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Conventional model diagnostics

does your model have “reasonable”asset pricing implications?

conventional answer: start with Euler equation
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rearrange, get Hansen-Jagannathan bounds

σt (mt+1)
Et (mt+1)

≥ Sharpe ratio for asset i =
Et
(
r it+1

)
− r ft

σt
(
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)
measure RHS with data on financial returns
compare RHS with LHS computed from your model

nice: works even if your model does not have asset i
e.g. Telmer 1993 heterogeneous agents with one bond
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New model diagnostics proposed by Dave, Mike & Stan

1 take one-period kernel mt+1, compute

one-period conditional entropy = log Et (mt+1)− Et (logmt+1)

rough idea: σt (mt+1) in HJ bounds
2 take multi-period kernel mt ,t+n = mt+1 · · ·mt+n, compute

multi-period conditional entropy = log Et (mt ,t+n)− Et (logmt ,t+n)

define

horizon dependence =
1
n
E [log Et (mt ,t+n)− Et (logmt ,t+n)]
−E [log Et (mt+1)− Et (logmt+1)]

rough idea: HJ bounds for long-horizon vs. short-horizon returns
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More precisely: one-period conditional entropy

rough idea: entropy is measure of dispersion of the pricing kernel
is like checking σt (mt+1) in HJ bounds

σt (mt+1)
Et (mt+1)

≥ Sharpe ratio =
Et
(
r it+1

)
− r ft

σt
(
r it+1

)
should be quantitatively large to match data on average excess returns

In models with lognormal mt+1, they boil down to the same

entropy ≡ 1
2

σt (logmt+1)

large class of representative agent models!
long run risk (Bansal & Yaron 2004, Hansen-Heaton-Li 2008 etc.)
habits (Abel 1992, Constantinides 1990, Campbell & Cochrane 1999)

diagnostic is more interesting in models that are not lognormal
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More precisely: horizon dependence
rough idea: HJ bounds for long-horizon vs. short-horizon returns

horizon dependence :=
1
n
E [log Et (mt ,t+n)− Et (logmt ,t+n)]
−E [log Et (mt+1)− Et (logmt+1)]

= −E
(
y (n)t − y (1)t

)
= − average slope of the yield curve

= − average (long-horizon return on long

− short-horizon return on short bond)

determined by autocorrelation of the pricing kernel
should be quantitatively small in absolute value in your model to
match data on Government bond yields
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Perform model diagnostics
1 power utility does badly on one-period entropy
2 long run risk models (Bansal & Yaron 2004, Hansen, Heaton, Li 2008)
do well on one-period entropy, do badly on horizon dependence

3 habits ( = catching up with the Joneses)
ratio habits u (ct/ht ) Abel 1992 do badly on entropy
difference habits u (ct − ht ) Campbell Cochrane 1999 X

4 jumps/disasters: Rietz-with-time-varying-disaster-probability X
Are diagnostics tough enough?

models that do best have least discipline: habit process, time
variation in disaster prob calibrated to match stock prices

get additional discipline from macro implications

need huge disasters: 30% consumption drop
(cf. Great Depression: "only" 10%)

other counterfactual implications (e.g. value discount not premium)
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Summary

very nice paper

provides organizing framework
if you want to teach a single paper on asset pricing in rep agent
models, this may be it.

diagnostics are useful
related to HJ bounds for short-horizon, long-horizon returns
with subtle differences, mostly for models that are not lognormal

diagnostics make two models look particularly good
1. Campbell-Cochrane 1999
2. Wachter (Rietz with time-varying disaster prob)

tough enough?? discipline, numbers, other (including macro)
implications

future for rep agent models with rational expectations in asset pricing?
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