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Abstract

This paper examines the properties of instrumental variables (IV) applied to models with es-

sential heterogeneity, that is, models where responses to interventions are heterogeneous and agents

adopt treatments (participate in programs) with at least partial knowledge of their idiosyncratic

response. We analyze two-outcome and multiple-outcome models including ordered and unordered

choice models. We allow for transition-specific and general instruments. We generalize previous

analyses by developing weights for treatment effects for general instruments. We develop a simple

test for the presence of essential heterogeneity. We note the asymmetry of the model of essential

heterogeneity: outcomes of choices are heterogeneous in a general way; choices are not. When both

choices and outcomes are permitted to be symmetrically heterogeneous, the method of IV breaks

down for estimating treatment parameters.
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1 Introduction

Suppose a policy is proposed for adoption in a country. It has been tried in other countries and we

know outcomes there. We also know outcomes in countries where it was not adopted. From the

historical record, what can we conclude about the likely effectiveness of the policy in countries that

have not implemented it?

To answer this question, we build a model of counterfactuals. Let Y0 be the outcome of a country

(e.g. GDP) under a no policy regime. Y1 is the outcome if the policy is implemented. Y1 − Y0 is

the treatment effect of the policy. It may vary among countries. We observe characteristics X of

various countries (e.g. level of democracy, level of population literacy, etc.). It is convenient to

decompose Y1 into its mean given X, μ1(X), and deviation from mean, U1. We can make a similar

decomposition for Y0:

Y1 = μ1(X) + U1 (1)

Y0 = μ0(X) + U0.

It may happen that controlling for the X, Y1 − Y0 is the same for all countries. This is the case of

homogenous treatment effects given X. More likely, countries vary in their response to the policy

even after controlling for X.

Figure 1 plots the distribution of Y1−Y0 for a benchmark X. We explain the various parameters

mentioned in the figure later on. The special case of homogeneity arises when the distribution

collapses to its mean. It would be ideal if we could estimate the distribution of Y1−Y0 given X and

there is research that does this.1 More often, economists focus on some mean of the distribution

displayed in Figure 1 and use a regression framework to interpret the data. To turn (1) into a

regression model, it is conventional to use a switching regression framework. Define D = 1 if a

country adopts a policy; D = 0 if it does not. The observed outcome, Y , is Y = DY1 + (1−D)Y0.

1See Carneiro, Hansen, and Heckman (2001, 2003), Cunha, Heckman, and Navarro (2005, 2006) and the survey
in Heckman, Lochner, and Todd (2006).
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Substituting (1) into this expression, and keeping all X implicit, we obtain

Y = Y0 + (Y1 − Y0)D (2)

= μ0 + (μ1 − μ0 + U1 − U0)D + U0.

Using conventional regression notation,

Y = α+ βD + ε (3)

where α = μ0, β = (Y1−Y0) = μ1−μ0+U1−U0 and ε = U0. The coefficient on D is the “treatment

effect.”The case where β is the same for every country is the one conventionally assumed. More

elaborate versions assume that β depends on X and estimate interactions of D with X. The

case where β varies even after accounting for X is called the “random coefficient”or “heterogenous

treatment effect”case. A great deal of attention has been focused on this case in recent decades.

The case where β (given X) is the same for every country is the familiar one and we develop

it first. A least squares regression of Y on D (equivalently a mean difference in outcomes between

countries with D = 1 and countries with D = 0), is possibly subject to a selection bias. Countries

that adopt the policy may be atypical in terms of their Y0 (= α+ ε). Thus if countries that would

have done well in terms of unobservable ε (= U0) even in the absence of the policy are the ones

that adopt the policy, β estimated from OLS (or its nonparametric version–matching) is upward

biased because Cov(D, ε) > 0.

Two main approaches have been adopted to solve this problem: (a) selection models (Gronau,

1974; Heckman, 1974, 1976a,b, 1979; Heckman and Robb, 1985, 1986; Powell, 1994) and (b) instru-

mental variable models (Heckman and Robb, 1985, 1986; Imbens and Angrist, 1994; Angrist and

Imbens, 1995; Manski and Pepper, 2000; Heckman and Vytlacil, 1999, 2000, 2005).2 This paper

2Matching is also used. It is a form of nonparametric least squares that assumes that all relevant unobservables are
accurately proxied by the observables X that the analyst happens to have at his or her disposal, so (Y0, Y1) ⊥⊥ D | X
(alternatively that (ε, β) ⊥⊥ D | X), where A ⊥⊥ B | C means that A is independent of B given C. See Heckman and
Navarro (2004) for a discussion of matching.
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focuses on the instrumental variable (IV) approach and establishes the relationship between the

selection and IV approach using a prototypical economic model. The selection approach models

levels of conditional means. The IV approach models the slopes of the conditional means. IV does

not identify the constants estimated in selection models. In the general case with heterogeneity,

when IV is used to identify the same level parameters that are identified by control function or

selection methods, it is necessary to make the same assumptions about levels outcomes in limit sets

(“identification at infinity”) as are made in selection models.

For the case with homogeneous responses, if there is an instrument Z with the properties that

Cov(Z,D) 6= 0 (4)

Cov(Z, ε) = 0 (5)

then standard IV identifies β, at least in large samples:

plim β̂IV =
Cov(Z, Y )

Cov(Z,D)
= β.3

If other instruments exist, each identifies β. Z produces a controlled variation in D relative to ε.

Randomization of assignment with full compliance with experimental protocols is an example of an

instrument. From the instrumental variable estimator, we can identify the effect of adopting the

policy in any country since all countries respond to the policy in the same way, controlling for their

X.

If β (= Y1 − Y0) varies in the population even after controlling for X, there is a distribution

of responses that cannot in general be summarized by a single number. Even if we are interested

in the mean of the distribution, a new phenomenon distinct from selection bias might arise. This

3The proof is straightforward. Under general conditions (see, e.g. White, 1984),

plim β̂IV = β +
Cov(Z, ε)

Cov(Z,D)

and the second term on the right hand side vanishes.
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is the problem of sorting on the gain which is distinct from sorting on the level. If β varies, even

after controlling for X, there may be sorting on the gain (Cov(β,D) 6= 0). This is the model of

essential heterogeneity.

The application of instrumental variables to this case is more problematic. Suppose that we

augment the standard instrumental variable assumptions (4) and (5) by the following assumption:

Cov(Z, β) = 0. (6)

Can we identify the mean of (Y1 − Y0) using IV? In general we cannot.4

To see why, let β̄ = (μ1 − μ0) be the mean treatment effect (the mean of the distribution in

Figure 1). β = β̄ + η, where U1 − U0 = η. Write equation (3) in terms of this parameter:

Y = α+ β̄D + [ε+ ηD] .

The error term of this equation (ε+ ηD) contains two components. By assumption, Z is uncorre-

lated with ε and η. But to identify β̄, we need IV to be uncorrelated with [ε+ ηD]. That requires

Z to be uncorrelated with ηD.

If policy adoption is made without knowledge of η (= U1−U0), the idiosyncratic gain to policy

adoption after controlling for the observables, then η and D are statistically independent and hence

uncorrelated, and IV identifies β̄.5 If, however, policy adoption is made with partial or full knowledge

of η, IV does not identify β̄ because E(ηD | Z) = E(η | D = 1, Z) Pr(D = 1 | Z) and if there

is sorting on the unobserved gain η, the first term is not zero. Similar calculations show that IV

does not identify the mean gain to the countries that adopt the policy (E (β | D = 1)) and many

4This point was made by Heckman and Robb (1985, 1986). See also Heckman (1997).
5Proof:

plim β̂IV = β̄ +
Cov (Z, ε+ ηD)

Var (D,Z)

But Cov (Z, ε+ ηD) = Cov (Z, ε) + Cov (Z, ηD) and Cov (Z, ηD) = E (ZηD) − E (Z)E (ηD), E (ηD) = 0 by the
assumed independence. E (ZηD) = E (η)E (ZD) by the assumed independence and hence E (ZηD) = 0 since
E (η) = 0.
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other summary treatment parameters.6 Whether η (= U1 − U0) is correlated with D depends on

the quality of the data available to the empirical economist, and cannot be settled a priori. The

conservative position is to allow for such correlation. However, this rules out IV as an interesting

econometric strategy for identifying any of the familiar mean treatment parameters.

It is remarkable then that under certain conditions Imbens and Angrist (1994) establish that in

the model with essential heterogeneity standard IV can identify an interpretable parameter. The

parameter they identify is a discrete approximation to the marginal gain parameter introduced by

Björklund and Moffitt (1987). Those authors demonstrate how to use a selection model to identify

the marginal gain to persons induced into a treatment status by a marginal change in the cost

of treatment. Imbens and Angrist (1994) show how to identify a discrete approximation to this

parameter using instrumental variables.

They assume the existence of an instrument Z that takes two or more distinct values. This

is implicit in (4). If Z assumes only one value, the covariance would be zero. Strengthening the

covariance conditions of equations (5) and (6), they assume that Z is independent of β (= Y1 − Y0)

and Y0. Let “⊥⊥”denote independence. Denote by D(z) the random variable indicating receipt

of treatment when Z is set to z. (D(z) = 1 if treatment is received; D(z) = 0 otherwise). The

Imbens-Angrist independence assumption can be written as

(IV-1) Z ⊥⊥
¡
Y0, Y1, {D(z)}z∈Z

¢
where Z is the set of possible values of Z. (Independence)

They also assume that

(IV-2) Pr(D = 1 | Z) depends on Z (Rank).

This is a standard rank condition. They supplement the standard IV assumption with what they

call a “monotonicity”assumption. It is a condition across persons. This assumption maintains that

if Z is fixed first at one and then at the other of two distinct values, Z = z and Z = z0, all persons

respond to the change in Z in the same way. In our policy adoption example, it states that a

6See Heckman and Robb (1985, 1986), Heckman (1997) or Heckman and Vytlacil (1999).
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movement from z to z0 causes all countries to move toward (or against) adoption of the policy being

studied. If some adopt, others do not drop the policy in response to the same change.

More formally, letting Di (z) be the indicator (= 1 if adopted; = 0 if not) for adoption of a

policy if Z = z for country i, for any distinct values z and z0, Imbens and Angrist (1994) assume

(IV-3) Di (z) ≥ Di (z
0) for all i or Di (z) ≤ Di (z

0) for all i, i = 1, . . . , I. (Monotonicity or

Uniformity)

The content in this assumption is not in the order for any person. Rather, the responses have to

be uniform across people for a given choice of z and z0. One possibility allowed under (IV-3) is the

existence of three values z < z0 < z00 such that, for all i, Di (z) ≥ Di (z
0) but Di (z

0) ≤ Di (z
00).

The standard usage of the term monotonicity rules out this possibility by requiring that one of

the following hold for all i: (a) z < z0 componentwise implies Di (z) ≥ Di (z
0) or (b) z < z0

componentwise implies Di (z) ≤ Di (z
0). Of course, if the Di (z) are monotonic in the standard

usage, they are monotonic in the sense of Imbens and Angrist.

For any value of z0 in the domain of definition of Z, from (IV-1) and (IV-2) and the definition of

D(z), (Y0, Y1,D (z0)) is independent of Z. For any two values of the instrument Z = z and Z = z0,

we may write

E (Y | Z = z)−E (Y | Z = z0)

= E(Y0 +D(Y1 − Y0) | Z = z)

−E (Y0 +D(Y1 − Y0) | Z = z0)

= E(D(Y1 − Y0) | Z = z)

−E (D(Y1 − Y0) | Z = z0) .

From the independence condition (IV-1) and the definition of D(z) and D(z0), we may write this
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expression as E [(Y1 − Y0) (D (z)−D (z0))]. Using the law of iterated expectations,

E (Y | Z = z)−E (Y | Z = z0) (7)

= E (Y1 − Y0 | D (z)−D (z0) = 1)Pr (D (z)−D (z0) = 1)

−E (Y1 − Y0 | D (z)−D (z0) = −1)Pr (D (z)−D (z0) = −1) .

By the monotonicity condition (IV-3), we eliminate one or the other term in this final expression.

Suppose that Pr(D(z)−D(z0) = −1) = 0, then

E (Y | Z = z)−E (Y | Z = z0)

= E (Y1 − Y0 | D(z)−D(z0) = 1)Pr (D(z)−D(z0) = 1) .

Dividing by Pr(D(z)−D(z0) = 1) = Pr(D = 1 | Z = z)−Pr(D = 1 | Z = z0) for values of z and z0

that produce distinct propensity scores, we obtain LATE:

LATE =
E (Y | Z = z)−E (Y | Z = z0)

Pr(D = 1 | Z = z)− Pr(D = 1 | Z = z0)
(8)

= E (Y1 − Y0 | D(z)−D(z0) = 1) .

This is the mean gain to those induced to switch from “0”to “1”by a change in Z from z0 to z.

This is not the mean of Y1 − Y0 (average treatment effect) unless the Z assume values (z, z0)

such that Pr(D(z)) = 1 and Pr(D(z0)) = 0.7 It is also not the effect of treatment on the treated

(E(Y1 − Y0 | D = 1) = E(β | D = 1)) unless the analyst has access to and uses one or more values

of z such that Pr(D(z) = 1) = 1.

LATE depends on the particular instrument used.8 The parameter is defined by a hypothetical

manipulation of instruments. If monotonicity (uniformity) is violated, IV estimates an average

7Such values of Z produce “identification at infinity,”or more accurately, limit points where P (z) = 1 and
P (z0) = 0.

8Dependence of the estimands on the choices of IV used to estimate models with essential heterogeneity was first
noted in Heckman and Robb (1985, 1986).
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response of those induced to switch into the program and those induced to switch out of the

program by the change in the instrument because both terms in (7) are present.9

If the analyst is interested in knowing the average response (β̄), the effect of the policy on the

outcomes of countries that adopt it (E(β | D = 1)) or the effect of the policy if a particular country

adopts it, there is no guarantee that the IV estimator comes any closer to the desired target than

the OLS estimator and indeed it may be more biased than OLS. Since different instruments define

different parameters, having a wealth of different strong instruments does not improve the precision

of the estimate of any particular parameter. This is in stark contrast with the traditional model

with β ⊥⊥ D. In that case, all valid instruments identify β̄. The Durbin (1954)-Wu (1973)-Hausman

(1978) test for the validity of extra instruments applies to the traditional model. In the more general

case with essential heterogeneity, since different instruments estimate different parameters, no clear

inference emerges from these specification tests.

When dealing with more than two distinct values of Z, Imbens and Angrist (1994) draw on the

analysis of Yitzhaki (1989), which was refined in Yitzhaki (1996) and Yitzhaki and Schechtman

(2004), to produce a weighted average of pairwise LATE parameters where the scalar Z are ordered

to define the LATE parameter. In this case IV is a weighted average of LATE parameters with

non-negative weights.10 Imbens and Angrist generalize this result to the case of vector Z assuming

that instruments are monotonic functions of the probability of selection.

This paper and our previous analysis build on the pioneering work of Yitzhaki and Imbens and

Angrist.11 We make the following contributions to this literature.

1. We relate the LATE-IV approach to economic choice models. Using a choice theoretic pa-

rameter (the marginal treatment effect or MTE) introduced into the literature on selection

9Angrist, Imbens, and Rubin (1996) consider the case of two way flows for the special case of a scalar instrument
when the monotonicity assumption is violated. Their analysis is a version of Yitzhaki’s (1989, 1996) analysis. He
analyzes the net effect whereas they break the net effect into two components corresponding to the two way flows.
10We place the unpublished Yitzhaki (1989) paper at our website and summarize his essential ideas in Section 3.2

and Appendix C. He shows that two stage least squares estimators of Y on P (Z) = E (D | Z), identify weighted
averages of terms like the second terms in (8) with positive weights. See also Yitzhaki (1996) and Yitzhaki and
Schechtman (2004).
11See Heckman and Vytlacil (1999, 2001c, 2005).
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models by Björklund and Moffitt (1987), it is possible to generate all treatment effects as dif-

ferent weighted averages of the MTE or of LATE. Standard linear IV can also be interpreted

as a weighted average of MTE or LATE. Using the economic model, MTE is a limit form of

LATE and LATE in turn is a discrete approximation to MTE, or the marginal gain function

of Björklund and Moffitt (1987). A local version of instrumental variables (LIV for Local

Instrumental Variables), distinct from standard instrumental variables, identifies the MTE.

These theoretical constructs can be defined independently of the data.

2. We establish the central role of the propensity score (Pr (D = 1 | Z = z) = P (z)) in both

selection and IV models.12

3. We show that with vector Z, and a scalar instrument constructed from Z (e.g. J(Z)), the

weights on LATE and MTE that are implicit in standard IV are not guaranteed to be non-

negative. Thus IV can be negative even though all pairwise LATEs and pointwise MTEs are

positive. Certain instruments produce positive weights and avoid this interpretive problem.

Our analysis generalizes that of Yitzhaki and Imbens-Angrist who analyze the case with

positive weights.

4. We show the special status of P (z) as an instrument. It always produces non-negative weights

for MTE and LATE. It enables analysts to identify MTE or LATE. With knowledge of P (z),

and theMTE or LATE, we can decompose any standard IV estimate into identifiable MTEs (at

points) or LATEs (over intervals) and identifiable weights onMTE or LATE, where the weights

can be constructed from data. This ability to decompose IV into interpretable components

allows analysts to determine the response to treatment of persons at different levels of the

unobserved factors that determine treatment status.

5. We present a simple test for essential heterogeneity (β dependent on D) that allows analysts

to determine whether or not they can avoid the complexities that arise in the more general

12Rosenbaum and Rubin (1983) establish the central role of the propensity score in matching models. Heckman
and Robb (1985, 1986) and Heckman (1980) establish the central role of the propensity score in selection models.
See also Ahn and Powell (1993) and Powell (1994).
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model with heterogeneity in response to treatments.

6. We extend the analysis of IV to models with more than two outcomes. Angrist and Imbens

(1995) analyze an ordered choice model with a scalar instrument that affects choices at all

margins. They show that in an ordered model with multiple outcomes, IV identifies a “causal

parameter.”Their causal parameter is a weighted average of parameters that are difficult to

interpret as willingness-to-pay parameters or answers to well defined choice problems. We

present an economically interpretable decomposition of standard IV into willingness-to-pay

components for persons at well defined margins of choice. We show how to identify these

components from data and how to construct the weights. We introduce transition specific

instruments. We generalize this analysis to an unordered choice model.

7. We show the fundamental asymmetry in the recent IV literature for models with heteroge-

neous outcomes. Responses to treatment are permitted to be heterogeneous in a general way.

Responses of choices to instruments are not. When heterogeneity in choice is allowed for in a

general way, IV and local IV do not estimate interpretable treatment parameters.

The paper is organized as follows. Section 2 discusses the IV approach to estimating choice

models. Section 3 introduces a general model with essential heterogeneity and presents its implica-

tions. Section 4 compares selection and IV models and shows that LIV estimates the derivative of a

selection model. Section 5 presents theoretical and empirical examples of the model with essential

heterogeneity. Section 6 extends the analysis to multiple outcome models. Section 7 allows choice

responses to be heterogeneous in a general way. Section 8 concludes.

2 IV in Choice Models

We adjoin a choice equation to outcome equations (1) and (2). A standard binary threshold crossing

model for D writes

D = 1 [D∗ > 0] , (9)

10



where 1[·] is an indicator (1[A] = 1 if A true; 0 otherwise).

A familiar case is

D∗ = γZ − V (10)

where (V ⊥⊥ Z) | X (V is independent of Z given X). The propensity score or choice probability is

P (z) = Pr(D = 1 | Z = z) = Pr(γz > V ) = FV (γz)

where FV is the distribution of V which is assumed to be continuous. In terms of the Generalized Roy

model where C is the cost of participation in sector 1, D = 1[Y1−Y0−C > 0]. For a separable model

in outcomes (1) and in costs C = μC (W ) +UC, Z = (X,W ), μD (Z) = μ1 (X)− μ0 (X)− μC (W ),

V = − (U1 − U0 − UC). In constructing examples, we use a special version where UC = 0. We call

this version the extended Roy model.13 Our analysis, however, applies to more general models.

In the case where β (givenX) is a constant under (IV-1) and (IV-2), it is not necessary to specify

the choice model to identify β. We show that in a general model with heterogenous responses, the

specification of P (z) and its relationship with the instrument play crucial roles. To see this, study

the covariance between Z and ηD discussed in the introduction. By the law of iterated expectations,

letting Z̄ denote the mean of Z

Cov (Z, ηD) = E
¡¡
Z − Z̄

¢
Dη
¢

= E
¡¡
Z − Z̄

¢
η | D = 1

¢
Pr (D = 1)

= E
¡¡
Z − Z̄

¢
η | γZ > V

¢
Pr (γZ > V ) .

Thus even if Z and η are independent, they are not independent conditional on D = 1[γZ > V ]

if η (= U1 − U0) is dependent on V (i.e., if the decision maker has partial knowledge of η and acts

on it). Selection models allow for this dependence (see Heckman and Robb (1985, 1986); Ahn and

13The generalized Roy model allows UC 6= 0.
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Powell (1993); Powell (1994)). Keeping X implicit and assuming that

(U1, U0, V ) ⊥⊥ Z (11)

(alternatively that (ε, η) ⊥⊥ Z), we obtain E(Y | D = 0, Z = z) = E(Y0 | D = 0, Z = z) =

α+E(U0 | γz < V ) which can be written as

E(Y | D = 0, Z = z) = α+K0(P (z)),

where the functional form of K0 is produced from the distribution of (U0, V ). (This representation

is derived in Heckman, 1980; Heckman and Robb, 1985, 1986; Ahn and Powell, 1993; Powell, 1994.)

Similarly,

E (Y | D = 1, Z = z) = E (Y1 | D = 1, Z = z)

= α+ β̄ +E (U1 | γz > V )

= α+ β̄ +K1(P (z)),

whereK0(P (z)) andK1(P (z)) are control functions in the sense of Heckman and Robb (1985, 1986).

Under standard conditions, we can identify β̄. Powell (1994) discusses semiparametric identification.

Because we condition on Z = z (or P (z)), correct specification of the Z plays an important role in

econometric selection methods. This sensitivity to the full set of instruments in Z appears to be

absent from the IV method.

If β is a constant (given X), or if η (= β − β̄) is independent of V , only one instrument from

vector Z needs to be used. Missing instruments play no role in identifying mean responses but

may affect the efficiency of the IV estimation. We establish that in a model where β is variable

and not independent of V , misspecification of Z plays an important role in interpreting what IV

estimates analogous to its role in selection models. Misspecification of Z affects both approaches

to identification. This is a new phenomenon in models with heterogenous β. We now review some
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results established in the preceding literature that form the platform on which we build.

3 A General Model with Essential Heterogeneity in Out-

comes

We now exposit the selection model developed in Heckman and Vytlacil (1999, 2001b, 2005). Their

model for counterfactuals (potential outcomes) is more general than (1) and allows for nonseparable

errors:

Y1 = μ1 (X,U1) , (12)

Y0 = μ0 (X,U0) ,

where X are observed and (U1, U0) are unobserved by the analyst. The X may be dependent on U0

and U1 in a general way. This model is designed to evaluate policies in place and not to extrapolate

to new environments characterized by X.14 The observed outcome is produced by equation (2).

Choices are generated by a standard discrete choice model. We generalize choice model (9) and

(10) for D∗, a latent utility,15

D∗ = μD (Z)− V and D = 1 [D∗ ≥ 0] . (13)

μD (Z) − V can be interpreted as a net utility for a person with characteristics (Z, V ). If it is

positive, D = 1 and the person selects into treatment; D = 0 otherwise. Section 7 discusses

the important role played by additive separability in the recent instrumental variable literature on

essential heterogeneity.

In terms of the notation used in Section 1, β = Y1−Y0 = μ1 (X,U1)−μ0 (X,U0). A special case

that links our analysis to standard models in econometrics writes Y1 = Xβ1+U1 and Y0 = Xβ0+U0

14See Heckman and Vytlacil (2005, 2007a) for a study of exogeneity requirements for X in answering different
policy questions.
15A large class of latent index, threshold crossing models will have this representation. See Vytlacil (2006a).
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so β = X (β1 − β0)+(U1 − U0). In the case of separable outcomes, heterogeneity in β arises because

in general U1 6= U0 and people differ in their X.16

Following Heckman and Vytlacil (2005) we assume:

(A-1) (U0, U1, V ) are independent of Z conditional on X (Independence Condition for IV).

(A-2) The distribution of μD (Z) conditional on X is nondegenerate (Rank Condition for IV).17

(A-3) The distribution of V is continuous.18

(A-4) E |Y1| <∞, and E |Y0| <∞ (Finite Means).

(A-5) 1 > Pr (D = 1 | X) > 0 (For each X there is a treatment group and a comparison

group).

(A-6) Let X0 denote the counterfactual value of X that would have been observed if D is set to 0.

X1 is defined analogously. Thus Xd = X, for d = 0, 1 (The Xd are invariant to counterfactual

manipulations).

(A-1) and (A-2) generalize (IV-1) and (IV-2) respectively. (A-3) is a technical condition made

for convenience and is easily relaxed at some notational cost. (A-4) is needed to use standard

integration theorems and to have the mean treatment effect parameters be well defined. (A-5) is a

standard requirement for any evaluation estimator that for each value of X, there be some who are

treated and some who are not. (A-6) is the requirement that receipt of treatment does not affect

the realized value X, so we identify a full treatment effect when we condition on X instead of a

treatment effect that conditions on variables affected by treatment. This assumption can be relaxed

by redefining the treatment to a set of outcomes corresponding to each Xd state.

The separability between V and μD(Z) in the choice equation is conventional. It plays a crucial

role in justifying instrumental variable estimators in models with essential heterogeneity. It implies

monotonicity (uniformity) condition (IV-3) from choice equation (13). Fixing Z at two different

16In nonseparable cases, heterogeneity arises conditional on X even if U1 = U0 = U .
17μD(·) is assumed to be a measurable function of Z given X.
18The distribution is absolutely continuous with respect to Lebesgue measure.
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values moves D(Z) in the same direction for everyone. Vytlacil (2002) shows that under indepen-

dence, rank and some regularity conditions, monotonicity (IV-3) implies the existence of a V in

representation (13). Thus the IV model for the general case and the economic choice model turn

out to have identical representations. Independence assumption (A-1), produces the condition that

everywhere Z enters the model only through P (Z). This is called index sufficiency.

Without any loss of generality, following the same argument surrounding (9) and (10), we may

write the model for D using the distribution of V , FV , as

D = 1 [FV (μD (Z)) > FV (V )] = 1 [P (Z) > UD] , (14)

where UD = FV (V ) and P (Z) = FV (μD(Z)) = Pr(D = 1 | Z), the propensity score. Because FV is

assumed to be a continuous distribution, FV is a strictly monotonic transformation that preserves

the information in the original inequality. Note that UD is uniformly distributed by construction

(UD ∼ Unif [0, 1]).

3.1 LATE, The Marginal Treatment Effect and Instrumental Variables

To understand what IV estimates in the model with general heterogeneity in response to treatment,

we define the marginal treatment effect (or MTE) conditional on X and UD:19

∆MTE (x, uD) = E(Y1 − Y0 | X = x,UD = uD)

= E (β | X = x, V = v) ,

for β = Y1 − Y0 and v = F−1V (uD), where we use both general notation and the regression specific

notation interchangeably to anchor our analysis both in the treatment effect literature and in

19As previously noted, the concept of the marginal treatment effect and the limit form of LATE were first introduced
in the literature in the context of a parametric normal Generalized Roy Selection model by Björklund and Moffitt
(1987).
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conventional econometrics. To simplify the notation, we keep the conditioning on X implicit except

when clarity of exposition dictates otherwise. Since P (Z) is a monotonic transformation of the

mean net utility μD (Z), and UD is a monotonic function of V , when we evaluate ∆MTE (uD) at

the value P (z) = uD, it is the marginal return to agents with Z = z characteristics who are just

indifferent between sector 1 and sector 0. In other words, at this point of evaluation, ∆MTE (uD)

is the gross gain of going from “0” to “1” for agents who are indifferent between the sectors when

their mean utility given Z = z is μD (z) = v, so μD (z)− v = 0 which is equivalent to the event that

P (z) = FV (μD (z)) = FV (v) = uD. When Y1 and Y0 are denominated in value units, the MTE is

a willingness-to-pay measure for persons with characteristics Z = z at the specified margin.

Under assumptions (A-1) to (A-5), Heckman and Vytlacil (1999, 2005) show that all treatment

parameters, matching estimators, IV estimators based on J (Z), a scalar function of Z, and OLS

estimators can be written as weighted averages of the MTE. Tables 1A and 1B summarize their

results for characterizing treatment effects and estimators and the weights given data on P (Z) , D

and the instrument J (Z). We discuss the weights for IV in the next subsection. We show how to

construct these weights at our website, where software for doing so is available.20 Heckman and

Vytlacil (2001b, 2007b) show that these weights can be constructed and the relationships among

the parameters shown in Tables 1A and 1B hold even if a nonseparable choice model, instead of

(13), is used and even if assumption (A-2) is weakened. We discuss this result in Section 7.

Notice that when ∆MTE does not depend on uD, all of the treatment effects are the same and

that, under our assumptions, IV estimates all of them. In this case, ∆MTE can be taken outside the

integral and the weights all integrate to one. Thus, E(Y1 − Y0 | X = x) = ATE = E(Y1 − Y0 | X =

x,D = 1) = TT = MTE, and we are back to the conventional model of homogeneous responses.

This includes the case where η is nondegenerate but independent of D.

The parameters MTE and LATE are closely related. Using the definition of D (z) in (IV-3), let

Z(x) denote the support of the distribution of Z conditional onX = x. For any (z, z0) ∈ Z(x)×Z(x)
20See jenni.uchicago.edu/underiv/.
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so that P (z) > P (z0), under (IV-3) and independence (A-1), LATE is:

∆LATE (z0, z) = E (Y1 − Y0 | D (z) = 1, D (z0) = 0) , (15a)

i.e., the mean outcome in terms of Y1− Y0 for persons who would be induced to switch from D = 0

to D = 1 if Z were manipulated externally from z0 to z. As a consequence of Vytlacil’s (2002)

theorem, LATE can be written as

E (Y1 − Y0 | D(z) = 1,D(z0) = 0) (15b)

= E (Y1 − Y0 | u0D < UD < uD)

= ∆LATE(uD, u
0
D)

0

where uD = Pr(D (z) = 1) = Pr (D = 1 | Z = z) = P (z), u0D = Pr (D (z0) = 1 | Z = z0) =

Pr(D (z0) = 1) = P (z0).21 In the limit, as u0D → uD, LATE converges to MTE.

Imbens and Angrist (1994) define the LATE parameter from hypothetical manipulations of an

instrument. Heckman and Vytlacil (1999, 2005) draw on choice theory and define the parameters in

terms of the generalized Roy Model. Their link helps to understand what IV estimates and relates

IV to choice models. We work with definition (15b) throughout the rest of this paper. It enables

us to identify the margin of UD selected by instruments, something currently not possible in results

in the previous literature on IV.

The MTE can be identified by taking derivatives of E (Y | Z = z) with respect to P (z) (see

Heckman and Vytlacil, 1999).22 This derivative is called the local instrumental variable (LIV). For

the model of general heterogeneity, under assumptions (A-1) to (A-5), we can write (keeping the

conditioning on X = x implicit)

E (Y | Z = z) = E(Y | P (Z) = p)

21Assumption (A-1) implies that Pr (D (z) = 1) = Pr (D = 1 | Z = z), and Pr (D (z0) = 1) = Pr (D = 1 | Z = z0).
22See also Heckman and Vytlacil (2005, 2007b).
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E (Y | P (Z) = p) = E (DY1 + (1−D)Y0 | P (Z) = p)

= E(Y0) +E (D (Y1 − Y0) | P (Z) = p)

= E(Y0) +E (Y1 − Y0 | D = 1) p

= E(Y0) +

Z p

0

E(Y1 − Y0 | UD = uD) duD.

As a consequence,
∂

∂p
E (Y | P (Z) = p)

¯̄̄̄
P (z)=p

= E(Y1 − Y0|UD = p). (16)

Expression (16) shows how the derivative of E (Y | Z = z), which is the local instrumental variable

(LIV) estimand of Heckman and Vytlacil (1999), identifies the marginal treatment effect (the right

hand side of this expression) over the support of P (Z). Observe that a high value of P (Z) = p

identifies MTE at a value of UD = uD that is high, i.e. that is associated with nonparticipation. It

takes a high p to compensate for the high UD = uD and bring the agent to indifference (see equation

14). Thus high p values identify returns to persons whose unobservables make them less likely to

participate in the program. Software for estimating MTE using local linear regression is described

in Appendix B and is available online at jenni.uchicago.edu/underiv.

Under the special case where β ⊥⊥ D (no essential heterogeneity), Y is linear in P (Z):

E (Y | Z) = a+ bP (Z) , (17)

where b = ∆MTE = ∆ATE = ∆TT. This representation holds whether or not Y1 and Y0 are separable

in U1 and U0, respectively (see Heckman and Vytlacil, 2001b, 2007b). Thus a test of the linearity

of the conditional expectation of Y in terms of P (Z) is a test of whether the conventional model

or the model of essential heterogeneity generates the data. One useful empirical strategy is to test

for linearity using the variety of tests developed in the literature and to determine whether the

additional complexity introduced by the model of essential heterogeneity is warranted.

Using the formulae presented in Tables 1A and 1B, all of the traditional treatment parameters

as well as the IV estimator using P (Z) as an instrument can be identified as weighted averages of
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∆MTE (uD) if P (Z) has full support. The weights can be constructed from data. If P (Z) does not

have full support, simple tight bounds on these parameters can be constructed.23

3.2 Understanding What IV Estimates

Standard IV based on J (Z), a scalar function of a vector Z, can be written as

∆IV
J =

Z 1

0

∆MTE (uD)ω
J
IV (uD) duD, (18)

where

ωJ
IV (uD) =

E (J (Z)−E (J (Z)) | P (Z) > uD) Pr (P (Z) > uD)

Cov (J (Z) ,D)
. (19)

In this expression uD is a number between zero and one. This weight depends on the choice prob-

ability P (Z). For a derivation see Appendix A. The derivation does not impose any assumptions

on the distribution of J(Z) or P (Z). Notice that J(Z) and P (Z) do not have to be continuous

random variables, and that the functional forms of P (Z) and J(Z) are general.24

For ease of exposition, we initially assume that J(Z) and P (Z) are both continuous. This

assumption plays no essential role in any of the results of this paper and we develop the discrete

case after developing the continuous case. The weights defined in (19) can be written as

ωJ
IV (uD) =

R
(j −E(J (Z)))

R 1
uD

fJ,P (j, t) dt dj

Cov (J (Z) ,D)
, (20)

where fJ,P is the joint density of J(Z) and P (Z) and we implicitly condition on X. The weights can

be negative or positive. Observe that ω (0) = 0 and ω (1) = 0. The weights integrate to 1,25 so even

if the weight is negative over some intervals, it must be positive over other intervals. When there is

one instrument (Z is a scalar), and assumptions (A-1) to (A-5) are satisfied, the weights are always

positive provided that J (Z) is a monotonic function of scalar Z. In this case J (Z) and P (Z)

23See Heckman and Vytlacil (1999, 2001a,b, 2007b).
24More precisely, J(Z) and P (Z) do not have to have distributions that are absolutely continuous with respect to

Lebesgue measure.
25
R R

(j −E (J(Z)))
R 1
uD

fJ,P (j, t) dt dj duD = Cov (J (Z) ,D).
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have the same distribution and fJ,P (j, t) collapses to a univariate distribution. The possibility of

negative weights arises when J (Z) is not a monotonic function of P (Z). It can also arise when

there are two or more instruments, and the analyst computes estimates with only one instrument

or a combination of the Z instruments that is not a monotonic function of P (Z) so that J (Z) and

P (Z) are not perfectly dependent. If the instrument is P (Z) (so J (Z) = P (Z)) then the weights

are everywhere non-negative because from (19) E(P (Z) | P (Z) > uD) − E (P (Z)) ≥ 0. In this

case the density of (P (Z) , J (Z)) collapses to the density of P (Z). For any scalar Z we can define

J (Z) and P (Z) so that they are perfectly dependent, provided J(Z) and P (Z) are monotonic in

Z. More generally, weight (19) is positive if E(J (Z) | P (Z) > uD) is weakly monotonic in uD.

Nonmonotonicity of this conditional expectation can produce negative weights.26

Observe that the weights can be constructed from data on (J, P,D). Data on (J (Z) , P (Z))

pairs and (J (Z) , D) pairs (for each X value) are all that is required. We can use a smoothed

sample frequency to estimate the joint density fJ,P . Thus, given our maintained assumptions, any

property of the weight, including its positivity at any point (x, uD), can be examined with data.

We present examples of this approach in section 5.

As is evident from Tables 1A and 1B, the weights on∆MTE (uD) generating∆IV are different from

the weights on ∆MTE (uD) that generate the average treatment effect which is widely regarded as an

important policy parameter (see, e.g. Imbens, 2004) or from the weights associated with the policy

relevant treatment parameter which answers well-posed policy questions (Heckman and Vytlacil,

1999, 2001b, 2005, 2007b). It is not obvious why the weighted average of ∆MTE (uD) produced by

IV is of any economic interest. Since the weights can be negative for some values of uD, ∆MTE (uD)

can be positive everywhere in uD but IV can be negative. Thus, IV may not estimate a treatment

effect for any person. Therefore, a basic question is why estimate the model with IV at all given

the lack of any clear economic interpretation of the IV estimator in the general case.

Our analysis can be extended to allow for discrete instruments, J (Z). Consider the case where

the distribution of P (Z) (conditional on X) is discrete. The support of the distribution of P (Z)

26If it is weakly monotonically increasing, the claim is evident from (19). If it is decreasing, the sign of the
numerator and the denominator are both negative so the weight is nonnegative.
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contains a finite number of values p1 < p2 < · · · < pK and the support of the instrument J (Z)

is also discrete, taking I distinct values, where I and K may be distinct. E(J(Z)|P (Z) ≥ uD) is

constant in uD for uD within any (p , p +1) interval, and Pr(P (Z) ≥ uD) is constant in uD for uD

within any (p , p +1) interval, and thus ωJ
IV (uD) is constant in uD over any (p , p +1) interval. Let

λ denote the weight on the LATE for the interval ( , + 1). In this notation,

∆IV
J =

Z
E(Y1 − Y0|UD = uD)ω

J
IV (uD) duD (21)

=
K−1X
=1

λ

Z p +1

p

E(Y1 − Y0|UD = uD)
1

(p +1 − p )
duD

=
K−1X
=1

∆LATE(p , p +1)λ .

Let ji be the ith smallest value of the support of J(Z). The discrete version of (19) is

λ =

IP
i=1

(ji − E (J))
KP
t>

(f (ji, pt))

Cov (J (Z) , D)
(p +1 − p ) (22)

where f (ji, pt) is the probability frequency of (ji, pt): the probability that J (Z) = ji and P (Z) = pt.

There is no presumption that high values of J(Z) are associated with high values of P (Z). J(Z)

can be one coordinate of Z that may be positively or negatively dependent on P (Z) which depends

on the full vector. In the case of scalar Z, as long as J(Z) and P (Z) are monotonic in Z, there

is perfect dependence between J(Z) and P (Z). In this case, the joint probability density collapses

to a univariate density and the weights have to be positive, exactly as in the case with continuous

instruments.27 Our expression for the weight on LATE generalizes the expression presented by

Imbens and Angrist (1994) who in their analysis of the case of vector Z only consider the case

where J(Z) and P (Z) are perfectly dependent because J(Z) is a monotonic function of P (Z).28

27The condition for positive weights is weak monotonicity of λ in . If λ is monotone increasing in , the numerator
and the denominator are both positive. If λ is monotone decreasing, the numerator and the denominator are both
negative and the weights are positive.
28In their case, I = K and f (ji, pt) = 0, ∀ i 6= t.
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More generally the weights can be positive or negative for any but they must sum to 1 over the .

Monotonicity or uniformity is a property needed with just two values of Z, Z = z1 and Z = z2,

to guarantee that IV estimates a treatment effect. With more than two values of Z we need to

weight the LATEs and MTEs. If the instrument J(Z) shifts P (Z) in the same way for everyone,

it shifts D in the same way for everyone since D = 1 [P (Z) > UD] and Z is independent of UD. If

J(Z) is not monotonic in P (Z), it may shift P (Z) in different ways for different people. Negative

weights are a tip-off of two-way flows.

An alternative and in some ways more illuminating way to derive the weights is to follow Yitzhaki

(1989, 1996) and Yitzhaki and Schechtman (2004) who prove for a general regression function

E (Y | P (Z) = p) that a linear regression of Y on P estimates

βY,P =

Z 1

0

∙
∂E (Y | P (Z) = p)

∂p

¸
ω (p) dp, (23)

where

ω (p) =

R 1
p
(t− E (P )) dFP (t)

Var (P )
,

which is exactly the weight (19) when P is the instrument. Thus we can interpret (19) as the weight

on ∂E(Y |P (Z)=p)
∂p

when two-stage least squares (TSLS) based on P (Z) as the instrument is used to esti-

mate the “causal effect” ofD on Y . Under uniformity, ∂E(Y |P (Z)=p)
∂p

¯̄̄
p=uD

= E (Y1 − Y0 | UD = uD) =

∆MTE (uD).29 We discuss Yitzhaki’s derivation which is an argument based on integration by parts

in Appendix C. Our analysis is more general than that of Yitzhaki (1989), Imbens and Angrist

(1994), or Angrist and Imbens (1995) because we allow for instruments that are not monotonic

functions of P (Z). Yitzhaki’s (1989) analysis is more general than that of Imbens and Angrist

(1994) because he does not impose uniformity (monotonicity).

Our simple test for the absence of general heterogeneity based on the linearity of Y in P (Z)

(based on equation 20) applies to the case of LATE for any pair of instruments. An equivalent test

29Yitzhaki’s weights are used by Angrist and Imbens (1995) to interpret what TSLS estimates in the model of
equation (23). Yitzhaki (1989) derives the finite sample weights used by Imbens and Angrist (See his paper posted
at our website). See also the refinement in Yitzhaki and Schechtman (2004).
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is to check that all pairwise LATEs are the same over the sample support of Z.30

3.3 The Central Role of the Propensity Score

Observe that both (19) and (20) (and their counterparts for LATE (21) and (22)) contain expres-

sions involving the propensity score P (Z), the probability of selection into treatment. Under our

assumptions, it is a monotonic function of the mean utility of treatment, μD (Z). The propensity

score plays a central role in selection models as a determinant of control functions in selection mod-

els (see Heckman and Robb, 1985, 1986) as noted in Section 2. In matching models, it provides a

computationally convenient way to condition on Z (see, e.g. Rosenbaum and Rubin, 1983; Heckman

and Navarro, 2004). For the IV weight to be correctly constructed and interpreted, we need to know

the correct model for P (Z), i.e., we need to know exactly which Z determine P (Z). As previously

noted, this feature is not required in the traditional model for instrumental variables based on re-

sponse homogeneity. In that simpler framework, any instrument will identify μ1(X)− μ0 (X) and

the choice of a particular instrument affects efficiency but not identifiability. One can be casual

about the choice model in the traditional setup, but not in the model of choice of treatment with

essential heterogeneity. Thus, unlike the application of IV to traditional models, IV applied in the

model of essential heterogeneity depends on (a) the choice of the instrument J (Z), (b) its depen-

dence with P (Z), the true propensity score or choice probability and (c) the specification of the

propensity score (i.e., what variables go into Z). Using the propensity score one can identify LIV

and LATE and the marginal returns at values of the unobserved UD.

3.4 Monotonicity, Uniformity and Conditional Instruments

Monotonicity or uniformity condition (IV-3), is a condition on counterfactuals for the same persons

and is not testable. It rules out general heterogeneous responses to treatment choices in response

to changes in Z. The recent literature on instrumental variables with heterogeneous responses is

30Note that it is possible that E (Y | Z) is linear in P (Z) only over certain intervals of UD, so there can be local
dependence and local independence of (UD, U0, U1).

23



thus asymmetric. Outcome equations can be heterogeneous in a general way while choice equations

cannot be. If μD (Z) = γZ, where γ is a common coefficient shared by everyone, the choice

model satisfies the uniformity property. On the other hand, if γ is a random coefficient (i.e., has a

nondegenerate distribution) that can take both negative and positive values, and there are two or

more variables in Z with nondegenerate γ coefficients, uniformity can be violated. Different people

can respond to changes in Z differently, so there is non-uniformity. The uniformity condition can be

violated even when all components of γ are of the same sign if Z is a vector and γ is a nondegenerate

random variable.31

Changing one coordinate of Z, holding the other coordinates at different values across people, is

not the experiment that defines monotonicity or uniformity. Changing one component of Z, allowing

the other coordinates to vary across people, does not necessarily produce uniform flows toward or

against participation in the treatment status. For example, let μD (z) = γ0 + γ1z1 + γ2z2 + γ3z1z2,

where γ0, γ1, γ2 and γ3 are constants, and consider changing z1 from a common base state while

holding z2 fixed at different values across people. If γ3 < 0 then μD (z) does not necessarily satisfy

the uniformity condition. If we move (z1, z2) as a pair from the same base values to the same

destination values z0, uniformity is satisfied even if γ3 < 0, although μD (z) is not a monotonic

function of z.32

Positive weights and uniformity are distinct issues.33 Under uniformity, and assumptions (A-

31Thus if γ > 0 for each component and some components of Z are positive and others are negative, changes from
z0 to z can increase γZ for some and decrease γZ for others since γ are different among persons.
32Associated with Z = z is the counterfactual random variable D (z). Associated with the scalar random variable

J (Z) constructed from Z is a counterfactual random variable D (j (z)) which is in general different from D (z). The
random variable D (z) is constructed from (13) using 1[μD (z) ≥ V ]. V assumes individual specific values which
remain fixed as we set different z values. From (A-1), Pr(D (z) = 1) = Pr(D = 1 | Z = z). The random variable
D (j) is defined by the following thought experiment. For each possible realization j of J(Z) define D (j) by setting
D (j) = D (Z (j)) where Z (j) is a random draw from the distribution of Z conditional on J(Z) = j. Set D (j) equal
to the choice that would be made given that draw of Z (j). Thus D (j) is a function of (Z (j) , uD). As long as we
draw Z (j) randomly (so independent of Z), we have that (Z (j) , UD) ⊥⊥ Z so D (j) ⊥⊥ Z. There are other possible
constructions of the counterfactual D (j) since there are different possible distributions from which Z can be drawn,
apart from the actual distribution of Z. The advantage of this construction is that it equates the counterfactual
probability that D (j) = 1 given J (Z) = j with the population probability. If the Z were uncertain to the agent,
this would be a rational expectations assumption. See the further discussion in Appendix II posted at the website
for this paper.
33When they analyze the vector case, Imbens and Angrist (1994) analyze instruments that are monotonic functions

of P (Z). Our analysis is more general and recognizes that in the vector case, IV weights may be negative or positive.
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1) to (A-5), the weights on MTE for any particular instrument may be positive or negative. The

weights for MTE using P (Z)must be positive as we have shown so the propensity score has a special

status as an instrument. Negative weights associated with the use of J (Z) as an instrument do not

necessarily imply failure of uniformity in Z. Even if uniformity is satisfied for Z, it is not necessarily

satisfied for J (Z). Condition (IV-3) is an assumption about a vector. Fixing one combination of

Z (when J is a function of Z) or one coordinate of Z does not guarantee uniformity in J even if

there is uniformity in Z. The flow created by changing one coordinate of Z can be reversed by the

flow created by other components of Z if there is negative dependence among components, even if

ceteris paribus all components of Z affect D in the same direction. We present some examples in

Section 5.

The issues of positive weights and the existence of one way flows in response to an intervention

are conceptually distinct. Even with two values for a scalar Z, flows may be two way (see equation

(7)). If we satisfy (IV-3) for a vector, so uniformity applies, weights for a particular instrument

may be negative for certain intervals of UD (i.e., for some of the LATE parameters).

If we condition on Z2 = z2, . . . , ZK = zK using Z1 as an instrument, then a uniform flow

condition is satisfied. We call this conditional uniformity. By conditioning, we effectively convert

the problem back to that of a scalar instrument where the weights must be positive. If uniformity

holds for Z1, fixing the other Z at common values, one dimensional LATE/MTE analysis applies.

Clearly, the weights also have to be defined conditionally.

The concept of conditioning on other instruments to produce positive weights for the selected

instrument is a new one, not yet appreciated in the empirical IV literature and has no counterpart

in the traditional IV model. In the conventional model, the choice of a valid instrument affects

efficiency but not the definition of the parameters as it does in the more general case.34

In summary, nothing in the economics of choice models guarantees that if Z is changed from

34In the conventional model with homogeneous responses, a linear probability approximation to P (Z) used as an
instrument would identify the same parameter as P (Z). In the general model, the parameters identified are different.
Replacing P (Z) by a linear probability approximation of it (e.g. E (D | Z) = πZ = J(Z)) is not guaranteed to
produce positive weights for ∆MTE (x, uD) or ∆LATE (x, u0D, uD), or to replicate the weights based on the correctly
specified P (Z).
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z to z0, people respond in the same direction to the change. See the general expression (7). The

condition that people respond to choices in the same direction for a common change in Z across

people does not imply that D(z) is monotonic in z for any person in the usual mathematical usage

of the term monotonicity. If D(z) is monotonic in the usual usage of this term, and responses are

in the same direction for all people, then “monotonicity” or “uniformity” condition (IV-3) would

be satisfied.

If responses to a common change of Z across persons are heterogenous in a general way, we

obtain (7) as the general case. Vytlacil’s (2002) theorem breaks down and IV cannot be expressed

in terms of a weighted average of LATE terms. Nonetheless, Yitzhaki’s characterization of IV

equation (23) as described in Appendix C remains valid and the weights on ∂E(Y |P=p)
∂p

are positive

and of the same form as the weights obtained for MTE (or LATE) when the monotonicity condition

holds.

3.5 Treatment Effects vs. Policy Effects

Even if uniformity condition (IV-3) fails, IV may answer relevant policy questions. By Yitzhaki’s

result (23), IV or TSLS estimates a weighted average of marginal responses which may be pointwise

positive, zero or negative. Policies may induce some people to switch into and others to switch

out of choices, as is evident from equation (7). These net effects are of interest in many policy

analyses. Thus, subsidized housing in a region supported by higher taxes may attract some to

migrate to the region and cause others to leave. The net effect on earnings from the policy is

all that is required to perform cost benefit calculations of the policy on outcomes. If the housing

subsidy is the instrument and the net effect of the subsidy is the parameter of interest, the issue of

monotonicity is a red herring. If the subsidy is exogenously imposed, IV estimates the net effect of

the policy on mean outcomes. Only if the effect of migration on earnings induced by the subsidy

on outcomes is the question of interest, and not the effect of the subsidy, does uniformity emerge

as an interesting condition.
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4 Comparing Selection and Local IV Models

We now show that local IV identifies the derivatives of a selection model. Making the X explicit,

in the standard selection model, if the U1 and U0 are scalar random variables that are additively

separable in the outcome equations, Y1 = μ1(X) + U1 and Y0 = μ0(X) + U0. The control function

approach conditions on Z and D. As a consequence of index sufficiency this is equivalent to

conditioning on P (Z) and D:

E (Y | X,D,Z) = μ0 (X) + [μ1 (X)− μ0 (X)]D

+K1 (P (Z) ,X)D

+K0 (P (Z) ,X) (1−D) ,

where the control functions are

K1 (P (Z),X) = E(U1 | D = 1, X, P (Z))

K0 (P (Z),X) = E (U0 | D = 0, X, P (Z)) .

The IV approach does not condition on D. It works with

E (Y | X,Z) = μ0 (X) + [μ1 (X)− μ0 (X)]P (Z) (24)

+K1 (P (Z) , X)P (Z)

+K0 (P (Z) , X) (1− P (Z)) ,

the population mean outcome given X,Z.

From index sufficiency, E (Y | X,Z) = E (Y | X,P (Z)). The MTE is the derivative of this

expression with respect to P (Z), which we have defined as LIV:

∂E(Y | X,P (Z))

∂P (Z)

¯̄̄̄
P (Z)=p

= LIV (X, p) =MTE (X, p) .35
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The distribution of P (Z) and the relationship between J (Z) and P (Z) determine the weight on

MTE.36 Under assumptions (A-1) to (A-5), along with rank and limit conditions (Heckman and

Robb, 1985; Heckman, 1990), one can identify μ1 (X), μ0 (X), K1 (P (Z) ,X), and K0 (P (Z) , X).

The selection (control function) estimator identifies the conditional means

E (Y1 | X,P (Z),D = 1) = μ1 (X) +K1 (X,P (Z)) (25a)

and

E (Y0 | X,P (Z),D = 0) = μ0 (X) +K0 (X,P (Z)) . (25b)

These can be identified from nonparametric regressions of Y1 and Y0 on X,Z in each population. To

decompose these means and separate μ1 (X) from K1 (X,P (Z)) without invoking functional form

or curvature assumptions, it is necessary to have an exclusion (a Z not in X).37 In addition there

must exist a limit set for Z given X such that K1 (X,P (Z)) = 0 for Z in that limit set. Otherwise,

without functional form or curvature assumptions, it is not possible to disentangle μ1 (X) from

K1 (X,P (Z)) which may contain constants and functions of X that do not interact with P (Z) (see

Heckman (1990)). A parallel argument for Y0 shows that we require a limit set for Z given X such

that K0 (X,P (Z)) = 0. Selection models operate by identifying the components of (25a) and (25b)

and generating the treatment parameters from these components. Thus they work with levels of

the Y .

The local IV method works with derivatives of (24) and not levels and cannot directly recover

the constant terms in (25a) and (25b). Using our analysis of LIV but applied to Y D = Y1D and

Y (1 −D) = Y0(1 −D), it is straightforward to use LIV to estimate the components of the MTE

35Björklund and Moffitt (1987) analyze this marginal effect for a parametric generalized Roy model.
36Because LIV does not condition on D, it discards information. Lost in taking derivatives are the constants in

the model that do not interact with P (Z) in equation (24).
37See Heckman and Navarro (2006) for use of semiparametric curvature restrictions in identification analysis that

do not require functional form assumptions.
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separately. Thus we can identify

μ1(X) +E (U1 | X,UD = uD)

and

μ0(X) +E (U0 | X,UD = uD)

separately. This corresponds to what is estimated from taking the derivatives of expressions (25a)

and (25b) multiplied by P (Z) and (1− P (Z)) respectively:38

P (Z)E (Y1 | X,Z,D = 1)

= P (Z)μ1 (X) + P (Z)K1 (X,P (Z))

and

(1− P (Z))E (Y0 | X,Z,D = 0)

= (1− P (Z))μ0 (X) + (1− P (Z))K0 (X,P (Z)) .

Thus the control function method works with levels, whereas the LIV approach works with slopes.

Constants that do not depend on P (Z) disappear from the estimates of the model. The level

parameters are obtained by integration using the formulae in Table 1B.

Misspecification of P (Z) (either its functional form or its arguments) and hence ofK1 (P (Z) , X)

and K0 (P (Z) ,X) in general produces biased estimates of the parameters of the model under the

control function approach even if semiparametric methods are used to estimate μ0, μ1,K0 and K1.

To implement the method, we need to know all of the arguments of Z. The terms K1 (P (Z) , X)

and K0 (P (Z) , X) can be nonparametrically estimated so it is only necessary to know P (Z) up

to a monotonic transformation.39 The distributions of U1, U0 and V do not need to be specified to

38Björklund and Moffitt (1987) use the derivative of a selection model in levels to define the marginal treatment
effect.
39See Heckman, Ichimura, Smith, and Todd (1998).
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estimate control function models (see Powell, 1994).

These problems with control function models have their counterparts in IV models. If we use

a misspecified P (Z) to identify the MTE or its components, in general we do not identify MTE or

its components. Misspecification of P (Z) plagues both approaches.

One common criticism of selection models is that without invoking functional form assump-

tions, identification of μ1(X) and μ0(X) requires that P (Z) → 1 and P (Z) → 0 in limit sets.40

Identification in limit sets is sometimes called “identification at infinity.” In order to identify

ATE = E(Y1 − Y0|X), IV methods also require that P (Z) → 1 and P (Z) → 0 in limit sets,

so an identification at infinity argument is implicit when IV is used to identify this parameter.41

The LATE parameter avoids this problem by moving the goal posts and redefining the parameter

of interest away from a level parameter like ATE or TT to a slope parameter like LATE which

differences out the unidentified constants. Alternatively, if we define the parameter of interest to

be LATE or MTE, we can use the selection model without invoking identification at infinity.

The IV estimator is model dependent, just like the selection estimator, but in application, the

model does not have to be fully specified to obtain∆IV using Z (or J(Z)). However, the distribution

of P (Z) and the relationship between P (Z) and J (Z) generates the weights. The interpretation

placed on ∆IV in terms of weights on ∆MTE depends crucially on the specification of P (Z). In both

control function and IV approaches for the general model of heterogeneous responses, P (Z) plays

a central role.

Two economists using the same instrument will obtain the same point estimate using the same

data. Their interpretation of that estimate will differ depending on how they specify the arguments

in P (Z), even if neither uses P (Z) as an instrument. By conditioning on P (Z), the control function

approach makes the dependence of estimates on the specification of P (Z) explicit. The IV approach

is less explicit and masks the assumptions required to economically interpret the empirical output of

an IV estimation. We now turn to some examples that demonstrate the main points of this paper.

40See Imbens and Angrist (1994). Heckman (1990) establishes the identification in the limit argument for ATE in
selection models. See Heckman and Navarro (2006) for a generalization to multiple outcome models.
41Thus if the support of P (Z) is not full, we cannot identify treatment on the treated or the average treatment

effect. We can construct bounds. See Heckman and Vytlacil (1999, 2001a,b, 2007b).
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5 Examples Based on Choice Theory

Return to the policy adoption example presented in Section 1. The cost of adopting the policy C is

the same across all countries. Suppose that countries choose to adopt the policy if D∗ > 0 where D∗

is the net benefit of adoption: D∗ = (Y1 − Y0 − C) and ATE = E (β) = E (Y1 − Y0) = μ1−μ0, while

treatment on the treated is E (β | D = 1) = E (Y1 − Y0 | D = 1) = μ1 − μ0 +E (U1 − U0 | D = 1).

In this setting, the gross return to the country at the margin is C, i.e.,

E (Y1 − Y0 | D∗ = 0) = E (Y1 − Y0 | Y1 − Y0 = C) = C.

Figure 1 presents the standard treatment parameters for the values of the outcome and choice

parameters presented at the base of the figure. Countries that adopt the policy are above average.

In a model where the cost varies (the generalized Roy model with UC 6= 0), and C is negatively

correlated with the gain, adopting countries could be below average.42

5.1 Discrete Instruments and the Weights for LATE

Consider what instrumental variables identify in the model of choice and outcomes described below

Figure 2. Let cost C = γZ where instrument Z = (Z1, Z2). Higher values of Z reduce the probability

of adopting the policy if γ ≥ 0, component by component. Consider the “standard” case depicted

in Figure 2A. Increasing both components of discrete-valued Z raises costs and hence raises the

return observed for the country at the margin by eliminating adoption in low return countries. In

general, a different country is at the margin when different instruments are used.

Figure 3A plots the weights and Figure 3B the components of the weights for the LATE values

using P (Z) as an instrument for the distribution of Z shown at the base of the figure. Figure 3C

presents the LATE parameter derived using P (Z) as the instrument. The weights are positive as

predicted from equation (22) when J(Z) = P (Z). Thus the monotonicity condition for the weights

in terms of uD is satisfied. The outcome and choice parameters are the same as those used to

42See, e.g. Heckman (1976a,b).
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generate Figure 1 and 2. There are four LATE values corresponding to the five distinct values of

the propensity score for this example. The LATEs exhibit the declining pattern with uD predicted

by the Roy model.

A more interesting case is that depicted in Figure 2B. In that graph, the same Z are used

to generate choices as in Figures 2A and 3. However in this case, the analyst uses Z1 as the

instrument, Z1 and Z2 are negatively dependent and E(Z1 | P (Z) > uD) is not monotonic in uD.

This nonmonotonicity is evident in Figure 4B. This produces the pattern of negative weights shown

in Figure 4A. These are associated with two way flows. Increasing Z1 controlling for Z2 reduces the

probability of country policy adoption. However, we do not condition on Z2 in constructing this

Figure. It is floating. Two way flows are induced by uncontrolled variation in Z2. For some units,

the strength of the associated variation in Z2 offsets the increase in Z1 and for other units it does

not. Observe that the LATE parameters defined using P (Z) are the same in both examples. They

are just weighted differently. We discuss the random coefficient choice model generating Figure 2C

in Section 7.

The IV estimator does not identify ATE, TT or TUT given at the bottom of Figure 3. Condi-

tioning on Z2 produces positive weights, as shown in the weights in Table 2 that condition on Z2.

Conditioning on Z2 effectively converts the problem back into one with a scalar instrument and the

weights must be positive for that case.

By Yitzhaki’s result (23), for any sample size, a regression of Y on P identifies a weighted

average of slopes based on ordered regressors E(Y |p )−E(Y −1|p −1)
p −p −1 where p > p −1 where the weights

are the positive Yitzhaki weights derived in Appendix C, Yitzhaki (1989, 1996) or in Yitzhaki

and Schechtman (2004). The weights are positive whether or not monotonicity (IV-3) holds. If

monotonicity holds, IV is a weighted average of LATEs. Otherwise it is just a weighted average of

ordered (by p ) estimators consistent with two way flows.
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5.2 Continuous Instruments

For the case of continuous Z, we present a parallel analysis for the weights associated with the

MTE. Figure 5 plots E(Y | P (Z)) and MTE for the models generated by the parameters displayed

at the base of the figure. In cases I and II, β ⊥⊥ D. In case I, this is trivial since β is a constant. In

case II, β is random but selection into D does not depend on β. Case III is the model with essential

heterogeneity (β ⊥Á⊥ D). The left hand side (Figure 5A) depicts E(Y | P (Z)) for the three cases.

Cases I and II make E(Y | P (Z)) linear in P (Z) (see equation 17). Case III is nonlinear in P (Z).

This arises when β ⊥Á⊥ D. The derivative of E(Y | P (Z)) is presented in the right panel (Figure 5B).

It is a constant for cases I and II (flat MTE) but declining in UD = P (Z) for the case with selection

on the gain. A simple test for linearity in P (Z) in the outcome equation reveals whether or not the

analyst is in cases I and II (β ⊥⊥ D) or case III (β⊥Á⊥D). Recall that we keep conditioning on X

implicit.

MTE gives the mean marginal return for persons who have utility P (Z) = uD (P (Z) = uD is

the margin of indifference). Those with low uD values have high returns. Those with high uD values

have low returns. Figure 5 highlights that MTE (and LATE) identify average returns for persons

at the margin of indifference at different levels of the mean utility function (P (Z)).

Figure 6A plots MTE and LATE for different intervals of uD using the model generating Figure 5.

LATE is the chord of E(Y | P (Z)) evaluated at different points. The relationship between LATE

and MTE is depicted in the right panel of Figure 6. LATE is the integral under the MTE curve

divided by the difference between the upper and lower limits.

The treatment parameters associated with case III are plotted in Figure 7. The MTE is the

same as that presented in Figure 5. ATE has the same value for all p. The effect of treatment on

the treated for P (Z) = p, ∆TT(p) = E(Y1 − Y0 | D = 1, P (Z) = p) declines in p (equivalently, it

declines in uD). Treatment on the untreated given p, ∆TUT(p) = E(Y1−Y0 | D = 0, P (Z) = p) also
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declines in p. Observe that

LATE(p, p0) =
∆TT(p0)p0 −∆TT(p)p

p0 − p
, p0 6= p,

MTE =
∂[∆TT(p)p]

∂p
.

We can generate all of the treatment parameters from ∆TT(p).

Matching on P = p (which is equivalent to nonparametric least squares, given P = p) produces a

biased estimator of TT(p). Matching assumes a flat MTE (average return equals marginal return).43

Therefore it is systematically biased for ∆TT(p) in a model with essential heterogeneity. Making

observables alike makes the unobservables dissimilar. Holding p constant across treatment and

control groups understates TT(p) for low p and overstates it for high p.

We now present additional examples with continuously distributed instruments. See Figure 8.

Instrument Z is assumed to be a random vector with a distribution function given by a mixture of

two normals:

Z ∼ P1N(κ1,Σ1) + P2N(κ2,Σ2),

where P1 is the proportion in population 1, P2 is the proportion in population 2 and P1+P2 = 1. This

produces a model with continuous instruments, where E(J̃(Z) | P (Z) > uD) need not be monotonic

in uD where J̃ (Z) = J (Z) − E (J (Z)). Such a data generating process for the instrument could

arise from an ecological model in which two different populations are mixed (e.g. rural and urban

populations).44

At our web appendix, we derive explicit instrumental variable weights on ∆MTE when Z1 (the

first element of Z) is used as the instrument, i.e., J(Z) = Z1 for this case. For simplicity we assume

that there are no X regressors. The probability of selection is generated by μD (Z) = γZ. The joint

distribution of (Z1, γZ) is normal within each group.

In our example, the dependence between Z1 and γZ (= FV (γz) = P (Z)) is negative in one

43See Heckman and Vytlacil (2005, 2007b).
44Observe that E(Z) = P1κ1 + P2κ2.
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population and positive in another. Thus in one population, as Z1 increases P (Z) increases. In the

other population as Z1 increases P (Z) decreases. If this second population is sufficiently big (P1

is small) or the negative dependence in the second population is sufficiently big, the weights can

become negative because E(J̃(Z) | P (Z) > uD) is not monotonic in uD.

We present examples for a conventional normal outcome model generated by the parameters at

the base of Figure 8. The discrete choice equation is a conventional probit as in the other examples.

The outcome equations are linear normal equations. Thus ∆MTE(v), E(Y1 − Y0 | V = v), is linear

in v:

E (Y1 − Y0 | V = v) = μ1 − μ0 +
Cov (U1 − U0, V )

Var (V )
v.

At the base of the figure, we define β̄ = μ1 − μ0 and α = μ0. The average treatment effects are the

same for all distributions of the Z.

In each of the following examples, we show results for models with vector Z that satisfies (IV-1)

and (IV-2) and with γ > 0 componentwise, where γ is the coefficient on Z in the cost equation. We

vary the weights and means of the instruments. Ceteris paribus, an increase in each component of

Z increases Pr (D = 1 | Z = z). Table 3 (at the base of Figure 8) presents treatment on the treated

(E(Y1 − Y0|D = 1)), treatment on the untreated (E(Y1 − Y0|D = 0)), and the average treatment

effect (E(Y1 − Y0)) produced by our model.

In standard IV analysis, the distribution of Z does not affect the probability limit of the IV

estimator. It only affects its sampling distribution. Figure 8A shows three weights corresponding

to the perturbations of the variance of the instruments in the second component population Σ2

and the means (κ1, κ2) shown at the base of the figure in Table 3. The MTE used in all of our

examples is plotted in Figure 8B. The MTE has the familiar shape, reported in Heckman (2001)

and Heckman, Tobias, and Vytlacil (2003) that returns are highest for those with values of v that

make them more likely to get treatment (i.e., low values of v).

The weights ω1 and ω3 correspond to the case where E(Z1 − E (Z1) | P (Z) > uD) is not

monotonic in uD. In theses cases the relationship between Z1 and P (Z) is not the same in the

two subpopulations. The IV estimates range all over the place even though the parameters of the
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outcome and choice model are the same.45 Only the distributions of the instruments are different.

Different distributions of Z critically affect the probability limit of the IV estimator in the

model of essential heterogeneity. The model of outcomes and choices is the same across all of these

examples. The MTE and ATE parameters are the same. Only the distribution of the instrument

differs. The instrumental variable estimand is sometimes positive and sometimes negative, and

oscillates wildly in magnitude depending on the distribution of the instruments. The estimated

“effect” is often way off the mark for any desired treatment parameter. These examples show how

uniformity in Z does not translate into uniformity in J (Z) (Z1 in this example). This sensitivity

is a phenomenon that does not appear in the conventional homogeneous response model but is a

central feature of a model with essential heterogeneity.46

5.3 Empirical Example: Using IV to Estimate “The Effect” of High

School Graduation on Wages

The previous examples demonstrate logical possibilities. This subsection shows that these logical

possibilities arise in real data. We study the effects of graduating from high school on wages

using data from the National Longitudinal Survey of Youth 1979 (NLSY79). This survey gathers

information at multiple points in time on the labor market activities for men and women born in

the years 1957—1964.

We estimate LATE using log hourly wages at age 30 as the outcome measure. Following a large

body of research (see Mare, 1980), we use the number of siblings and mother’s graduation status as

instruments. Figure 9 plots the weights on LATE using the estimated P (Z). The weights are based

on (22). The LATE parameters are both positive and negative. The weights using siblings as an

instrument are both positive and negative. The weights using P (Z) as an instrument are positive,

as they must following the analysis of Yitzhaki. The two IV estimates differ from each other because

45Since TT and TUT depend on the distribution of P (Z) they are not invariant to changes is the distribution of
the Z.
46We note paranthetically that if we assume that P1 = 0 (or P2 = 0) that the weights are always positive even if

we use only Z1 as an instrument and Z1 and Z2 are negatively correlated. This follows from the monotonicity of
E (R | S > c) in c for vector R. See Heckman and Honoré (1990).
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the weights are different. The overall IV estimate is a crude summary of the underlying component

LATEs that are often large and positive and large and negative. We next turn to an extension of

our model to multiple outcomes.

6 Extensions to More than Two Outcomes

Angrist and Imbens (1995) extend their analysis of LATE to an ordered choice model with outcomes

generated by a scalar instrument that can assume multiple values. From their analysis of the effect

of schooling on earnings, it is unclear even under a strengthened “monotonicity” condition, whether

IV estimates the effect of a change of schooling on earnings for a well defined margin of choice. To

summarize their analysis, let S̄ be the number of possible outcome states with associated outcomes

Ys and choice indicators Ds, s = 1, . . . , S̄. The s in their analysis correspond to different levels of

schooling. For any two instrument values Z = zi and Z = zj with zi > zj, we can define associated

indicators {Ds(zi)}S̄s=1 and {Ds(zj)}S̄s=1, where Ds(zi) = 1 if a person assigned instrument value zi

chooses state s. As in the two outcome model, the instrument Z is assumed to be independent of

the potential outcomes {Ys}S̄s=1 as well as the associated indicator functions defined by fixing Z at

zi and zj. Observed schooling for instrument zj is S(zj) =
PS̄

s=1 sDs(zj). Observed outcomes with

this instrument are Y (zj) =
PS̄

s=1 YsDs(zj). Angrist and Imbens show that IV (with Z = zi and

zj) applied to S in a two stage least squares regression of Y on S identifies a “causal parameter”

∆IV =
S̄X
s=2

{E (Ys − Ys−1 | S(zi) ≥ s > S(zj))} (26)

× Pr (S(zi) ≥ s > S(zj))PS̄
s=2 Pr (S(zi) ≥ s > S(zj))

.

This “causal parameter” is a weighted average of the gross return from going from s − 1 to s for

persons induced by the change in the instrument to move from any schooling level below s to any

schooling level s or above. Thus the conditioning set defining the s component of IV includes people

who have schooling below s− 1 at instrument value Z = zj and people who have schooling above
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level s at instrument value Z = zi. In this sum, the average return experienced by some of the

people in the conditioning set for each component conditional expectation does not correspond to

the average outcome corresponding to the gain in the argument of the expectation. In the case

where S̄ = 2, agents face only two choices and the margin of choice is well defined. Agents in each

conditioning set are at different margins of choice. The weights are positive but, as noted by Angrist

and Imbens, persons can be counted multiple times in forming the weights. When they generalize

their analysis to multiple-valued instruments, they use the Yitzhaki (1989) weights.

Whereas the weights in equation (26) can be constructed empirically, the terms in braces cannot

be identified by any standard IV procedure. We present decompositions with components that are

recoverable, whose weights can be estimated from the data and that are economically interpretable.

We generalize LATE to a multiple outcome case where we can identify agents at different well

defined margins of choice. Specifically, we (1) analyze both ordered and unordered choice models;

(2) analyze outcomes associated with choices at various well defined margins; and (3) develop

models with multiple instruments that can affect different margins of choice differently. With our

methods, we can define and estimate a variety of economically interpretable parameters whereas

the Angrist-Imbens analysis produces a single “causal parameter” (26) that does not answer any

well defined policy problem. We first consider an explicit ordered choice model and decompose the

IV into policy useful, identifiable, components.

6.1 Analysis of an Ordered Choice Model

Ordered choice models arise in many settings. In schooling models, there are multiple grades. One

has to complete grade s − 1 to proceed to grade s. The ordered choice model has been widely

used to fit data on schooling transitions (Harmon and Walker, 1999; Cameron and Heckman, 1998).

Its nonparametric identifiability has been studied (Carneiro, Hansen, and Heckman, 2003; Cunha,

Heckman, and Navarro, 2007). It can also be used as a duration model for dynamic treatment

effects with associated outcomes as in Cunha, Heckman, and Navarro (2007). It also represents the

“vertical” model of the choice of product quality (Prescott and Visscher, 1977; Shaked and Sutton,
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1982; Bresnahan, 1987).

Our analysis generalizes the preceding analysis for the binary model in a parallel way. Write

potential outcomes as

Ys = μs(X,Us) s = 1, . . . , S̄.

The S̄ could be different schooling levels or product qualities. We define latent variables D∗
S =

μD(Z)− V where

Ds = 1[Cs−1(Ws−1) < μD(Z)− V ≤ Cs(Ws)], s = 1, . . . , S̄,

and the cutoff values satisfy

Cs−1(Ws−1) ≤ Cs(Ws), C0(W0) = −∞ and CS̄(WS̄) =∞.

The cutoffs used to define the intervals are allowed to depend on observed (by the economist)

regressors Ws. In Appendix D we extend the analysis to allow the cutoffs to depend on unobserved

regressors as well, following structural analysis along these lines by Carneiro, Hansen, and Heckman

(2003) and Cunha, Heckman, and Navarro (2007). Observed outcomes are: Y =
PS̄

s=1 YsDs. The Z

shift the index generally, theWs affect s-specific transitions. Thus, in a schooling example, Z could

include family background variables while Ws could include college tuition or opportunity wages

for unskilled labor.47 Collect the Ws into W = (W1, . . . ,WS̄), and the Us into U = (U1, . . . , US̄).

Larger values of Cs(Ws) make it more likely that Ds = 1. The inequality restrictions on the Cs(Ws)

functions play a critical role in defining the model and producing its statistical implications.

Analogous to the assumptions made for the binary outcome model, we assume

(OC-1) (Us, V ) ⊥⊥ (Z,W )|X, s = 1, . . . , S̄. (Conditional Independence of the Instruments).

(OC-2) μD(Z) is a nondegenerate random variable conditional on X and W. (Rank Condition).
47Many of the instruments studied by Harmon and Walker (1999) and Card (2001) are transition-specific. Card’s

model of schooling is not sufficiently rich to make the distinction between the Z and the W . See Heckman and
Navarro (2006) and Cunha, Heckman, and Navarro (2007) for more general models of schooling that make these
distinctions explicit.
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(OC-3) The distribution of V is continuous.48

(OC-4) E(|Ys|) <∞, s = 1, . . . , S̄. (Finite Means).

(OC-5) 0 < Pr(Ds = 1|X) < 1 for s = 1, . . . , S̄ for all X. (In large samples, there are some

persons in each treatment state).

(OC-6) For s = 1, . . . , S̄−1, the distribution of Cs (Ws) conditional on X, Z and the other Cj (Wj),

j = 1, . . . , S̄ j 6= s, is nondegenerate and continuous.49

Assumption (OC-1) to (OC-5) play roles analogous to their counterparts in the two outcome model

(A-1) to (A-5). (OC-6) is a new condition that is key to identification of the ∆MTE defined below

for each transition. It assumes that we can vary the choice sets of agents at different margins of

schooling choice without affecting other margins of choice. A necessary condition for (OC-6) to hold

is that at least one element of Ws is nondegenerate and continuous conditional on X,Z and Cj(Wj)

for j 6= s. Intuitively, one needs an instrument (or source of variability) for each transition. The

continuity of the regressor allows us to differentiate with respect to Cs(Ws), like we differentiated

with respect to P (Z) to estimate the MTE in the analysis of the two outcome model.

The analysis of Angrist and Imbens (1995) discussed in the introduction to this section makes

independence and monotonicity assumptions that generalize their earlier work. They do not consider

estimation of transition-specific parameters as we do, or even transition-specific LATE. We present

a different decomposition of the IV estimator where each component can be recovered from the

data, and where the transition-specific MTEs answer well defined and economically interpretable

policy evaluation questions.50

48Absolutely continuous with respect to Lebesgue measure.
49Absolutely continuous with respect to Lebesgue measure.
50Vytlacil (2006b) shows that their monotonicity and independence conditions imply (and are implied by) a more

general version of the ordered choice model with stochastic thresholds, which appears in Heckman, LaLonde, and
Smith (1999); Carneiro, Hansen, and Heckman (2003) and Cunha, Heckman, and Navarro (2007) and is analyzed in
Appendix D.
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The probability of Ds = 1 given X,Z and W is generated by an ordered choice model:

Pr (Ds = 1 |W,Z,X) ≡ Ps(Z,W,X)

= Pr (Cs−1(Ws−1) < μD(Z)− V ≤ Cs(Ws) | X) .

Analogous to the binary case, we can define UD = FV (V |X = x) so UD ∼ Unif[0, 1] under our

assumption that the distribution of V is absolutely continuous with respect to Lebesgue measure.

The probability integral transformation used extensively in the binary choice model is somewhat

less useful for analyzing ordered choices, so we work with both UD and V in this section of the paper.

Monotonic transformations of V induce monotonic transformations of μD (Z)−Cs (Ws), but one is

not free to form arbitrary monotonic transformations of μD (Z) and Cs (Ws) separately. Using the

probability integral transformation, the expression for choice s isDs = 1[FV (μD(Z)−Cs−1(Ws−1)) >

UD ≥ FV (μD(Z) − Cs(Ws))]. Keeping the conditioning on X implicit, we define Ps(Z,W ) =

FV (μD(Z) − Cs−1(Ws−1)) − FV (μD(Z) − Cs(Ws)). It is convenient to work with the probability

that S > s, πs(Z,Ws) = FV (μD(Z) − Cs(Ws)) = Pr
³ PS̄

j=s+1Dj = 1
¯̄̄
Z,Ws

´
, πS̄(Z,WS̄) = 0,

π0(Z,W0) = 1 and Ps(Z,W ) = πs−1(Z,Ws−1)− πs(Z,Ws).

The transition-specific ∆MTE for the transition from s to s+ 1 is defined in terms of UD.

∆MTE
s,s+1(x, uD) = E(Ys+1 − Ys | X = x, UD = uD), s = 1, . . . , S̄ − 1.

Alternatively, one can condition on V . Analogous to the analysis of the earlier sections of this

paper, when we set uD = πs(Z,Ws) we obtain the mean return to persons indifferent between s and

s+ 1 at mean level of utility πs(Z,Ws).

In this notation, keeping X implicit, the mean outcome Y , conditional on (Z,W ), is the sum

of the mean outcomes conditional on each state weighted by the probability of being in each state
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summed over all states:

E(Y |Z,W ) =
S̄X
s=1

E(Ys | Ds = 1, Z,W ) Pr(Ds = 1 | Z,W ) (27)

=
S̄X
s=1

Z πs−1(Z,Ws−1)

πs(Z,Ws)

E(Ys | UD = uD)duD,

where we use conditional independence assumption (OC-1) to obtain the final expression. Analogous

to the result for the binary outcome model, we obtain the index sufficiency restriction E(Y |Z,W ) =

E(Y | π(Z,W )), where π(Z,W ) = [π1(Z,W1), . . ., πS̄−1(Z,WS̄−1)]. The choice probabilities encode

all of the influence of (Z,W ) on outcomes.

We can identify πs(z, ws) for (z, ws) in the support of the distribution of (Z,Ws) from the

relationship πs(z, ws) = Pr(
PS̄

j=s+1Dj = 1 | Z = z,Ws = ws). Thus E(Y | π(Z,W ) = π) is

identified for all π in the support of π(Z,W ). Assumptions (OC-1), (OC-3), and (OC-4) imply

that E(Y | π(Z,W ) = π) is differentiable in π. So ∂
∂π
E(Y | π(Z,W ) = π) is well-defined.51 Thus

analogous to the result obtained in the binary case

∂E(Y | π(Z,W ) = π)

∂πs
= ∆MTE

s,s+1(UD = πs) (28)

= E(Ys+1 − Ys | UD = πs).

Equation (28) is the basis for identification of the transition-specific MTE from data on (Y, Z,X).

51For almost all π that are limit points of the support of distribution of π(Z,W ). We use the Lebesgue theorem
for the derivative of an integral. Under assumption (OC-6), all points in the support of the distribution of π(Z,W )
will be limit points of that support, and we thus have that ∂

∂πE(Y | π(Z,W ) = π) is well defined and is identified
for (a.e.) π.
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From index sufficiency, we can express (27) as

E (Y | π(Z,W ) = π) =
S̄X
s=1

E(Ys | πs ≤ UD < πs−1)(πs−1 − πs) (29)

=
S̄−1X
s=1

⎡⎢⎣ E(Ys+1 | πs+1 ≤ UD < πs)

−E(Ys | πs ≤ UD < πs−1)

⎤⎥⎦πs
+E (Y1 | π1 ≤ UD < 1)

=
S̄−1X
s=1

{ms+1(πs+1, πs)−ms(πs, πs−1)}πs

+E (Y1 | π1 ≤ UD < 1)

where ms(πs, πs−1) = E[Ys | πs ≤ UD < πs−1]. In general this expression is a nonlinear func-

tion of (πs, πs−1). This model has a testable restriction of index sufficiency in the general case:

E(Y |π(Z,W ) = π) is a nonlinear function that is additive in functions of (πs, πs−1) so there are no

interactions between πs and πs0 if |s− s0| > 1, i.e.,

∂2E(Y | π(Z,W ) = π)

∂πs∂πs0
= 0 if |s− s0| > 1.

Observe that if UD ⊥⊥ Us for s = 1, . . . , S̄,

E (Y | π(Z,W ) = π) =
S̄X
s=1

E(Ys)(πs−1 − πs)

=
S̄−1X
s=1

[E(Ys+1)−E(Ys)]πs +E(Y1).

Defining E(Ys+1)−E(Ys) = ∆ATE
s,s+1, E(Y | π(Z,W ) = π) =

PS̄−1
s=1 ∆

ATE
s,s+1πs+E(Y1). Thus, under full

independence, we obtain linearity of the conditional mean of Y in the πs’s. This result generalizes

the test for the presence of essential heterogeneity presented in section 3.1 to the ordered case. We

can ignore the complexity induced by the model of essential heterogeneity if E (Y | π (Z,W ) = π) is
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linear in the π’s and can use conventional IV estimators to identify well-defined treatment effects.52

6.1.1 What do Instruments Identify in the Ordered Choice Model?

We now characterize what scalar instrument J(Z,W ) identifies. When Y is log earnings, it is

common practice to regress Y on D where D is completed years of schooling and call the coefficient

on D a rate of return.53 We seek an expression for the instrumental variables estimator of the effect

of D on Y in the ordered choice model:

Cov(J(Z,W ), Y )

Cov(J(Z,W ),D)
, (30)

where D =
PS̄

s=1 sDs the number of years of schooling attainment. We keep the conditioning on X

implicit. We now present the weights for IV. Their full derivation is presented in Appendix E.

DefineKs(v) = E
³
J̃(Z,W ) | μD(Z)− cs(Ws) > v

´
Pr (μD(Z)− Cs(W ) > v), where J̃(Z,W ) =

J(Z,W )−E(J(Z,W )). Thus,

∆IV
j =

Cov(J, Y )

Cov(J,D)
(31)

=
S̄−1X
s=1

Z
E(Ys+1 − Ys | V = v)ω(s, v) fV (v)dv,

where

ω(s, v) =
Ks(v)PS̄

s=1s
R
[Ks−1(v)−Ks(v)] fV (v)dv

=
Ks (v)PS̄−1

s=1

R
Ks (v) fV (v) dv

,

and clearly
PS̄−1

s=1

R
ω(s, v) fV (v) dv = 1, ω(0, v) = 0, and ω(S̄, v) = 0. We can rewrite this result

52Notice that if UD ⊥Á⊥ Us for some s, then we obtain an expression with nonlinearities in πs, πs−1 in expression
(29).
53Heckman, Lochner, and Todd (2006) present conditions under which this economic interpretation is valid.
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in terms of the MTE, expressed in terms of uD

∆MTE
s,s+1(uD) = E (Ys+1 − Ys | UD = uD)

so that
Cov(J, Y )

Cov(J,D)
=

S̄−1X
s=1

Z
∆MTE

s,s+1(uD)ω̃(s, u) duD,

where

ω̃(s, uD) =
K̃s(uD)PS̄

s=1s
R 1
0

h
K̃s−1(uD)− K̃s(uD)

i
duD

(32)

=
K̃s (uD)PS̄−1

s=1

R 1
0
K̃s (uD) duD

and

K̃s(uD) = E
³
J̃(Z,W ) | πs(Z,Ws) > uD

´
Pr (πs(Z,Ws) ≥ uD) . (33)

Compare equations (32) and (33) for the ordered choice model to equations (19) and (20) for the

binary choice model. The numerator of the weights for the ∆MTE for a particular transition in the

ordered choice model is exactly the numerator of the weights implied for the binary choice model,

substituting πs(Z,Ws) = Pr(D > s | Z,Ws) for P (Z) = Pr(D = 1 | Z). The numerator for the

weights for IV in the binary choice model is driven by the connection between the instrument and

P (Z). The numerator for the weights for IV in the ordered choice model for a particular transition is

driven by the connection between the instrument and πs(Z,Ws). The denominator of the weights is

the covariance between the instrument andD for both the binary and ordered cases. However, in the

binary case the covariance between the instrument and D is completely determined by the covari-

ance between the instrument and P (Z), while in the ordered choice case the covariance depends on

the relationship between the instrument and the full vector [π1(Z,W1), . . . , πS̄−1(Z,WS̄−1)]. Com-

paring our decomposition of ∆IV to decomposition (26), ours corresponds to weighting up marginal

outcomes across well defined and adjacent boundary values experienced by agents having their in-
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struments manipulated whereas the Angrist-Imbens decomposition corresponds to outcomes not

experienced by some of the persons whose instruments are being manipulated.

From equation (33), the IV estimator using J(Z,W ) as an instrument satisfies the follow-

ing properties. (a) The numerator of the weights on ∆MTE
s,s+1(uD) is non-negative for all uD if

E(J(Z,Ws) | πs(Z,Ws) ≥ πs) is weakly monotonic in πs. For example, if Cov(πs(Z,Ws),D) > 0,

setting J(Z,W ) = πs(Z,Ws) will lead to nonnegative weights on ∆MTE
s,s+1(uD), though it may lead to

negative weights on other transitions. A second property (b) is that the support of the weights on

∆MTE
s,s+1 using πs(Z,Ws) as the instrument is (πMins , πMaxs ) where πMins and πMaxs are the minimum

and maximum values in the support of πs(Z,Ws), respectively, and the support of the weights on

∆MTE
s,s+1 using any other instrument is a subset of (π

Min
s , πMaxs ). A third property (c) is that the

weights on ∆MTE
s,s+1 implied by using J(Z,W ) as an instrument are the same as the weights on ∆

MTE
s,s+1

implied by using E(J(Z,W ) | πs(Z,W )) as the instrument.

Suppose that the distributions of Ws, s = 1, . . . , S̄, are degenerate so that the Cs are constants

satisfying C1 < · · · < CS̄−1. This is the classical ordered choice model. In this case, πs(Z,Ws) =

FV (μD(Z) − Cs) for any s = 1, . . . , S̄. For this special case, using J as an instrument will lead to

nonnegative weights on all transitions if J(Z,Ws) is a monotonic function of μD(Z). For example,

note that μD(Z)−Cs > v can be written as μD(Z) > Cs+F−1V (uD). Using μD(Z) as the instrument

leads to weights on ∆MTE
s,s+1(uD) of the form specified above with K̃s(uD) =

∙
E(μD(Z) | μD(Z) >

F−1V (uD)+Cs)−E(μD(Z))
¸
Pr(μD(Z) > F−1V (uD)+Cs). Clearly, these weights will be nonnegative

for all points of evaluation and will be strictly positive for any evaluation point uD such that

1 > Pr(μD(Z) > F−1V (uD) + Cs) > 0. We now present some examples of the weights for IV.

6.1.2 Examples of Weights for IV

Figures 10 and 11 plot the transition-specific MTEs and the IV weights for the models and distri-

butions of the data at the base of each of the figures. We work with a normal V and Us, so we get

linear in V MTEs from standard normal regression theory. The IV estimates using Z and W1 as

instruments are reported transition by transition, along with the overall IV representation (31) into
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its transition-specific components.54 The IV weights are defined by equations (32) and (33). The

bottom table presents the transition-specific treatment parameters.

In Figure 10, the IV weights based on Z and W1 are very different. So, correspondingly, are the

IV estimates produced from each instrument, which are far off the mark of the standard treatment

parameters shown at the bottom of the table. Observe that the IV weight for W1 in the second

transition is negative for an interval of values. This accounts for the dramatically lower IV estimate

based on W1 as the instrument. Figure 11 shows a different configuration of (Z,W1,W2). This

produces negative weights for Z for both transitions and a negative weight for W1 in the second

transition. For both instruments, IV is negative even though both MTEs are positive throughout

most of their range. IV provides a misleading summary of the underlying marginal treatment

effects. In digesting Figures 10 and 11, it is important to recall that all are based on the same

structural model. All have the same MTE and average treatment effects. But the IV estimates are

very different solely as a consequence of the differences in the distributions of instruments across

examples.

These simulations show a rich variety of shapes and signs for the weights. They illustrate a main

point of this paper–that standard IV methods are not guaranteed to weight marginal treatment

effects positively or to produce estimates close to any of the standard treatment effects. Estimators

based on LIV and its extension to the ordered model (28) identify ∆MTE for each transition and

answer policy relevant questions. We now turn to development of a more general unordered model.

54In particular, when J(Z) is used as the instrument, we decompose ∆IVJ(Z) as

∆IVJ(Z) =
S̄−1X
s=1

Z
E (Ys+1 − Ys | V = v) ωJ(Z)(s, v) fV (v) dv

=
S̄−1X
s=1

Z
∆MTEs,s+1 (v)ω

J(Z)(s, v) fV (v) dv

=
S̄−1X
s=1

∆
IVJ(Z)
s,s+1 .
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6.2 Extension to Multiple Treatments that are Unordered

In this section, we develop a framework for multiple treatments with a choice equation that is based

on a nonparametric version of the classical multinomial choice model.55 Within this framework,

treatment effects can be defined as the difference in the counterfactual outcomes that would have

been observed if the agent faced different choice sets, i.e., the effect of the individual being forced

to choose from one choice set instead of another.

We analyze the return to the agent of choosing between option j and the next best option.

The analysis of this case is very similar to the analysis presented in Section 3 because it converts

a multiple choice problem to a binary choice problem. Exclusion restrictions allow analysts to

identify generalizations of the LATE parameter and MTE parameters corresponding to the effect

of one choice versus the “next-best” alternative. This identification analysis does not require large

support assumptions.

Consider the following model with multiple outcome states. Let J denote the agent’s choice

set, where J contains a finite number of elements. The reward (psychic and monetary) of choosing

j ∈ J is

Rj(Zj) = ϑj(Zj)− Vj, (34)

where Zj are the agent’s observed characteristics that affect the utility from choosing choice j, and

Vj is the unobserved shock to the agent’s utility from choice j.56 Let Z denote the random vector

containing all unique elements of {Zj}j∈J , i.e., Z = union of {Zj}j∈J . We write Rj(Z) for Rj(Zj),

leaving implicit that Rj(·) only depends on those elements of Z that are contained in Zj. Let DJ ,j

be an indicator variable for whether the agent would choose option j if confronted with choice set

55Heckman and Navarro (2006) and Heckman and Vytlacil (2007a) present a semiparametric analysis of identifi-
cation for the multinomial choice model.
56More consistent with the notation used in the previous section, we could define Rj (Zj) = D∗j . A more precise,

but tedious notation would use Rj(Zj , Vj) but we use the simpler notation.

48



J :57

DJ ,j =

⎧⎪⎪⎨⎪⎪⎩
1 if Rj ≥ Rk ∀k ∈ J

0 otherwise.

Let IJ denote the choice that would be made by the agent if confronted with choice set J : IJ =

j ⇐⇒ DJ ,j = 1. Let YJ be the outcome variable that would be observed if the agent faced choice

set J . It is

YJ =
X
j∈J

DJ ,jYj, (35)

where Yj is the potential outcome, observed only if option j is chosen. This expression generalizes

(2). We assume that Yj is determined by Yj = μj(Xj, Uj), where Xj is a vector of the agent’s

observed characteristics and Uj is an unobserved random vector. Let X denote the random vector

containing all unique elements of {Xj}j∈J , i.e., X is the union of {Xj}j∈J . We assume that

(Z,X, IJ , YJ ) is observed.58 Define RJ as the maximum obtainable value given choice set J :

RJ = max
j∈J

{Rj} =
X
j∈J

DJ ,jRj.

We obtain the traditional representation of the decision process that if choice j is optimal, choice j

is better than the “next best” option:

IJ = j ⇐⇒ Rj ≥ RJ\j,

where J \j means J removing the jth element from the set. More generally, a choice with K optimal

is equivalent to the highest value obtainable from choices in K being higher than the highest value

that can be obtained from choices outside that set,

IJ ∈ K⇐⇒ RK ≥ RJ\K.

57We will impose conditions such that ties, Rj = Rk for j 6= k, occur with probability zero.
58One possible extension is to the case where one does not observe which choice was made, but only whether one

particular choice was made, i.e., one observes DJ ,0 but not IJ . The analysis of Thompson (1989) suggests that this
extension should be possible.
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As we will show, this well-known representation used by Lee (1983), Dahl (2002) and others, is key

for understanding how nonparametric instrumental variables estimates the effect of a given choice

versus the “next best” alternative.

Analogous to our definition of RJ , we define RJ (z) to be the maximum attainable value given

choice set J when instruments are fixed at Z = z,

RJ (z) = max
j∈J

{Rj(z)}.

Thus, for example, a choice from K is optimal when instruments are fixed at Z = z if RK(z) ≥

RJ\K(z).

We make the following assumptions, which generalize assumptions (A-1) to (A-5) for the multiple

treatment case and are presented in a parallel fashion ((B-2) is stated below):

(B-1) {(Vj, Uj)}j∈J is independent of Z conditional on X.

(B-3) The distribution of ({Vj}j∈J ) is absolutely continuous with respect to Lebesgue measure onQ
j∈J
R.

(B-4) E|Yj| <∞ for all j ∈ J .

(B-5) Pr(IJ = j|X) > 0 for all j ∈ J .

Assumptions (B-1) and (B-3) imply that Rj 6= Rk w.p.1 for j 6= k, so that argmax{Rj} is

unique w.p.1. Assumption (B-4) is required for the mean treatment parameters to be well defined.59

Assumption (B-5) requires that at least some individuals participate in each program for all X.

Definitions of the treatment parameters only require assumptions (B-1) and (B-3) to (B-5).

However, we use exclusion restrictions to secure identification. Let Z [j] denote the jth component

of Z. Let Z [−j] denote all elements of Z except for the jth component. We will work with two

alternative assumptions for the exclusion restriction.60 Consider
59It allows us to integrate to the limit.
60We work here with exclusion restrictions for ease of exposition. By adapting the analysis of Cameron and

Heckman (1998) and Heckman and Navarro (2006), one can modify our analysis to encompass the case of no exclusion
restrictions if Z contains a sufficient number of continuous variables and there is sufficient variation in the ϑk function
across k.

50



(B-2a) For each j ∈ J , their exists at least one element of Z, say Z [j], such that Z [j] is not an

element of Zk, k 6= j, and such that the distribution of ϑj(Zj) conditional on (X,Z [−j]) is

nondegenerate,

or

(B-2b) For each j ∈ J , their exists at least one element of Z, say Z [j], such that Z [j] is not an element

of Zk, k 6= j, and such that the distribution of ϑj(Zj) conditional on (X,Z [−j]) is absolutely

continuous with respect to Lebesgue measure.

Assumption (B-2a) requires that the analyst be able to independently vary the index for the

given value function. It imposes an exclusion restriction, that for any j ∈ J , Z contains an

element such that (i) it is contained in Zj; (ii) it is not contained in any Zk for k 6= j, and (iii)

ϑj(·) is a nontrivial function of that element conditional on all other regressors. Assumption (B-

2b) strengthens (B-2a) by adding a smoothness assumption. A necessary condition for (B-2b) is

that the excluded variable have a density with respect to Lebesgue measure conditional on all

other regressors and for ϑj(·) to be a continuous and nontrivial function of the excluded variable.61

Assumption (B-2a) is used to identify a generalization of the LATE parameter. Assumption (B-2b)

will be used to identify a generalization of the MTE parameter. Below, we will strengthen (B-2b)

to a large support assumption to identify ATE though the large support assumption will not be

required for most of our analysis. Assumptions (B-2a) and (B-2b) mirror (A-2) and are analogous

to (OC-2) and (OC-6) in an ordered choice setting.

6.2.1 Definition of Treatment

Treatment effects are defined as the difference in the counterfactual outcomes that would have

been observed if the agent faced different choice sets. For any two choice sets, K,L ⊂ J , define
61(B-2b) can be easily relaxed to the weaker assumption that the support of ϑj(Zj) conditional on (X,Z [− ])

contains an open interval, or further weakened to the assumption that the conditional support contains at least
one limit point. In these cases, the analysis of this section goes through without change for points within the open
interval or more generally for any limit point.
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∆K,L = YK − YL, the effect of the individual being forced to choose from choice set K versus choice

set L. The conventional treatment effect is defined as the difference in potential outcomes between

two specified states,

∆k, = Yk − Y ,

which is nested within this framework by taking K = {k}, L = { }. It is the effect for the individual

of having no choice except to choose state k versus having no choice except to choose state .

∆K,L will be zero for agents who make the same choice when confronted with choice set K and

choice set L. Thus, IK = IL implies ∆K,L = 0, and we have

∆K,L = 1(IL 6= IK)∆K\L,L (36)

= 1(IL 6= IK)

⎛⎝X
j∈K\L

DK,j∆j,L

⎞⎠ .

Two cases will be of particular importance for our analysis. First, consider choice set K = {k}

versus choice set L = J \ {k}. In this case, ∆k,J\k is the difference between the agent’s potential

outcome in state k versus the outcome that would have been observed if he or she had not been

allowed to choose state k. If IJ = k, then ∆k,J\k is the difference between the outcome in the

agent’s preferred state and the outcome in the agent’s “next-best”state. Second, consider the set

K = J versus choice set L = J \ {k}. In this case, ∆J ,J\k is the difference between the agent’s

observed outcome and what his or her outcome would have been if state k had not been available.

Note that ∆J ,J\k = DJ ,k∆k,J\k. Thus, there is a trivial connection between the two parameters,

∆J ,J\k and ∆k,J\k. This paper focuses on ∆k,J\k, the effect of being forced to choose option k

versus being denied option k. However, one can exploit equation (36) to use the results for ∆k,J\k

to obtain results for ∆J ,J\k.
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6.2.2 Treatment Parameters

The conventional definition of the average treatment effect (ATE) is ∆ATE
k, (x, z) = E(∆k, |X =

x,Z = z), which immediately generalizes to the class of parameters just discussed: ∆ATE
K,L (x, z) =

E(∆K,L|X = x,Z = z). The conventional definition of the treatment on the treated (TT) parameter

is ∆TT
k, (x, z) = E(∆k, |X = x,Z = z, IJ = k), which generalizes to ∆TT

K,L(x, z) = E(∆K,L|X =

x,Z = z, IJ ∈ K).

We generalize the MTE parameter to be the average effect conditional on being indifferent

between the best option among choice set K versus the best option among choice set L at some

fixed value of the instruments, Z = z:

∆MTE
K,L (x, z) = E (∆K,L | X = x,Z = z,RK(z) = RL(z)) . (37)

We generalize the LATE parameter to be the average effect for someone for whom the optimal

choice in choice set K is preferred to the optimal choice in choice set L at Z = z̃, but who prefers

the optimal choice in choice set L to the optimal choice in choice set K at Z = z:

∆LATE
K,L (x, z, z̃) = E

⎛⎜⎝∆K,L

¯̄̄̄
¯̄̄ X = x, Z ∈ {z, z̃} , RK(z̃) ≥ RL(z̃),

RL(z) ≥ RK(z)

⎞⎟⎠ . (38)

An important special case of this parameter arises when z = z̃ except for elements that enter the

index functions only for choices in K and not for any choice in L. In that special case, expression

(38) simplifies to

∆LATE
K,L (x, z, z̃) = E

⎛⎜⎝∆K,L

¯̄̄̄
¯̄̄ X = x,Z ∈ {z, z̃} ,

RK(z̃) ≥ RL(z) ≥ RK(z)

⎞⎟⎠
since RL(z) = RL(z̃) in this special case.

We have defined each of these parameters as conditional not only on X but also on the

“instruments”Z. In general, the parameters will depend on the Z evaluation point. For example,
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∆ATE
K,L (x, z) will in general depend on the z evaluation point. To see this, note that YK =

P
k∈K

DK,kYk,

and YL =
P
∈L

DL, Y . By independence assumption (B-1), we have that Z ⊥⊥ {Yj}j∈J | X, but DK,k

and DL, will be dependent on Z conditional on X and thus YK − YL will in general be dependent

on Z conditional on X.62 In other words, even though Z is conditionally independent of each indi-

vidual potential outcome, it is correlated with which choice is optimal within the sets K and L and

thus is related to YK − YL.

6.2.3 Identification: Effect of Option j Versus Next Best Alternative

We now establish identification of treatment parameters corresponding to averages of ∆j,J\j, the

effect of choosing option j versus the preferred option in J if j were not available.63 Recall that

Z [j] is the vector of elements of Zj that do not enter any other choice index, and that Z [−j] is a

vector of all elements of Z not in Z [j]. The Z [j] thus act as shifters attracting people into or out of

j, but not affecting the valuations in the arguments of the other choice functions. We can develop

a parallel analysis to the binary case developed earlier in this paper if we condition on Z [−j]. We

obtain monotonicity or uniformity in this model if the movements among states induced by Z [j] are

the same for all persons conditional on Z [−j] = z[−j] and X = x. For example, ceteris paribus if

Z [j] = z[j] increases, Rj (Zj) increases but the Rk (Zk) are not affected, so the flow is toward state

j.

Let DJ ,j be an indicator variable denoting whether option j is selected.

DJ ,j = 1

µ
Rj (Zj) ≥ max6=j {R (Z )}

¶
(39)

= 1

µ
ϑj (Zj) ≥ Vj +max6=j

{R (Z )}
¶

= 1
³
ϑj (Zj) ≥ Ṽj

´
,

where Ṽj = Vj + max 6=j {R (Z )}. Thus we obtain DJ ,j = 1
¡
Pj (Zj) ≥ UDj

¢
, where UDj =

FṼj
(Vj + max 6=j {R (Z )} | Z [−j] = z[−j]), where FṼj

is the cdf of Ṽj given Z [−j] = z[−j]. In a

62An exception is if K = {k}, L = { }, i.e., both sets are singletons.
63Heckman and Vytlacil (2007b) consider the identification of other parameters in the general unordered case.
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format parallel to the binary model, we write

Y = DJ ,jYj + (1−DJ ,j)YJ\j, (40)

where YJ\j is the outcome that would be observed if option j were not available. This case is just

a version of the binary case developed in previous sections of the paper. We can define MTE as

E
¡
Yj − YJ\j | X = x, Z = z, ϑj (zj)− Vj = RJ\j (z)

¢
.

Recall that we have to condition on Z = z because the choice sets are defined over the max of

elements in J \ j (see equation (39)).

We now show that our identification strategies presented in the preceding part of this paper

extend naturally to the identification of treatment parameters for∆j,J\j. In particular, it is possible

to recover LATE and MTE parameters for ∆j,J\j by use of discrete change IV methods and local

instrumental variable methods, respectively. Averages of the effect of option j versus the next best

alternative are the easiest effects to study using instrumental variable methods and are natural

generalizations of our two outcome analysis.64

Consider identification of treatment parameters corresponding to averages of ∆j,J\j using either

a discrete change, Wald form for the instrumental variables estimand or using the local instrumental

variables (LIV) estimand.65 The discrete change, instrumental variables estimand will allow us to

recover a version of the local average treatment effect (LATE) parameter.66 Let Z [−j] denote the

excluded variable for option j with properties assumed in (B-2a). We let z =
£
z[−j], z[j]

¤
and

64Heckman and Navarro (2006) consider identification of other parameters but they use identification at infinity
arguments not required for standard IV. See the comprehensive discussion in Heckman and Vytlacil (2007b).
65The estimand is the population version of the estimator.
66We use the Z directly in the following manipulations instead of manipulating the {ϑj(Zj)} indices. One can

modify the following analysis to directly use {ϑj(Zj)}, with the disadvantage of requiring identification of {ϑj(Zj)}
(e.g. by an identification at infinity argument) but with the advantage of being able to follow the analysis of Cameron
and Heckman (1998), Chen, Heckman, and Vytlacil (1998, 1999) and Heckman and Navarro (2006) in not requiring
an exclusion restriction if Z contains a sufficient number of continuous variables and there is sufficient variation in
the ϑk function across k. See Heckman and Vytlacil (2007b) for a more general analysis.
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z̃ =
£
z̃[−j], z̃[j]

¤
be two values of Z where we only manipulate Z [j]. Define

∆Wald
j (x, z[−j], z[j], z̃[j])

=
E(Y |X = x,Z = z̃)− E(Y |X = x, Z = z)

Pr(DJ ,j = 1|X = x,Z = z̃)− Pr(DJ ,j = 1|X = x,Z = z)
,

where for notational convenience we assume that Z [j] is the last component of Z. Without loss

of generality, we assume that ϑj(z̃) > ϑj(z). The local instrumental variables estimator (LIV)

estimand introduced in Heckman (1997), and developed further in Heckman and Vytlacil (1999,

2001b) allows us to recover a version of the Marginal Treatment Effect (MTE) parameter. Impose

(B-2b), and let Z [j] denote the excluded variable for option j with properties assumed in (B-2b).

Our results are invariant to which particular variable satisfying (B-2b) is used if there are more

than one variable with the property assumed in (B-2b). Define

∆LIV
j (x, z) ≡

∂
∂z[j]

E(Y | X = x,Z = z)
∂

∂z[j]
Pr(DJ ,j = 1 | X = x,Z = z)

. (41)

∆LIV
j (x, z) is thus the limit form of ∆Wald

j (x, z[−j], z[j], z̃[j]) as z̃[j] approaches z[j]. Given our previous

assumptions, one can easily show that this limit exists w.p.1. We prove the following identification

theorem.

Theorem 1. 1. Assume (B-1), (B-3) to (B-5) and (B-2a). Then ∆Wald
j (x, z[−j], z[j], z̃[j]) =

∆LATE
j,J\j (x, z, z̃) where z̃ = (z

[−j], z̃[j]).

2. Assume (B-1), (B-3) to (B-5) and (B-2b). Then ∆LIV
j (x, z) = ∆MTE

j,J\j(x, z).

Proof. See Appendix F.

The intuition underlying the proof is simple. Under (B-1), (B-3) to (B-5) and (B-2a) we can

convert the problem of comparing the outcome under j with the outcome under the next best

option. This is an IV version of the selection modelling analysis of Dahl (2002). ∆LATE
j,J\j (x, z, z̃) is

the average effect of switching to state j from state IJ\j for individuals who would choose IJ\j at
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Z = z but would choose j at Z = z̃. ∆MTE
j,J\j(x, z) is the average effect of switching to state j from

state IJ\j (the best option besides state j) for individuals who are indifferent between state j and

IJ\j at the given values of the selection indices (at Z = z, i.e., at {ϑk(Zk) = ϑk(zk)}k∈J ).

The mean outcome in state j versus state IJ\j (the next best option) is a weighted average

over k ∈ J \ j of the effect of state j versus state k, conditional on k being the next best option,

weighted by the probability that k is the next best option. For example, for the LATE parameter,

∆LATE
j,J\j (x, z, z̃) = E

⎛⎜⎝∆j,J\j

¯̄̄̄
¯̄̄ X = x,Z ∈ {z, z̃} ,

Rj(z̃) ≥ RJ\j(z) ≥ Rj(z)

⎞⎟⎠

=
X
k∈J\j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pr

⎛⎜⎝IJ\j = k

¯̄̄̄
¯̄̄ Z ∈ {z, z̃} ,
Rj(z̃) ≥ RJ\j(z) ≥ Rj(z)

⎞⎟⎠

×E

⎛⎜⎜⎜⎜⎝∆j,k

¯̄̄̄
¯̄̄̄
¯̄
X = x,Z ∈ {z, z̃} ,

Rj(z̃) ≥ RJ\j(z) ≥ Rj(z),

IJ\j = k

⎞⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where we use the fact that RJ\j(z) = RJ\j(z̃) since z = z̃ except for one component that only

enters the index for the jth option. How heavily each option is weighted in this average depends on

Pr
¡
IJ\j = k | Z ∈ {z, z̃} , Rj(z̃j) ≥ Rk(zk) ≥ Rj(zj)

¢
,

which in turn depends on {ϑk(zk)}k∈J\j. The higher ϑk(zk), holding the other indices constant, the

larger the weight given to state k as the base state.

The LIV and Wald estimands depend on the z evaluation point. Alternatively, one can define

averaged versions of the LIV and Wald estimands that will recover averaged versions of the MTE
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and LATE parameters,67

Z
∆Wald

j (x, z[−j], z[j], z̃[j])dFZ[−j](z
[−j])

=

Z
∆LATE

j,J\j (x, z, z̃)dFZ[−j](z
[−j])

= E

⎛⎜⎜⎜⎜⎝∆j,J\j

¯̄̄̄
¯̄̄̄
¯̄

X = x,

Rj(Z
[−j], z̃[j])

≥ RJ\j(Z
[−j]) ≥ Rj(Z

[−j], z[j])

⎞⎟⎟⎟⎟⎠ ,

and

Z
∆LIV

j (x, z)dFZ(z) =

Z
∆MTE

j,J\j(x, z)dFZ(z)

= E
¡
∆j,J\j|X = x,Rj(Z) = RJ\j(Z)

¢
.

Thus far, we have only considered identification of LATE andMTE, and not of the more standard

treatment parameters ATE and TT. However, following Heckman and Vytlacil (1999), LATE can

approximate ATE or TT arbitrarily well given the appropriate support conditions. Theorem 1 shows

that we can use Wald estimands to identify LATE for ∆j,J\j, and we can thus adapt Heckman and

Vytlacil (1999) to identify ATE or TT for ∆j,J\j. With suitable modification of the weights, their

analysis, summarized in Section 3, goes through as before. Suppose that Z [j] satisfies the properties

assumed in (B-2a), and suppose that: (i) the support of the distribution of Z [j] conditional on

all other elements of Z is the full real line; (ii) ϑj(zj) → ∞ as z[j] → ∞, and ϑj(zj) → −∞ as

z[j] → −∞. Then ∆ATE
j,J\j(x, z) and ∆LATE

j (x, z[−j], z[j], z̃[j]) are arbitrarily close when evaluated at a

sufficiently large value of z̃[j] and a sufficiently small value of z[j]. Following Heckman and Vytlacil

(1999), ∆TT
j,J\j(x, z) and ∆LATE

j (x, z[−j], z[j], z̃[j]) are arbitrarily close for sufficiently small z[j]. Our

discussion has focused on the Wald estimands. Alternatively we could also follow Heckman and

Vytlacil (1999, 2001b, 2005) in expressing ATE and TT as integrated versions of MTE. By theorem

67We assume that the support of Z [−j] conditional on (Z̃[j],X) is the same as the support of Z[−j] conditional on
(Z[j],X).
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1, we can use LIV to identify MTE and can thus express ATE and TT as integrated versions of the

LIV estimand.

For a general instrument J
¡
Z [j], Z [−j]

¢
constructed from

¡
Z [j], Z [−j]

¢
, which we denote as J [j],

we can obtain a parallel construction to the characterization of standard IV given in equation 18:

∆IV
J [j] =

Z 1

0

∆MTE
¡
x, z, uDj

¢
ωJ [j]

IV

¡
uDj

¢
duDj , (42)

where

ωJ [j]

IV =
E
£
J [j] −E

¡
J [j]
¢
| Pj (Z) ≥ uDj

¤
Pr
¡
Pj (Z) ≥ uDj

| Z [−j] = z[−j]
¢

Cov(Z [j],DJ ,j)
, (43)

where uDj is defined at the beginning of this section and where we keep the conditioning on X = x

implicit.

Note that from Theorem 1, we obtain that

∂
∂z[j]

E [Y | X = x, Z = z]
∂Pj(z)

∂z[j]

=
∂E[Y | X = x, Z = z]

∂Pj(z)

= E
£
Yj − YJ\j | X = x,Z = z, ϑj (Zj)− Vj = RJ\j (Z)

¤
so we obtain that LIV identifies MTE and linear IV is a weighted average of LIV with the weights

summing to one. These results mirror the results established in the binary case.

In the literature on the effects of schooling (S =
P

j∈J jDJ ,j) on earnings (YJ ), it is conventional

to instrument S. Our website presents an analysis of this case. For the general unordered case,

∆IV
J [j] =

Cov(J [j], YJ )

Cov(J [j], S)

can be decomposed into economically interpretable components where the weights can be identified

but the objects being weighted cannot be identified using local instrumental variables or LATE

without making large support assumptions. However, the components can be identified using a

structural model.68

68See Heckman and Vytlacil (2007a) and Heckman and Navarro (2006) for analyses of semiparametric identification
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The trick we have used in this section comparing outcomes in j to the next best option converts

a general unordered multiple outcome model into a two outcome setup. This effectively partitions

YJ into two components, as in (40). Thus we write

YJ = DJ ,jYj + (1−DJ ,j)YJ\j,

where

YJ\j =
X
6=j
∈J

DJ ,

1−DJ ,j
Y × 1 (DJ ,j 6= 1) .

In the more general unordered case with three or more choices, to analyze IV estimates of the effect

of S on YJ , we must work with YJ =
P

k∈J DJ ,kYk and make multiple comparisons across potential

outcomes. This requires us to move outside of the LATE/LIV framework, which is inherently based

on binary comparisons.69 We consider models that do not impose additive separability in choice

equation (13). This includes a general random coefficient model.

7 Relaxing Additive Separability in the Choice Equation

and allowing for Random Coefficient Choice Models

The analysis of this paper and the entire recent literature on instrumental variables estimators for

models with essential heterogeneity relies critically on the assumption that the treatment choice

equation can be represented in additively separable form (13). The implied uniformity condition

imparts an asymmetry to the entire instrumental variable enterprise. Uniformity also underlies

conventional selection models.

of structural models that can identify all treatment effects and the components of the IV decompositions. See
Heckman and Vytlacil (2007b) and Heckman and Urzua (2006) for further analyses of this case.
69If we partition YJ into two components based on general sets K, L, each with two or more elements, the choice

equation in general is no longer characterized by an additive separability in the error assumption, discussed in
Heckman and Vytlacil (2005) and in the next section, that is required to justify application of LATE and LIV to
identify the MTE. The ordered case previously analyzed has a local property which compares adjacent choices and
effectively makes binary comparisons.
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Responses are permitted to be heterogeneous in a general way, but choices of treatment are

not. In the absence of additive separability, or uniformity, the instrumental variable identification

strategy breaks down. Parameters can be defined as weighted averages of an MTE but MTE and the

derived parameters cannot be identified using any instrumental variables strategy (see Heckman and

Vytlacil, 2001b, 2005, 2007b). This point applies to models with two or more potential outcomes.

For simplicity of exposition, we only analyze the two outcome case.

One natural benchmark nonseparable model is a random coefficient model of choice D =

1 [γZ ≥ 0] where γ is a random coefficient vector and γ ⊥⊥ (Z,U0, U1). If γ is a random coeffi-

cient with a nondegenerate distribution and with components that take both positive and negative

values, uniformity (“monotonicity”) can be violated. Figure 2C illustrates this violation. Unifor-

mity can also be violated if we change one coordinate of Z but fail to control for movements in the

other coordinates. See Figure 2B.

To consider a more general case, relax the separability assumption of equation (13) to consider

latent choice index

D∗ = μD (Z, V ) , D = 1 [D∗ ≥ 0] , (44)

where μD (Z, V ) is not necessarily additively separable in Z and V , and V is not necessarily a

scalar. In the random coefficient example, V = γ. We maintain assumptions (A-1)-(A-5), with

(A-3) suitably modified for the random coefficient case.70

In the additively separable case, the MTE has three equivalent interpretations: (i) UD(= FV (V ))

is the only unobservable in the first stage decision rule, and MTE is the average effect of treatment

given the unobserved characteristics in the decision rule (UD = uD); (ii) MTE is the average effect

70In special cases, (44) can be expressed in additively separable form. For example if D∗ is weakly separable in
Z and V , D∗ = μD (θ (Z) , V ) where θ (Z) is a scalar function, and μD(θ(Z), V ) is strictly increasing in its first
argument, and V is a scalar, for any V , then we can write (44) in the same form as (13):

D = 1
³
θ (Z) ≥ eV ´

where Ṽ = μ−1D (0, V ) and eV ⊥⊥ Z | X, and the inverse function is expressed with respect to the first argument.
See Vytlacil (2006a) who considers the vector V case. Vytlacil (2002) shows that any model that does not satisfy
uniformity (or “monotonicity”) will not have a representation in this form. In the random coefficient case where
Z = (1, Z1) where Z1 is a scalar, and γ = (γ0, γ1) if γ1 > 0 for all realizations, we can write the choice rule in the
form of (13): γ1Z1 > −γ0 ⇒ Z > −γ0

γ1
and V = −γ0

γ1
. However, this trick does not work in the general case.
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of treatment given that the individual would be indifferent between treatment or not if P (Z) = uD,

where P (Z) is a mean utility function; (iii) the MTE is an average effect conditional on the additive

error term from the first stage choice model. Under all interpretations of the MTE, and under the

assumptions (A-1) to (A-5), MTE can be identified by LIV. The MTE does not depend on Z and

hence it is invariant to policies that shift Z. The MTE integrates up to generate all treatment

effects, policy effects and IV estimands.

The three definitions are not the same in the general nonseparable case (44). Heckman and

Vytlacil (2001b, 2005, 2007b) extend MTE to the nonseparable case. Local instrumental variables

(LIV) is a weighted average of the MTE with possibly negative weights and does not identify MTE.

Thus, if uniformity does not hold, the definition of the MTE allows one to integrate it up to obtain

all of the treatment effects. However, the instrumental variables estimator does not identify LATE

or MTE.

7.1 Failure of Index Sufficiency in General Nonseparable Models

For any version of the nonseparable model, except those that can be transformed to separa-

bility, index sufficiency fails. To see this most directly, assume that μD (Z, V ) is a continu-

ous random variable.71 Define Ω (z) = {v : μD (z, v) ≥ 0}. In the additively separable case,

P (z) ≡ Pr (D = 1 | Z = z) = Pr (V ∈ Ω (z)), P (z) = P (z0) ⇔ Ω (z) = Ω (z0). This produces

index sufficiency so the propensity score orders the unobservables generating choices. In the more

general case (44), it is possible to have (z, z0) values such that P (z) = P (z0) and Ω (z) 6= Ω (z0) so

index sufficiency does not hold. The Z’s enter the model more generally, and the propensity score

no longer plays the central role it plays in separable models.

7.2 The Support of the Propensity Score

The nonseparable model can also restrict the support of P (Z). For example, consider a normal

random coefficient choice model with a scalar regressor (Z = (1, Z1)). Assume γ0 ∼ N (0, σ20),

71Absolutely continuous with respect to Lebesgue measure.
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γ1 ∼ N (γ̄1, σ
2
1), and γ0 ⊥⊥ γ1. Then

P (z1) = Φ

Ã
γ̄1z1p

σ20 + σ21z
2
1

!
,

where Φ is the cumulative distribution of a standard normal. If the support of Z1 is R, in the stan-

dard additive model (σ21 = 0), P (z1) has support [0, 1]. When σ
2
1 > 0, the support is strictly within

the unit interval.72 In the special case when σ20 = 0, the support is one point
³
P (z) = Φ

³
γ̄1
σ1

´´
. We

cannot, in general, identify ATE, TT or any treatment effect requiring the endpoints 0 or 1 using

IV or control function strategies.73 In addition, the IV weights presented in Section 3 no longer

apply. IV now fails as a method for estimating interpretable causal effects and treatment effects.

Other approaches to estimation must be adopted if a fully symmetric model of heterogeneity is

entertained.

7.3 Violations of Uniformity

The uniformity or monotonicity assumption can be violated for any vector Z. One source of

violations is nonseparability between Z and V in (44). The random coefficient model model is

one intuitive model where separability fails. Even if (44) is separable in Z and V , uniformity may

fail in the case of vector Z, where we use only one function of Z as the instrument, and do not

condition on the remaining sources of variation in Z, as we demonstrated by examples in Section 5.

If we condition appropriately, we retain monotonicity but get a new form of instrumental variable

estimator that is sensitive to the specification of the Z not used as an instrument.

72The interval is
h
Φ
³
−|γ1|
σ1

´
,Φ
³
|γ1|
σ1

´i
.

73The random coefficient model for choice may explain the support problems for P (Z) noted by many analysts.
See Heckman, Ichimura, Smith, and Todd (1998).
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8 Summary and Conclusions

This paper considers the application of the method of instrumental variables to models where

responses to treatment are heterogeneous, agents make treatment choices based in part on this

heterogeneity and some components of heterogeneity are unobserved by the economist. We call

this a model with essential heterogeneity. Intuitions about IV that are valid for the homogeneous

model are often applied inappropriately to the model of essential heterogeneity. In a model with

essential heterogeneity, different instruments satisfying the traditional definition of an instrumental

variable define different economic parameters. This is not the case in the classical IV literature that

assumes that responses to treatment are homogeneous. Since different instruments identify different

parameters, the traditional emphasis in the econometric theory literature of efficiently combining

instruments, or using Durbin-Wu-Hausman tests to check for endogeneity by comparing estimates

from different instruments, is inappropriate.

In the model with essential heterogeneity, the specification of the choice equation (Pr(D = 1 | Z))

affects the interpretation of any IV estimator. This feature is absent in the classical model where

specification of the full instrument list and choice model is irrelevant to the interpretation of what

IV estimates. Two economists using the same valid instrument and the same outcome equations but

maintaining different models of economic choice will interpret the same point estimate differently.

So will two economists using the same instrument and the same Z variables in P (Z) but using

distributions of Z that are different. The agnostic and robust features of IV in its classical setting

disappear in a model with essential heterogeneity. We develop a simple procedure which can be

applied to test whether, in a given data set, the analyst has to worry about the complications

resulting from essential heterogeneity or whether they can be ignored in identifying treatment

parameters.

We clarify the concept of monotonicity introduced by Imbens and Angrist (1994) and note that

uniformity is a better term for their concept. Additionally, we show that this concept is not the same

as the term “monotonicity”used in the literature to define positive IV weights on treatment effects.

IV weights may be nonpositive even when uniformity is satisfied for a vectorZ, if an instrument other
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than P (Z) (or a function of P (Z)) is used. Uniformity plus conditioning on unused instruments

are required to produce positive weights in the case of vector Z. We demonstrate these points with

both theoretical and empirical examples.

Positivity of weights is required to interpret IV estimates as treatment effects. We argue, how-

ever, that many interesting policy questions do not require treatment effects. Policy effects and

treatment effects are distinct. We develop new software for estimating MTE and the weights for

the two outcome model.

We also compare the method of IV with the method of control functions. In the more general

setting studied here, the method of control functions is explicit in formulating its identifying as-

sumptions and recovers interpretable parameters. We establish a strong relationship between LIV

and LATE and control function models. LIV and LATE estimate the derivatives (differences) of the

level functions identified by the control function approach. When we use IV and its extensions to

answer the traditional questions addressed by the control function method, the same large sample

support assumptions are required to identify model intercepts.

We highlight the central role of the propensity score in IV and control function methods. Us-

ing the propensity score and the distributions of X and Z we can generate instrument-invariant

parameters and weights for any instrument from a common set of parameters. The propensity

score or choice probability is more than a computational device, as it is in matching. It shows

up as a fundamental feature of both IV and control function models in the presence of essential

heterogeneity.

We develop both ordered and unordered choice models with associated outcomes that extend

the binary choice model for essential heterogeneity. The unordered model extends the two outcome

model in a natural way. The ordered model places some special structure on it. In the context

of the ordered model, we define transition-specific treatment parameters (∆MTE
s,s+1(u)). We show

how to estimate these parameters using transition-specific instruments. These instruments identify

parameters that can be linked to specific choice models.

We explain why the model of essential heterogeneity as currently formulated in the recent litera-
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ture on instrumental variables is asymmetric. It features heterogeneity (nonuniformity) of responses

to treatment but assumes uniformity in response to the variables generating choice of treatment.

We present new results for a random coefficient model that allows for nonuniformity in responses

of choices to instruments and responses of outcomes to treatment.
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A Deriving the IV Weights on MTE

We consider instrumental variables conditional on X = x using a general function of Z as an

instrument. Let J(Z) be any function of Z such that Cov(J(Z), D | X = x) 6= 0. Consider the

population analog of the IV estimator,

[Cov (J (Z) , Y | X = x)] / [Cov (J (Z) , D | X = x)] .

First consider the numerator of this expression,

Cov (J (Z) , Y | X = x) = E ([J (Z)−E (J (Z) | X = x)]Y | X = x)

= E ((J (Z)−E (J (Z) | X = x)) (Y0 +D (Y1 − Y0)) | X = x)

= E ((J (Z)−E (J (Z) | X = x))D (Y1 − Y0) | X = x)

where the second equality comes from substituting in the definition of Y and the third equality fol-

lows from assumption conditional independence assumption (A-2). Define J̃(Z) ≡ J(Z)−E(J(Z) |

X = x). Then

Cov (J (Z) , Y | X = x)

= E
³
J̃(Z) 1[UD ≤ P (Z)] (Y1 − Y0) | X = x

´
= E

³
J̃(Z) 1[UD ≤ P (Z)] E (Y1 − Y0 | X = x,Z, UD) | X = x

´
= E

³
J̃(Z) 1[UD ≤ P (Z)] E (Y1 − Y0 | X = x,UD) | X = x

´
= E

⎛⎜⎝ E
³
J̃(Z) 1[UD ≤ P (Z)] | X = x, UD

´
×E (Y1 − Y0 | X = x, UD)

¯̄̄̄
¯̄̄X = x

⎞⎟⎠
=

Z ⎧⎪⎨⎪⎩ E(J̃(Z) | X = x, P (Z) ≥ uD) Pr(P (Z) ≥ uD | X = x)

×E (Y1 − Y0 | X = x,UD = uD)

⎫⎪⎬⎪⎭ duD

=

Z
∆MTE(x, uD)E(J̃(Z) | X = x, P (Z) ≥ uD) Pr(P (Z) ≥ uD | X = x)duD,
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where the first equality follows from plugging in the model for D; the second equality follows from

the law of iterated expectations with the inside expectation conditional on (X = x,Z, UD); the

third equality follows from conditional independence assumption (A-2); the fourth equality follows

from Fubini’s Theorem and the law of iterated expectations with the inside expectation conditional

on (X = x,UD = uD); the fifth equality follows from the normalization that UD is distributed

uniformly [0, 1] conditional on X; and the final equality follows from plugging in the definition of

∆MTE. Next consider the denominator of the IV estimand. Observe that by iterated expectations

Cov (J (Z) , D | X = x) = Cov (J (Z) , P (Z) | X = x) .

Thus, the population analog of the IV estimator is given by

Z
∆MTE(x, uD)ω (x, uD) duD (A.1)

where

ω (x, uD) =

⎛⎜⎝ E(J̃(Z) | X = x, P (Z) ≥ uD)

×Pr(P (Z) ≥ uD | X = x)

⎞⎟⎠
Cov (J (Z) , P (Z) | X = x)

. (A.2)

where by assumption Cov (J (Z) , P (Z) | X = x) 6= 0.

If J(Z) and P (Z) are continuous random variables then a second interpretation of the weight

can be derived from (A.2) by noting that

Z
(j − E (J (Z) | X = x))

Z 1

uD

fP,J (t, j | X = x) dt dj

=

Z
(j − E (J (Z) | X = x)) fJ (j | X = x)

×
Z 1

uD

fP |J,X (t | J(Z) = j,X = x) dt dj.
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Write

Z 1

uD

fP |J,X (t | J(Z) = j,X = x) dt

= 1− FP |J,X (uD | J(Z) = j,X = x)

= SP |J(Z),X (uD | J(Z) = j,X = x)

where SP |J,X (uD | J(Z) = j,X = x) is the probability of (P (Z) ≥ uD) given J (Z) = j and X = x.

Likewise, Pr[P (Z) > UD | J(Z),X] = SP |J,X (UD | J(Z), X). Using these results, we may write the

weight as

ω (x, uD)

=
Cov

¡
J (Z) , SP |J,X (uD | J(Z), X = x) | X = x

¢
Cov

¡
J (Z) , SP |J,X (UD | J(Z),X = x) | X = x

¢ .
For fixed uD and x evaluation points, SP |J,X (uD | J(Z), X = x) is a function of the random variable

J(Z). The numerator of the preceding expression is the covariance between J(Z) and the probability

that the random variable P (Z) is greater than the evaluation point uD conditional on J(Z).

For a fixed x evaluation point, SP |J,X (UD | J(Z),X = x) is a given function of the random

variables UD and J(Z). The denominator of the above expression is the covariance between J(Z) and

the probability that the random variable P (Z) is greater than the random variable UD conditional

on J(Z) and X = x.

Thus, it is clear that if the covariance between J (Z) and the conditional probability that

(P (Z) > uD) given J (Z) is positive for all uD, then the weights are positive. The condition

is trivially satisfied if J (Z) = P (Z), so the weights are positive and IV estimates a gross treatment

effect.

If the J (Z) and P (Z) are discrete valued, we obtain expressions and (21) and (22) in the text.
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B Computational Aspects: Estimating theMTE, the Treat-

ment Parameters, and the Weights

We illustrate the computational aspects of this paper using the linear and separable version of the

model of essential heterogeneity introduced in Section 3. More precisely, we consider the following

framework:

Y1 = α+ ϕ+ β1X + U1

Y0 = α+ β0X + U0

I = γZ − V (B.1)

D =

⎧⎪⎨⎪⎩ 1 if I > 0

0 if I ≤ 0

where (U0, U1, V ) are independent of Z conditional on X, but U0, U1 and V are not independent

(even conditioning on X).

Using the same arguments presented in Section 3, we can show that

E (Y |X = x, P (Z) = p) = α+ β0x+ ((β1 − β0)x) p+K(p), (B.2)

where P (Z) represents the propensity score or probability of selection (Pr(D = 1|Z)), p is a par-

ticular evaluation value of the propensity score and

K(p) = ϕp+E (U1 − U0|D = 1, P (Z) = p) p. (B.3)

Equations (B.2) and (B.3) are closely related to the control function approach (see Section 4).
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B.1 The Estimation of the Propensity Score and The Identification of

the Relevant Support

The first step in the computation of the MTE is to estimate the probability of participation or

propensity score, Pr(D = 1|Z = z) = P (z). This probability can be estimated using different

methods. In this appendix, we assume V ∼ N(0, 1) and thus estimate P (z) using a probit model.

Let bγ denote the estimated value of γ in equation (B.1). The predicted value of the propensity
score (conditional on Z = z), bP (z), is then computed as bP (z) = Pr(bγZ > V |Z = z) = Φ(bγz) where
Φ represents the cumulative distribution function of a standard normal random variable.

The predicted values of the propensity score allow us to define the values of uD over which the

MTE can be identified. In particular, as emphasized by Heckman and Vytlacil (2001b), identifica-

tion of the MTE depends critically on the support of the propensity score.74 The larger the support

of the propensity score, the bigger the set over which the MTE can be identified.

In order to define the relevant support we first estimate the frequencies of the predicted propen-

sity scores in the samples of treated (D = 1) and untreated (D = 0) individuals. These frequencies

can be computed using smoothed sample histograms. In both subsamples the grid Γ of values ofbP (z) specifies the number of points at which the histogram is to be evaluated.

Let P denote the set of evaluation points (coming from the grid) such that

P = {p ∈ Γ | < Pr( bP (z) = p | D = )} with = 0, 1 and > 0,

so P represents the set of values of p for which we compute frequencies in the range ( , 1] using the

subsample of individuals reporting D = ( = 0, 1). Notice that the extreme value 0 is excluded

from P . Finally, if we denote by P the set of evaluation points used to define the relevant support
74Heckman, Ichimura, Smith, and Todd (1998, 1996), and Heckman, Ichimura, and Todd (1998) also discuss the

importance of the propensity score. They present empirical evidence that failure of the full support condition is a
major source of evaluation bias.
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of the propensity score, we have that

P = P0
\
P1

=
n
p ∈ Γ

¯̄̄
< min

³
Pr( bP (z) = p | D = 0),Pr( bP (z) = p | D = 1)

´o

for > 0. Therefore, the MTE is defined only for those evaluations of bP (z) for which we obtain
positive frequencies for both subsamples.

In practice, after identifying the relevant or common support of the propensity score, it is

necessary to adjust the sample. In particular, the observations for which bP (z) is contained in the
common support are kept. The rest of the sample is dropped. From this point on, our analysis

refers to the resulting sample.

B.2 Semiparametric Estimation of the Marginal Treatment Effect in

Practice

Before presenting the steps used in computing the semiparametric estimate of the MTE, recall

equation (16) and make the conditioning on X explicit:

∆LIV(x, uD) =
∂E(Y |X = x, P (Z) = p)

∂p

¯̄̄̄
p=uD

= ∆MTE(x, uD).

This expression indicates that in general the computation of the MTE involves the estimation of

the partial derivative of the expectation of the outcome Y (conditional on X = x and P (Z) = p)

with respect to p. This is the method of local instrumental variables introduced in Heckman and

Vytlacil (2001b). However, since we are considering the linear and separable version of the model

of essential heterogeneity, we can use equations (B.2) and (B.3) to show that

∂E(Y |X = x, P (Z) = p)

∂p

¯̄̄̄
p=uD

= (β1 − β0)x+
∂K (p)

∂p

¯̄̄̄
p=uD

(B.4)
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Thus, in order to compute the MTE we need to estimate values for (β1 − β0) and
∂K(p)
∂p
. Notice

that without additional assumptions, the estimation of this last term requires the utilization of

nonparametric techniques.

Different approaches can be used in the estimation of (B.4). The following steps describe a

semiparametric one.75

Step 1 We first estimate the coefficients β0 and (β1 − β0) in (B.2) using a nonparametric version

of the double residual regression procedure.76 In order to do so, we start by fitting a local

linear regression (LLR) of each regressor in (B.2) on the predicted propensity score bP (z).
Notice that if nX represents the number of variables in X, this step involves the estimation

of 2 × nX local linear regressions. This is because equation (B.2) also contains terms of the

form Xk
bP (z) for k = 1, . . . , nX . We use the k-th regressor in (B.2), Xk, to illustrate the

LLR procedure. Let Xk(j) and bP (z(j)) denote the values of the k-th regressor and predicted
propensity score for the j-th individual, respectively, the latter evaluated at the Z (j) that is

observed for the individual. The estimation of the LLR of Xk on bP (z) requires obtaining the
values of {θ0(p), θ1(p)} for a set of values of p contained in the support of bP (z) such that

{θ0(p), θ1(p)} = argmin
{θ0,θ1}

NX
j=1

⎧⎪⎨⎪⎩
³
Xk(j)− θ0 − θ1( bP (z(j))− p)

´2
×Ψ(( bP (z(j))− p)/h)

⎫⎪⎬⎪⎭ ,

where Ψ(·) and h represent the kernel function and the bandwidth, respectively and where θ0

and θ1 are parameters.77 In practice, we can use the set of all values of bP (z) to define the set
of evaluation points (p) in the LLR. This allows us to estimate the predicted value of Xk for

75A FORTRAN code implementing this routine is available at jenni.uchicago.edu/underiv.
76In the textbook case Y = λ1X1 + λ2X2 + where is assumed independent of X1 and X2, a double residual

regression procedure estimates λ2 using two stages. In the first stage, the estimated residuals of regressions of Y
on X2 and X1 on X2 are computed. Let εY and εX1 denote these estimated residuals. In the second stage, λ2 is
estimated from the regression of εY on εX1 .
77The selection of optimal bandwidth is extensively studied in the nonparametric literature. In the code available

on our website two procedures computing optimal bandwidth in the context of local regressions are implemented.
The first one is the standard leave-one-out crossvalidation procedure. The second procedure is the refined bandwidth
selector described in Section 4.6 of Fan and Gijbels (1996). Our code allows the utilization of three different kernel
functions: Epanechnikov, Gaussian and Biweight kernel functions.
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each individual in the sample.78

Let bXk(j) denote the predicted value of Xk for the j-th individual. This procedure is repeated

for each of the 2× nX regressors in the outcome equations.

Step 2 Given the predicted values of the 2× nX regressors bXk (k = 1, . . . , 2× nX), we now generate

the residual for each regressor k and person j,

beXk
(j) = Xk(j)− bXk(j) with k = 1, . . . , 2× nX .

We denote by beXk
the vector of residuals (beXk

(1), beXk
(2), . . . , beXk

(N))0, and by beX the matrix
of residuals such that its k-th column contains the vector beXk

.

Step 3 As in the standard double residual regression procedure, we also need to estimate a LLR of

Y on bP (z). The same procedure as the one described in Step 1 is used in this case. Let bY (j)
denote the resulting predicted value of outcome Y for the j-th individual.

Step 4 With bY (j) in hand, we generate the residual associated with outcome Y for each person j,

beY (j) = Y (j)− bY (j).
Following the notation used before, we denote by beY the vector of residuals (beY (1), . . . , beY (N))0.

Step 5 Finally, we can estimate the values of β0 and (β1 − β0) in (B.2) from a regression of beY onbe0X . Specifically, hbβ0, ( \β1 − β0)
i
= [be0XbeX ]−1[be0XbeY ].

Heckman, Ichimura, Smith, and Todd (1998) use a similar double residual regression ar-

gument to characterize the selection bias in a semiparametric setup that arises from using

nonexperimental data.

78An alternative could be to use P as the set of evaluation points. In this case, in order to compute the predicted
value of Xk for each individual, it would be necessary to replace its value of the predicted propensity scores by the
closest value in P.
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Step 6 From equation (B.4) we observe that after obtaining the estimated value of (β1 − β0), only

∂K (p)/ ∂p remains to be estimated. However, with the estimated values of β0 and (β1− β0)

in hand, this term can be estimated using standard nonparametric techniques. To see why,

notice that we can write eY = K
³ bP (Z)´+ ev, (B.5)

where eY = Y − bβ0X − ³( \β1 − β0)X
´ bP (Z) and, as before, we assume E ³ev| bP (z),X´ = 0.

Then, it is clear from (B.5) that the problem reduces to the estimation of ∂K
³ bP (z)´. ∂ bP (z),

where K
³ bP (z)´ can be interpreted as the conditional expectation E

³eY |P (Z) = bP (z)´.
Let bϑ1 (p) denote the nonparametric estimator of ∂K (p)/ ∂p. Notice that we define this

estimator as a function of p instead of bP (z). This is because, unlike the case of the LLR
estimators described in Step 1, we now use a subset of values of bP (z) to define the set of
points (p) on which our estimator is evaluated. In particular, we use the set P to define this

set of evaluation points. As shown above, P contains the values of bP (z) for which we obtain
positive frequencies in both the D = 0 and D = 1 samples. Thus, bϑ1 (p) is computed as

{ϑ0(p), ϑ1(p)} = argmin
{ϑ0,ϑ1}

NX
j=1

⎧⎪⎨⎪⎩
³eY (j)− ϑ0 − ϑ1

³ bP (z(j))− p
´´2

×Ψ(( bP (z(j))− p)/h)

⎫⎪⎬⎪⎭ ,

where as before Ψ(·) and h represent the kernel function and the bandwidth, respectively.79

Step 7 The LIV estimator of the MTE is finally computed as follows:

∆LIV(x, uD) = ( \β1 − β0)
0x+

\∂K (p)
∂p

¯̄̄̄
¯
p=uD

= [MTE (x, uD)

and is evaluated over the set of p’s contained in P.
79The code posted on our website allows the utilization of local polynomials of higher order to approximate

K (p), and so the derivative is computed according to the selected order. It also includes the alternative of using

E
³
Y |P (Z) = bP (z)´ to compute a discrete version of the derivative. Furthermore, it allows the estimation of the

MTE under the assumption of joint normalilty of the error terms.
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B.3 The IV Weights

Let J be the instrument. For simplicity we assume that J is a scalar. The extension to the vector

case is trivial. Then, as we have shown in (19) in the text, the IV weight is:

ωJ(x, uD) =

⎛⎜⎝ E(J | P (Z) > uD,X = x)

−E(J |X = x)

⎞⎟⎠Pr(P (Z) > uD | X = x)

Cov(J,D | X = x)
(B.6)

In order to compute the weight:

Step 1 We approximate bE(J |X = x) using a linear projection, i.e., we assume J = λ0X + V where

E(V |X = x) = 0, so bE(J |X = x) = bλ0x.
Step 2 For each value of uD we generate the auxiliary indicator function 1 [P (Z) > uD] which is equal

to 1 if the argument of the function is true and 0 otherwise.

Step 3 We use linear projections to estimate E(J |X = x, P (Z) > uD). More precisely, we use

OLS to estimate the equation J(uD) = λ0J(uD)X + V using only the observations for which

1 [P (Z) > uD] = 1. Since we assume E(V |X = x, P (Z) > uD) = 0, then bE(J |X = x, P (Z) >

uD) = bλ0J(uD)x.
Step 4 Since Pr(P (Z) > uD|X = x) = Pr(1 [P (Z) > uD] = 1|X = x) we use a probit model (for each

value of uD) to estimate this probability. Let cPr(P (Z) > uD|X = x) denote the estimated

probability.

Step 5 We repeat steps 2,3 and 4 for each value of uD..

Step 6 With bE(J |X = x), bE(J |X = x, P (Z) > uD) and cPr(P (Z) > uD|X = x) in hand we can
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compute the numerator of (B.6). In order to get the denominator, we use the fact that

Z
ωJ
IV(x, uD)duD

=
1

Cov(J,D|X = x)

×
Z ⎛⎜⎝ (E (J | P (Z) > uD,X = x)− E (J | X = x))

×Pr (P (Z) > uD | X = x)

⎞⎟⎠ duD

= 1

so with the numerator in hand, it is straightforward to obtain the value of the covariance

(conditional on X).

B.4 The Treatment Parameter Weights

We use the Treatment on the Treated (TT) parameter to illustrate the computation of the treatment

parameter weights. The TT weight is:

ωTT(x, uD) =
Pr(P (Z) > uD|X = x)R
Pr(P (Z) > uD|X = x)duD

and consequently, we can use cPr(P (Z) > uD|X = x) to estimate the ωTT(x, uD). As in the case of

ωJ
IV(x, uD), with the estimated value of cPr(P (Z) > uD|X = x) in hand, we can directly obtain the

value for
R
Pr(P (Z) > uD|X = x)duD, using the fact

R
ωTT(x, uD)duD = 1.

B.5 The IV and Treatment Parameter Estimators

The MTE and the weights can be used to construct the different estimators. In particular, if ∆IV
J (x)

denotes the IV estimator obtained by using the instrument J we know that:

∆IV
J (x) =

Z
MTE (x, uD)ωJ

IV(x, uD)duD.
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Likewise,

∆TT(x) =

Z
MTE (x, uD)ωTT(x, uD)duD,

where ∆TT(x) represents the TT estimator conditional on X = x. Similar expressions exist for the

other treatment parameters. Therefore, provided with ∆LIV(x, uD) and the estimated values for the

weights we can compute b∆IV
J (x) and b∆TT(x). These estimators depend on the particular value of

X considered. In order to compute their unconditional estimated values we need to integrate X

out. More precisely, we need to compute

∆IV
J =

Z
∆IV

J (x)dFX(x)

and

∆TT =

Z
∆TT(x)dFX|D=1(x).

In practice we replace FX(·) and FX|D=1(·) by their empirical analogs bFX(·) and bFX|D=1(·) leading

to

∆IV
J =

Z
∆IV

J (x)d bFX(x),

∆TT =

Z
∆TT(x)d bFX|D=1(x).

C Yitzhaki’s Theorem (Yitzhaki, 1989)

Assume (Y,X) i.i.d., E(|Y |) <∞, E(|X|) <∞, g(X) = E(Y | X), g0(X) exists and E (|g0 (x)|) <

∞. Let μY = E(Y ) and μX = E(X). Then,

Cov(Y,X)

Var(X)
=

Z ∞

−∞
g0(t)ω(t) dt,
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where

ω(t) =
1

Var(X)

Z ∞

t

(x− μX) fX(x) dx

=
1

Var(X)
E (X − μX | X > t) Pr (X > t) .

Proof.

Cov(Y,X) = Cov (E(Y | X),X) = Cov (g(X),X)

=

Z ∞

−∞
g(t)(t− μX) fX(t) dt

Integration by parts implies that

= g(t)

Z t

−∞
(x− μX) fX(x) dx

¯̄̄̄∞
−∞

−
Z ∞

−∞
g0(t)

Z t

−∞
(x− μX) fX(x) dx dt

=

Z ∞

−∞
g0(t)

Z ∞

t

(x− μX) fX(x) dx dt,

since E (X − μX) = 0 and the first term in the first expression vanishes.

Therefore,

Cov(Y,X) =

Z ∞

−∞
g0(t)E (X − μX | X > t) Pr (X > t) dt

∴ Thus

ω(t) =
1

Var(X)
E (X − μX | X > t) Pr (X > t) . ¥

Notice that:

(i) The weights are non-negative (ω (t) ≥ 0).

(ii) They integrate to one (use an integration by parts formula)

(iii) = 0 at t = −∞,∞
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We get the formula in the text when in place of X, we use P (Z) and the domain of P (Z) is suitably

defined. We apply Yitzhaki’s result to the treatment effect model:

Y = α+ βD + ε,

E (Y | P (Z)) = α+E (β | D = 1, P (Z))P (Z)

= α+E (β | P (Z) > uD, P (Z))P (Z)

= g(P (Z)).

By the law of iterated expectations, we eliminate the conditioning on D = 1. Using our previous

results for OLS,

IV =
Cov (Y, P (Z))

Cov (D,P (Z))
=

Z
g0(t)ω(t) dt,

g0(t) =
∂ [E (β | D = 1, P (Z))]P (Z)

∂P (Z)

¯̄̄̄
P (Z)=t

,

ω(t) =

R 1
t
[ϕ−E(P (Z))] fP (ϕ) dϕ

Cov(P (Z),D)
.

Under (A-2) to (A-5) and separability, g0(t) = ∆MTE(t) but g0(t) = LIV, for P (Z) as an instrument.

D Generalized Ordered ChoiceModel with Stochastic Thresh-

olds

The ordered choice model presented in the text with parameterized, but nonstochastic, thresholds

is analyzed in Cameron and Heckman (1998) who establish its nonparametric identifiability under

the conditions they specify. Treating the Ws (or components of it) as unobservables, we obtain the

generalized ordered choice model analyzed in Carneiro, Hansen, and Heckman (2003) and Cunha,

Heckman, and Navarro (2007). In this Appendix, we present the main properties of this more
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general model.

The thresholds are now written as Qs + Cs(Ws) in place of Cs(Ws), where Qs is a random

variable. In addition to the order on the Cs(Ws) in the text, we impose the order Qs + Cs (Ws) ≥

Qs−1 + Cs−1(Ws−1), s = 2, . . . , S̄ − 1. We impose the requirement that QS̄ = ∞ and Q0 = −∞.

The latent index D∗
s is as defined in the text, but now

Ds = 1 [Cs−1(Ws−1) +Qs−1 < μD(Z)− V ≤ Cs(Ws) +Qs]

= 1[ s−1(Z,Ws−1)−Qs−1 > V ≥ s(Z,Ws)−Qs],

where s(Z,Ws) = μD(Z) − Cs(Ws). Using the fact that s(Z,Ws) − Qs < s−1(Z,Ws−1) − Qs−1,

we obtain

1 [ s−1(Z,Ws−1)−Qs−1 > V ≥ s(Z,Ws)−Qs]

= 1[V +Qs−1 < s−1(Z,Ws−1)]

−1 [V +Qs ≤ s(Z,Ws)] .

The nonparametric identifiability of this choice model is established in Carneiro, Hansen, and

Heckman (2003) and Cunha, Heckman, and Navarro (2007). We retain assumptions (OC-2) to

(OC-6), but alter (OC-1) to

(OC-1)0 (Qs, Us, V ) ⊥⊥ (Z,W ) | X, s = 1, . . . , S̄.

Vytlacil (2006b) shows that this model with no transition specific instruments (with Ws de-

generate for each s) implies and is implied by the independence and monotonicity conditions of

Angrist and Imbens (1995) for an ordered model. Define Q = (Q1, . . . , QS̄). Redefine πs(Z,Ws) =

FV+Qs(μD(Z) + Cs(Ws)) and define π(Z,W ) = [π1(Z,W1), . . . , πS̄−1(Z,WS̄−1)]. Redefine UD,s =
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FV+Qs(V +Qs). We have that

E(Y | Z,W )

= E

⎛⎜⎝ S̄X
s=1

1

⎡⎢⎣ s−1(Z,Ws−1)−Qs−1

> V ≥ s(Z,Ws)−Qs

⎤⎥⎦Ys
¯̄̄̄
¯̄̄ Z,W

⎞⎟⎠
=

S̄X
s=1

⎛⎜⎝ E (1[V +Qs−1 < s−1(Z,Ws−1)]Ys | Z,W )

−E (1[V +Qs ≤ s(Z,Ws)]Ys | Z,W )

⎞⎟⎠

=
S̄X
s=1

⎛⎜⎝ R
s−1(Z,Ws−1)
−∞ E (Ys | V +Qs−1 = t) dFV+Qs−1(t)

−
R

s(Z,Ws)

−∞ E (Ys | V +Qs = t) dFV+Qs(t)

⎞⎟⎠
=

S̄X
s=1

⎛⎜⎝ R πs−1(Z,Ws−1)
0

E (Ys | UD,s−1 = t) dt

−
R πs(Z,Ws)

0
E (Ys | UD,s = t) dt

⎞⎟⎠ .

We thus have the index sufficiency restriction that E(Y | Z,W ) = E(Y | π(Z,W )), and in the

general case ∂
∂πs
[E(Y | π(Z,W ) = π)] = E(Ys+1 − Ys | UD,s = πs). Also, notice that we have the

restriction that ∂2

∂πs∂πs0
[E(Y | π(Z,W ) = π)] = 0 if |s − s0| > 1. Under full independence between

Us and V + Qs, s = 1, . . . , S̄, we can test full independence for the more general choice model by

testing for linearity of E(Y | π(Z,W ) = π) in π.

Define

∆MTE
s,s+1(x, u) = E(Ys+1 − Ys | X = x, UD,s = u),

so that our result above can be rewritten as

∂

∂πs
E(Y | π(Z,W ) = π) = ∆MTE

s,s+1(x, πs).

Since π(Z,Ws) can be nonparametrically identified immediately from πs(Z,Ws) = Pr
³PS̄

j=s+1Dj = 1 | Z,Ws

´
we have that the above offset equality immediately implies identification of MTE for all evaluation
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points within the appropriate support.

The policy relevant treatment effect is defined analogously. Recall that Ha
s is defined as the

cumulative distribution function of μD(Z)− Cs(Ws). We have that

Ea(Ya) = Ea (E(Y | V,Q, Z,W ))

= Ea

⎛⎜⎝ S̄X
s=1

1

⎡⎢⎣ s−1(Z,Ws−1)−Qs−1

> V ≥ s(Z,Ws)−Qs

⎤⎥⎦E(Ys | V,Q,Z,W )
⎞⎟⎠

= Ea

⎛⎜⎝ S̄X
s=1

1

⎡⎢⎣ s−1(Z,Ws−1)−Qs−1

> V ≥ s(Z,Ws)−Qs

⎤⎥⎦E(Ys | V,Q)
⎞⎟⎠

=
S̄X
s=1

Ea

¡
E(Ys | V,Q){Ha

s (V +Qs)−Ha
s−1(V +Qs−1)}

¢

=
S̄X
s=1

Z ⎛⎜⎝ E(Ys | V = v,Q = q)

·{Ha
s (v + qs)−Ha

s−1(v + qs−1)}

⎞⎟⎠ dFV,Q(v, q)

=
S̄X
s=1

⎛⎜⎝ R
E(Ys | V +Qs = t)Ha

s (t)dFV+Qs(t)

−
R
E(Ys | V +Qs−1 = t)Ha

s−1(t)dFV+Qs−1(t)

⎞⎟⎠
where V , Qs enter additively, and

∆PRTE
a,a0 = Ea0(Y )−Ea(Y )

=
S̄−1X
s=1

Z ⎛⎜⎝ E(Ys+1 − Ys | V +Qs = t)

·{Ha
s (t)−Ha0

s (t)}

⎞⎟⎠ dFV+Qs(t).

Alternatively, we can express this result in terms of MTE,

Ea(Ya) =
S̄X
s=1

⎛⎜⎝ R
E(Ys | UD,s = t)H̃a

s (t)dt

−
R
E(Ys | UD,s−1 = t)H̃a

s−1(t)dt

⎞⎟⎠
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so that

∆PRTE
a,a0 = Ea0(Y )−Ea(Y )

=
S̄−1X
s=1

Z ³
E(Ys+1 − Ys | UD,s = t){H̃a

s (t)− H̃a0
s (t)}

´
dt

where H̃a
s is the cumulative distribution function of the random variable FUD,s(μD(Z)− Cs(Ws)).

E Derivation of the Weights for IV in the Ordered Choice

Model

We first derive Cov(J(Z,W ), Y ). Its derivation is typical of the other terms needed to form (30)

in the text. Defining J̃(Z,W ) = J(Z,W ) − E(J(Z,W )), we obtain, since Cov(J(Z,W ), Y ) =

E
³
J̃ (Z,W )Y

´
,

E(J̃(Z,W )Y ) = E

⎡⎢⎣J̃(Z,W ) S̄X
s=1

1

⎡⎢⎣ s(Z,Ws)

≤ V < s−1(Z,Ws−1)

⎤⎥⎦E(Ys | V,Z,W )
⎤⎥⎦

=
S̄X
s=1

E

⎡⎢⎣J̃(Z,W )1
⎡⎢⎣ s(Z,Ws)

≤ V < s−1(Z,Ws−1)

⎤⎥⎦E(Ys | V )
⎤⎥⎦

where the first equality comes from the definition of Y and the law of iterated expectations, and the

second equality follows from linearity of expectations and independence assumption (OC-1). Let

Hs(·) equal Ha
s (·) for a equal to the policy that characterizes the observed data, i.e., Hs(·) is the

cumulative distribution function of s(Z,Ws),

Ha
s (t) = Pr( s(Z,Ws) ≤ t)

= Pr(μD(Z)− Cs(Ws) ≤ t).
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Using the law of iterated expectations, we obtain

E(J̃(Z,W )Y )

=
S̄X
s=1

E

⎡⎢⎣E
⎛⎜⎝ J̃(Z,W )

⎛⎜⎝ 1[V < s−1(Z,Ws−1)]

−1[V ≤ s(Z,Ws)]

⎞⎟⎠
¯̄̄̄
¯̄̄ V

⎞⎟⎠E (Ys | V )

⎤⎥⎦
=

S̄X
s=1

Z
[E(Ys | V = v){Ks−1(v)−Ks(v)}] fV (v)dv

=
S̄−1X
s=1

Z
[E(Ys+1 − Ys | V = v)Ks(v)] fV (v)dv

where Ks(v) = E
³
J̃(Z,W ) | s(Z,Ws) > v

´
(1−Hs(v)) and we use the fact that KS̄(v) = K0(v) =

0. Now consider the denominator of the IV estimand,

E(DJ̃(Z,W )) = E

⎡⎢⎣J̃(Z,W ) S̄X
s=1

s1

⎡⎢⎣ s(Z,Ws)

≤ V < s−1(Z,Ws−1)

⎤⎥⎦
⎤⎥⎦

=
S̄X
s=1

sE
h
J̃(Z,W )1[ s(Z,Ws) ≤ V < s−1(Z,Ws−1)]

i

=
S̄X
s=1

sE

⎡⎢⎣E
⎛⎜⎝ J̃(Z,W )

⎛⎜⎝ 1[V < s−1(Z,Ws−1)]

−1[V ≤ s(Z,Ws)]

⎞⎟⎠
¯̄̄̄
¯̄̄ V

⎞⎟⎠
⎤⎥⎦

=
S̄X
s=1

s

Z
[Ks−1(v)−Ks(v)] fV (v)dv

=
S̄−1X
s=1

Z
Ks (v) fV (v)dv.

Collecting results, we obtain an expression for the IV estimand (30):

Cov(J, Y )

Cov(J,D)
=

S̄−1X
s=1

Z
E(Ys+1 − Ys | V = v)ω(s, v) fV (v)dv
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where

ω(s, v) =
Ks(v)PS̄

s=1s
R
[Ks−1(v)−Ks(v)] fV (v)dv

=
Ks (v)PS̄−1

s=1

R
Ks (v) fV (v)dv

and clearly
S̄−1X
s=1

Z
ω(s, v) fV (v)dv = 1, ω(0, v) = 0, and ω(S̄, v) = 0.

F Proof of Theorem 1

Proof. The basic idea is that we can bring the model back to a two choice set up of j versus

the “next best”option. We prove the result for the second assertion, that ∆LIV
j (x, z) recovers

the marginal treatment effect parameter. The first assertion, that ∆Wald
j (x, z[−j], z[j], z̃[j]) recovers

a LATE parameter, follows from a trivial modification to the same proof strategy. Recall that

RJ\j(z) = maxi∈J\j {Ri(z)} and that IJ\j = argmaxi∈J\j (Ri(Z)). We may write Y = YJ\j +

DJ ,j(Yj − YJ\j). We have

Pr (DJ ,j = 1 | X = x,Z = z)

= Pr
¡
Rj(zj) > RJ\j(z) | X = x,Z = z

¢
= Pr

¡
ϑj(zj) ≥ RJ\j(z)− Vj | X = x,Z = z

¢
.

Using independence assumption (B-1), RJ\j(z)− Vj is independent of Z conditional on X, so that

Pr (DJ ,j = 1 | X = x, Z = z)

= Pr
¡
ϑj(zj) ≥ RJ\j(z)− Vj | X = x

¢
.
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ϑk(·) does not depend on z[j] for k 6= j by assumption (B-2b), and thus RJ\j(z) does not depend on

z[j], and we will therefore with an abuse of notation write RJ\j(z[−j]) for RJ\j(z). Write F (·;x, z[−j])

for the distribution function of RJ\j(z[−j])− Vj conditional on X = x. Then

Pr (DJ ,j = 1 | X = x, Z = z)

= F (ϑj(zj);x, z
[−j]),

and

∂

∂z[j]
Pr (DJ ,j = 1 | X = x, Z = z)

=

∙
∂

∂z[j]
ϑj(zj)

¸
f
¡
ϑj(zj);x, z

[−j]¢ ,
where f(·;x, z[−j]) is the density of RJ\j(z[−j])− Vj conditional on X = x. Consider

E (Y | X = x,Z = z) = E
¡
YJ\j | X = x, Z = z

¢
+E

¡
DJ ,j(Yj − YJ\j) | X = x,Z = z

¢
.

As a consequence of (B-1), (B-2b), (B-3) and (B-4), we have that E
¡
YJ\j | X = x, Z = z

¢
does not

depend on z[j]. Using the assumptions and the law of iterated expectations, we may write

E
¡
DJ ,j(Yj − YJ\j) | X = x, Z = z

¢
=

Z ϑj(z)

−∞
E

⎛⎜⎝Yj − YJ\j

¯̄̄̄
¯̄̄ X = x, Z = z,

RJ\j(z
[−j])− Vj = t

⎞⎟⎠ f(t;x, z[−j]) dt

=

Z ϑj(z)

−∞
E

⎛⎜⎝Yj − YJ\j

¯̄̄̄
¯̄̄ X = x, Z [−j] = z[−j],

RJ\j(z
[−j])− Vj = t

⎞⎟⎠ f(t;x, z[−j]) dt.
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Thus,

∂

∂z[j]
E (Y | X = x,Z = z)

= E

⎛⎜⎝Yj − YJ\j

¯̄̄̄
¯̄̄ X = x, Z [−j] = z[−j],

Rj(z) = RJ\j(z)

⎞⎟⎠
·
"

∂

∂z
[j]
j

ϑj(zj)

#
f(ϑj(zj)).

Combining results, we have

∂
∂z[j]

E (Y |X = x,Z = z)
∂

∂z[j]
Pr(DJ ,j = 1|X = x, Z = z)

= E
¡
Yj − YJ\j | X = x,Z [−j] = z[−j], Rj(z) = RJ\j(z)

¢
.

Finally, noting that

E
¡
Yj − YJ\j | X = x,Z [−j] = z[−j], Rj(z) = RJ\j(z)

¢
= E

¡
Yj − YJ\j | X = x,Z = z,Rj(z) = RJ\j(z)

¢
provides the stated result. The proof for the LATE result follows from a parallel argument using

discrete changes in the instrument.
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Table 1A
Treatment Effects and Estimands as Weighted Averages

of the Marginal Treatment Effect

ATE(x) = E (Y1 − Y0 | X = x) =
∫ 1

0
∆MTE(x, uD) duD

TT(x) = E (Y1 − Y0 | X = x,D = 1) =
∫ 1

0
∆MTE(x, uD)ωTT(x, uD) duD

TUT(x) = E (Y1 − Y0 | X = x,D = 0) =
∫ 1

0
∆MTE (x, uD) ωTUT (x, uD) duD

Policy Relevant Treatment Effect (x) = E (Ya′ | X = x) − E (Ya | X = x) =
∫ 1

0
∆MTE (x, uD) ωPRTE (x, uD) duD

for two policies a and a′ that affect the Z but not the X

IVJ(x) =
∫ 1

0
∆MTE(x, uD)ωJ

IV(x, uD) duD, given instrument J

OLS(x) =
∫ 1

0
∆MTE(x, uD)ωOLS(x, uD) duD

Table 1B
Weights

ωATE(x, uD) = 1

ωTT(x, uD) =
[∫ 1

uD
f(p | X = x)dp

] 1
E(P | X = x)

ωTUT (x, uD) =
[∫ uD

0
f (p|X = x) dp

] 1
E ((1 − P ) |X = x)

ωPRTE(x, uD) =
[
FPa′ ,X(uD) − FPa,X(uD)

∆P

]

ωJ
IV(x, uD) =

[∫ 1

uD
(J(Z) − E(J(Z) | X = x))

∫
fJ,P |X (j, t | X = x) dt dj

] 1
Cov(J(Z),D | X = x)

ωOLS(x, uD) = 1 +
E(U1 | X = x,UD = uD)ω1(x, uD) − E(U0 | X = x,UD = uD)ω0(x, uD)

∆MTE(x, uD)

ω1(x, uD) =
[∫ 1

uD
f(p | X = x) dp

] [
1

E(P | X = x)

]

ω0(x, uD) =
[∫ uD

0
f(p | X = x) dp

] 1
E((1 − P ) | X = x)

Source: Heckman and Vytlacil (2005)



Figure 1. Distribution of Gains
The Roy Economy
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Figure 2. Monotonicity
The Extended Roy Economy

A. Standard Case B. Changing Z1 without Controlling for Z2 C. Random Coefficient Case
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Parameterization

(U1, U0) ∼ N (0,Σ) , Σ =
[

1 −0.9
−0.9 1
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, α = 0.67, β̄ = 0.2, γ = (0.5, 0.5) (except in Case C)
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Figure 3. IV Weight and Its Components under Discrete Instruments when P (Z) is the Instrument
The Extended Roy Economy

A. IV Weights B. E(P (Z)|P (Z) > p�) and E(P (Z))
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The model is the same as the one presented below Figure 2.

ATE = 0.2, TT = 0.5942, TUT = −0.4823 and ∆IV
P (Z) =

K−1∑
�=1

∆LATE (p�, p�+1) λ� = −0.09

∆LATE (p�, p�+1) =
E (Y |P (Z) = p�+1) − E (Y |P (Z) = p�)

p�+1 − p�
=

β (p�+1 − p�) + σU1−U0

(
φ

(
Φ−1 (1 − p�+1)

) − φ
(
Φ−1 (1 − p�)

))
p�+1 − p�

λ� = (p�+1 − p�)

K∑
i=1

(pi − E (P (Z)))
K∑

t>�

f (pi, pt)

Cov (Z1,D)
= (p�+1 − p�)

K∑
t>�

(pt − E (P (Z))) f (pt)

Cov (Z1,D)

Joint Probability Distribution of (Z1, Z2) and the Propensity Score
(joint probabilities in ordinary type (Pr(Z1 = z1, Z2 = z2)); propensity score in italics (Pr (D = 1|Z1 = z1, Z2 = z2)))

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409
0 0.3 0.01 0.03

0.6402 0.5409 0.4388
1 0.2 0.05 0.01

0.5409 0.4388 0.3408
Cov(Z1, Z2) = −0.5468



Figure 4. IV Weight and Its Components under Discrete Instruments when Z1 is the Instrument
The Extended Roy Economy

A. IV Weights B. E(Z1|P (Z) > p�) and E(Z1)
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The model is the same as the one presented below Figure 2. The values of the treatment parameters are the same as the
ones presented below Figure 3.

∆IV
Z1

=
K−1∑
�=1

∆LATE (p�, p�+1) λ� = 0.1833

λ� = (p�+1 − p�)

I∑
i=1

(z1,i − E (Z1))
K∑

t>�

f (z1,i, pt)

Cov (Z1,D)

Joint Probability Distribution of (Z1, Z2) and the Propensity Score
(joint probabilities in ordinary type (Pr(Z1 = z1, Z2 = z2)); propensity score in italics (Pr (D = 1|Z1 = z1, Z2 = z2)))

Z1\Z2 −1 0 1
−1 0.02 0.02 0.36

0.7309 0.6402 0.5409
0 0.3 0.01 0.03

0.6402 0.5409 0.4388
1 0.2 0.05 0.01

0.5409 0.4388 0.3408
Cov(Z1, Z2) = −0.5468



Table 2. The Conditional Instrumental Variable Estimator
(
∆IV

Z1|Z2=z2

)
and Conditional Local Average Treatment Effect(

∆LATE (p�, p�+1|Z2 = z2)
)

when Z1 is the Instrument (given Z2 = z2)
The Extended Roy Economy

Z2 = −1 Z2 = 0 Z2 = 1

P (−1, Z2) = p3 0.7309 0.6402 0.5409
P (0, Z2) = p2 0.6402 0.5409 0.4388
P (1, Z2) = p1 0.5409 0.4388 0.3408

λ1 0.8418 0.5384 0.2860
λ2 0.1582 0.4616 0.7140

∆LATE (p1, p2) −0.2475 0.2497 0.7470
∆LATE (p2, p3) −0.7448 −0.2475 0.2497

∆IV
Z1|Z2=z2

−0.3262 0.0202 0.3920

The model is the same as the one presented below Figure 2

∆IV
Z1|Z2=z2

=
I−1∑
�=1

∆LATE (p�, p�+1|Z2 = z2) λ�|Z2=z2 =
I−1∑
�=1

∆LATE (p�, p�+1|Z2 = z2) λ�|Z2=z2

∆LATE (p�, p�+1|Z2 = z2) =
E (Y |P (Z) = p�+1, Z2 = z2) − E (Y |P (Z) = p�, Z2 = z2)

p�+1 − p�

λ�|Z2=z2 = (p�+1 − p�)

I∑
i=1

(z1,i − E (Z1|Z2 = z2))
I∑

t>�

f (z1,i, pt|Z2 = z2)

Cov (Z1,D)
= (p�+1 − p�)

I∑
t>�

(z1,t − E (Z1|Z2 = z2)) f (z1,t, pt|Z2 = z2)

Cov (Z1,D)

Probability Distribution of Z1 Conditional on Z2 (Pr(Z1 = z1|Z2 = z2))
z1 Pr(Z1 = z1|Z2 = −1) Pr(Z1 = z1|Z2 = 0) Pr(Z1 = z1|Z2 = 1)
−1 0.0385 0.25 0.9
0 0.5769 0.125 0.075
1 0.3846 0.625 0.025



Figure 5. Conditional Expectation of Y on P (Z) and the Marginal Treatment Effect (MTE)
The Extended Roy Economy

A. E(Y |P (Z) = p) B. ∆MTE(uD)
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Outcomes Choice Model

Y1 = α + β̄ + U1 D =
{

1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = α + U0

Case I Case II Case III

U1 = U0 U1 − U0 ⊥⊥ D U1 − U0 ⊥�⊥ D
β̄ =ATE=TT=TUT=IV β̄ =ATE=TT=TUT=IV β̄ =ATE�=TT�=TUT�=IV

Parameterization

Cases I, II and III Cases II and III Case III

α = 0.67 (U1, U0) ∼ N (0,Σ) D∗ = Y1 − Y0 − γZ

β̄ = 0.2 with Σ =
[

1 −0.9
−0.9 1

]
Z ∼ N (µZ ,ΣZ)

µZ = (2,−2) and ΣZ=
[

9 −2
−2 9

]
γ = (0.5, 0.5)



Figure 6. The Local Average Treatment Effect
The Extended Roy Economy

A. E(Y |P (Z) = p) and ∆LATE(p�, p�+1) B. ∆MTE(uD) and ∆LATE(p�, p�+1)
2
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∆LATE(p�, p�+1) =
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=

p�+1∫
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∆MTE(uD)duD

p�+1 − p�

∆LATE(0.6, 0.9) = −1.17
∆LATE(0.1, 0.35) = 1.719

Outcomes Choice Model

Y1 = α + β̄ + U1 D =
{

1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = α + U0 with D∗ = Y1 − Y0 − γZ

Parameterization

(U1, U0) ∼ N (0,Σ) and Z ∼ N (µZ ,ΣZ)

Σ =
[

1 −0.9
−0.9 1

]
, µZ = (2,−2) and ΣZ=

[
9 −2
−2 9

]

α = 0.67, β̄ = 0.2, γ = (0.5, 0.5)



Figure 7. Treatment Parameters and OLS/Matching as a function of P (Z) = p
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Parameter Definition Under Assumptions (*)

Marginal Treatment Effect E [Y1 − Y0|D∗ = 0, P (Z) = p] β̄ + σU1−U0Φ
−1(1 − p)

Average Treatment Effect E [Y1 − Y0|P (Z) = p] β

Treatment on the Treated E [Y1 − Y0|D∗ > 0, P (Z) = p] β̄ + σU1−U0

φ(Φ−1(1−p))
p

Treatment on the Untreated E [Y1 − Y0|D∗ ≤ 0, P (Z) = p] β̄ − σU1−U0

φ(Φ−1(1−p))
1−p

OLS/Matching on P (Z) E [Y1|D∗ > 0, P (Z) = p] − E [Y0|D∗ ≤ 0, P (Z) = p] β̄ +
(

σ2
U1

−σU1,U0√
σU1−U0

)(
1−2p

p(1−p)

)
φ

(
Φ−1(1 − p)

)

Note: Φ(·) and φ (·) represent the cdf and pdf of a standard normal distribution, respectively. Φ−1 (·) represents the inverse of Φ(·) .

(*): The model in this case is the same as the one presented below Figure 6.



Figure 8. Marginal Treatment Effect and IV Weights using Z1 as the Instrument when
Z = (Z1, Z2) ∼ p1N(κ1,Σ1) + p2N(κ2,Σ2) for different values of Σ2

A. IV Weights B. ∆MTE (v)
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Outcomes Choice Model

Y1 = α + β̄ + U1 D =
{

1 if D∗ > 0
0 if D∗ ≤ 0

Y0 = α + U0 D∗ = Y1 − Y0 − γZ and V = − (U1 − U0)

Parameterization

(U1, U0) ∼ N (0,Σ) , Σ =
[

1 −0.9
−0.9 1

]
, α = 0.67, β̄ = 0.2

Z = (Z1, Z2) ∼ p1N(κ1,Σ1) + p2N(κ2,Σ2)

p1 = 0.45, p2 = 0.55 ; Σ1 =
[

1.4 0.5
0.5 1.4

]

Cov(Z1, γZ) = γΣ1
1 = 0.98 ; γ = (0.2, 1.4)

Table 3. IV estimator and Cov(Z2, γZ) associated with each value of Σ2

Weights Σ2 κ1 κ2 IV ATE TT TUT Cov(Z2, γZ) = γΣ1
2

ω1

[
0.6 −0.5
−0.5 0.6

] [
0 0

] [
0 0

]
0.434 0.2 1.401 −1.175 −0.58

ω2

[
0.6 0.1
0.1 0.6

] [
0 0

] [
0 0

]
0.078 0.2 1.378 −1.145 0.26

ω3

[
0.6 −0.3
−0.3 0.6

] [
0 −1

] [
0 1

] −2.261 0.2 1.310 −0.859 −0.30



Figure 9. IV Weights - The Effect of Graduating from High School
Sample of High School Dropouts and High School Graduates

White Males - NLSY79

A. Weights: Number of Siblings as Instrument B. Weights: Propensity Score as Instrument
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Y = Log per-hour wage at age 30, Z1 = Number of Siblings in 1979, Z2 = Mother is a High School Graduate

D =
{

1 if High School Graduate
0 if High School Dropout

IV Estimates
(boostrap std. errors in parenthesis - 100 replications)

Instrument Value
Number of Siblings in 1979 0.115

(0.695)
Propensity Score 0.316

(0.110)

Joint Probability Distribution of (Z1, Z2) and the Propensity Score
(joint probabilities Pr(Z1 = z1, Z2 = z2) in ordinary type; propensity score Pr (D = 1|Z1 = z1, Z2 = z2) in italics)

Z2\Z1 0 1 2 3 4
0 0.07 0.03 0.47 0.121 0.06

1.0 0.54 0.86 0.72 0.61
1 0.039 0.139 0.165 0.266 0.121

0.94 0.89 0.90 0.85 0.93
Cov(Z1, Z2) = −0.066 - Number of Observations = 1, 702



Figure 10. Treatment Parameters and IV
The Generalized Ordered Choice Roy Model under Normality: Case I

A. Z as Instrument B. W1 as Instrument
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Outcomes Choice Model
Y1 = α + β1 + U1 Ds = 1[Ws−1 < γZ − V � Ws]
Y2 = α + β2 + U2 s = 1, 2, 3
Y3 = α + β3 + U3

Parameterization

(U1, U2, U3, V ) ∼ N (0,ΣUV ) , (Z,W1,W2) ∼ N (µZW ,ΣZW ) and W0 = −∞;W3 = ∞.

ΣUV =

⎡
⎢⎢⎣

1 0.16 0.2 −0.3
0.16 0.64 0.16 −0.32
0.2 0.16 1 −0.4
−0.3 −0.32 −0.4 1

⎤
⎥⎥⎦ , µZW = (−0.6,−1.08, 0.08) and ΣZW =

⎡
⎣ 0.1 0 0

0 0.1 −0.09
0 −0.09 0.25

⎤
⎦

Cov(U2 − U1, V ) = −0.02 Cov(U3 − U2, V ) = −0.08
β1 = 0; β2 = 0.025; β3 = 0.3; γ = 1

IV Estimates and Their Components∗

Parameter Value
∆IVZ 0.1489

∆IVZ
12 0 .0117

∆IVZ
23 0 .1372

∆IVW1 0.0017
∆IVW1

12 0 .0325
∆IVW1

23 −0 .0308

Treatment Parameters and Their Values
Parameter Value

ATE12 = E (Y2 − Y1) 0.025
ATE23 = E (Y3 − Y2) 0.275

TT12 = E (Y2 − Y1|D2 = 1) 0.0271
TT23 = E (Y3 − Y2|D3 = 1) 0.1871

TUT12 = E (Y2 − Y1|D1 = 1) 0.0047
TUT23 = E (Y3 − Y2|D2 = 1) 0.2854

∗∆IVZ is decomposed as:

∆IVZ =

Z
E (Y2 − Y1|V = v) ωZ (1, v) fV (v) dv +

Z
E (Y3 − Y2|V = v) ωZ (2, v) fV (v) dv = ∆

IVZ
12 + ∆

IVZ
23

An analogous decomposition applies to ∆IVW1 .



Figure 11. Treatment Parameters and IV
The Generalized Ordered Choice Roy Model under Normality: Case II

A. Z as Instrument B. W1 as Instrument
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Outcomes Choice Model
Y1 = α + β1 + U1 Ds = 1[Ws−1 < γZ − V � Ws]
Y2 = α + β2 + U2 s = 1, 2, 3
Y3 = α + β3 + U3

Parameterization

(U1, U2, U3, V ) ∼ N (0,ΣUV ) , (Z,W1,W2) ∼ N (µZW ,ΣZW ) and W0 = −∞; W3 = ∞.

ΣUV =

⎡
⎢⎢⎣

1 0.16 0.2 −0.3
0.16 0.64 0.16 −0.32
0.2 0.16 1 −0.4
−0.3 −0.32 −0.4 1

⎤
⎥⎥⎦ , µZW = (−0.6,−1.08, 0.08) and ΣZW =

⎡
⎣ 0.1 0.092 −0.036

0.092 0.1 −0.09
−0.036 −0.09 0.25

⎤
⎦

Cov(U2 − U1, V ) = −0.02 Cov(U3 − U2, V ) = −0.08
β1 = 0; β2 = 0.025; β3 = 0.3; γ = 1

IV Estimates and Their Components†

Parameter Value
∆IVZ −1.8091

∆IVZ
12 0.2866

∆IVZ
23 -2.0957

∆IVW1 −0.4284
∆IVW1

12 0.0909
∆IVW1

23 -0.5193

Treatment Parameters and Their Values
Parameter Value

ATE12 = E (Y2 − Y1) 0.025
ATE23 = E (Y3 − Y2) 0.275

TT12 = E (Y2 − Y1|D2 = 1) 0.0283
TT23 = E (Y3 − Y2|D3 = 1) 0.1754

TUT12 = E (Y2 − Y1|D1 = 1) 0.0025
TUT23 = E (Y3 − Y2|D2 = 1) 0.2898

†See the footnote below Figure 10 for details of the decomposition of ∆IVZ . An analogous decomposition is used for ∆IVW1 .




