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Introduction

In theories of asset pricing, portfolio payoffs are modeled as bundled contingent claims
to a numeraire consumption good. When asset markets are frictionless, portfolio prices
can be characterized as a linear valuation functional which assigns prices to the portfo-
lio payoffs (e.g., see Ross 1978, Harrison and Kreps 1979, Kreps 1981, Chamberlain and
Rothschild 1983, Hansen and Richard 1987, and Clark 1990). These valuation functionals
are typically represented as inner products of payoffs with pricing kernels or stochastic
discount factors. As argued by Hansen and Richard (1987), observable implications of
candidate models of asset markets are summarized conveniently in terms of their implied
stochastic discount factors.

While formal statistical testing of such asset pricing models can yield insights, it is also
of interest to evaluate the performance of these models even when it is understood that
the implied stochastic discount factors do not correctly price all portfolios. Pricing errors
may occur either because the model is viewed formally as an approximation as, say, in
many linear factor pricing models, or because the empirical counterpart to the theoretical
stochastic discount factor is error ridden (e.g., see Roll’'s 1977 critique of the single-period
capital asset pricing model). The question addressed in this paper is how large is the
misspecification of the stochastic discount factor prozy?

More formally, we associate a stochastic discount factor prozy with an asset pricing
model, and then we measure the degree of model misspecification by the distances be-
tween the proxy and families of stochastic discount factors that price correctly the vector
of securities used in an econometric analysis. Except possibly when there are arbitrage op-
portunities present in the data set used in the empirical investigation, the set of correctly
specified discount factors is nonempty and typically large (e.g., sce Hansen and Jagan-
nathan 1991). However, as long as a proxy is misspecified, its least squares distance to the
set of correctly specified discount factors will be strictly positive. In this paper we consider
two different distance measures corresponding to distances to two alternative families of
stochastic discount factors. The second of these two families is smaller because the discount
factors are restricted to be positive because only such discount factors are consistent with
the absence of arbitrage opportunities on the space of hypothetical derivative claims. The
resulting measures of model misspecification are, by design, comparable across models and
their associated proxies.

Pricing errors or closely related expected return errors are commonly used to assess

asset pricing models. For instance, in linear factor models of returns, the principle of



no-arbitrage is used to characterize the sense in which security market prices can be ap-
proximately represented in terms of the prices of a small number of factors (e.g., see Ross
1976, Huberman 1982, Chamberlain and Rothschild 1983) and Shanken 1987). Similarly,
in present-value models with constant discount factors, Durlauf and Hall (1989) computed
greatest lower bounds on the magnitude of pricing errors. As we will demonstrate, the least
squares distance measures we propose also have a pricing-error interpretation. Very simi-
lar to Shanken’s (1987) analysis of linear factor models, one of our least squares distance
measures can also be interpreted as the maximum pricing error for portfolios of payoffs
with second moments equal to unity. One important way in which we extend the analy-
sis of Shanken (1987) is that we also investigate implications for arbitrage-free pricing of
derivative claims by restricting attention to positive stochastic discount factors.

This paper is divided into five sections. In Section I we define two families of admissible
stochastic discount factors, one associated with the pricing of the original collection of
securities and the other associated with the assignment of arbitrage-free prices of derivative
claims. In Section IT we derive specification error bounds for a discount factor proxy that
depend only on the pricing errors of the collection of securities used in an econometric
analysis, but not on pricing errors of derivative claims on those securities. We go on and
demonstrate the connection between our analysis and that of Shanken (1987) and Kandel
and Stambaugh (1987). In Section III we extend the analysis by examining pricing errors
for hypothetical derivative claims. Positivity of the stochastic discount factors is used
as a device to restrict attention to only arbitrage-free assignments of prices to derivative
claims. In Section IV we describe an associated set of econometric methods designed to
account for the errors induced in our specification-error measures by using time-series data
to approximate population moments of asset payoffs, prices, and proxies. Finally, in Section
V we illustrate our apparatus by assessing several stochastic discount factor proxies that
have been proposed in the literature.



I. Stochastic Discount Factors and Proxies

In this section we construct the admissible set of stochastic discount factors. By a
stochastic discount factor we mean a random variable that can be used to compute market
prices today by discounting state by state the corresponding payoffs at a future date. As we
will see in this section, typically there is a large family of such random variables consistent
with the asset market data used in an econometric analysis. Formally, we will use the
apparatus of a Hilbert space to model the collection of portfolio payoffs, and a continuous
linear functional on that space as a way to represent the market values assigned to those
payoffs. Given this setup we will then construct two alternative families of stochastic
discount factors. The smaller of the two families will be restricted so that the prices
assigned to hypothetical derivative claims respect the Principle of No-Arbitrage. We will
then introduce a proxy used in an econometric analysis that assigns approximate prices to
payoffs and suggest distance measures between the proxy and the two families of stochastic
factors.

For simplicity, we focus on asset market transactions that take place at two dates, say
date t and date ¢ + 7. At date t financial assets are purchased, while at date ¢t + 7 the
payoffs are received. We will denote the price payoff pair by (gt Tt+r). In the first three
sections we will omit the date subscripts ¢t and t + 7 for notational convenience. As we will
see in Section IV, for extracting observable implications we presume that these two periods
are replicated over time in a manner that is stationary, at least asymptotically. The idea is
to then apply a Law of Large Numbers to justify approximating population moments using
time series averages.

We follow Harrison and Kreps (1979), Chamberlain and Rothschild (1983), and others
by modeling portfolio payoffs as elements of a Hilbert space. Such a space is convenient
because it possesses all of the nice properties of finite-dimensional vector spaces and accom-
modates some infinite-dimensional problems as well. In building a Hilbert space, we must
specify the associated inner product (the counterpart to a dot product of two vectors). The
corresponding norm of a payoff is then simply the square root of the inner product of that
element with itself. We now specify formally the Hilbert space structure used in our paper.

Let F be the conditioning information that is observed at the date of the asset payoffs.
Associated with F is the space L? of all random variables with finite second moments that
are in the information set . This space is used as the collection of hypothetical (and
perhaps real) claims that could be traded. (For technical reasons, we restrict F and hence
L? to be separable.) We endow L? with its usual inner product and norm:

(1.1) <hi|hy>= E(hihp) and || h| =< h|h>Y?.
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Let P denote the space of portfolio payoffs observed by an econometrician.
Assumption 1.1: P is a closed linear subspace of L2.

One particularly convenient specification of the payoff space P is as follows. Let
z denote an n-dimensional random vector with entries in L? and a nonsingular second
moment matrix. In this case, the entries of z are payoffs on n primitive securities and form
a basis for the space of payoffs P:

(1.2) P={z.-c:ceR"}.

Requiring that Ezz’ be nonsingular implies that for each payoff p in P, there is a unique
vector of portfolio weights ¢ such that p=c- z.

In contrast to specification (1.2), sometimes it is of interest to look at infinite-dimensional
specifications of P. For instance in linear factor models of asset payoffs, oftentimes an
infinite-dimensional collection of asset payoffs is needed to generate a payoff space which
contains the factors

Alternatively, even if there is a finite-dimensional set of primitive securities, the payoff
space can be infinite dimensional. This occurs when ‘an econometrician constructs "syn-
thetic payoffs" using portfolio weights that depend on conditioning information as in Hansen
and Richard (1987) and Gallant, Hansen, and Tauchen (1990), or managed portfolio payoffs
as in Fama and Schwert (1977) and Breen, Glosten, and Jagannathan (1989). In this case
we assume that E(zz’ | ) is nonsingular with probability one, where G contains informa-
tion observed by economic agents at the trading date and used by the econometrician to
form portfolios. The payoff space P is then given by

P={peL?: p=w-z for some random vector w of portfolio weights
(1) that is in the conditioning information set G}.
It is demonstrated in Hansen and Richard (1987) that P as given by (1.3) satisfies Assump-
tion 1.1.

Our intention is to compare the hypothetical prices assigned by a given model to se-
curity market payoffs with the market prices using time series averages. For this reason it
is convenient to analyze the valuation implications of a model as reflected by the average
or expected prices. For payoffs such as returns or excess returns, the prices are, by con-
struction, one or zero and hence do not vary over time. Consequently, the expected prices
and actual prices coincide. However, we also wish to accommodate security market payoffs

with prices that depend on conditioning information in ways that resulting time series of
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prices fluctuate. For instance, suppose the econometrician has data on both a return, say
r, and information available to investors at the purchase date, say z. Then for the purposes
of the empirical analysis, the synthetic payoff 2r can be constructed with expected price
Ez. Given our intention to use time series averages, we are led to look at the alternative
theories from the vantage point of their predicted expected prices.

We assume that portfolio payoffs in P obey the Law of One Price: to each portfolio
payoff p in P there corresponds a unique ezpected price 7(p).

Assumption 1.2: 7 is a continuous linear functional on P, and there exists a payoff p € P
such that w(p) = 1.

This assumption can often be derived from a more primitive no-arbitrage restriction when
there is a security with limited liability (e.g. see Kreps 1981 or Clark 1990). For many of the
examples we consider, there are other "more mechanical” devices for verifying Assumption
1.2 because, in effect, the payoff spaces are constructed using an original finite-dimensional
collection of distinct primitive payoffs. For instance, this is the case for both specifications
(1.2) and (1.3) of P.

To illustrate the construction of the pricing functional, initially suppose P is given
by (1.2). Corresponding to the payoff vector z, there is a price vector g of current period
prices where | ¢ | has a finite first moment. Then Assumption 1.2 is satisfied for

(1.4) w(z-c)=c-Eq

as long as Fq is not a vector of zeros. The requirement that | ¢ | have a finite first moment
can often be met by scaling the payoffs appropriately. One example of such a scaling is
the conversion of asset payoffs into (gross) returns in which case ¢ is simply a vector of
ones. As we indicated previously, for some applications, it is of interest to allow ¢ to be a
vector of random variables in the conditioning information set of investors at the time asset
trades are transacted. The restriction that ¢ have a finite (absolute) first moment then
limits to some extent the construction of synthetic payoffs using conditioning information
of economic agents.

For an alternative illustration of 7, suppose P is given by (1.3). This is the appropriate
collection of payoffs when a researcher is willing to model formally the conditional second
moment matrix E(xz'|G) as in say, the work of Gallant, Hansen, and Tauchen (1990); the
factor GARCH models of Bollerslev and Engle (1993); or King, Sentana, and Wadhwani



(1993). In this case, we restrict ¢ E(zz' | G)~'q to have a finite mean. The ezpected pricing
functional is now given by

(1.5) w(w-z) = E(w - q).

It is shown in Appendix A that the resulting 7 is a bounded linear functional on P.

Returning to our general analysis, an admissible stochastic discount factor is a ran-
dom variable m in L? such that the expected price of a payoff p can be represented as the
inner product of the payoff and m:

(1.6) w(p) = E(pm) for allp € P.

Note that a stochastic discount factor m discounts payoffs state by state. It incorporates
both a discount effect and an adjustment for risk. To see this, write

(1.7) Epm = EpEm + Cov(p, m).

Discounting the future is captured by the first term on the right side of (1.7) (so long as
E'm is less than one), and adjusting for risk by the second term. Let M denote the set of all
admissible stochastic discount factors. It follows from the Riesz Representation Theorem
that M is not empty, and that there is a unique random variable in the intersection of M
and P. This particular stochastic discount factor has the minimum norm among all of the
elements of M. All other stochastic discount factors can be represented as the sum of the
minimum norm stochastic discount factor and a random variable that is orthogonal to the
space P of portfolio payoffs.

When the aim is to price derivative claims, we are interested in the extension of the
pricing function 7 from P to L? using elements of M. Recall that L? contains functions
of the portfolio payoffs in P as long as the resulting random variables are finite and hence
contains a rich collection of potential derivative claims. Extensions of the pricing functional
@ are constructed by taking members m of M and forming the linear functionals:

(1.8) fm(h) = Ehm for all h € L2

Then 7, agrees with 7 on P. Following Ross (1978) and Kreps (1981), some discount
factors in M can be eliminated from consideration because the resulting extensions m,,
of 7 introduce arbitrage opportunities on the space of potential derivative claims L?. For
pricing derivative claims, the 7,s of interest are those which satisfy:
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Condition N: A pricing functional p does not induce arbitrage opportu.nities on a subspace
H of L? if for any h € H such that A > 0 and || A ||> 0, p(k) > 0.

It is easy to show that (mn, L?) satisfies condition N if, and only if, m is strictly positive
with probability one (e.g., see Harrison and Kreps 1979 and Hansen and Richard 1987).
Hence when our concern is the pricing of derivative claims we look at stochastic discount
factors restricted to be in the subset M™** of M consisting of random variables m that are
strictly positive with probability one.

The set M** is convex but not necessarily closed. For much of our analysis, it will be
convenient to include limit points by using the closure M* in place of M™*. This closure
is just the subset of M consisting only of nonnegative random variables. As long as (=, P)
satisfies the no-arbitrage condition (Condition V), it follows from Kreps (1981) that

Assumption 1.3: M™T is not empty.

Finally, let y be a random variable in L? that is a prozy for a stochastic discount

factor. This proxy is used to construct approximate prices for securities via the formula:
(1.9) w(h) = E(yh)

for any payoff k in the space L? of potential derivative claims. For example, if the econome-
trician is studying the CAPM without using conditioning information, y will equal a+br™
where ™ is the proxy for the return on the market and a and b are two unknown constants
to be estimated in an empirical analysis (see Dybvig and Ingersoll 1982).

If the proxy y turns out to be an admissible stochastic discount factor, then the hy-
pothetical expected prices assigned by the proxy will coincide with the actual expected
prices. In general, the proxy will not be admissible either because the model is, strictly
speaking, misspecified or the observed stochastic discount factor is measured with error.!
Consequently, pricing errors may be introduced on the original collection of payofls, P, as
well as on the collection of potential derivative claims, L2. One measure of the magnitude of
specification error induced by using the proxy as a stochastic discount factor is its distance
from the admissible set of stochastic discount factors (either M or M™*). In view of this,
we study the following least squares problems in the next two sections:

! See Roll (1977) for a discussion of why the CAPM is not testable because the return on
the market portfolio of all assets is not observable to an econometrician. Moreover, some
derivations of the APT such as those in Huberman (1982) and Chamberlain and Rothschild
(1983) obtain factor pricing only as an approximation.
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Problem 1 : 6 = min |y—m||
meM

Problem 2 : 6t= min ly—-m].
memM*

In the case of Problem 2, we used M™ instead of M*T as a constraint set merely to
guarantee that the infimum is attained. It is well known that both problems have unique
solutions (e.g., see Luenberger 1969).2

Our aim is to use § and 6% as ad hoc measures of model misspecification. By con-
struction 67 is greater than or equal to §. As we will see, both of these measures have
alternative interpretations as bounds on the magnitude of pricing errors induced by using
a proxy y. In the case of Problem 1, we are led to look only at pricing errors on the space
of payoffs used in an econometric analysis, while in the case of Problem 2 pricing errors for
hypothetical derivative claims on those payoffs (or more generally any hypothetical payofts
in L?) are also incorporated.’

? By uniqueness in this setting, we follow the usual convention of treating the equivalence

class of all random variables that are equal almost surely as a single element of L2.
% McCulloch and Rossi (1990) used exponential utility functions to measure the mag-

nitude of expected return errors in factor models. There are two reasons why we adopt
our more ad hoc measures of model misspecification. First, we wish to make comparisons
across a wide class of models including ones in which investors have alternative preference
orderings. Second, we study pricing errors instead of expected return errors, which makes it
difficult to translate specification errors into optimization mistakes on the part of investors.



II. Least Squares Distance Between y and M

In this section we solve and interpret Problem 1, which is to find the least squares
distance between a proxy y and the set M of (possibly negative) stochastic discount factors.
Since our aim is to propose this distance as a measure of model misspecification, we establish
the sense in which this measure is a bound on the pricing errors induced by using a proxy
y in place of a stochastic discount factor in the set M. We characterize this specification-
error measure using ordinary least squares and two-stage least squares estimation theory,
and we demonstrate the close connection between this measure and the proxy analysis in
Kandel and Stambaugh (1987) and Shanken (1987).

Recall that the actual prices can be represented as w(p) = Emp for a valid stochastic
discount factor m, and the prices assigned by the proxy y are given by 7#(p) = Fyp. Hence
by the Cauchy-Schwarz Inequality we get:

(2.1) | m(p) —&@) | <ly—mllllzl.

Since this inequality holds for any payoff in P and any stochastic discount factor m in M,

(22) sup{| n(p) — #(p) :p € P || pll=1} < 6

where § is the least-squares distance between y and M. As we will see shortly, the inequality
in (2.2) can be replaced by an equality. Consequently, the maximum pricing-error problem
on the left side of (2.2) provides us with an alternative interpretation of the least-squares
distance between a proxy and the set of (possibly negative) stochastic discount factors.
Just as there is a family of admissible stochastic discount factors, there is also a family M
of random variables that can be used to represent the proxy prices #. Given the alternative
pricing-error interpretation, it follows that the distance between the proxy y and M is not
sensitive to which random variable is selected from M as the proxy.

We now show formally that the solution to the least squares problem has a simple and
convenient characterization. It follows from the Riesz Representation Theorem that there
is a unique element in the intersection of P and M, which we denote by p*. It turns out
that p* is the least squares projection of all random variables in M onto P because m — p*
is orthogonal to P for all m in M and p* is in P. This orthogonality also guarantees that
the payoff p* is the minimum norm random variable that assigns correct (expected) prices
to portfolio payoffs in P.



Similarly, let p denote the unique element of P that can be used to represent the
incorrect 7 prices of portfolio payoffs in P:

(2.3) #(p) = Epp for all p € P.

Although p and y assign the same (approximate) prices to payoffs in P, they only coincide
when y is in P. More generally, p is the least squares projection of y onto P. We now
verify that the solution 7 to least squares Problem 1 is obtained by projecting m — y onto
P and adding y to the result:

(2.4) m=p' -5+ y

Notice that the right side of (2.4) is a valid stochastic discount factor. Moreover, the pricing
error for the payoff p = (p* — 9)/ (| p* — P || is

(2.5) m(B) — #(P) = El(p" - D)l =l "~y || .
It follows that (2.2) is satisfied with equality, and
(2.6) s=llm—yl=l2-p"1.

We now interpret these calculations. Since 7 given in (2.4) is a valid stochastic discount
factor, the payoff p* — p captures what is missing in the discount factor proxy y in order
for it to price correctly the portfolio payoffs in P. The mispricing of any given payoff p is
due entirely to that part of p that is best approximated by p* — § in a least squares sense.
To see this, simply note that

n(p) — #t(p) = E[(m — y)p| = E{(p" - H)p|
(2.7) = E((p* — p)proj(plp” — P)]
= E[(m — y)proj(plp* — p)]

where proj(p|h) denotes the population least squares regression of p onto h. Hence all of the
pricing error in p arises from proj(p|p* —p). Moreover, the regression error p—proj(p|p* —5)
contributes to the norm of p but not to the pricing error. Therefore, p* — P is the payoff
with the maximum pricing error per unit norm.

In summary, the maximum pricing error is the least squares distance between two
projections: the projection of any stochastic discount factor m onto the space of portfolio
payoffs P, and the projection of the proxy y onto P. Thus, we have established:
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Proposition 2.1: Suppose Assumptions 1.1 - 1.2 are satisfied. Then

§ =sup{| n(p) — #(p) : p € P,|| p[=1}
=[[p—p" .

This close connection between pricing errors and the least squares distance between y and
M was to some extent anticipated from the continuity results in Green (1986), Kandel and
Stambaugh (1987), and Glosten and Jagannathan (1993). As we will see subsequently, it
is even more closely related to a result in Shanken (1987).

To illustrate the computation of 8, suppose that P is generated by a finite vector = of
payoffs as in (1.2). In this case, it is straightforward to show that p* is given by o* -z where

(2.8) o* = (Ezz') Eq

(e.g., see Hansen and Jagannathan 1991). Similarly, since p is the least squares projection
of y onto P, p = &- = where & is given by the population least squares formula:

(2.9) & = (Ezz') ' Exy.

Combining characterization (2.8) and (2.9), gives the least squares distance between p* and
P as the square root of a quadratic form in the vector of pricing errors:

(2.10) § = [(Eq — Bxy)'(Exz') " (Eq — Ezy)]/.

Note that the distance matrix in the quadratic form on the right side of (2.10) is
(Ezz')~!, which is different from what would be used in computing a large sample chi-
square test of the null hypothesis that the pricing error vector (Eq — Ezy) is zero. In the
latter case, the distance matrix is proportional to the inverse of the asymptotic covariance
matrix for a central limit approximation. Equivalently, it is the inverse of spectral density
matrix for time series process associated with the pricing-error vector ¢ — zy. A drawback
of the chi-square distance measure is its sensitivity to the choice of proxy y, whereas the
distance measure in (2.10) depends only on the vector of payoffs used in the econometric
analysis.*

4 Allen 1991 made essentially the same point in justifying an alternative distance measure
to the ones developed here. Allen’s focus was on the role of conditioning information in
the pricing of single return whereas as ours looks across returns but can still accomodate

conditioning information.
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We now extend our calculations to asset pricing models with observable factors that
are not necessarily in P. Such factor models have been studied empirically by Chen, Roll,
and Ross (1986); Breeden, Gibbons, and Litzenberger (1989); and Cochrane (1992); among
others. Suppose that f is k-dimensional vector of factors and that the candidate discount
factor is of the form & - f for some k-dimensional vector & Then the specification-error
measure is given by

(2.11) 6=|p*—proja-f[P)|.

Since this criterion depends on the choice of &, a question is raised as to how & is selected.
One possibility is to use generalized method of moments estimation to construct an efficient
estimator of & using a time series on the payoff vector z, the corresponding price vector ¢
and the proxy y (see Hansen 1982). Of course, such a procedure is justified formally only
when the resulting pricing errors are zero, i.e., § = 0. Alternatively, one might choose &
to minimize the maximum pricing error. This latter ad hoe approach furns out to have a
simple connection to two-stage least squares as advocated by Basmann (1957) and Theil
(1953), although the justification here is quite different. Also, it coincides with an approach
that is often adopted in the factor pricing literature. 4

To see the two-stage least squares characterization, consider estimating & in the rela-
tion:

(2.12) m=&f+u

where m is any member in M. (Such a regression imitates equation (1) of Shanken 1987.)
Let P be generated by the entries of z. To estimate & in equation (2.12), first project both
sides of (2.12) onto the space of payoffs generated by z:

(2.13) proj(mlz) = proj(& flz) + proj(ulz).

Recall that the projection of m onto x is p*. Write the regression of f onto z as:
(2.14) proj(fiz) = @z

where @ is the matrix of population regression coefficients:

(2.15) ® = Efz/(Bzz') .
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We choose & to minimize the right side of (2.11). This is equivalent to selecting & to
be the vector of coefficients in the least squares regression of p* and hence m onto ®z.
Consequently, & is the vector of population two-stage least squares coefficients where we
first regress the vector f of factors onto z and then regress m onto ®z. Running the initial
regression can equivalently be interpreted as forming the vector of factor mimicking payoffs
as in Huberman, Kandel, and Stambaugh (1987).

The result of the second-stage regression is:

& = [Bfz'(Ezz') ' Exf'|"  Ef2'(Bxs') "' Ezm

(2.16)
= [Efz'(Bzz') ' Exf'| ' Efz'(Ezz') ' Eq.

The top line in (2.16) is the population version of the familiar two-stage least squares
formula for &, and the second line uses the average price Eq in place of Ezm. This latter
expression shows that & is not sensitive to the choice of stochastic discount factor m in M.
The corresponding formula for the specification error is

(2.17) 6 =
{Eq{(Bzz)™! - (Emm')"lEmf'[E‘f:z:'(E’a::z:');lEmf']_lEfm'(Emm')_l}Eq}l/z.

Therefore, the least squares distance § has the alternative interpretation of being the norm
of the projection error of the minimum norm stochastic discount factor p* onto the vector
of factor mimicking payoffs ®z.

Typically econometricians use two-stage least squares when the variables on the right
side of an equation such as (2.12) are correlated with the error term and the counterpart
to z is not. If &' f were itself in M, then u would satisfy the orthogonality condition:

(2.18) EBuz = 0.

On the other hand, when factor pricing only holds as an approximation, u will be correlated

with some of the entries of .5 However, the two-stage least squares procedure will still

consistently estimate &.°

5 Qur use of the term correlated in this context is not standard. Unless P contains a

unit payoff, we should use the more clumsy language fails to be orthogonal.
6 A similar connection to two-stage least squares was obtained by Durlauf and Hall

(1989) in their investigation of specification errors in present-value models of equity prices.
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Pursuing further this two-stage least squares link, suppose that all of the entries of
the factor vector f are in P. In this case ®z is equal to f and hence the two-stage least
squares estimator of & collapses to the ordinary least squares estimator:

&=(Eff'Y'Efm

(2.19)
= (Eff')y"'Eqs

where gy is the vector of factor prices. Notice that in this case &' f prices f correctly on
average by construction. Hence minimizing the specification error leads one to select & to
price correctly the factor vector f.

To compute the corresponding specification-error measure, we partition =’ = [f/, z}]
and ¢ = [¢!, ¢}]. Project z3 onto f and let e; denote the corresponding error. Then by the

partitioned inverse formula
(2.20) § = [(Bqy — Bzaf'a) (Beses) " (Bqe — Emaf'&)]'/?,

which is the pricing-error counterpart to equation (5) in Shanken (1987).7

The corresponding analysis for Ross’s (1976) linear factor model of asset prices is
essentially the same except that the space P is now generated by some sequence of payoffs
{p;}- Suppose that each element of this sequence has a factor decomposition:

(2.21) pj=a;- f+u;

where f is a k-dimensional vector of factors in P,a; is vector of factor loadings in RF,
and u; an idiosyncratic payoff in P that is orthogonal to the vector of factors. One of
the factors can be taken to be unity. Let U be the space generated by the idiosyncratic
components {u;}.

In general, arbitrage-pricing arguments only imply that factor pricing holds as an ap-
proximation (see Ross 1976 and Huberman 1982).% The corresponding approximate prices,
#(p), are constructed by assigning zero prices to the idiosyncratic components. In other
words, for any p in P

(2.22) #(p) = (e f)

7 The pricing-error counterpart to Corollary 1 in Shanken (1987) and its analog in Kandel
and Stambaugh (1987) is obtained by verifying that p* is a scaled translation of the return

on the tangency portfolio.
8 See Connor (1984) for some sufficient conditions for ezact factor pricing.
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where o - f is the least square projection of p onto the vector f of factors. Then # is a
bounded linear functional on P. By the Riesz Representation Theorem, the functional #
can always be represented using a payoff § = & f for some & € RF. Since the entries
of f are assumed to be in P and are priced correctly by construction, it follows that p is
the least squares projection of any stochastic discount factor m in M onto the vector of
factors. The maximum pricing error is again just the norm of the projection error of p*
onto the factor space. Since the factors f are priced correctly by #, the maximum pricing
error (per unit norm) taken over all of P is equal to the maximum pricing error (per unit

norm) taken over the idiosyncratic space U.
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II1. Least-Squares Distance Between y and M™

In posing least squares Problem 1, we included stochastic discount factors that are
negative with positive probability. As was noted in Section I, such stochastic discount
factors may induce arbitrage opportunities on a complete set of asset payoffs such as L2, but
not necessarily on an incomplete set such as P. Ignoring positivity is consistent with the
goals of Shanken (1987) and Kandel and Stambaugh (1987) to investigate the use of discount
factor proxies for the linear factor models of asset pricing including the single-period capital
asset pricing model. As emphasized by Dybvig and Ingersoll (1982), the single-period
capital asset pricing model is typically not designed for pricing derivative securities. On
the other hand, many intertemporal asset pricing theories do imply predictions for pricing
derivative claims as well. For this reason, we now explore connection between least-squares
Problem 2, which restricts stochastic discount factors to be nonnegative, and the pricing-
error implications for pricing derivative claims. In addition, we show how to compute
the solution to the least squares problem by solving the corresponding conjugate or dual
problem.

The error in pricing a derivative claim induced by using the proxy y is not well defined
because we cannot necessarily infer a unique price for the derivative claim from the prices of
the original collection of securities. Instead there is a range of possible prices consistent with
absence of arbitrage. Alternative stochastic discount factors in M1 may assign distinct
prices to a derivative claim, which complicates the construction of pricing errors.

For the moment, imagine forming pricing errors using a single stochastic discount
factor in M™**, say m. Let m, denote the corresponding extension of 7 to all of L?. For
any h in L?, the pricing error for this claim satisfies the Cauchy-Schwarz bound:

(3.1) | Emh—Eyh | < [ m—-yl A].
Define:

(3.2) 55, = sup{| mw(h) — #(R) |: h € L%, || b [}=1}.
Then

(33) fr=lm-yl,
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which can be verified by letting h = (m — y)/ || m — y ||. Clearly, the pricing error bound
&7 is sensitive to the choice of stochastic discount factor m in M*+. We eliminate this

sensitivity by computing the mini-maz bound:
: + . e —
inf{6), :meM™} = méﬁu ly—m]|

3.4 = mi _
(34) Jmin [y —m ||

=§t.

Therefore, the least squares distance between y and the convex set M+ gives the mini-
maz bound on the pricing errors for all hypothetical derivative claims:

Proposition 8.1: Suppose that Assumptions 1.1 - 1.3 are satisfied. Then

— ARy [ 2 —
6% = inf sup{| (k) — #(R) |: h € L% || b |}=1}.

To compute the bound, it is most convenient to use the dual or conjugate problem
associated with Problem 2. We treat formally the case in which P is generated by a
finite-dimensional random vector z with a nonsingular second moment matrix, although
comparable results could be obtained for other specifications of P. We write the primal

problem as®

(3.5) (6*)*= min_ ||y —m]|?subject to E(mz) = Eq.
meL?,m>0
To justify formally the use of Lagrange multipliers in solving this problem, in the Appendix
we verify that given the no-arbitrage restriction (Assumption 1.3), the expected price vector
Eq is an interior point in the set C = {Emz : m € L?, > 0} (e.g., see Luenberger 1969, p.
236). Consequently, we are led to investigate the saddle-point problem:
(6*)*= min_ sup {E[(y — m)’] + 2) E(zm) — 2X'Eq}
Rn

mel?,m>0 )¢

(3.6) =max min {E[(y — m)’] +2) E(zm) — 2X'Eq}.
AER™ meLl?m>0
To construct the criterion of the conjugate problem, we must solve the inner minimiza-

tion problem in the second line of (3.6). This turns out to be an easy problem to solve, as

9 This construction parallels closely a construction in Luttmer (1993). Luttmer consid-
ered a little different problem. In line with his interest in computing volatility bounds on
stochastic discount factors when transactions costs are present, y is zero in his setup but

the payoff space P is constructed more generally to include short-sale constraints.
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we will now demonstrate. Rewrite the portion of the the saddle-point criterion containing
m as:

(3.7) El(y — m)?| + 2V E(zm) = E[(y — Xz — m)?] — NE(zz')) + 2N E(yz).

Since the second and third terms on the right-hand side of (3.7) do not involve m, to
construct the criterion function for the conjugate problem we solve:

38 in E[(y— XNz —m)?.

(3.8) o B(y — Xz —m)]

Optimization problem (3.8) is a least squares problem whereby nonnegative random vari-
ables m are used to approximate the y — Mz. We use the notation (k)™ to denote an
option payoff equal to max{h,0}. The solution to problem (3.8) is simply the option payoff
(y — Nz)T, as we now demonstrate. Construct an orthogonal decomposition of the target
payoff y — Az in the least squares criterion:

(3.9) y—No=(y—Na)" +[~(~y + XNaz)"].

This decomposition is orthogonal because the second term is zero whenever the first term
is not. Moreover, since the first term is itself nonnegative it can be approximated perfectly
by a nonnegative random variable. On the other hand, the second term is nonpositive and
the closest (in the least squares sense) nonnegative random variable to it is the degenerate
random variable equal to zero with probability one. Therefore, the solution to (3.8) is
given by the first term in the decomposition. To verify this conclusion formally, rewrite the

criterion in (3.8) as:

Bl(y — Nz —m)’] = B{{(y - Xz)* - m]’} + 2E{(~y + Xz)"m]

(3.10) + E{[(~y + Xz)*]*}.

The first two terms are nonnegative and equal to zero only if m = (y — Nz)™ and the third
term does not depend on m.
To construct the conjugate problem, we substitute the solution to (3.8) into the crite-
rion of the saddle-point problem (3.6), resulting in:
(3.11) (6%)" = max B(y") — Bl(y — X'2)*]" - 2X Eq.
E T

Notice that the criterion for the optimization problem on the right-hand side of (3.11) is
concave in the multiplier vector )\, and constraint set is finite dimensional. Although (6+)2
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cannot typically be expressed in terms of simple matrix ma,nipulations,- it can be computed
numerically by solving the conjugate problem. Without further restrictions, the multiplier
vector A that solves this conjugate problem is not necessarily unique, but the resulting
random variable (y — A'z)* is unique. The first-order conditions for optimization Problem
3.11 are:

(3.12) El(y—XNz)"z—q =0,

i.e., corresponding to an optimal choice } is a unique stochastic discount factor (y — Nz)*
in M. Finally, the solution will be unique when the second moment matrix of the random
vector g, _51,50) is nonsingular where 1 {y-Vz>0) is an indicator function equal to one when
y — XNz is strictly positive and zero otherwise.

The same approach can also be applied to obtain an alternative representation of
8% from that described in Section II. In this case the conjugate maximization problem is
quadratic and given by:

(3.13) 82 = max E(y?) — E[(y — N'z)?] — 2N Eq.

AER®

The solution, 5\, to this maximization problem satisfies:
(3.14) Np=p—p*

where p and p* are the random variables in Section IT used to represent the approximate and
actual prices, respectively. One way to obtain starting values for A when solving Problem
3.11 numerically is to use the solution ) to the quadratic problem (3.13). If the resulting
random variable Xz is nonnegative, then ) is also a solution to Problem 3.11.
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IV. Implementation and Approximation

The analysis so far has been conducted using population expectations, which must be
approximated in practice. As we indicated in Section I, we presume the existence of time
series data of the form {(g, Zt4r, Yt+r) : t = 1,2,...,T} for sample size IT. The stochastic
process generating this data is modeled as being stationary, at least asymptotically. Our
approach is to solve sample counterparts to the conjugate maximization problems discussed
at the end of Section III. Consequently, our estimator, dr, of the distance between the proxy
and set of discount factors is given by:

T
(4.1) dr = {gé%(l/T) Z[(ytw)z — (Year — Nmepr)? — 2X ] }V%

and our estimator, d}, of the distance between the proxy and the set of positive stochastic

discount factors is:

T
+ 2 _ —_\ +2 _ 9Y\!/ 1/2
(4.2) d {f\l’é%{f(l/ T) tgl:[(ytw) Yerr = NBi4r) 2X g }%.
While finite sample results would be preferable, t';hey appear to be hard to obtain at
the level of generality of this paper. For this reason, Hansen, Heaton, and Luttmer (1994)
derived the limiting (or asymptotic) distribution of these estimators (see Proposition 3.2
in Hansen, Heaton, and Luttmer, 1994). From their results it follows that:

(4.3) T2(dp - §) — N0, 6%/(46%)

where the scalar 62 is the variance in the following central limit approximation:

T
. . D
(44) T3 [(Yerr)” = Werr — Nmwir)? — 23 g — 671 — N(0,6%).

t=1

Recall that A maximizes the population conjugate problem. Hence the numerator term 62 in
the asymptotic variance in (4.3) comes from the central limit approximation for the criterion
of the conjugate maximization problem evaluated at the solution to the population problem
and centered appropriately. The denominator term 462 is present because of the mean-value
approximation in the transformation of §2 to §. However, the limiting distribution for dr
does not include an adjustment for the fact that ) is approximated by the sample solution

to the conjugate maximization problem. Even though this latter approximation always
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results in a larger estimate of §, it turns out that the impact of estimat-ing X does not alter
the limiting distribution for 6.

To use this limiting distribution in practice requires that we obtain an estimate of the
scalar asymptotic variance 42 in (4.4). This can accomplished by forming a scalar time
series sequence {u,t,T 1t =1,2,..T} where:

(4.5) Ut = (Ye4r) — W — Oyt )? — 2q08p

and fr is the value of A that maximizes (4.1). Notice that the sample mean of {u;7}
is (dr)?. Then 62 can be estimated by using one of the frequency zero spectral density
estimators described by Newey and West (1987) or Andrews (1991) applied to the time
series sequence {u;r — (dr)? :t =1,2,...,T}. Let sy denote the resulting estimator. Then
statistical inference can be based on the approximation:

T1/2dT

D
2y (9 —8) — N(0,1).

(4.6)

The validity of this approximation requires that & be strictly positive.
Although the limiting distribution of dr is altered when § is zero, this phenomenon
only occurs when the proxy is a valid discount factor, i.e., when

(4.7) E(yz —q) = 0.

This restriction is what underlies the generalized-method-of-moments estimation and infer-
ence methods described in Hansen and Singleton (1982). In particular, for a given proxy,
this moment condition can be checked using an asymptotic chi-square test.

The same distribution theory given in (4.3) also applies when the proxy y depends on
unknown parameters as in observable factor models or utility-based models with unknown
preference parameters. For instance, consider observable factor models for which the time
series of proxies satisfy:

(48) Yt4r = &Ift+'r

where & is unknown. The sample estimator of the specification-error bound can now be

represented as:
T

(4-9) dr = {iggi ?é%’f(l/ ) E[(alftw)z - (a'ft+¢ - )\Imt+r)2 - 2/\'%]}1/ 2,
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The limiting distribution in (4.3) still remains valid as long as the population least-squares
distance, §, between the family of proxies and the family of valid stochastic discount factors
is strictly positive. In using formula (4.9) we are implicitly employing the sample two-stage
least squares estimator for 2 described in Section II.

A parallel set of results applies to the estimator df of §. For instance,

(4.10) T2 (g5 — 6+) 2o N0, 5%/(467%)].

where the scalar 5% is the variance in the following central limit approximation:

T
- - D
(4.11) T2 [(yerr)® = (o — Thar M) > — 2% — 617 — N(0,5%).

i=]1
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V. Applications

In this section we apply the least squares measures of specification errors developed in
the previous sections to a variety of alternative models of stochastic discount factors that
have appeared in the literature. We use a common vector of six asset returns in making

comparisons among models.

V.A. Data Description

Time series of six monthly returns for the period 1959:1-1990:12 were constructed
as follows. (Hence 7 is one in this application.) The first return is the equally-weighted
portfolio of NYSE stocks in the largest size decile; the second is an equally weighted portfolio
of NYSE stocks in the smallest size decile; the third is a portfolio of long term government
bonds. These three assets are a subset of the assets used by Constantinides and Ferson
(1991) and Ferson and Harvey (1992). The remaining three returns were constructed as
“managed portfolios” in which 1 — z units were invested in the one-month Treasury bill
and z units in the largest size decile portfolio. For the fourth return, the portfolio weight
z is the annual yield difference between Aaa and Baa bonds; for the fifth return z is the
annual yield difference between Baa bonds and the one-month Treasury bill; and for the
last return 2 is the annual yield difference between oné—year and one-month Treasury bills.
In all cases the yield differences were selected from the previous time periods so that they
were in the conditioning information sets of investors at the time of the investment. More

details of the data construction and sources are given in Appendix B.

V.B. Constant Discount Factors
We begin by evaluating constant discount factor models, ¢.e.,

(5.1) y=45

for some 8. We are mainly interested in these models as points of reference because constant
discount factor models imply that the asset valuation is risk neutral. We performed two
calculations. First, we computed the constant discount factors that minimize the two
specification error measures. We also found which value of 3 is most plausible from the
vantage point of the chi-square statistic.

Consider the least squares problem:

5= n%inygéiﬁE[(ﬁ —m)*?
(5.2) = min min E{(6 - m)’]"”

= min std(m)
meM

23



where std(m) is the standard deviation of the stochastic discount factor m. Hence in this
special case, the discount factor closest to the family of constant random variables is just the
stochastic discount factor that is least variable, and the distance is given by the standard
deviation of that least variable stochastic discount factor.

For the data set used in our application, the estimated mean of the least volatile
stochastic discount factor is .998 with a standard deviation of .329. As just argued, this
standard deviation is also our estimate of § with a standard error of .054. The least
variable stochastic discount factor is positive for almost all of the sample points, so there is
no difference between the estimates of § and 6% out to three decimal points. The minimum
chi-square value for the family of constant discount factors is 41.6. Since we used six security
returns, and there is one free parameter (3), the degrees of freedom for the associated chi-
square test is five and the probability value is essentially zero. Thus, there is considerable
statistical evidence against risk-neutral pricing.

V.C. Power Utility

We now the extend the collection of models we explore using the familiar class of time
separable power utility models. We parameterize the time t marginal utility to be (c;)™7
for 4 positive. The implied stochastic discount factor is the intertemporal marginal rate of
substitution between time t + 1 and time ¢:

(5.3) Yrr1 = Blesri/c) ™

where [ is the subjective discount factor. We used consumption of nondurables as our proxy
for ¢; leaving us with a two parameter family of stochastic discount factors. In Table 5.1
we report estimates of both least squares distance measures for several alternative choices
of B and ~.

Several important conclusions emerge from this table. First, the positivity restriction
on the admissible stochastic discount factors has very little impact for these data as shown
by the slight difference between the distance measures § and §T. Second, there is very
little distance variation across the discount factor proxies. For the (3,v) pairs reported the
distances range only from .328 to .335, which is certainly small range considering the size
of the estimated standard errors. The minimum specification errors for the entire family of
stochastic discount factors is .327, only expanding the range slightly. Thus, the estimated
maximum pricing errors always exceed 30 percent of the norm. Moreoever, the power utility
model barely reduces the estimated pricing error relative to the constant discount factor

model described previously.
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TABLE 5.1: Power Utility

B =.95

Y 6 o* X

0 .332 .333 _ 2,824.9
(.054) (.054)

1 .333 .333 2,850.9
(.053) | (.054)

5 333 .333 1,557.7
(.053) (.054)

10 .333 .333 705.9
(.053) (.053)

15 334 334 419.2
(.052) (.053)

30 .335 .336 184.1
(.052) (.052)

B8 =1.00
h) 6t XZ

0 .329 .329 46.6
(.054) -~ (.055)

1 . .329 .329 42.6
(.054) (.054)

5 .329 .329 47.8
(.054) (.054) _

10 .328 .328 55.7
(.053) (.054)

15 .328 .328 58.1

_ (.053) (.054)
30 .328 .328 57.4
_ (.053) (.053)

minimized .327 327 35.2

(.053) _ (.053)

The stochastic discount factor is §(c,.,/c)”. Numbers in parentheses are estimated standard
errors. The standard errors were computed using the method described in Newey and West
(1987) with m = 15. (Very similar results were obtained using m = 9 and 12.) The entries
in the row labelled "minimized" were computed by selecting parameter values for 8 and + that
minimized the corresponding criteria. In the column labelled §, the minimizers are 8 = 1.03
and v = 33.3; in the column §*, the minimizers are 3 = 1.03 and v = 28.6; and in the column
labelled %, the minimizers are § = 1.608 and y = 249.5.
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To understand better why the specification-error criterion is so large, recall that the
norm of a random variable can be decomposed into a mean component and a standard
deviation component via the formula:

(5.4) I o lI= [E@) + [std(p)?] /.

We applied this decomposition to p— p* recalling that § is the norm of this random variable,
we computed the means and standard deviations of § — p* for the different specifications
of y. We found that the mean was typically very small relative to the standard deviation,
indicating that most of the norm of § — p* is attributable to its standard deviation. As
emphasized by Cochrane and Hansen (1992), the standard deviations of p tend to be small
for the class of power utility models, so that most of the variation in § — p* comes from
variation in p*, which is invariant to the choice of proxy.

Finally, even though the range of the chi-square statistics is extremely large for the
parameter values reported in Table 5.1, they all have extremely small probability values
for the null hypothesis that the model is correctly specified. Minimizing the value of the
chi-square statistic by choice of § and <y, we obtain coefficient estimates that are perverse
with a very large (absolute) value of v and chi-square statistic that remains quite large.10

V.D. Consumption Externality

We now alter the preferences of consumers by introducing an externality in preferences
as in Abel (1990). An extreme version of this preference specification has the time ¢ fiduciary
utility function be a power of the ratio c;/c;_; where ¢_; is time ¢t — 1 community-wide
consumption. The corresponding marginal utility for consumption is modified to be:

(5.5) mu = () 7" (ep1)""

where we have imposed the equilibrium condition that ¢} _; = ¢;~;. The stochastic discount
factor proxy is now:

(5.6) yer1 = Bles/e) 7 (er/ea)

10 While the chi-square value is reduced to 35.2, this remains far in the right tail of a

chi-square our distribution. However, the accuracy of the asymptotic approximations with
large (in absolute value) powers are likely to be extremely poor because the sample moment
calculations are dominated by a small number of recessionary (negative growth rate) data

points.
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In Table 5.2 we report results for the same parameter conﬁgurati-ons as in Table 5.1.
The specification-error results are very similar. The chi-square statistics are reduced a
little, but not sufficiently to make the null hypothesis that the proxies are in M™ appear
plausible. Therefore, the introduction of a consumption externality has very little impact
on either the specification error measures or the statistical inferences.

V.E. Reciprocal of the Market Return

‘We next consider the inverse market portfolio as a discount factor proxy. This random
variable can be justified as a discount factor by following Rubinstein (1976) and assuming
that consumers preferences are time and state separable with a logarithmic fiduciary utility
function (power utility with v = —1). More generally, Epétein and Zin (1991) rationalized
this discount factor by relaxing state-separability but imposing a logarithmic risk correction
in a recursive utility formulation. We treat this as an error-ridden proxy for the familiar
reasons delineated by Roll (1977). The specification error measures with and without
positivity imposed are again essentially the same and equal to .311 with a standard error of
.055. This is a small improvement over the best specification error from the power utility
model.11

V.F. Observable Factor Models

The final stochastic discount factor proxies we consider are those implied by three
alternative linear factor models. For all three models there are two factors: a constant
and a single variable factor. The first two of these models employ the implicit stochastic
discount factor for the one-period CAPM: a constant plus a scale multiple of the market
return. We used both the equally-weighted and the valued-weighted returns as alternative
measures of the market return giving rise to two alternative linear factor models. The
third model imitates Breeden, Gibbons, and Litzenburger (1989) by using the consumption
growth rate as an observable factor.

11 Interestingly, the chi-square statistic is 128, so naive use of classical chi-square statistics

might lead one to argue in favor of the power utility model.
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TABLE 5.2: Power Utility With Consumption Externality

B = .95
v 8 &* X
0 332 332 2,762.1
(.054) (.054)
1 332 332 2,837.7
(.054) | (.054)
5 332 332 807.6
(.053) (.054)
10 332 332 244.0
(.053) (.053)
15 332 332 123.9
(.052) (.053)
30 331 332 52.9
(.052) | (.053)
8= 1.00
¥ 6 6" X
0 328 .339 42.2
(.054) -(.055)
1 328 328 42.3
(.054) (.055)
5 328 .328 42.1
(.054) (.055)
10 .328 .329 42.8
_ (.053) (.054) J
15 .328 .329 42.8
i (.053) (.053)
30 .330 .332 44.2
(.052) (.053)
minimized .328 328 27.5
(.053) (.054)

The stochastic discount factor is B(c..,/c)™(c/c )"
standard errors. The standard errors were computed using the method described in Newey and
West (1987) with m = 15. The entries in the row labelled "minimized" were computed by
selecting parameter values for 8 and +y that minimized the corresponding criteria. In the column
labelled &, the minimizers are 8 = .998 and v = 7.3; in the column §*, the minimizers are 8
=.999 and y = 4.8; and in the column labelled x*, the minimizers are § = 21.1 and y =

237.6.
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The results are reported in Table 5.3. Since linear factors models are not typically
designed to price derivative claims, we report only the § measure of model misspecification.
In generating these results, the unknown coefficients were estimated both by minimizing
the specification error and by minimizing the chi-square statistic. Again, according to the
chi-square statistic there is substantial statistical evidence against all three models. The
smallest specification error, .286, and value of the chi-square statistic, 30.2, were found
when the variable factor was the equally-weighted return, although the specification error
is almost the same when the variable factor is the value-weighted return.

Particularly in the case of consumption factor model, there was substantial difference
in the selected discount proxy depending on whether the specification error measure is
minimized or the chi-square statistic is minimized. In the latter case the sample standard
deviation of the implied approximating stochastic discount factor is more than 30 times
more variable, illustrating that the chi-square criterion rewards variability in the discount
factor proxy. A naive econometrician using only the chi-square values reported in the last
column of the second panel in Table 5.3 might erroneously conclude that the consumption
factor model ‘does better’ than the other two factor models. As a further indication of
how minimizing the chi-square statistic gives a different picture than minimizing the least
squares specification error, notice that the least squares specification error exceeds one for
the consumption factor model when the parameter estimates are obtained by minimizing
the chi-square statistic.

Using the duality approach described in Section III, we can interpret the portfolio
weights as Lagrange multipliers on the pricing constraints. In all cases we look at proxies
that are chosen to minimize the specification errors. The estimated multipliers and their
standard errors are reported in Table 5.4. Notice that the coefficients on the three ‘managed
portfolios’ (payoffs 4, 5, and 6) are all large relative to their standard errors. Recall that
these portfolio payoffs are constructed by using variables in the conditioning information
sets of investors. The role of securities such as these in statistical inferences lend support
to the empirical factor models of Cochrane (1992) and Jagannathan and Wang (1993),
whereby the coeflicients on the factors are also permitted to depend on variables in the
conditioning information sets of investors.
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TABLE 5.3: Linear Factor Models

Coefficients estimated by minimizing the specification error

Variable Factor b ¥

Equally-Weighted Return 286 301
(.054)

Value-Weighted Return .289 33.5
(.052)

Consumption Growth 325 38.9
(.052)

Coefficients estimated by minimizing the value of x? statistic

Variable Factor h) v

Equally-Weighted Return .286 29.3

Value-Weighted Return 290 31.5

Consumption Growth 1.57 12.0

The stochastic discount factor is & - f,,; where f,,, contains a constant and one of the variable
factors listed in the table. Estimated standard errors for § are given in parentheses. The
standard errors were computed using the method described in Newey and West (1987) with m
= 15.
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TABLE 5.4: Estimates of Lagrange Multipliers on the Pricing Constraints

Security | None Consumption Equally-Weighted ‘ Value-Weighted
Growth Return Return
Variable Factors
T

1 { 8.80 8.93 8.64 6.90
(4.63) (4.60) 4.71) (4.71)

2 1.7 1.50 -0.05 1.41
(1.10) (1.03) (0.80) (1.01)

3 4.80 5.42 6.10 6.30
| (2.20) (2.32) (2.10) (2.04)

4 -13.52 -13.70 -13.00 -12.80
(3.94) (4.10) (3.74) (3.70)

5 3.80 3.64 3.10 2.90
J 1.0 (1.09) (0.90) (0.80)

6 -5.60 -5.90 4.90 -4.70
L (1.50) (1.50) (1.50) (1.40)

Numbers in parentheses are estimated standard errors. The standard errors were computed
using the method described in Newey and West (1987) with m = 15.

TABLE 5.5: Correlations of p - p* Across Proxies

Variable Factors | Consumption | Equally-Weighted | Value-Weighted
Growth Return Return
None 0.99 0.87 0.88
i ]
Consumption 0.92 0.94
| Growth
Equally- 0.96
Weighted
Return L
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As noted previously, the payoffs that are orthogonal to p — p* are correctly priced
by the discount factor proxy y, 4.e., all of the mispricing is confined to that part of the
payoff which is in the linear span of p — p*. In Table 5.5 we report the correlations of
P — p* across the factor models in Table 5.5. Not surprisingly, the correlations among the
payoffs with the maximum pricing error (per unit norm) across factor models are quite high
(they all exceed .87). Abstracting from sampling error, this high correlation is indicative
that whatever is missing in one proxy is also missing in the other. However, the following
caution is in order. If our asymptotic measures of sampling error understate the underlying
sampling variability, then a portfolio that performs well in sample might appear to be
similarly mispriced by correctly specified stochastic discount factors (random variables in
M). Thus even if all of the factor models were correctly specified the estimated p — p*
could well be highly correlated across models.
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V1. Concluding Remarks

In this paper we have explored alternative ways to compare stochastic discount factor
proxies when it is understood that the models under consideration are misspecified. In
contrast to comparisons made based on chi-square statistics, our measures do not ‘reward’
variability of the proxies. Instead they focus on measuring maximum pricing errors (per
unit norm). Using our alternative least squares measures, we showed the sense in which
power utility models do not perform much better than constant discount factor models.
While the estimated specification errors are a little smaller for CAPM-style models in
which the stochastic discount factor is a linear combination of a constant plus a scale factor
times a measure of the market return, even these models imply specification errors that
exceed 25 percent of the norm for some payoffs. Bansal, Hsieh, and Viswanathan (1993)
have employed our apparatus to document the advantages of nonlinear factor models over
linear ones in pricing international securities.

We proposed and justified two alternative models of model misspecification, the second
of which exploits the positivity of arbitrage-free stochastic discount factors for pricing
derivative claims. For the data we used in this paper, the differences between the two
measures was negligible. This is unlikely to be true for all data sets. For instance, in
light of the findings in Hansen and Jagannathan (1991), it seems likely that holding-period
returns for Treasury bills would lead to a much more substantial discrepancy between
specification error measures. Moreover, from the work of Luttmer (1993) it is likely to be
important to take explicit account of transactions costs. Hansen, Heaton, and Luttmer
(1994) show how to incorporate such market frictions into the measures described here.
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Appendix A: Mathematical Results
The first proposition establishes a result stated in Section I.

Proposition A.1: Suppose P is given by (1.3). Then 7 given by (1.5) is a bounded linear
functional.

Proof. To see this consider any w - z with a norm less than or equal to one. Let A denote
any factorization of the conditional second moment matrix E(zz' | G) and note that

| Aw ||* = Elw'B(zz' | G)w)]
(A.1) = E(vw'zz'w)

=fw-z|?.
Furthermore,
Elw-q|=E|w'A (AN
(42) |w-g] | w'AY( /)_lql
< Aw [l (A) g || .

Finally, note that

| (A) g |2 = B¢ E(za’ | 0)Aq]

< co.

(A.3)

It follows that 7 is well defined on P and bounded. Q.E.D.

The next proposition imitates a result in Luttmer (1993). It is used to justify the duality
approach applied in Section III.

Proposition A.2: Suppose that P is generated by a random vector z with a nonsingular
second moment matrix, the corresponding price vector ¢ has a finite first moment and
Assumption 1.3 is satisfied. Then Fgq is an interior point in the set {Emz : m € L?,m > 0}.

Proof Let C'(y) ={a: |a|=1land /vy >0}and C*={a: || (¢'z)* |=0and | a |= 1}.
For any v € R", let my(c/z) = &y. Then C*(y) NC? is empty if and only if (P, ) satisfies
Condition N (there are no-arbitrage opportunities on (P,n,)). Therefore, C}(Eq) NC? is
empty. Since C'(Eq) and C? are both compact sets, there is a positive distance between
them (where distance is measured using the Hausdorff metric). Moreover, C! is continuous
function of the price assignment . Consequently, there is an open ball about Eq such that
for all « in this ball, C*(v) NC? is empty. For any such ~, the linear functional ., can be
represented as 7w(p) = E(pm) for some nonnegative m € L? (in fact, m can be chosen to be
strictly positive with probability one). Q.E.D.
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Appendix B: Data

The large and small capitalization stock portfolio returns were constructed using data
from the CRSP tapes. We sorted firms in the NYSE into ten size decile classes based on the
market value of common stocks outstanding in June of each year. We then constructed the
time series of monthly returns for an equally-weighted portfolio of stocks in the largest and
smallest size deciles for the twelve months in the subsequent calendar year. We repeat this
procedure for each calendar year and then splice the monthly series for different calendar
years together.

Monthly returns on long term government bonds and one-month Treasury bills were
taken from Stocks, Bonds, Bills and Inflation - 1991 Year Book of Ibbotson Associates.
Yields on one-month and one-year Treasury bills as well as Aaa and Baa bonds were taken
from the Federal Reserve Bulletins. Nominal returns were deflated using the price deflator
series for consumption of non-durables from CITIBASE.

Monthly returns on the equally-weighted as well as the value-weighted index of stocks
in the NYSE and AMEX used to construct candidate marginal rates of substitution are
taken from the CRSP tapes. Monthly per capita consumption data used in constructing
candidate marginal rates of substitution were constructed using data from CITIBASE.
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TABLE B.1: Summary Statistics of Return Data

Security

Mean

7

Standard | Skewness | Kurtosis
Deviation
1 1.008 0.044 -0.122 4.975
2 1.013 0.071 0.899 10.402
3 1.005 0.029 0.789 6.216
4 1.006 0.056 1.066 9.124
5 1.021 0.167 0.697 10.824
r 6 1.001 0.056 1.043 13.598
TABLE B.2: Correlations
] T
Security 2 3 4 5 6
- 1 0.70 0.33 0.92 0.90 0.72
2 0.14 0.63 0.60 0.42
3 0.40 0.31 0.30
4 0.93 0.80
5 0.81
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