of Chicago. .

33





