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ABSTRACT

Randomness in individual discovery tends to spread out productivities in a population, while learn-

ing from others keeps productivities together. In combination, these two mechanisms for knowledge

accumulation give rise to long-term growth and persistent income inequality. This paper considers

a world in which those with more useful knowledge can teach those with less useful knowledge, with

competitive markets assigning students to teachers. In equilibrium, students who are able to learn

quickly are assigned to teachers with the most productive knowledge. The long-run growth rate of

this economy is governed by the rate at which the fastest learners can learn. The income distribution

reflects learning ability and serendipity, both in individual discovery and in the assignment of stu-

dents to teachers. Because of naturally arising indeterminacies in this assignment, payoff irrelevant

characteristics can be predictors of individual income growth. Ability rents can be large when fast

learners are scarce, when the process of individual discovery is not too noisy, and when overhead

labor costs are low.
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1. Introduction

When some know more than others, it may be effi cient to assign the latter to follow

the instructions of more their more knowledgeable peers, as in Lucas [1978]. But if

the wages of knowledgeable agents are high enough, there are also incentives for less

knowledgeable agents to learn. They might be able to do this on their own, by going

through all the available information, acquiring more information, and updating. The

amount of available information is typically enormous, although very little of it may be

relevant for the job at hand. A potentially much quicker way to acquire useful knowledge

is to learn from others. Some such learning can be by simple observation. But often

it requires the participation of someone who is already in possession of the more useful

knowledge. In many environments, there are teachers and students engaged in transfers

of useful knowledge. When knowledgeable teachers are scarce one expects students to

have to pay.

This paper describes an economy in which useful knowledge accumulates as a result of

both individual discovery and diffusion across individuals. Consumption is produced by

teams of managers and workers. Everyone who is not a manager can supply labor, and

those who have somehow acquired useful knowledge can be managers. The productivity

of a manager in charge of a team of workers evolves over time as the result of a process

of random discovery that tends to cause managerial productivities to diverge. While

guiding workers to produce consumption, managers can also teach other managers or

workers what they know. Managers and workers can be students while they produce

consumption, but managers cannot be students and teachers at the same time. Teaching

is one-on-one, and so there is a constraint on how many workers and managers can learn

from more knowledgeable managers. Students have to pay teachers for the time it takes

to learn what teachers know. The assignment of students to teachers is determined in

competitive markets.

Individuals are born with a certain ability to learn, but without any useful knowledge.

They begin life as workers. Slow learners may not find it optimal to pay teachers for

the time it takes to learn something that would allow them to do better as a manager.

Suffi ciently fast learners will pay the tuition and try to learn something that allows

them to start as a manager. This takes an uncertain amount of time, and then their

own discovery process begins. Depending how productive they are at any point in time,

they may decide to teach or learn more from others. Managers whose productivities

lag behind earn very little and may find it optimal to quit and become workers again.

They lose whatever useful knowledge they do have and need to learn from others if they
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want to become managers again. Because of their comparative advantage in learning,

the equilibrium assigns fast learners to the most productive managers in the economy.

At any point in time, the state of the economy is a count of how many managers

there are with different abilities to learn and different productivity levels. Learning from

others prevents the distribution of productivities from spreading out indefinitely, and

the combination of individual discovery and learning from others causes the distribution

of productivities to shift to the right, at a pace that stabilizes in the long run. Although

the allocation of workers to managers and students to teachers is determined by a more

or less standard competitive equilibrium, the state variable in a large economy is an

infinite-dimensional capital stock, and the economy has a continuum of balanced growth

paths. These paths are indexed by the growth rate of the economy, and higher growth

rates correspond to productivity distributions with thicker right tails. Thick tails make

learning more productive. Thus the long-run growth rate depends crucially on the initial

distribution of productivity in the economy, at least in principle. But a definite predic-

tion for the long-run growth rates emerges when the initial distribution of productivities

has a bounded support (as would be the case in any finite economy): it is the lowest rate

among those that are consistent with balanced growth. This growth rate is increasing

in the variance of individual discovery rates, in the rate at which the fastest learners can

learn, and in their life expectancy. Income inequality also increases with the variance

of individual discovery rates. But a faster learning rate makes for a thinner right tail

because less knowledgeable individuals can catch up more quickly.

In this economy, income inequality is the result of several factors. Because teaching

is one-on-one, not all students can be matched with the most knowledgeable teachers.

Even among students with the same ability to learn, some will study with more knowl-

edgeable teachers than others. They will have to pay those teachers more and their

subsequent incomes will be higher. Equilibrium only requires that students of the same

type are ex ante indifferent across such assignments. The time it takes for students with

the same ability and assignment to learn is also uncertain, creating more unequal out-

comes. For managers, the individual discovery process generates further heterogeneity.

Overall, the factor that dominates the determination of inequality in the right tail of

the income distribution is variation in the ability to learn itself. With time, the effects

of differences in learning rates accumulate. Moreover, learning from others is expensive,

and only suffi ciently fast learners will consistently pay the price. Slow learners may not

particularly want to become managers, or once managers may not want to pay to learn

more. As a result, the right tail of the income distribution is almost exclusively made
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up of fast learners.

As in the data, the future income prospects of individuals in this economy are to

some extent predictable. The conditional distribution of income growth depends on how

fast a worker or a manager can learn. This contrasts with pure random growth models of

cities (Gabaix [1999]) or firms (Luttmer [2007]), and is similar to the firm growth model

proposed in Luttmer [2011]. While data on how fast people can learn is typically not

available, there are observable characteristics that correlate with future income growth.

From the perspective of the model in this paper, these observable characteristics can

be seen as proxies for the ability to learn from others. But because there is some

indeterminacy in who learns from whom, observable characteristics that are unrelated

to current productivity, and that do not reflect any kind of ability, may also predict

future income growth.

Related Literature As in the span of control model of Lucas [1978], individuals who

are more productive as managers sort into managing those who are less productive.

In Lucas [1978], this sorting is instantaneous, and mediated by the relative wages of

managers and workers. Here it takes time to learn something productive, and quitting

as a manager results in a destruction of managerial knowledge. The factor price for

managerial services and the wage of a worker still mediate the sorting process, but

becoming a manager is not instantaneous, and managers solve a stopping problem to

decide when to quit.

This paper is closely related and motivated by a more recent literature that gives

explicit and joint accounts of productive heterogeneity and long-run growth. In Luttmer

[2007, 2012], Alvarez, Buera, and Lucas [2008], Lucas [2009], König, Lorenz, and Zili-

botti [2012], Lucas and Moll [2014], and Perla and Tonetti [2014], agents randomly find

others who are more knowledgeable and imitate instantaneously when they do. With

the exception of Luttmer [2007, 2012] and König, Lorenz, and Zilibotti [2012], these

papers do not determine the long-run growth rate of the economy but only relate it

to an assumption about the thickness of the right tail of the stationary distribution of

knowledge.

An early version of the random meeting and imitation structure was developed by

Jovanovic and Rob [1989]. Randomness in who meets whom limits the speed at which

knowledge can diffuse. Here, the delay in knowledge transmission is not finding others

who know more– they are easy to find, in an instant. But it takes (an uncertain amount

of) time to learn from those individuals. Moreover, learning is not just imitation, but a
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process that requires the input of both the individual trying to learn and the individual

who has the more useful knowledge. This second feature eliminates an externality.

As argued forcefully in Boldrin and Levine [2008], imitation externalities are not an

essential ingredient of the process of long-run growth. The results in this paper show

that internalized knowledge transfers and imitation externalities are hard to distinguish

based only on their implications for income and wealth distributions.

Knowledge transfer is internalized in Chari and Hopenhayn [1991], where unskilled

workers can become skilled in using the technology of a particular vintage not only on

their own, but also by working in a team with workers who are already skilled in oper-

ating that technology. This yields a model of endogenous technology adoption, but not

one that produces analytically tractable results for the distribution of knowledge in the

economy.1 In the literature on the international diffusion of knowledge, learning by imi-

tating trading partners involves externalities while knowledge flows inside multinational

firms may not.2 This literature mostly does not give concrete answers to the question ad-

dressed in this paper: how precisely do such knowledge flows determine long-run growth

and inequality?

In a recent paper, Jovanovic [2014] does study this question in an overlapping gener-

ations economy in which the young are assigned to the old to both produce consumption

and learn. What young individuals learn depends not only on what their teachers know,

but also on an average of what all teachers know. This average effect is an externality

that is essential for growth to happen in the model, and an explicit interpretation is

not immediately clear. Here there is no such average effect but teachers with relatively

unproductive knowledge can become students instead. Together with randomness in the

individual processes of discovery, this sorting of individuals with different levels of knowl-

edge into teaching or learning is what makes long-run growth possible. The fact that

managers can exit to become workers also makes the supplies of students and teachers

respond to interest rates and beliefs, while the assignment problem in Jovanovic [2014]

is essentially static.

Outline of the Paper Section 2 describes the economy and characterizes the equi-

librium tuition schedules that can arise when students and teachers are matched in
1See Beaudry and Francois [2010] for a recent model, along similar lines, of (a one-time) technology

adoption in which unskilled workers learn by working together with skilled managers.
2For recent contributions to an extensive literature, see Antras, Garicano and Rossi-Hansberg [2006],

Nocke and Yeaple [2008], Burstein and Monge-Naranjo [2009], Alvarez, Buera and Lucas [2013], Ra-

mondo and Rodriguez-Clare [2013], and Keller and Yeaple [2013].
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competitive markets. Section 3 specializes to an economy with individuals who have

either high or low abilities to learn, and describes the conditions for a balanced growth

path. Section 4 illustrates the workings of this economy quantitatively, and Section 5

concludes.

2. Learning Ability and Uncertain Discovery

Consider an economy with a unit measure of dynastic households whose preferences over

consumption flows {Ct}t≥0 are determined by the utility function∫ ∞
0

e−ρt ln(Ct)dt.

The dynastic subjective discount rate ρ is positive. Every dynastic household is char-

acterized by an immutable ability to learn λ ∈ Λ ⊂ (0,∞). An individual household

member dies randomly at a positive rate δ and is then immediately replaced by a suc-

cessor, with the same ability to learn. The set of household types Λ is finite and the

measure of households of type λ ∈ Λ is denoted byM(λ). Newborn household members

begin life as workers who can supply one unit of labor per unit of time. Over time,

workers can learn to become managers, and managers can learn to become more pro-

ductive managers, in a manner described in detail below. At any given point in time

t, there will be a measure Mt(z|λ) ≤ M(λ) of household members who are managers

with productivity state variables in (−∞, z]. The remaining M(λ) −Mt(∞|λ) type-λ

household members are workers.

There is no aggregate uncertainty and markets are complete. The resulting risk-free

interest rate satisfies rt = ρ+ DCt/Ct.3

2.1 The Consumption Sector

Amanager in productivity state z can hire l units of labor to produce (ez/(1−α))1−α(l/α)α

units of consumption per unit of time. Wages at time t are wt, measured in units of

consumption, and so a manager in state z earns

v(t, z) = max
l

{(
ez

1− α

)1−α(
l

α

)α
− wtl

}
= vte

z (1)

3The perfect consumption insurance implications of this model are extreme. Plausible relations

between wealth and productivity are absent in this economy. As usual, market incompleteness would

present a significant analytical complication.
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from producing consumption. Here, vt can be interpreted as the factor price of one

unit of managerial services. The unit cost function for this Cobb-Douglas technology is

v1−α
t wαt , and so (1) implies vt = 1/w

α/(1−α)
t .

Managers cannot supply labor when they are employing workers, and they must

incur a fixed cost of φ ≥ 0 units of overhead labor per unit of time to remain active as

managers. The wage a manager could earn by becoming a worker again is an opportunity

cost that can be viewed as an additional fixed cost associated with being a manager.

The amount of variable labor that attains v(t, z) is (vte
z/wt)α/(1−α). Aggregating the

output of consumption across managers at the wage that clears the labor market gives4

Ct =

(
Ht

1− α

)1−α(
1− (1 + φ)Mt

α

)α
, (2)

where Ht and Mt are defined by

Ht =
∑
λ∈Λ

∫
ezMt(dz|λ), Mt =

∑
λ∈Λ

Mt(∞|λ). (3)

The total supply of labor is 1 −Mt and 1 − (1 + φ)Mt of this supply can be used as

variable labor to produce consumption. The market-clearing wage can be inferred from

the fact that, as usual, the compensation of variable labor is a fraction α of output,

wt(1− (1 + φ)Mt) = αCt. (4)

Together, (1)-(4) determine Ct, Ht, Mt, vt and wt in terms of the measure {Mt(z|λ) :

λ ∈ Λ} of managers. This measure is the state variable for this economy. Managers
can become workers in an instant and so Mt(z|λ) can jump down. But it will take

time for workers to become managers again, and so Mt(z|λ) cannot jump up. For the

purpose of determining aggregate output in this Cobb-Douglas economy, it suffi ces to

know the aggregate stock of managerial human capital Ht. In contrast, the technology

for accumulating managerial human capital to be described next depends on the entire

distribution Mt(z|λ).

Anticipating the balanced growth paths that will be constructed, suppose the distri-

bution of z − κt happens to be stationary for some κ. Then (3) implies that Ht grows

4This familiar aggregation result is a special feature of the Cobb-Douglas technology. More generally,

one can take the output of a manager in state z employing l units of labor to be ezG(1, l), where G

exhibits constant returns to scale. This is consistent with balanced growth. When G is Leontief, as in

Houthakker [1955-1956], this remains analytically tractable, although there will no longer be a single

variable Ht that represents the “aggregate stock of managerial human capital.”This would invalidate

commonly used growth accounting procedures.
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at the rate κ. It follows from (2) and (4) that consumption and wages grow at the rate

(1 − α)κ, and vαt w
1−α
t = 1 implies that vt declines at the rate ακ. As a result, vtez/wt

is stationary and so the variable employment per manager is stationary as well.

2.2 Knowledge Creation and Transmission

Workers can become managers by learning from incumbent managers. The productivities

of incumbent managers evolve stochastically, as a result of idiosyncratic productivity

shocks, and because managers can also learn from other managers. Managers can teach

workers and other managers, one-on-one, to become as productive as they are themselves.

A type-λ worker matched with a teaching manager will learn to adopt the productivity

of the teaching manager after a random time, distributed exponentially with mean 1/λ.

The time-t state zt of a type-λmanager matched with a teaching manager in state z̃t > zt

evolves according to

dzt = µdt+ σdBt + (z̃t− − zt−)dJλ,t. (5)

Bt is a standard Brownian motion, and Jλ,t is a Poisson jump process with arrival rate λ.

The Brownian motions evolve independently across managers and the Poisson jumps are

independent as well. The drift µmay be interpreted as learning-by-doing. The Brownian

increments may be the result of a changing environment that affects the usefulness of

what a manager knows how to do. Alternatively, a manager may be in charge of a

project and have to make irreversible decisions about how the project is operated.

In a large economy, the distribution of managerial human capital at any point in

time will have a support that is unbounded above because of the Brownian increments.

Combined with the fact that low-z managers can learn from high-z managers, these

Brownian increments will cause the distribution to shift to the right, indefinitely. It is

important that there is no mean-reversion in human capital, as there is, for example,

in Bils and Klenow [2000]. In Gabaix and Landier [2008], managerial skill contributes

multiplicatively to the output of a firm and the managerial skill distribution is bounded.

Here, the ability of individuals to learn λ is also bounded in the population, but the

usefulness of what managers may know is not. In this economy, it is the quality of their

knowledge, their ideas, rather than a managerial skill, that makes managers particularly

productive in directing the production of consumption.5

5One can generalize (5) by replacing z̃t−−zt− with max{z̃t−−zt−−∆, 0} for some positive ∆, as in

Luttmer [2007], and this does not induce mean reversion. Le [2014] explores an important alternative

to idiosyncratic Brownian shocks, in which trends in zt are governed by idiosyncratic Markov chains.

This yields unbounded growth even though at any point in time managerial productivities are bounded
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Workers can supply labor while they learn to become managers. Managers can also

oversee workers producing consumption while engaged in teaching or learning. But

managers who teach cannot be students at the same time.6 It is important to note

that the rate at which workers or managers learn is assumed to depend only on their

ability type λ ∈ Λ, and not on what they learn or what they may already know. This

emphasizes the fact that students can acquire useful knowledge without having to know

the entire history of thought that gave rise to that useful knowledge. It is easy to imagine

a long list of examples of obsolete or simply useless knowledge that is just as diffi cult to

acquire as knowledge that is useful. In this economy, a high z just means that a manager

in state z can produce more with a team of workers, not that learning to be like this

manager is more diffi cult. Because teaching is one-on-one, and because the supply of

managers who can teach high z is limited, not everyone can learn those high z at the

same time.

2.3 The Market for Students and Teachers

The assignment of who learns from whom is determined in competitive markets. At any

point in time t, students who want to learn from teachers in state z must pay flow tuition

Tt(z) ≥ 0, and potential teachers in state z decide whether to make themselves available

at this price or not. Managers can be on different sides of the market at different points

in time, depending on how productive they are. Students only pay for the time of their

teachers, and students who succeed in adopting the state of their teachers experience

capital gains. Markets are complete and so these capital gains can be hedged in advance.

Since there is no aggregate uncertainty, managers and workers simply maximize the

expected present value of their earnings from supplying labor, managing workers, and

teaching or learning.

Let Wt(λ) and Vt(z|λ) be the dynastic present values of the earnings, respectively,

of a worker at time t and of a manager in state z at time t, both with learning ability

λ. Workers supply labor and can choose to pay tuition and learn to become managers.

Thus Wt(λ) is bounded below by the present value of current and future worker wages.

Managers can choose at any point in time to become workers again, and hence Vt(z|λ) ≥
Wt(λ). Since wages are positive at all times, it follows thatWt(λ) and Vt(z|λ) are positive

as well. The fact that managerial profits from producing consumption are v(t, z) = vte
z

after a finite history.
6A natural assumption would be that knowledge transfer interferes with overseeing workers as well,

as it does in the random imitation environment of Lucas and Moll [2014].
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will imply that Vt(z|λ) is an increasing function of the managerial productivity state z.

A lower bound for Vt(z|λ) is the expected discounted present value of {vsezs − φws}s≥t
given zt = z, and this present value behaves like ez for large z. It follows that Vt(z|λ)

increases without bound as z becomes large. For low enough z, managerial profits are

going to be well below the wages of workers, and such unproductive managers will not be

able to earn significant or any tuition income from teaching others. Since their ability

to learn does not depend on being a manager or a worker, suffi ciently unproductive

managers will choose to become workers, and hence Vt(z|λ) = Wt(λ) for all low enough

values of z. So Wt(λ) = minz {Vt(z|λ)} can be used to recover Wt(λ) from Vt(z|λ).

With these considerations in mind, fix some time t and conjecture that Wt(λ) and

Vt(z|λ) satisfy

Vt(z|λ) is continuous in z

0 < Wt(λ) = min
z
{Vt(z|λ)}, lim

z→∞
Vt(z|λ) =∞

DVt(z|λ) ≥ 0 with equality only if Vt(z|λ) = Wt(λ)

Vt(z|λ′) ≥ Vt(z|λ) when λ′ > λ.

Implicit in these conditions is the fact that Vt(z|λ) = Wt(λ) if and only if z is at or

below some λ-specific threshold. Given these conjectures about Wt(λ) and Vt(z|λ), take

some tuition schedule Tt(z) ≥ 0 and define

St(λ) = sup
z
{λVt(z|λ)− Tt(z)} . (6)

With some abuse of terminology, call this the surplus value of a type-λ student. The

actual net expected gain from studying for a type-λ student is St(λ) − λWt(λ) if the

student is a worker, and St(λ) − λVt(z|λ) if the student is a manager in state z. Since

Vt(z|λ) ≥ Wt(λ), these net gains are always larger for workers than for managers with

the same ability to learn. Type-λ workers or managers strictly prefer not to be students

if St(λ)− λWt(λ) < 0. But then Tt(z) ≥ λWt(λ)− St(λ) > 0 for all z, since (6) implies

Tt(z) ≥ λVt(z|λ)− St(λ). So the gain from studying for a type-λ worker can be strictly

negative only if tuition is strictly positive at all z, even for arbitrarily low z, and bounded

away from zero. This possibility will be ruled out in Lemma 3. Figure 1 below displays

the value functions Vt(z|λ) for an economy with two types and Figure 2 illustrates the

equilibrium conditions that will be examined in the remainder of this section.

Since Vt(z|λ) increases without bound, suffi ciently productive managers cannot gain

from studying. If St(λ)−λVt(z|λ) < 0 then (6) implies Tt(z) ≥ λVt(z|λ)−St(z) > 0, and
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so managers who would expect negative net gains from studying can earn strictly positive

tuition. Since Vt(z|λ) is conjectured to be strictly increasing when Vt(z|λ) > Wt(λ),

essentially all managers strictly prefer to be either a student or a teacher. And if a

type-λ manager in state z strictly prefers to teach, then so do all type-λ managers in

states z̃ ≥ z.

The inequality Tt(z) ≥ λVt(z|λ) − St(λ) holds for all z and λ. If this inequality is

strict for some z and all λ, then no students of any type choose to study with teachers

in state z. Therefore, if there are managers in state z who choose to teach, then market

clearing implies that this inequality has to be an equality for some λ. Only if there

are no teachers at z can Tt(z) exceed maxλ∈Λ{λVt(z|λ)− St(λ)}. In that case, lowering
tuition by any amount is not going to induce any managers at z to become teachers.

And lowering tuition down to maxλ∈Λ{[λVt(z|λ)−St(λ)]+} ≥ maxλ∈Λ{λVt(z|λ)−St(λ)}
keeps tuition non-negative and does not make any students strictly prefer to select a

teacher in state z. That is, such a reduction in the tuition at z will not affect the value

of St(λ) as defined in (6). This implies the following lemma.

Lemma 1 The tuition schedule can be taken to be of the form

Tt(z) = max
λ∈Λ

{
[λVt(z|λ)− St(λ)]+

}
, (7)

without loss of generality.

An immediate implication of the fact that the value functions Vt(z|λ) are strictly in-

creasing when Vt(z|λ) > Wt(λ) is that the tuition schedule (7) is strictly increasing

when positive.

Type-λ managers in state z strictly prefer to teach if and only if Tt(z) > St(λ) −
λVt(z|λ), and then the equilibrium tuition schedule must be of the form (7) at z. Because

Tt(z) ≥ maxλ∈Λ{λVt(z|λ)−St(λ)} in any case, this says that type-λ managers in state z
strictly prefer to teach if and only if λVt(z|λ)− St(λ) + maxµ∈Λ {µVt(z|µ)− St(µ)} > 0.

The left-hand side of this inequality is no less than two times λVt(z|λ) − St(λ), and so

λVt(z|λ) > St(λ) suffi ces to ensure that any type-λ managers in state z strictly prefer

to teach. All suffi ciently productive managers choose to teach. There will be some type

of manager who strictly prefers to teach at z if and only if

max
µ∈Λ
{µVt(z|µ)− St(µ)} > min

λ∈Λ
{St(λ)− λVt(z|λ)}

This inequality holds automatically at any z if the surplus values St(λ) are zero, and

becomes less and less likely to hold as the surplus values St(λ) increase.
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Lemma 1 together with the definition (6) of St(z) characterizes equilibrium tuition

schedules. Starting with candidate surplus values {St(λ) : λ ∈ Λ} that do not necessarily
satisfy (6), one can simply use (7) to define Tt(z). Such a construction immediately

implies St(λ) ≥ supz{λVt(z|λ) − Tt(z)}, but the inequality can be strict. Very large
values of some St(λ) imply that the construction of Tt(z) is not affected by lowering

those St(λ).

Lemma 2 Given any {S∗t (λ) : λ ∈ Λ}, define

Tt(z) = max
λ∈Λ

{
[λVt(z|λ)− S∗t (λ)]+

}
, St(λ) = sup

z
{λVt(z|λ)− Tt(z)} .

Then Tt(z) = maxλ∈Λ {[λVt(z|λ)− St(λ)]+}.

The construction of St(λ) implies St(λ) ≤ S∗t (λ), and that then immediately implies

Tt(z) ≤ maxλ∈Λ {[λVt(z|λ)− St(λ)]+}. The reverse inequality follows because Tt(z) ≥ 0,

St(λ) ≥ λVt(z|λ)− Tt(z) for all (λ, z), and hence Tt(z) ≥ maxλ∈Λ{[λVt(z|λ)− St(λ)]+}.
Lemma 2 implies that it is without loss of generality to take the surplus values {St(λ) :

λ ∈ Λ} to be small enough so that the surplus values and the tuition schedule satisfy
(6) and (7), respectively.

2.3.1 All Worker Types are Willing to be Students

Since managers die and may choose to become workers, some type of workers will have

to be willing to be students if the population of managers is not to die out. That is,

there must be at least one type λ for which St(λ)− λWt(λ) ≥ 0. The following lemma

proves that every type of worker is willing to be a student in this economy.

Lemma 3 Suppose there are λ ∈ Λ such that St(λ) − λWt(λ) ≥ 0, and suppose

that for such λ the supply of type-λ managers is strictly positive at any z that satisfies

Vt(z|λ) > Wt(λ). Then inf{Tt(z)} = 0 and St(λ)− λWt(λ) ≥ 0 for all λ ∈ Λ.

Proof Let Λ+ = {λ ∈ Λ : St(λ) − λWt(λ) ≥ 0} and Λ− = Λ\Λ+. So Λ+ is

the set of types who anticipate non-negative gains from studying as workers, and the

claim is that Λ− = ∅. The maintained assumptions about the value functions im-
ply the existence of finite thresholds bt(λ) = min{z : Vt(z|λ) > Wt(λ)} and xt(λ) =

min {z : λVt(z|λ) ≥ St(λ), z ≥ bt(λ)}, for all λ ∈ Λ. Let x+ = min{xt(λ) : λ ∈ Λ+}
and let λ+ be any type that attains this minimum. These definitions imply that

λ+Vt(x+|λ+) − St(λ+) = 0 and therefore λ+Vt(z|λ+) − St(λ+) > 0 for all z > x+.
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Since x+ ≥ bt(λ+), there is assumed to be a positive supply of type-λ+ managers at any

z > x+. These managers strictly prefer to teach, and so there will have to be students

willing to study with managers in all states z > x+. If Λ− is non-empty, then there are

λ with St(λ)− λWt(λ) < 0, and this can only be because tuition is positive everywhere.

The types λ ∈ Λ− will never be students, not as workers, and certainly not as managers.

For type-λ+ managers positive tuition implies Tt(x+) > 0 = λ+Vt(x+|λ+) − St(λ+),

and hence St(λ+) > λ+Vt(x+|λ+) − Tt(x+). This inequality will be true as well for all

z > x+ close to x+. Therefore, type-λ+ students do not select teachers in any state

z > x+ near x+. Consider a type λ 6= λ+ in Λ+, so that xt(λ) > x+. If x+ < bt(λ) then

type-λ workers cannot learn anything from managers in the states z ∈ (x+, bt(λ)) that

would make them viable as a manager. Alternatively, xt(λ) > x+ may arise because

λVt(x+|λ) < St(λ), which implies that type-λ students will not select managers in states

z > x+ close to x+. This rules out these types as students as well. So there are no

students of any type who select teachers in the states z > x+ close enough to x+. This

means the markets for students and teachers at z > x+ close to x+ do not clear. This

is all because a non-empty Λ− implies positive tuition everywhere and types who never

want to be students. So Λ− must be empty. Tuition must be zero at x+ as well, or else

the above argument can be repeated for Λ+ = Λ.�

Because managers are subject to Brownian shocks to their productivity states, the supply

of type-λ managers will indeed be positive in any state z in which type-λ managers

strictly prefer to continue as managers. The basic intuition for Lemma 3 is the fact

that there will always be cheap teachers in an economy in which the only alternative

use of teaching time is studying. The least productive teachers can only be teaching less

productive students of their own type, and the marginal teacher does not have anything

to offer to the most productive students of the same type. This means that tuition

cannot be positive everywhere.

There are many tuition schedules of the form (7), indexed by surplus values {St(λ) :

λ ∈ Λ} that satisfy (6). In equilibrium, these surplus values must adjust to ensure the
numbers of students and teachers on each side of every market match. The equilibrium

surplus values will, of course, depend on the precise distribution of agents at a given

point in time.

2.4 Value Functions

At any point in time, the market for students and teachers establishes a tuition schedule

Tt(z) of the form (7) and associated surplus values St(λ) defined by (6). This leads to
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earnings flows and expected capital gains for the various types of workers and managers.

The value of a worker with ability λ must satisfy the Bellman equation

rtWt(λ) = wt + max {0, St(λ)− λWt(λ)}+ DtWt(λ). (8)

Workers earn wages wt and choose to study only if the net gains St(λ) − λWt(λ) are

positive. The value function Vt(z|λ) of a type-λ manager has to satisfy the Bellman

equation

rtVt(z|λ) = vte
z − φwt + max {St(λ)− λVt(z|λ), Tt(z)}+ δ[Wt(λ)− Vt(z|λ)]

+ DtVt(z|λ) + µDzVt(z|λ) +
1

2
σ2DzzVt(z|λ). (9)

The first two terms on the right-hand side constitute the net revenue from hiring workers

to produce output, and the third term represents the gains from being a teacher or a

student. At the rate δ, one generation passes and is immediately replaced by a new

generation. When this happens, the new generation begins life as a worker, and the

dynasty experiences a negative capital gain Wt(λ)− Vt(z|λ). These value functions also

have to satisfy a transversality condition that requires Vt(zt|λ) discounted back to the

initial date to converge in mean to zero as t becomes large.

2.4.1 Varying the Overhead Labor Parameter φ

The effective fixed cost for a manager is 1 + φ units of labor, in a sense that can be

made precise by showing how the value function depends on φ. In this section only,

write Wt(λ;φ) and Vt(z|λ;φ) for the value functions for type-λ workers and managers

when overhead labor is φ ≥ 0. Let Ut be the time-t present value of current and future

wages. Then Ut must satisfy

rtUt = wt + DtUt

and a transversality condition. Subtracting this from the Bellman equations (8)-(9)

shows that Wt(λ;φ)− Ut and Vt(z|λ;φ)− Ut must satisfy the same Bellman equations,
with three modifications: the wage wt disappears from (8), the fixed cost −φwt in (9)
is replaced by −(1 + φ)wt, and the surplus values St(λ) that appear in the tuition

schedule (7) and in the Bellman equation (9) are replaced by St(λ) − λUt. Note that
vte

z−(1+φ)wt = (1+φ)[vte
z−ln(1+φ)−wt], and divide the analog of (8)-(9) forWt(λ;φ)−Ut

and Vt(z|λ;φ)− Ut by 1 + φ. The resulting Bellman equations then imply

Wt(λ;φ)− Ut = (1 + φ) [Wt(λ; 0)− Ut] ,
Vt(z|λ;φ)− Ut = (1 + φ) [Vt(z − ln(1 + φ)|λ; 0)− Ut] ,

(10)
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for all λ ∈ Λ. This says that one can infer the value functions for arbitrary φ ≥ 0 from

those for φ = 0, simply by shifting these value functions to right by ln(1+φ), multiplying

the result by 1 + φ, and subtracting φUt. In particular, exit thresholds computed for

φ = 0 shift to the right by ln(1 + φ) for alternative values φ of these overhead labor

costs.

2.5 Equilibrium and a Generic Indeterminacy

At any point in time t, there are measures Mt(z|λ) that describe how the managers

of the various types λ are distributed across the productivity states z. The number

of type-λ workers is M(λ) −Mt(∞|λ). These measures can change in an instant only

when a positive mass of managers quits. This may happen at some initial date, but

not subsequently because there is no aggregate uncertainty. The supplies of managers

and workers at time t determine the output of aggregate consumption Ct and the factor

prices vt and wt. Beliefs about future factor prices {vs, ws}s>t, and future surplus values
{Ss(λ) : λ ∈ Λ}s>t, together with tuition schedules given by (7), determine the time-t
value Wt(λ) of a type-λ worker and the time-t values Vt(z|λ) of a type-λ manager in

state z, for all λ ∈ Λ and all z. The market for students and teachers at time t then

determines the surplus values {St(λ) : λ ∈ Λ}, the associated tuition schedule, and the
assignment of students and teachers at time t. Together with the productivity dynamics

(5), this assignment pins down how the measures Mt(z|λ) are evolving at time t, and

therefore the prices that will be realized in future factor markets and future markets for

students and teachers. In a perfect foresight equilibrium, these prices have to match the

beliefs formed at time t.

One expects a perfect foresight equilibrium to be essentially unique. The technologies

for producing consumption and for transferring useful knowledge exhibit constant returns

to scale, and preferences over consumption sequences have indifference curves that are

strictly convex. No formal proof will be attempted here. The assignment of students

to teachers will certainly not be unique: at any point in time, there is a continuum

of teachers indexed by their productivity states z, and only a finite number of student

types λ ∈ Λ. This means students are going to have to be indifferent across teachers

with different z, and this implies an assignment that is to some extent random. This will

matter for the life histories of individuals in this economy, even though ex ante everyone

of a given type faces the same possibilities. This type of indeterminacy is inherent in any

environment in which students are more similar than their teachers, and it is a source

of ex post income inequality. Random assignment of like students is only one possible
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mechanism for resolving this indeterminacy. Equilibrium implies that individuals who

only differ in terms of payoff irrelevant characteristics are equally wealthy ex ante. But

their investment in learning from others and their ex post income histories may very

well be correlated with these payoff irrelevant characteristics. An example of such an

assignment will be sketched below.

Solving for the perfect foresight equilibrium amounts to finding a fixed point in a

space of value functions and productivity measures indexed by time. Finding these value

functions and productivity measures requires solving systems of interrelated partial dif-

ferential equations indexed by equilibrium factor prices and surplus values: the Bellman

equations (8)-(9) and the Kolmogorov forward equations that govern the productivity

distributions. This is a task that involves confronting approximation and convergence

questions that remain unanswered in the existing literature. The rest of the paper will

focus instead on balanced growth paths. These balanced growth paths are much more

tractable: partial differential equations become ordinary differential equations. More-

over, the assumed Cobb-Douglas technology makes it possible to solve these differential

equations analytically (analytical solutions are also available if the technology for pro-

ducing consumption is Leontief.)

3. Balanced Growth in a Two-Type Economy

The assignment of students to teachers is trivial in an economy with only one type

of student. And such an economy would fail to account for the fact that there are

observable characteristics that can predict future earnings. A two-type economy with

Λ = {β, γ} and γ > β > 0 is suffi ciently rich to illustrate the assignment problem and is

amenable to calibration. Conjecture that such an economy has a balanced growth path

with a growth rate κ, to be determined, that makes the cross-sectional distribution of

zt − κt independent of time. Aggregate consumption and wages then grow at the rate
(1−α)κ and the implied interest rate is rt = ρ+ (1−α)κ. Write θ = µ− κ for the drift
of zt − κt and let {m(·|λ) : λ ∈ Λ} be the stationary density of this de-trended state
variable, normalized so that m(z|λ) integrates to the supply of type-λ managers.

3.1 Value Functions

Given the factor prices wt = we(1−α)κt and vt = ve−αt, conjecture further that the value

functions Wt(λ), Vt(·|λ), and the tuition schedules Tt(·) are of the form

[Wt(λ), Vt(z + κt|λ), St(λ), Tt(z + κt)] e−(1−α)κt = [W (λ), V (z|λ), S(λ), T (z)] .
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Note well that z now represents the state of a manager de-trended by −κt. With this
conjecture, the Bellman equation (8) for type-λ workers simplifies to

W (λ) = max

{
w

ρ
,
w + S(λ)

ρ+ λ

}
. (11)

This means that the value of a type-λ worker may exceed the present value of wages,

but only if the surplus value S(λ) is large enough– more precisely, if and only if S(λ)/λ

exceeds w/ρ. The balanced growth version of the Bellman equation (9) for a type-λ

manager becomes

(ρ+ δ)V (z|λ) = vez − φw + δW (λ) + max {S(λ)− λV (z|λ), T (z)}

+ θDV (z|λ) +
1

2
σ2D2V (z|λ). (12)

This differential equation has to hold for all z at which managers strictly prefer to

continue as managers. In particular, this means that V (z|λ) has to be smooth at any

thresholds where type-λ managers switch between studying and teaching. As in Lemma

2, the tuition schedule can be taken to be

T (z) = max
λ∈Λ

{
[λV (z|λ)− S(λ)]+

}
. (13)

The option to become a worker again means that V (z|λ) ≥ W (λ) for any z. As already

argued, managers with suffi ciently low productivities will find it optimal to become

workers again. This implies thresholds b(λ) so that type-λ managers strictly prefer to

continue as managers if and only if z > b(λ). By construction, W (λ) = V (z|λ) for all

z ≤ b(λ) and optimality of the exit decision of a type-λ manager requires that V (z|λ)

is differentiable at b(λ). This implies the familiar value-matching and smooth-pasting

conditions

W (λ) = V (b(λ)|λ), 0 = DV (b(λ)|λ) (14)

for both λ ∈ {β, γ}.
Inserting the tuition schedule (13) into the Bellman equation (12) results in a system

of piecewise linear second-order differential equations for {V (z|λ) : λ ∈ Λ} with bound-
ary conditions implied by (11) and (14), and parameterized by the factor prices v and

w and by the surplus values {S(λ) : λ ∈ Λ}. A recipe for constructing value functions
{V (z|λ) : λ ∈ Λ} is to conjecture segments of (b(λ),∞) on which the types of man-

agers who match as students and teachers do not change. The second-order differential

equation (12)-(13) then remains linear and can be solved explicitly on these segments.

The resulting solutions will depend on boundary values and can be smoothly pasted

together, and then (14) can be used to find the optimal exit thresholds b(λ).
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3.1.1 Teaching Thresholds

More can be said about who teaches whom. Consumption cannot be produced without

managers, and managers die. So there has to be at least one type of worker who is

willing to study in equilibrium. Lemma 3 then implies that S(λ) − λW (λ) ≥ 0 for

both λ ∈ {β, γ}. Because the value functions V (z|λ) are increasing and unbounded

above, it must be that the gains from studying for a type-λ manager S(λ)− λV (z|λ) ≤
S(λ)− λW (λ) decrease monotonically in z and become negative for large enough z. On

the other hand, the tuition such a manager can earn is increasing and unbounded above.

There are therefore thresholds x(λ) ≥ b(λ), defined by

S(λ)− λV (x(λ)|λ) = T (x(λ)),

so that type-λ managers strictly prefer to teach if and only if z > x(λ). An immediate

consequence of γ > β and V (z|γ) ≥ V (z|β) is γV (z|γ)−βV (z|β) > (γ−β)V (z|β). This

gap will become large for large z, simply because V (z|β) increases without bound. Thus

type-γ students determine the tuition schedule for all large enough z. More specifically,

there must be a threshold y ≥ max{x(β), x(γ)}, defined by

y = sup{z : T (z) > γV (z|γ)− S(γ)},

so that teachers in states z > y only teach type-γ students. If γV (z|γ) − S(γ) crosses

βV (z|β)− S(β) only once, then teachers below y teach only type-β students.

3.1.2 Scaling Properties and an Equilibrium Condition

The value functions and their associated thresholds are functions of the factor prices

[v, w] and the surplus values [S(β), S(γ)]. Two scaling properties help characterize this

dependence. First, dividing the Bellman equations (11)-(14) by w simply expresses the

value functions in units of labor instead of in units of consumption. So [v, S(β), S(γ)]/w

pins down the value functions [V (z|β), V (z|γ)]/w. Second, multiplying v by the constant

e∆ only affects the Bellman equation (11)-(14) by changing the managerial flow revenues

from producing consumption from vez to vez+∆. Such a multiplication therefore shifts

both V (z|β) and V (z|γ) to the left by ∆. In particular, multiplying v by e∆ reduces the

thresholds b(λ), x(λ) and y by ∆, but leaves the variable profits veb(λ)/w, vex(λ)/w and

vey/w at these thresholds unchanged.

These scaling properties imply that the Bellman equation maps the surplus values

[S(β), S(γ)]/w into the threshold gaps y−b(β), y−b(γ), y−x(β), and y−x(γ). Changing
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the level of v/w simply shifts the value functions and their thresholds, and so the gaps

between the thresholds can only depend on [S(β), S(γ)]/w. When v/w is replaced by

vey/w using the threshold y implied by v/w, the new threshold above which teachers

only teach type-γ students is 0 by construction. In other words, forcing this threshold to

be 0 given [S(β), S(γ)]/w allows one to back out vey/w. The Bellman equation therefore

implies the equilibrium condition

[S(β), S(γ)]/w → [y − b(β), y − b(γ), y − x(β), y − x(γ), vey/w] . (15)

The surplus values [S(β), S(γ)]/w determine the gaps between the thresholds, as well

as the variable profits vey/w of the marginal teacher of type-γ students (and hence also

the variable profits at all other thresholds.) Of course, given v/w this just pins down

the threshold y. But the map (15) does not depend on v/w, and it will turn out to be

convenient to express the overall equilibrium conditions in terms of vey/w.

The map (15) does depend on the overhead labor parameter φ. As already argued in

(10), the overhead labor parameter φ shifts thresholds computed for zero overhead labor

to the right by ln(1+φ). So the threshold gaps do not depend on φ, and veb(λ)/w, vex(λ)/w

and vey/w are proportional to 1 + φ, holding fixed the surplus values [S(β), S(γ)]/w.

3.1.3 Only Two Possible Scenarios

Recall from Lemma 3 that S(λ)−λW (λ) ≥ 0. Workers of both types are willing to study.

The Bellman equation for workers (11) implies that this is equivalent to S(λ)/λ ≥ w/ρ,

and both inequalities are strict at the same time. Workers strictly prefer to be students

if and only if S(λ)/λ exceeds w/ρ, and then the value W (λ) of being a worker exceeds

w/ρ. An implication of the original definition (6) of these surplus values is that S(λ)/λ

must be increasing in λ. So fast learners strictly prefer to study as workers when slow

learners do, and slow learners do not if fast learners do not. This suggests there are

three possible scenarios: both types of workers strictly prefer to study, slow learners are

indifferent while fast learners strictly prefer to study, and both types are indifferent. But

this last scenario is not possible. If both types of workers are indifferent students, then

S(λ) = λW (λ) = λw/ρ for both λ, and this is inconsistent with V (z|γ) > V (z|β) > w/ρ

and the definition (6) of S(λ).

On the other hand, if both S(β) − βW (β) and S(γ) − γW (γ) are strictly positive,

then all workers choose to be students. Managers who do not teach also choose to be

students. Market clearing then immediately implies that half of the population is a

teacher and half a student. Because only managers can teach, this implies that at least
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half the population must be a manager. Attempting to relate such a scenario to data

then requires the use of a very broad notion of who is a manager. The more interesting

scenario arises when S(γ)− γW (γ) > 0 = S(β)− βW (β), so that workers who are fast

learners choose to be students, while slow learners may or may not. In this scenario

there is no restriction on how small the population of managers can be equilibrium.

3.2 Abundant Type-β Households

Consider, therefore, the scenario in which all type-γ workers and only some type-β

workers try to become managers. An example of the type of value functions and of the

assignment of students to teachers that arises in this scenario is shown in Figures 1 and

2. Since type-β workers have to be indifferent, the Bellman equation for workers (11)

implies

S(β) = βW (β), W (β) =
w

ρ
. (16)

The ex ante value of type-β workers is simply the present value of their labor income.

Some type-β workers may study and become managers, with heterogeneous initial pro-

ductivity states determined by who their teachers were. But the tuition they pay absorbs

all the expected gains, and many may be worse off ex post. Type-β managers never

choose to be students, because V (z|β) > W (β) implies S(β) − βV (z|β) < 0. Thus the

threshold at which type-β managers become teachers is simply x(β) = b(β). In contrast,

S(γ) > γW (γ) combined with (11) implies

W (γ) =
w + S(γ)

ρ+ γ
, (17)

and this will exceed w/ρ precisely when S(γ) > γW (γ). Relative to type-β workers,

type-γ workers earn rents from their ability to learn fast. The payoffs of being a student

are uncertain for both types of workers, but type-γ workers have a cushion and more

of them will gain ex post. Since S(γ) > γV (z|γ) for z > b(γ) close enough to b(γ),

some type-γ managers will also be students, and the threshold at which they become

teachers will satisfy x(γ) > b(γ). In this scenario, the thresholds are b(β) < y and

b(γ) < x(γ) < y, where, recall, y is the defined to be the highest value of z selected by

type-β students. For z ≥ y, type-γ students determine the tuition schedule (7). Thus y

is the point where both types of students are willing to pay the same tuition,

γV (y|γ)− S(γ) = βV (y|β)− S(β). (18)

To continue the construction, conjecture now that βV (z|β)− S(β) and γV (z|γ)− S(γ)

cross only once, at z = y. Then type-β students set the tuition for all z < y. This
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means that type-γ managers teach type-β students when they switch from studying to

teaching at x(γ). The threshold x(γ) must therefore satisfy

S(γ)− γV (x(γ)|γ) = βV (x(γ)|β)− S(β). (19)

The Bellman equation (12) has to hold at x(γ) and y, but smooth solutions that can

be constructed on the open intervals (b(β), y), (b(γ), x(γ)), (x(γ), y) and (y,∞) will not

automatically satisfy the differential equation (12) at x(γ) and y. Forcing the solution

to be continuous and differentiable at x(γ) and y gives rise to the boundary conditions

lim
z↑x(γ)

[
V (z|γ)

DV (z|γ)

]
= lim

z↓x(γ)

[
V (z|γ)

DV (z|γ)

]
(20)

lim
z↑y

[
V (z|λ)

DV (z|λ)

]
= lim

z↓y

[
V (z|λ)

DV (z|λ)

]
, λ ∈ {β, γ} (21)

With continuity and differentiability imposed, twice differentiability is implied because

the solutions on the open intervals already satisfy (12). As in more familiar stopping

problems (Dixit and Pindyck [1994]), the optimal exit thresholds b(β) and b(γ) must

satisfy the value-matching and smooth-pasting conditions

W (λ) = V (b(λ)|λ), 0 = DV (b(λ)|λ), λ ∈ {β, γ}. (22)

To summarize, the differential equation for V (z|β) and V (z|γ) is (12)-(13). The values of

S(β) and W (β) are simply given by (16). The surplus value S(γ) > γw/ρ immediately

pins down W (γ) via (17). This then provides the initial values needed for the value-

matching conditions in (22). The remaining boundary conditions are (18)-(21), and the

second half of (22).

3.2.1 Constructing The Value Functions

The assumed single-crossing property means that the solution for V (z|β) is governed by

(12) with T (z) = βV (z|β) − S(β) on (b(β), y) and T (z) = γV (z|γ) − S(γ) on (y,∞).

On both segments, the general solution is a particular solution plus a linear combination

of the two solutions to the homogeneous equation. One can verify that one of the

homogeneous solutions on (y,∞) explodes relative to ez and this cannot be part of the

solution because the V (z|β) has to converge to a present value that scales with ez when

z becomes large. This leaves three undetermined coeffi cients. The solution for V (z|γ) is

governed by (12) with S(γ) − γV (z|γ) > T (z) on (b(γ), x(γ)), T (z) = βV (z|β) − S(β)

on (x(γ), y), and T (z) = γV (z|γ)− S(γ) on (y,∞).
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Figure 1 The value functions V (z|λ), λ ∈ {β, γ}
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Figure 2 Assignment when S(γ)− γW (γ) > 0 = S(β)− βW (β)
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Again, the homogeneous equation has two solutions on each of these segments, and

on (y,∞) one of them can be ruled out because it would cause the value function

to diverge from a present value that scales with ez, for large z. This results in five

undetermined coeffi cients. It is easy to guess particular solutions on the open intervals

(b(β), y), (b(γ), x(γ)), (x(γ), y) and (y,∞): they can be taken to be present values of

flow profits calculated as if the differential equation holds throughout (−∞,∞). So now

we have eight undetermined coeffi cients, and the four unknown thresholds b(β), b(γ),

x(γ), and y. To determine these coeffi cients and thresholds requires twelve boundary

conditions. These are provided by (18)-(22).

3.2.2 An Equilibrium Restriction on Thresholds and Relative Prices

The scaling properties of the value function say that [S(β), S(γ)]/w determines vey/w

and the thresholds relative to y, as in (15). Here, the surplus value of type-β students

is fixed at S(β)/w = β/ρ. So the factor price vey/w of the marginal teacher of type-

γ students and the threshold gaps [y − b(β), y − b(γ), y − x(γ)] really only vary with

S(γ)/w. Put differently, the Bellman equation implies that there is a one-dimensional

curve in the space of threshold gaps [y − b(β), y − b(γ), y − x(γ)] and relative prices

[vey, S(γ)]/w that is consistent with an equilibrium value function and tuition schedule.

It is convenient to parameterize this curve by picking values for y − x(γ) and backing

out [y − b(β), y − b(γ)] and [vey, S(γ)]/w,

y − x(γ) 7→ [y − b(β), y − b(γ), vey/w, S(γ)/w] . (23)

The boundary conditions for V (z|β) and V (z|γ) give rise to twelve equations that are

linear in eight undetermined coeffi cients and two relative prices [vey, S(γ)]/w. So this

linear system is overdetermined by two equations. But this system also depends non-

linearly on the three threshold gaps [y − b(β), y − b(γ), y − x(γ)]. Given y − x(γ), the

two gaps y − b(β) and y − b(γ) can be varied to make the linear system consistent. In

this way, the problem of finding the curve (23) can be reduced to solving two non-linear

equations in y− b(β) and y− b(γ), given y− x(γ). The factor price vey/w will turn out

to be an increasing function of the gap y − x(γ).

3.3 The Kolmogorov Forward Equations

Continue with the scenario in which S(β) = βW (β), so that x(β) = b(β). Fix thresholds

b(β) < y and b(γ) < x(γ) < y, with b(β) < x(γ) because of the conjectured single-

crossing property of the tuition flows λV (z|λ)−S(λ). Then type-β managers in (b(β), y)
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and type-γ managers in (x(γ), y) teach type-β students, and both types of managers in

(y,∞) teach type-γ students. Type-γ managers in (b(γ), x(γ)) are students.

Setting the time derivative of the density of type-β managers to zero, the Kolmogorov

forward equation for the stationary density m(z|β) becomes

δm(z|β) = −θDm(z|β) +
1

2
σ2D2m(z|β) +


βm(z|β), z ∈ (b(β), x(γ))

β[m(z|β) +m(z|γ)], z ∈ (x(γ), y)

0, z ∈ (y,∞)

.

(24)

By teaching type-β students, type-β managers in (b(β), y) teach are in a sense replicating

themselves at the rate β. Type-γ managers in (x(γ), y) also teach type-β students,

adding a flow βm(z|γ). Teaching type-γ students produces more type-γ managers, but

no additional type-β managers in (y,∞). Type-β managers exit and become workers

again when their productivity state crosses b(β) from above. This gives rise to the

boundary condition

0 = m(b(β)|β) (25)

(see Cox and Miller [1966]). Similarly, the stationary densitym(z|γ) for type-γ managers

has to satisfy

δm(z|γ) = −θDm(z|γ) +
1

2
σ2D2m(z|γ) +


−γm(z|γ), z ∈ (b(γ), x(γ))

0, z ∈ (x(γ), y)

γ[m(z|β) +m(z|γ)], z ∈ (y,∞)

.

(26)

Type-γ managers in (b(γ), x(γ)) are students, and they transition into productivity states

to the right of this interval at the rate γ. Type-γ managers in (x(γ), y) are teachers of

type-β students. In (y,∞), all managers are teachers of type-γ students. Since there

is one student per teacher, the flow of new type-γ managers with productivity states in

(y,∞) is γ times the number of teachers in this range. These teachers can be of either

type. Exit at b(γ) produces the boundary condition

0 = m(b(γ)|γ). (27)

A further set of boundary conditions is implied by the requirement that the flow to the

left is continuous everywhere on (b(β),∞) and (b(γ),∞). A discontinuity would imply

entry or exit at interior points of these intervals. This continuous-flow requirement says

that

−θm(z|λ) +
1

2
σ2Dm(z|λ) is continuous at x(γ) and y, for λ ∈ {β, γ}. (28)
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The equations (25)-(28) define a two-dimensional homogeneous system of piecewise linear

second-order differential equations. Both types of managers teach students of the other

type, and so the differential equations are interrelated. The system is autonomous,

except for the location of the thresholds b(β), b(γ), x(γ) and y. Because of this, the

implied type-β and type-γ stationary densities for z−y only depend on the gaps y−b(β),

y−b(γ), and y−x(γ). The scale of the solution is clearly indeterminate. It is determined

elsewhere, by a market clearing condition.

3.4 Constructing Stationary Densities

The differential equation (25)-(28) can be solved for all high enough balanced growth

rates κ. The solution is explicit. First, note that the differential equation (24) form(z|β)

on (x(γ), y) and the differential equation (26) for m(z|γ) on (y,∞) are inhomogeneous

equations on these intervals, with inhomogeneous termsm(z|γ) andm(z|β), respectively.

A particular solution to (24) on (x(γ), y) is simply−m(z|γ), because the term β[m(z|β)+

m(z|γ)] equals zero for that solution, and −m(z|γ) has to solve the second equation in

(26). Similarly, −m(z|β) is a particular solution to (26) on (y,∞). On every interval, the

homogeneous parts of (24) and (26) are linear second-order differential equations with

constant coeffi cients, and this implies a pair of exponential solutions for both densities

on each of the three intervals. If these exponential solutions are distinct, then one can

combine these homogeneous solutions with the two particular solutions to construct a

twelve-dimensional linear space of solutions. The boundary conditions (25) and (27) at

b(β) and b(γ) provide two linear restrictions. The continuity requirements (28) at x(γ)

and y provide four more linear restrictions. Thus we are left with a six-dimensional

linear space of solutions.

Conjecture now that there is a solution for which m(z|β) is in fact differentiable on

(b(β),∞), and m(z|γ) on (b(γ),∞). This adds two differentiability restrictions at both

x(γ) and y. These restrictions are also linear, and they reduce the space of solutions down

to a two-dimensional linear space. One dimension is simply the scale of the solution.

To see where the remaining restriction comes from, note that (24) is homogeneous on

(y,∞), with solutions of the form e−ω±z, where ω± solves the characteristic equation

0 = θω± + 1
2
σ2ω2

± − δ. The roots are ω± = −(θ/σ2) ±
√

(θ/σ2)2 + δ/(σ2/2). These

roots are real and distinct, and a positive δ implies ω+ > 0 > ω−. The negative root

would imply that |m(z|β)| → ∞, and so the coeffi cient on e−ω−z must be zero. This
integrability condition is the remaining linear restriction, suggesting a stationary density

that is, given the assumed differentiability, unique up to scale.
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Figure 3 The Stationary Densities m(z|λ), λ ∈ {β, γ}

Ensuring that this solution is well defined requires m(z|γ) to be integrable on (y,∞)

as well. The homogeneous equation for (26) on this interval again has solutions of the

form e−ζ±z, where ζ± now solves the characteristic equation 0 = θζ± + 1
2
σ2ζ2

± + γ − δ.
The roots of this quadratic equation are ζ± = −(θ/σ2) ±

√
(θ/σ2)2 − (γ − δ)/(σ2/2).

Suppose γ > δ so that type-γ students can learn faster than they die. Suppose further

that κ > µ so that θ < 0. Under these conditions, if the two roots ζ± are real, then they

are both positive. Complex roots result in densities that are not of one sign and must

therefore be ruled out. The condition for real roots is (θ/σ2)2 ≥ (γ − δ)/(σ2/2). Given

θ = µ− κ < 0, this is equivalent to

κ ≥ µ+ σ
√

2(γ − δ). (29)

The two roots ζ± are distinct if and only if this inequality is strict. The boundary

conditions, integrability conditions, and the assumed differentiability of the stationary

density pin down a unique solution when ζ+ and ζ− are indeed distinct. But when these

two roots merge, the dimension of the linear space of general solutions is reduced by

one, suggesting that it might not be possible to find a differentiable solution. In fact, it

can be shown that letting κ approach its lower bound (29) from above, and thus let ζ+

and ζ− converge to ζ =
√

(γ − δ)/(σ2/2), results in a solution that remains well defined

and differentiable.
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Proposition 1 Suppose γ > δ > 0 and fix some balanced growth rate κ that satisfies

(29). Also fix some thresholds b(β) < y and b(γ) < x(γ) < y. Then the Kolmogorov

Forward equations can be solved for a differentiable stationary density [m(z|β),m(z|γ)]

that is unique up to scale. The density for z− y depends only on y− b(β), y− b(γ), and

y − x(γ).

A stationary density constructed as in Proposition 1 for a given κ and given thresholds

implies certain aggregate measures of type-β and type-γ individuals. Market clearing

conditions have to be imposed to ensure that these match M(β) and M(γ). Type-β

students are indifferent across teachers in (b(β), y) and type-γ students across teachers

in (y,∞). Market clearing therefore only requires that the overall numbers of students

and teachers match. This gives rise to the conditions

M(β)−
∫ ∞
b(β)

m(z|β)dz ≥
∫ y

b(β)

m(z|β)dz +

∫ y

x(γ)

m(z|γ)dz, (30)

M(γ)−
∫ ∞
x(γ)

m(z|γ)dz =

∫ ∞
y

[m(z|β) +m(z|γ)]dz. (31)

In the light of Proposition 1, these market clearing conditions only depend on the gaps

y − b(β), y − b(γ), and y − x(γ). The left-hand sides of (30)-(31) are the numbers

of potential type-β and actual type-γ students, respectively. They are all workers and

managers who are not teachers. The right-hand side of (30) is the aggregate of type-β

teachers in (b(β), y) and type-γ teachers in (x(γ), y), all of whom teach type-β students.

This market clearing condition can be a strict inequality because type-β workers are

indifferent between studying or not. The right-hand side of (31) is the number of type-β

and type-γ managers in (y,∞), all of whom teach type-γ students. These two market

clearing conditions add up to the requirement that the number of type-β teachers in

(b(β),∞) and the number of type-γ teachers in (x(γ),∞) is no more than half the total

population M(β) + M(γ). The total number of teachers can be less than half of the

overall population, and much less ifM(β) is large. One can think of (31) as determining

the scale of [m(z|β),m(z|γ)], and of (30) as a side condition that amounts to a lower

bound on how large the supply of type-β households must be for type-β workers to be

indifferent students in equilibrium.7

7In the alternative scenario in which type-β workers strictly prefer to be students, (30) has to hold

with equality. Proposition 1 determines [m(z|β),m(z|γ)] up to scale, and so market clearing in that

scenario implies an equilibrium restriction on the possible threshold gaps. But the equality of S(β) and

βW (β) is no longer an equilibrium condition.
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3.4.1 Exit Rates

The exit rate of type-λ managers is given by

type-λ exit rate = δ +
1
2
σ2Dm(b(λ)|λ)∫∞
b(λ)

m(z|λ)dz
.

The first term is the random exit rate, and the second is the flow of type-λ managers

who cross the exit threshold b(λ) from above, relative to the total number of type-λ

managers. Stationarity requires that the flows of exiting and entering managers balance

for each type. By integrating (24) and (26), imposing the boundary conditions (25),

(27) and (28), and using the market clearing conditions (30)-(31), one can verify that

this is not an extra condition for stationarity but implied by those already given.

3.4.2 Sorting on Payoff-Irrelevant Characteristics

Observe that the forward equations (24) and (26) are silent about who exactly is assigned

to learn from whom. For example, type-γ students are indifferent across all teachers in

(y,∞). To determine stationary distributions, one does not need to know which type-γ

workers or which type-γ managers in (b(γ), y) are assigned to teachers in some particular

state z > y, just that all teachers in states z > y are matched with one of those students.8

Given a particular mechanism for assigning students to teachers, one can say more. For

example, suppose there is a payoff-irrelevant individual characteristic ψ ∈ Ψ, with Ψ

some finite ordered set. Managers and workers are then of types (λ, ψ) ∈ Λ × Ψ, and

one possible mechanism for assigning, say, type-(γ, ψ) managers in states z ∈ (b(γ), y) to

teaching managers in states z ∈ (y,∞) is to partition (y,∞) into a number of segments

equal to the number of types in Ψ, and then assign students to these segments ranked

by their payoff-irrelevant characteristic ψ. One can then restate the forward equation

(24)-(28) and the market clearing conditions (30)-(31) for densities m(z|λ, ψ) and so

construct stationary densities that depend on not only the ability to learn λ, but also,

non-trivially, on an individual characteristic ψ that is unrelated to ability.9

8More generally, without a particular mechanism, it is not possible to describe the transition prob-

abilities for managers indexed by (λ, z).
9Plausible theories of statistical discrimination typically imply ex ante welfare consequences for

individuals treated differently in equilibrium. See Fang and Moro [2010] for a recent survey. Here,

sorting on payoff irrelevant characteristics has no ex ante welfare consequences, and the assumption of

perfect insurance markets implies that ex post income differences do not result in ex post differences in

consumption.
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3.5 Balanced Growth Paths

It remains to ensure that the thresholds used to construct stationary densities are con-

sistent with the Bellman equation. Fix some growth rate κ that satisfies (29), as well

as positive threshold gaps y − b(β), y − b(γ), and y − x(γ). Proposition 1 and the mar-

ket clearing condition (31) pin down the stationary densities of z − y for the two types
λ ∈ {β, γ}, provided M(β) is large enough. The number of managers is then given by

N =

∫ ∞
b(β)

m(z|β)dz +

∫ ∞
b(γ)

m(z|γ)dz.

The resulting supply of labor isM(β) +M(γ)−N . The aggregate use of overhead labor
is φN , and so the supply of variable labor is

L = M(β) +M(γ)− (1 + φ)N.

The aggregate supply of managerial human capital H is determined by

He−y =

∫ ∞
b(β)

ez−ym(z|β)dz +

∫ ∞
b(γ)

ez−ym(z|γ)dz.

Observe that N , L and He−y only depend on the stationary densities for z − y, and

not on the actual location of the threshold y. Of course, this means that H scales with

ey. Given these factor supplies, marginal products determine factor prices. Specifically,

[vH,wL] = [1− α, α]H1−αLα, which scales with e(1−α)y. In particular

vey

w
=

1− α
α

L

He−y
.

Thus, given stationarity and a conjecture about the growth rate κ, there is a mapping

[y − b(β), y − b(γ), y − x(γ)] 7→ vey

w
(32)

that is determined by market clearing conditions in the market for students and teachers,

and equilibrium conditions in the consumption sector. This mapping is constructed for

thresholds that have to satisfymin{y−b(β), y−b(γ)} > y−x(γ) > 0, but the construction

of (32) does not require that these thresholds are consistent with the Bellman equation.
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Figure 4 The Equilibrium Conditions (23) and {(23), (32)}

Now recall from (23) that the Bellman equation determines a mapping from y−x(γ)

to not only the other two threshold gaps y − b(β) and y − b(γ), but also to the relative

price vey/w. This mapping only relies on equilibrium restrictions on the shape of the

tuition schedule, and on optimality conditions for the exit decision faced by managers.

So there are two distinct ways to compute vey/w as a function of y − x(γ): directly via

the Bellman equation, or via the threshold gaps implied by the Bellman equation, the

resulting stationary distributions of z−y, and factor market clearing in the consumption
sector. Figure 4 shows the two equilibrium conditions. Along a balanced growth path,

y − x(γ) has to be such that these two calculations match. Given the equilibrium value

of y − x(γ), the threshold y follows from lining up the stationary distribution with the

historical distribution at the initial date.

3.6 Determining the Balanced Growth Rate

This construction works for any balanced growth rate κ that satisfies the lower bound

(29), provided M(β) is large enough, and provided that the mean of ez−y is finite. If

M(β) is too small, then the balanced growth path will instead be one in which (30)

holds with equality. Type-β students are then scarce, and the gains from studying

S(β) − βW (β) for such students will be positive, as they are for type-γ students. As

already noted, this can only happen if at least half the population is a manager. The
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requirement that the mean of ez−y is finite implies an additional lower bound on κ, one

that is not necessarily implied by (29).

So what then determines the long-run growth rate κ? A rigorous answer to this

question can be given in a simpler economy in which there is only one type of manager,

say of type γ, and managers never exit, say because φ = 0 and managers cannot sup-

ply labor. The resulting Kolmogorov forward equation is Dtm(t, z) = −θDzm(t, z) +
1
2
σ2Dzzm(t, z)−(δ+γ)m(t, z) below the median ofm(t, z) andDtm(t, z) = −θDzm(t, z)+

1
2
σ2Dzzm(t, z)− (δ−γ)m(t, z) above the median. For this equation, Kolmogorov, Petro-

vskii and Piscounov [1937] and others have shown that the long-run stationary distribu-

tion that emerges from an initial distribution with bounded support is the one associated

with κ at the lower bound (29). A similar multiplicity of stationary distributions and

balanced growth rates arose in Luttmer [2007]. There it was resolved in the same way, by

assuming that the initial distribution of productivities has a bounded support, as it does

in any finite economy. It is essential for this result that σ is positive. It is not diffi cult

to show that at σ = 0 there is a continuum of stationary distributions and growth rates,

not only for exponentially de-trended managerial productivities, but also for linearly

de-trended productivities. But a bounded initial distribution of productivities in such a

world would lead to permanent stagnation (relative to θ) because nobody can be more

productive than the most productive individual in the initial population.10

Applying this idea here results in the prediction that this economy grows, in the

long run, at a rate κ = µ + σ
√

2(γ − δ). The economy can grow rapidly because

managers are able to improve their own productivities at a rapid pace (µ is high),

because they can learn quickly from others (γ − δ is high), or because their individual
discovery processes are noisy (σ is high.) What matters is the learning speed of the fastest

learners, conditional on their survival. Noisy individual discovery processes produce a

lot of dispersion in managerial productivities. Because high and low z can be learned at

rates that are unrelated to the level of z, this implies a population with many particularly

productive learning opportunities, and therefore rapid growth. Recall that at the lower

bound (29), the right tail of m(z|γ) behaves like e−ζz, with ζ =
√

(γ − δ)/(σ2/2). The

right tail declines slowly for low values of ζ. So rapid growth goes together with a

10Fisher [1937] formulated the same equation to describe the geographic spread of an advantageous

gene. Alternative proofs and generalizations can be found in McKean [1975], Bramson [1982], and a

large literature on reaction-diffusion equations. Cavalli-Sforza and Feldman [1981] used the Fisher [1937]

interpretation of these equations to describe the geographic spread of a useful idea. Here geography is

absent but there are many ideas, of varying quality. See Staley [2011] and Luttmer [2012] for a more

detailed discussion.
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particularly thick-tailed distribution of managerial productivities if it is due to a high

σ, and with a thinner tail if due to a high γ − δ.

3.6.1 Time-Varying Noise and Learning Parameters

Beyond the precise formulation of this model, a comparison across balanced growth

paths and the basic workings of the model predict that periods of high σ are periods of

rising inequality, and periods of high γ are periods of declining inequality. If σ and γ

are not fixed parameters but determined in part by effort allocation choices, then such a

negative co-movement between σ and γ is to be expected. Because the aggregate growth

rate is increasing in both parameters, the effects of such negative co-movement in σ and

γ on overall growth may be limited. But the rising inequality during the late 19th and

early and late 20th centuries, and the declining inequality during the mid 20th century

in parts of the Western world could be the result of such variation in σ and γ.

4. Quantitative Implications

As a benchmark specification, consider an economy with a subjective discount rate ρ =

0.05, a random death rate δ = 0.04, slow and fast learning rates [β, γ] = [0.025, 0.075],

and an individual discovery process with a standard deviation σ = 0.125. Slow learn-

ers are more likely to die before they learn something useful, while the odds are that

fast learners succeed before they die.11 As managers, the productivities of both types,

conditional on no learning, are almost as volatile as the aggregate stock market in the

US. Assume that managers have to hire one worker as overhead labor, so that φ = 1.

Take the labor share parameter of the Cobb-Douglas technology to be α = 0.60, which

is somewhat below conventional values of this statistic for the US economy. The actual

labor share in this economy will in fact exceed α, because labor is also required to cover

fixed costs.

The long-run growth rate of the aggregate stock of managerial human capital, rel-

ative to average rate at which managers can improve their own productivities, follows

immediately from the assumed rate parameters,

κ− µ = σ
√

2(γ − δ) = 0.125×
√

2(0.075− 0.04) ≈ 0.033.

If managers cannot improve, on average, their own log productivities, then µ = 0,

11The death rate δ can also be interpreted as the rate at which the project a manager works on

disappears randomly, making the knowledge acquired by the manager obsolete.
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resulting in a long-run growth rate of managerial human capital of a little over 3% per

annum. The implied consumption growth rate is about 1.3% and log utility then implies

an interest rate of 6.3%. Both rates will be slightly lower in an alternative benchmark

specification in which the drift of productivity, µ + σ2/2, equals zero. The implied tail

index of the right tail of the distribution of managerial productivities is also immediate

ζ =
κ− µ
σ2

=

√
γ − δ
σ2/2

=

√
0.075− 0.040

(0.125)2/2
≈ 2.1.

If managers are CEOs, then the employment size distribution of firms will inherit this tail

index, because of the Cobb-Douglas technology. In US data, the firm size distribution

has a tail index of about 1.05 (see, for example, Luttmer, [2007]). So this benchmark

economy produces a firm size distribution with a much thinner tail than observed in the

data.

A lower fast learning rate γ and a higher death rate δ, combined with a higher vari-

ance σ2 of the idiosyncratic productivity shocks, would result in a thicker tail, without

necessarily changing the growth rate κ. But CEO wealth dominates the right tail of

the US wealth distribution, and that distribution also has a much thinner tail than the

firm size distribution.12 In an incomplete markets version of the model, firm size and

entrepreneurial or managerial wealth are likely to be related. The thicker tail of the US

firm size distribution could be driven by a combination of heterogeneity in managerial

productivities and a within-firm replication mechanism, as in Luttmer [2011]. Alter-

natively, a more elaborate model of the CEO span of control could be constructed by

combining features of the Beckmann [1958] model of city hierarchies and the Garicano

[2000] and Garicano and Rossi-Hansberg [2006] models of hierarchies in the organization

of production. Replication and hierarchies are plausible interpretations of the very thick

tail of the US firm size distribution, and the above parameter choices for the process of

managerial knowledge accumulation leave room for such interpretations.

Figures 1 through 4 were computed for a version of this economy in which 10% of the

population is a type-γ fast learner. As can be seen in Figures 3 and 4, the exit thresholds

used by the two types of managers are very similar. In terms of variable profits, these

managers earn veb(β)/w ≈ 1.65 and veb(γ)/w ≈ 1.72, respectively. This is more than

12See Castañeda, Díaz-Giménez, and Ríos-Rull [2003] and Piketty and Saez [2003] for evidence on US

income and wealth distributions, and Nirei and Souma [2007] and Benhabib, Bisin and Zhou [2011] for

recent models that generate thick-tailed income and wealth distributions. Cagetti and DeNardi [2006,

2008] and Jones and Kim [2014] emphasize the prevalence of business owners and entrepreneurs among

wealthy households.
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the unit wage earned by workers, but managers also have to cover the fixed cost φ = 1.

After fixed costs, their earnings from producing consumption at the exit threshold are

negative, as expected, because of the option value of continuing as a manager. Type-β

managers are not earning anything from being teachers at the exit threshold, since they

are teaching their own type of students for a tuition equal to βW (β)−S(β) = 0. Type-γ

managers at their exit threshold earn significant net gains equal to S(γ)−γW (γ) ≈ 2.00

as students, but they can earn the same net gains when studying as workers. The value in

units of labor of a type-β worker is simply 1/ρ = 1/.05 = 20 in this economy. The ability

to learn fast results in a value of W (γ)/w = (1 + [S(γ) − γW (γ)]/w)/ρ ≈ 3.00/.05 =

60.0 for fast learners. This reflects expected net gains from trying to become a manager.

As already emphasized, learning from others is an investment with uncertain returns.

About 7.4% of the population are managers along the balanced growth path. It is

clear from the stationary densities displayed Figure 3 that most managers are type-γ

managers, and virtually all managers above the mode of the distribution are fast learners.

Since the population of type-β individuals is so much larger than the population of type-

γ individuals, it has to be the case that only a small fraction of type-β workers choose to

study in this equilibrium. Those who succeed in becoming managers do not continue to

study but teach what they have learnt. This severely reduces upward mobility of type-β

managers.

4.1 Varying Overhead Labor and the Ability Distribution

Figure 4 also shows how the equilibrium conditions change when the overhead labor

costs are reduced to zero. There is still an opportunity cost to being a manager, in the

form of foregone wages from supplying labor, but no additional overhead. As argued

earlier, the Bellman equation implies that the variable profits vey/w are proportional to

1 + φ, given y− x(γ). So the equilibrium condition (23) shifts down with a reduction in

φ. None of the threshold gaps implied by the Bellman equation given y − x(γ) depend

on φ, and so neither do the stationary densities of z − y. A reduction in φ therefore

leaves N and He−y unaffected, given y − x(γ). But it increases the supply of variable

labor L because the number of managers does not change and less of the labor supplied

by those who do not manage is soaked up by overhead. This increase in variable labor

implies an increase in the factor price vey/w of managers at the threshold y, and hence

an upward shift in (32). This explains how the equilibrium conditions in Figure 4 shift,

and it immediately follows that y− x(γ) increases with a reduction in φ. The net effect

of a reduction in overhead labor is to increase vey/w and the value of a fast learner,
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fromW (γ) ≈ 60 toW (γ) ≈ 70. Doubling overhead labor instead, to φ = 2, would result

in W (γ) ≈ 50.
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Figure 5 Ability Rents as a Function of M(γ)/[M(β) +M(γ)].

Figure 5 shows how the ability rents of type-γ agents in this economy vary with their

supply, holding fixed all other parameters. These ability rents are quite sensitive to the

supply of fast learners: cutting the supply in half from 10% roughly doubles the value

W (γ) of type-γ workers, and raising it to 25% drives W (γ) down to almost W (β). One

can imagine that some of the heterogeneity in learning speeds can be attributed not

to innate ability but to certain types of general education. The historical expansion of

formal education observed almost everywhere would then imply a reduction in W (γ)

relative to W (β). But the growth rate of the economy and the thickness of the right

tail of the income distribution are not affected by such changes in the relative supplies

of type-γ and type-β individuals.

5. Concluding Remarks

The model in this paper considers the opposite extreme of one that is more common in

the literature: knowledge diffusion here is all about teaching, while much of the literature

is about imitation. Teaching actively involves students and teachers, while imitation

is a more individual activity. Both phenomena play a role in real-world knowledge
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accumulation, but it is far from obvious how economically important they each are. A

fundamental diffi culty is that it is often hard to know if two individuals working together

are just producing widgets, or also transferring knowledge. Very close observation may

reveal the answer in specific instances, and one may be able to provide a rough count

of how frequent such instances are. But it seems almost incredible that this can be

measured with some precision at the aggregate level.

The managerial activities of supervising production and teaching others are separable

in the economy described in this paper. Managers can teach students while supervising

workers who need not be their students. This makes for an extremely tractable model

of knowledge transmission and long-run growth, and of the role of both ability and

randomness in shaping labor market outcomes. But formal and informal apprentice

systems observed in actual economies suggest a complementarity between supervision

and teaching. Exploring the effects of such a complementarity on growth and inequality

is a worthwhile topic for further research.
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