Bank of Portugal Lectures Summer 2006

Time-Varying Risk, Interest Rates,
and Exchange Rates

Based on work by Alvarez, Atkeson, and Kehoe
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e Model
o General equilibrium monetary model
o Interest differentials variable and persistent
o Exchange rates approximately random walks

o Interest differentials all driven by risk



e Overall, the new view of finance amounts to a profound change.
We have to get used to the fact that most returns and price variation

comes from variation in risk premia (Cochrane 2001).
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e |_og dollar return on euro bonds

i +Eloge,, —loge
e Excess return of euro bonds over dollar bonds

p. =i, +Eloge, —loge —i,

o |f g arandom walk, then the interest differentials driven by variations
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Our view: Interest rate differentialsall driven by risk

e i,i; nominal interest ratesin dollars and euros (compounded)
e Log dollar return on euro bonds

i +Eloge,, —loge
e EXcessreturnisarisk premum
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Our view: Interest rate differentialsall driven by risk

e i,i; nominal interest ratesin dollars and euros (compounded)
e Log dollar return on euro bonds
i +Eloge,, —loge
e EXcessreturnisarisk premum
P, =i; +E loge,, —loge —i,
e For intuition

| —i =—|E logg,, —loge |+ p

constant
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Risk varies even morethan interest differentials

e High interest rate currencies tend to appreciate
cov(i, —i ,loge_,—loge)<0

or

cov(i, —i,, E loge_ ,—loge) <0

e Implies
var(p,) = var(i, —i.)

e |ntuition

i, —i; = [E loge,, —loge] - p,




Risk varies even morethan interest differentials

e High interest rate currencies tend to appreciate
cov(i, —i ,loge_,—loge)<0

or

cov(i, —i,, E loge_ ,—loge) <0

e Implies
var(p,) = var(i, —i.)

e Data: In Famaregression typical estimateb <0

loge_ , —loge =a+Db(i, —i’)+u,,




USD/Euro Exchange Rate

Euro 6m Rate

USD 6m Rate
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6 Months Euro % Appreciation

15 5

o Beta = -3.43, R2=0.52
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M odel

e General equilibrium model
o generates time-varying risk
o Intuition from pen and paper

o direction for research, not quantitative solution to puzzle
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M odel

e Standard pure exchange CIA model: 2 countries, 2 currencies except
e No trade in goods
e Real fixed cost to transfer cash b/w asset and goods markets
o each household has a constant fixed cost y over time
o vy~ f(7y) across households
e Only shocks are money growth shocks

o u(s') home, u'(s') foreign



Asset Market

Starting
bonds

B

Money Asset Market Constraint

shock Ending
m B = [ qB’+ P(x+%) if cash transferred » bonds
B/

B=[qgB”’ if not

If transfer X, pay fixed cost ¥.

A 4

Cash-in-Advance Constraint

C=nNn-+xX if cash transferred
c=n if not

Goods Market /
Shopper

Starting
cash

P_ly

Tn=P,y/P cash

Real balances \ Ending
Work\ Endowment /
sold for cash

Py
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Characterizing equilibrium

e CIA binds: P(s)=M(s)/y
e Cutoff rule for paying fixed cost
pay if v < ¥(s)
o cohsumption inactive (don’t pay v)

P(s)y_ Yy M(s)

where u(s) = £

P(s) w(s)
o consumption of active (pay v)
c,(s') regardless of y

o Micro evidence



Equilibrium solves planning problem

Choose c,, (1), y(u) to solve

max U (C, (W) F (Y(w) +U (y/w)[1-F (¥ (w))]

S.t.
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Equilibrium solves planning problem

Choose c,, (1), y(u) to solve

max U (C, (W) F (Y(w) +U (y/w)[1-F (¥ (w))]
st.

T(Ww)

c(WF(FW) + [y (dy + [ﬁ][l— FOTW) =y

0

e Proposition 2

As 1 increases, more households become active (7' (1) > 0)
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Pricing kernelsand formula for interest rates

e Dollar assets, Euro assets

U)o PUC () L

m+1

UC) e T U W) M

e Any asset with dollar return R, att + 1

1=E m, R,
e Dollar bond: Pays R, =exp(l,) inall statesatt + 1 so
1=E m,exp(i,) or i,=—logE, m,
e Euro bond

I: =—|Og Et rn:+1



Formulasfor expected depreciation and risk premium

e State-by-state arbitrage

Q+1
Q

nf rT1+1
e Exchange rate depreciation
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Formulasfor expected depreciation and risk premium

e State-by-state arbitrage

Q+1
Q

nf rT1+1

e Exchange rate depreciation
loge,,, —loge =logm,, —log m,,
e Risk premium

= E, logm,, — E logm,, — (log E,m,, —log Em,,)

Risk from Jensen inequality terms




Recap

e Pricing kernel for nominal assets

o Formulas for interest rates, exchange rates, risk premia

Now
e How money shocks effect pricing kernel

o Second order approximation to pricing kernel
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How money shocks effect marginal utility

e How does marginal utility change with money growth?

1-o

(I)(H) — —d lOgU,(CA(M)) :Gd IOgCA(u) when U(C) _ C
dlogu dlogu 1-0

e Key to generating variable risk premia
o Logc,(u) concavein logu

o Marginal utility of active households more sensitive to money
growth at low levels of money growth

o Variability of pricing kernel decreases with u



log of c,

The Log of the Consumption of Active Households

log u
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Second-order approximation to pricing kernel

e Approximate marginal utility

n

10gU’(c, (1)) =10gU’(c, (1) ~ 0f, + - i
where
_ _ dlogU’(c,(m) _ _dloge, (i)
dlogu dlogu
o = d7logu(e, (@) _ _  d*loge, ()

(dlogu)’ (dlogp)’




Second-order approximation to pricing kernel

e Approximate marginal utility

10gU’(Cy (1)) = 10gU (. (1) ~ 0, +

e Implied pricing kernel

ogm.,=tog| £ -0+t +of - -1,



Shock processes

e Shock processes

ut+1 E[““t+1 T 8t+1’ ut+1 E[““t+1 T 8t+1

key: ¢, € constant conditional variances (also normal and independent)
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e How money shocks effect pricing kernel

Now

e How model can qualitatively account for data
o Proposition with sufficient conditions
o Numerical example
o Cross country implications

o Long-term forward premium
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How model can qualitatively account for data

o 2 steps

o money growth i T = risk premium falls (alot)

o money growth 1 T = expected depreciation falls (alittle)

e Then money growth u T = interest differential rises

it _it* — [E[ |Oge(+1—Q]— o



Step 1. Risk premium falls with money growth

The Log of the Consumption of Active Households

log of c,

log u



Step 1. Risk premium fallswith money growth
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Step 1. Risk premium fallswith money growth

e Proposition 4. Under second-order approximation

1 1 .
P, = E 1_ nGS [Vart log m,, —vd, log m+1]

var,(logm_,) = [-(1+¢) +nEfi,,,]°c? + constant

e Risk premium falls with money growth

d?t oc — n dEtE'“Hl < O
di, d,

o whenn >0 (logc,(i) concavein logu)

o and money growth persistent (dE ., /dji, > 0)



Step 2: Expected nominal depreciation falls with money growth

Nominal Rea Inflation
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Step 2: Expected nominal depreciation falls with money growth

Nominal Rea Inflation
Depreciation Depreciation Differential

Iog(eHlj — |Og[vt+1j + Iog[uiﬂj
e[ Vt ut+1

e money growth u T implies

o an expected real appreciation (expected real depreciation J)

o inflation differential T

o need expected real appreciation to dominate



Step 2: Increase in money growth leadsto expected appreciation

e Red exchangerate v, =U’(c, (1)) /U’"(C,(1,))

e For intuition let u, bei.i.d. and suppose p, T
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Step 2: Increase in money growth leadsto expected appreciation

e Red exchangerate v, =U’(c, (1)) /U’"(C,(1,))

e So dlogy,/dlogp, =-dlogU’(c,)/dlogu, =o

4’{0\

t t+1

log v,




Step 2: Need lar ge enough expected real appreciation

e \When |, Is persistent

d v dEf,,,
—E |Og[ Hlj = (I{—AH—]]<O
di, \/ di,

t
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o Need segmentation parameter ¢ large

e Want increase in money growth to increase I, — if

o Need risk to fall enough with u
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Conditionsfor high interest rate currenciesto appreciate

e Want increase in money growth to decrease E, log(e,,/€)

o Need segmentation parameter ¢ large

e Want increase in money growth to increase I, — if

o Need curvature parameter 1 large

1+q) dE[llHl < 1
o dp,
o u, Timpliesi —i; T (first inequality)

then

e Proposition5: If  1-mo’<

o u, Timplies E loge,,—loge | (second inequality)
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Numerical Example

e Money growth

(g =9(L)+e., €.~ N(O0;), corr(e.e)=p,
e Function g chosen so that exchange rate arandom walk
E logg,, =logg
e Other parameters

o ¢ =2, u= 5% annual

o Money shocks: o, =.35%, corr(e,,¢,) = 1/2

o Fixed costs. 12.5% have zero costs, rest have uniform costs on [0, 10%)]
o Gives ¢ = 10.9, n = 1007



Realizations of Money Growth Using
Our Baseline Process and an AR(1) Process
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The Log of the Consumption of Active Households

.05

.04

01

log ¢ A (W)

log 1 (annualized)

10



What the Model Implies for the Slope Coefficients
In the Fama Regression

Thousand

Number out of 100,000

7

6

5

-25 -21 -18 -14 -11 -7 -4 0 3

Slope Coefficient b of the Fama Regression
(Mean = -3.69, simulation length 245)

10




Properties of Exchange Rates and Interest Rates

Statistics/VVariable Data

Standard Deviations
Exchange Rates (loge, , —loge,) 36
Interest Rates (i, —i; ) 3.5

Autocorrelations

Exchange Rates (loge, , —loge,) .04
Interest Rates (i, —i; ) .83

Sources of data: Backus, Foresi, and Telmer (2001)



Properties of Exchange Rates and Interest Rates

Statistics/VVariable Data Model

Standard Deviations

Exchange Rates (loge, , —loge,) 36 58
Interest Rates (i, —i; ) 3.5 1.3
Autocorrelations

Exchange Rates (loge, , —loge,) .04 0
Interest Rates (i, —i; ) 83 92

Sources of data: Backus, Foresi, and Telmer (2001)



Cross Country Implications

e Empirical studies: Countries with high inflation

o slope coefficient b in Famaregression closeto 1

e Model’simplications similar
o slope coefficient b in Famaregression is one
O reason

* high inflation implies market not segmented



Long-Term Forward Premium

e Data

o forward premium disappears with long-term bonds

e Mode
o disappearsin model aso
O reason
* real risk doesn’t grow with horizon

* long-term risk is same as in model with no segmentation



log of c,

The Log of the Consumption of Active Households

log u




Conclusion

e Time-varying risk essential for interest differentials

e Showed segmented markets give time-varying risk

e Highlighted key forces at work



Realizations of Money Growth Using
Our Baseline Process and an AR(1) Process
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Concavity of log c,(1w)

e Proposition 3

The log of consumption of active households is strictly increasing
and strictly concavein logu, around u =1

e Numerical Example





