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Suppose government consumption permanently increases. Should greater or diminished use

be made of the inflation tax? Should the income tax be made more or less progressive? Should

intergenerational transfers be increased or decreased? In this paper the answers to all three of these

questions are jointly determined.

The model used for analysis is the third in a progression. The first in the progression, Miller

(1984), assumed a real economy with serially independent shocks to technology. The second, Miller

(1993a), extended the original model by incorporating endogenously valued fiat money in fixed

supply. The model in the current paper extends the model in Miller (1993a) in three ways by

allowing

1. positive rates of government consumption,

2. nonzero rates of money growth, and

3. serial correlation in the technology shocks.

With the exception of these noted differences, the economic environment of all three models is the

same.

The general modeling approach taken here shares many attributes of other modern approaches

to public finance. The model is general equilibrium with explicit description of endowments,

production processes, information availability, market structure, government policies, and individual

optimization problems. The general equilibrium approach offers at least three advantages over a

macroeconomic approach. First, it assures internal consistency of behavioral functions, since they

are all derived within a common economic environment. Second, behavioral relations are invariant

to changes in policy rules, that is, the model is not subject to the Lucas critique, because individual

decision rules explicitly depend on the policy rules. Third, the policy objectives can be stated in

terms of individual welfare. This follows because the utilities of all individuals can be determined

as functions of their consumption and leisure.
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Like other modern approaches, the model is dynamic. Thus, public finance policies affect the

allocation of consumption and leisure over time and distort by altering the marginal rates of

intertemporal substitution.

In addition, the model incorporates fundamental uncertainty in the form of random shocks to

technology. Since the model’s structure implies that private insurance against these shocks is not

feasible, it allows a role for government insurance which takes the form of automatic economic

stabilization.

Despite these similarities to other modern approaches, the modeling approach taken here

differs from the others in some significant ways.1 Other models tend to share these characteristics:

They include representative agents who are infinitely lived.

They include physical capital.

They employ fairly general functional forms and stochastic processes.

They can be calibrated.

While my model has none of these features, it has others that the more standard models tend

not to have:

It has a nonlinear income tax.

It allows an endogenously valued fiat money.

It determines a socially optimal scale of intergenerational tax/transfers; e.g., social security.

If one is to stray from the flock, there is a burden to demonstrate what is gained. I believe

the primary gain is that my model provides answers and insights to public finance questions which

are not even addressed in the standard models. The present model also provides useful examples and

counterexamples from a fully specified general equilibrium model which take the form:

“It is possible that . . . ”, or
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“It is not always true that . . . ”.

However, the judgment about whether this line of research is useful must be made by the

readers. So to aid in this judgment, I briefly describe the common structure of the three models in

the progression, note how each model extends the one before it, and then list the main findings and

insights from each model. After this lengthy introduction, I formally describe the present model, the

solution, and the policy implications.

The Models and Their Messages

The basic structure of all the models in the progression is the same. There is a constant

population of two-period lived agents. The agents divide their time between work and leisure in their

first period of life and retire in their second period. There are constant returns to labor input, but the

return is random and can take on a “good” or “bad” value. The return shock occurs and then the

young agents come on the scene, so that no private risk-sharing is possible. Agents care about

consumption and leisure in each period of life. The government taxes agents when they are young

and working and transfers the proceeds to agents who, in the second period of their lives, are retired.

The government’s objective is to maximize welfare of the young and the future generations, which

is shown to be equivalent to minimizing the sum of “distortion” and “instability.”

In the first model in the progression, shocks to technology are serially uncorrelated, there is

no government consumption, and there is no money, so that all taxes are real. Income taxes are

nonlinear: When marginal tax rates rise with income levels the tax is “progressive;” when they fall

with income levels, the tax is “regressive.” In the second version of the model, the initial old are

endowed with a fixed stock of fiat money. Although the total stock of money is fixed over time,

there is a difference in this version of the model between real and nominal income taxes. Real taxes

relate real tax revenues to real income, while nominal taxes relate nominal tax revenues to nominal
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income. The difference between the two occurs because tax schedules are nonlinear. In the third,

and present, version of the model, shocks to technology can be serially correlated, the government

can consume at a constant rate, and the money stock can grow or shrink at a constant rate.

In the first model, in which there is no serial correlation to technology shocks, no government

consumption, and no money, the main findings are:

1. Reducing economic distortion should not be the sole goal of tax policy. Reducing

economic instability is also a proper goal.2

2. It is possible that government tax policies can reduce the instability in income while

increasing economic instability in terms of consumption and leisure.

3. Although there is a role for reducing economic instability, a regressive income tax, which

increases instability relative to a linear or progressive tax, appears optimal.

In the second model, which differs from the first only by the inclusion of a fixed stock of fiat

money, the main findings are:

1. Different tax policy implications can follow in real and monetary models. This basically

results from the two having different market structures.

2. The optimal income tax structure can be progressive. In a monetary model, as compared

to a real model, the insurance, or stabilization, role of the tax/transfer system becomes

relatively more important than its redistributive role, and a progressive tax provides

insurance, or stability.

3. A nominal income tax (nonindexed) may be preferred to a real income tax (indexed). In

this model, the nominal tax has the price level as a shifter, which allows a regressive

structure in each state but higher tax rates in the good state than in the bad.
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4. One tax can imply a higher mean and lower variance of real income than another and still

be less desirable. Thus, evaluating policies according to the behavior of a proxy like real

GDP can be misleading.

In the present model, there can be serial correlation to technology shocks, positive government

consumption, and steady growth or shrinkage in the money stock. While the findings from the

previous two versions of the model have been described more fully in the previous publications, the

findings from the present version of the model have not been described at all. So, instead of just

giving a general overview, I first describe the main findings and then provide an intuitive explanation

for them.

The findings are based on a numerical analysis of the model. The numerical parameter values

are chosen to produce labor supply functions with reasonable properties:

Labor supply is between 0 and 1, where 1 is all the time available.

Labor supply is increasing in its rate of return. That is, more labor is supplied when

productivity is relatively high and when income taxes are relatively low.

A sensitivity analysis is conducted with respect to parameter value choices, but it appears that the

labor supply specifications are the only crucial ones.

The major findings from the numerical analysis include:

1. For all parameter values examined, the government optimally runs a surplus and shrinks

the stock of money.

2. As government consumption increases,

a. Income tax revenues increase,
b. The income tax structure becomes more regressive,
c. The deflation subsidy decreases, and
d. Transfers decline.



6

3. The bulk of the increase in government consumption is accommodated by a decline in

transfers.

4. Higher government consumption results in higher output and lower prices. However,

since it reduces consumption and leisure, it also results in lower welfare.

5. Greater serial correlation increases welfare by making outcomes more predictable.

Thus, it diminishes the need for transfers to insure against instability and allows lower

taxation.

The first finding is a bit surprising, since the model has overlapping generations and distorting

taxes. The finding holds when government consumption is zero. That suggests that when an optimal

tax/transfer scheme exists, a rate of deflation is required to provide the proper incentive to private

saving.

The second set of findings suggests that when all forms of financing distort, the pain should

be spread over all of them. As more taxes are raised, distortion becomes increasingly more important

than instability, so that the income tax structure moves from progressive to regressive.

Reducing transfers to the old is the least distorting way to accommodate higher government

consumption, and that explains the third finding. In a dynamic model, this does not translate into

stealing from the old to give to the young. At some time all agents (except the current old) are both

young and then later old. Thus, reducing transfers amounts to a tax on second-period consumption.

Increasing this tax to cover higher government consumption allows agents to best adjust their

demands for consumption, leisure, and insurance.

The fourth finding is intuitive with respect to output but not with respect to prices. When

government consumption is financed primarily by lower transfers, agents’ utility loss is spread over

the utilities associated with consumption and leisure. By accepting less leisure, agents work more

and produce more. But since leisure does not wholly absorb the loss, output increases by less than
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government consumption. The finding with respect to prices is explained by the government’s

response to its greater consumption and by agents’ desire to increase private savings. In this model

the government reduces transfers by close to the amount of its increase in consumption, so

government expenditures and the budget deficit barely budge. However, since the brunt of additional

financing for government consumption is borne by a tax on second-period consumption, agents desire

to increase their private saving, so that their loss in income is distributed in a more balanced way

between first- and second-period consumption. The demand for greater savings implies a lower price

level (a higher value of savings).

The fifth finding seems intuitive. It follows that with lower taxes, agents decide to “make

more hay when the sun shines.” Although their utility declines from having less leisure, the

additional consumption they enjoy is more than offsetting.

In the text that follows, the model and its solution are formally described, and results of

numerical exercises are reported and discussed. The paper concludes with an extended discussion

concerning the applicability of the model’s main findings.

The Model

1. Population

In each period N identical individuals are born. Each individual lives two periods. Thus, in

each period there are N “old” in the last period of their lives and N “young” in the first period of

their lives. Without loss of generality it is assumed that N = 1.

2. Individual Welfare

Individual preferences are represented by a time-separable utility function in consumption and

leisure:

W = U(c1,L̃1) + βU(c2,L̃2)
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where for an individual of a given generation ci is consumption in the ith period of life; L̃i is leisure

in the ith period of life, 0≤ L̃i ≤ 1; and the contemporaneous utility function U is assumed to be

differentiable and concave.

Special assumptions are made about U and its arguments in order to make the numerical

analysis tractable. In particular, it is assumed that

U(c,L̃) = −A(c−c*)2 − B(L̃−L̃*) 2

where A > 0, B > 0, thesatiation level of consumption c* is at least as large as any feasible level,

and the satiation level of leisure L˜ * is all the time available: L˜ * ≡ 1.

3. Endowments

Each individual is endowed with one unit of time each period. In the first period that time

is divided between leisure L˜
1 and labor L: L̃1 ≥ 0, L ≥ 0, and L̃1 + L = 1. In the second period all

time goes to leisure: L˜
2 ≡ 1.

An individual in the current old generation is endowed with M/N = M units of fiat money.

4. Production

Production in each period of a perishable consumption good y is governed by the linear

process

yk = µk L

where k = B the badstate or k = G thegood state3 and µ is a first-order Markov process such that

µk =







µB ≡ 1, prob(µ = µB) = P and

µG ≡ θ > 1; prob(µ = µG) = 1 − P



9

prob(µ(t 1) = uk′ µ(t) = µk) =







q ≥ 1/2, if k′ = k

1 − q, if k′ ≠ k
.

The young in any period observe µ before they decide on how much labor to supply.

5. Exchange

In any period the young and old exchange goods and money. The old sell money, their

savings, to purchase goods. The young sell the goods they produced to acquire money, their savings.

Private insurance markets cannot operate due to the assumed timing of productivity shocks. Since

the current young appear after the shock to productivity has occurred, they cannot insure against

fluctuations in first-period income. They would like to insure against fluctuations in second-period

income; but only the current old could sell the insurance, and they will not be around in the next

period to pay off. The absence of private insurance is meant to reflect that in the real world agents

cannot fully insure their labor income against business cycle risks.

6. Government

On a continuing basis the government consumes at a constant, state-independent real rate G.

It also spends in real terms for state-contingent transfers Trkk′(t+1), where the date of the transfers is

taken to be t + 1, k′ is the state at t + 1, and k is the state at date t; that is, µ(t) = µk and µ(t+1) = µk′,

where k, k′ = B or G.

The government has two sources of revenue. One is a real, quadratic income tax which

provides real revenue at time t + 1 of Tk′(t+1) = τ1y
k′(t+1) + τ2[y

k′(t+1)]2. The government can also

raise seignorage by expanding the stock of money at a constant rateλ; that is, M(t+1) = (1+λ)M(t)

for all t, whereλ ≥ −1. The government’s current-dollar, point-in-time budget constraint at date t +

1 is, then,
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p k′(t+1)G + pk′(t+1)Trkk′(t+1) = pk′(t+1)Tk′(t+1) + M(t+1) − M(t).

From the definitions above, the budget constraint can be expressed in real terms as

G + Trkk′(t+1) = τ1y
k′(t+1) + τ2[y

k′(t+1)]2 + λM(t)

p k′(t+1)
.

Methodology

The aim of the analysis is to trace out the locus of optimal policy choice variables (τ̂1,τ̂2,λ̂)

as functions of the policy parameter G. For a given G, the search for the optimal policy choice

variables is done in two steps. In the first step, individual demand functions and market-clearing

conditions are found (numerically) for arbitrary values ofτ1, τ2, andλ. From these expressions it is

also possible to determine allocations of consumption and leisure, and hence utility, for agents of all

generations. Analysis pertaining to this first step is described under the heading “equilibrium.”

In the second step values forτ1, τ2, andλ that maximize social welfare are found. Social

welfare is taken to be the discounted sum of the unconditional utilities of all agents in current and

future generations. An interpretation is that a social planner at date t, who does not observe the

current period’s productivity shock, seeks to maximize the weighted sum of utilities of current and

future agents, where the sum of the weights converges to a finite value. Analysis pertaining to this

second step is described under the heading “optimization.”

The analyses of equilibrium and optimization are simplified by recognizing that equilibria

must be stationary. Because there is no capital in the model, because the government choice variables

are assumed to be time independent, and because the productivity shock process is assumed to be

first-order Markov, current-period individual demand functions and market-clearing conditions depend

only on the productivity shocks in the immediate past and current periods. Stationarity also implies

that the unconditional expected utilities of agents from the current and all future generations must be
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the same. Thus, maximizing the social welfare function is equivalent to maximizing the unconditional

expected utility of the current young.

Equilibrium

An equilibrium consists of sequences of prices and quantities such that at each date markets

clear and agents maximize utility subject to their budget constraints. There are three markets in the

model: labor, consumption goods, and money. By Walras’ Law, equilibrium in any two implies

equilibrium in the third. In this analysis the two markets are taken to be labor and money.

In a stationary equilibrium excess demand functions for consumption, labor, and real money

holdings depend on the previous state µ(t−1) and the current state µ(t), but the dependence is time

invariant. Consumption in the second period of an agent’s life, then, depends on the state of

technology in both the first and second periods of that agent’s life. However, decisions made in the

first period of an agent’s life do not depend on the state of technology before that agent was born.

Therefore, consumption demand in the first period of life, labor supply, and real money demand

depend only on the current state. It follows that a stationary equilibrium for given parameter values

can be found by solving for̂LB, L̂G, m̂B, andm̂G, whereL̂i is the desired amount of labor supplied

in state i and ˆmi is the desired holdings of real balances in state i; ˆm ≡ S M, and S≡ 1/p. Then the

equilibrium, which requires market-clearing in the labor and money markets, recognizes that labor

demand is identically equal to labor supply and that the supply of money is given exogenously by

M(t) = (1+λ)tM(0), and without loss of generality M(0) is taken to be 1.

The individual’s choice problem when young is to maximize expected utility over the two

periods conditional on observation of the current state and subject to the period-by-period budget

constraints:

max
L,m

E[W µ(t)] = −A (c1−c*)2 µ(t) − B[L 2 µ(t)] − βAEµ(t+1) (c2−c*)2 µ(t) .
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We first solve for Wµ
2
(t) ≡ Eµ(t+1)[(c2−c*)2 µ(t)], the expectation of the second-period

component to utility after observing µ(t) but before observing µ(t+1). The maximization problem for

the second period is identical to that of the initial old: the solution is to spend all the resources

available on consumption:

ci
2
j ≡ (c2 µ(t) = i, µ(t+1) = j) = Trij(t+1) + Sj(t+1)Mi(t); i, j = B or G.

Since mi = Si(t)Mi(t), we can write

ci
2
j = Trij + Xij mi; i, j = B or G and Xij ≡ Sj(t+1)/Si(t).

Now let R ≡ (1+λ)−1. It follows by stationarity with mi(t) = mi that

XBB = XGG = R

XBG = RmG/mB

and

XGB = RmB/mG.

Using the substitutions above, we can now write

WB
2 = q(1−q)[(TrBG−TrBB

) + (XBG−XBB)mB]2 + (T̄rB+X̄BmB−c*)2

where

T̄rB ≡ E[Tr µ(t) = µB] = qTrBB + (1−q)TrBG

X̄B ≡ E[X µ(t) = µB] = qXBB + (1−q)XBG

and

WG
2 = q(1−q)[(TrGG−TrGB

) + (XGG−XGB)mG]2 + (T̄rG+X̄GmG−c*)2

where

T̄rG ≡ E[Tr µ(t) = µG] = qTrGG + (1−q)TrGB
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X̄G ≡ E[X µ(t) = µG] = qXGG + (1−q)XGB.

When they are young, the agents face one budget constraint if µ(t) = µB and another if µ(t) =

µG. The constraints are

for µ(t) = µB, cB
1 = (1−τ1)y

B − τ2y
B2

− mB = (1−τ1)L
B − τ2L

B2
− mB

and

for µ(t) = µG, cG
1 = (1−τ1)y

G − τ2y
G2

− mG = (1−τ1)θLG − τ2θ
2LG2

− mG.

Using the expressions derived above, we can write the conditional maximization problems of

the young in terms of the four decision variables LB, LG, mB, and mG:

for µ(t) = µB,

max
L B,mB

E[W µB] −A (1−τ1)L
B − τ2L

B 2

− mB − c*
2

− BL B 2

− βAW B
2

and for µ(t) = µG,

max
L G,mG

E[W µG] = −A (1−τ1)θL G − τ2θ
2L G 2

− mG − c*
2

− BL G 2

− βAW G
2 .

These maximization problems produce four first-order conditions for the four decision

variables:

(i) 2Aτ2
2L̂

B3
− 3A(1−τ1)τ2L̂

B2
+ A (1−τ1)

2 + 2τ2(m̂
B+c*) + B L̂B

− A(1−τ1)(m̂
B+c*) = 0

(ii) 2Aτ2
2θ

3L̂G3
− 3A(1−τ1)τ2θ

2L̂G2
+ A (1−τ1)

2 + 2τ2(m̂
G+c*) + B/θ θL̂G

− A(1−τ1)(m̂
G+c*) = 0

(iii) (1+βqR2)m̂B2
− (1−τ1)L̂

B − τ2L̂
B2

− c* − βqR(TrBB−c*) m̂B

+ β(1−q)Rm̂G(TrBG+Rm̂G−c*) = 0

and
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(iv) (1+βqR2)m̂G2
− (1−τ1)θL̂G − τ2θ

2L̂G2
− c* − βqR(TrGG−c*) m̂G

+ β(1−q)Rm̂B(TrGB+Rm̂B−c*) = 0.

From the government’s budget constraint we have that transfers in period t are independent

of the state in t − 1, sothat

TrB ≡ TrBB = TrGB = τ1L̂
B + τ2L̂

B2
+ (1−R)m̂B − G

and

TrG ≡ TrBG = TrGG = τ1θL̂G + τ2(θL̂G)2 + (1−R)m̂G − G.

After these substitutions into (iii) and (iv) are made, those two equations can be written as

(iii) ′ am̂B2
+ bm̂B + cm̂G2

+ dm̂G = 0

and

(iv)′ am̂G2
+ em̂G + cm̂B + fm̂B = 0

where

a ≡ 1 + βqR

b ≡ (1−βqR)c* − [1 − (1+βqR)τ1]L̂
B + (1+βqR)τ2L̂

B2
− βqRG

c ≡ β(1−q)R

d ≡ c τ1θL̂G + τ2(θL̂G)2 − G − c*

e ≡ (1−βqR)c* − [1 − (1+βqR)τ1]θL̂G + (1+βqR)τ2(θL̂G)2 − βqRG

f ≡ c [τ1L̂
B+τ2L̂

B2
−G−c*].

From (iii)′ and (iv)′ it is possible to transform the variables usingφ ≡ m̂G/m̂B. This generates two

equations to replace (iii)′ and (iv)′:

(v) (ce−ad)φ3 + (cf−ab)φ2 + (ae−cd)φ + (af−bc) = 0

and
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(vi) m̂B = −(b+dφ)/(a+cφ2).

System (i), (ii), and (v), then, is three cubic equations in three unknowns:L̂B, L̂G, andφ.

Values form̂B can easily be found from the solution by using equation (vi), and ˆmG can be found

from the definition ofφ: m̂G ≡ φm̂B. Although the three-equation system has only known parameters

in addition to the three unknowns, the unknowns appear in more than one equation, and thus a

numerical solution technique is required. The solution routine postulates initial values of LB and LG

such that 0 < LB < LG < 1 and then uses a Gauss-Siedel method cycling the three equations until the

values of the variables converge. The order of equations solved is first (v), from which mB and mG

are derived, and then (i) followed by (ii). Each time an equation is solved, the routine selects the

single real root with appropriate domain:φ > 1 and 0 < LB < LG < 1. From the solution values for

the three unknowns all other equilibrium values can be determined from the relationships derived in

the text above.

Optimization

The social planner’s optimization problem can be considered as maximizing the unconditional

utility of the current young EW with respect toτ1, τ2, and λ for given values of parametersΨ ≡

<A,B,c*,β,θ,q;G>, where

EW ≡ Eµ(1)U(c1,1−L) + βEµ(2) µ(1)U(c2,1)

= P U(cB
1,1−LB) + β qU(cB

2
B,1) + (1−q)U(cB2

G,1)

+ (1−P) U(cG1,1−LG) + β (1−q)U(cG
2

B,1) + qU(cG2
G,1) .

The unconditional probability of the bad state P is set equal to 1/2, and with equilibrium implying

(to be shown shortly)

cB
2

B = cG
2

B = cB
2 and cB2

G = cG
2

G = cG
2
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it follows that

EW = Eµ(1)U(c1,1−L1) + βEµ(2)U(c2,1)

= −A(c̄1−c*)2 − Aσ2
c1

− BL̄2 − Bσ2
L − βA(c̄2−c*)2 − βAσ2

c2

where (¯) andσ2
( ) are unconditional means and variances, respectively.

As discussed earlier, it is useful to decompose EW in different ways in order to interpret the

results. One way is by consumption and leisure, so that

EW[c1] ≡ −A(c̄1−c*)2 − Aσ2
c1

,

EW[L] ≡ −BL̄2 − Bσ2
L,

and

EW[c2] ≡ −βA(c̄2−c*)2 − βAσ2
c2

.

The second way of decomposing EW is by distortion EW1 and instability EW2, where

EW1 ≡ −A(c̄1−c*)2 − BL̄2 − βA(c̄2−c*)2

and

EW2 ≡ −Aσ2
c1

− Bσ2
L − βAσ2

c2
.

Given numerical values of parameters, the solution for optimal values ofτ1, τ2, and λ is

straightforward. For given parameter values and for given values ofτ1, τ2, andλ, the individual’s

conditional supplies of labor, LB and LG, and demands for real balances, mB and mG, are determined

as described in the previous section of this paper. All other equilibrium quantities are derived from

the labor supply and money demand functions. In particular, quantities of consumption in each period

in each state are derived. Thus, for given parameter values and arbitrary values ofτ1, τ2, andλ, a

value can be calculated for EW. We then adapt a program (Uncmin) written by Ellen McGrattan

which uses a gradient methodology to find the values ofτ1, τ2, andλ that maximize EW.4
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It follows from the budget constraints of the government and individuals that second-period

outcomes depend only on the state in that period, not on the state in the previous period. For

instance,

TrB = TrBB = TrGB = τ1y
B + τ2y

B2
+ − G

λM(t)

pB(t+1)

= τ1L̂
B + τ2L̂

B2
+ − G

λm̂B

1 + λ

and similarly,

TrG = TrBG = TrGG = τ1y
G + τ2y

G2
+ − G

λM(t)

pG(t+1)

= τ1θL̂G + τ2θ
2L̂G2

+ − G.
λm̂G

1 + λ

We then have

cB
2 = cB

2
B = cG

2
B = TrB + = τ1L̂

B + τ2L̂
B2

+ m̂B − G
m̂B

1 + λ

and

cG
2 = cB

2
G = cG

2
G = TrG + = τ1θL̂G + τ2θ

2L̂G2
+ m̂G − G.

m̂G

1 + λ

That second-period consumption depends only on the state in that period also can be seen to

follow from the national income identity. Since there is no investment, it follows that for state k, k

= B or G,

ck
1 + ck

2 + G = y.

With ck
1 = yk − Tk − m̂k, the above relationships for ck

2 must hold.

Although all the relationships have been derived in the text, it is useful to summarize them

in order to report the results of the exercises that follow. For k = B or G, wehave
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Choice Variables

Labor supply: Lk

Real money holdings: mk.

Income and Prices

Income: yk = µkLk, where µB = 1 and µG = θ > 1

Money stock: M(t) = (1+λ)t

Price level: p(t)k = M(t)/mk.

Government Budget

Taxes: Tk = τ1y
k + τ2y

k2

Government consumption: G

Government transfers: Trk = Tk + λmk/(1+λ) − G

Government expenditures: Ek = G + Trk

Government deficit: Dk = Ek − Tk.

Consumption

First-period consumption: ck
1 = yk − Tk − mk

Second-period consumption: ck
2 = Tk + mk − G.

Welfare

Welfare criterion: EW = Eµ(1)U(c1,1−L1) + βEµ(2)U(c2,1).

Results

The main issue addressed is how optimal policy decision variablesτ1, τ2, andλ change as

government consumption G changes and how these changes in policy variables affect equilibrium
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values of other variables. Two auxiliary issues also are addressed: how the findings are altered when

λ is chosen optimally as opposed to being set at zero and how they are altered when there is serial

correlation q > 1/2 as opposed to serial independence q = 1/2.

In order to address the main issue, we first assume numerical values forΨ ≡

<A,B,c*,β,θ,q;G> = <2.0,10.0,4.0,0.9,1.5,0.5;G> and allow G to range from 0.00 to 0.20 by

increments of 0.01. This choice of parameter values generates reasonable labor supply functions

(between zero and all the time available and upward sloping with respect to the real wage, e.g.,

productivity) and allows comparability to other tax structures in previous Miller (1984, 1993a) studies.

Table 1 reports maximizing values forτ1, τ2, andλ and equilibrium values for other quantities as G

increases by increments of 0.05.

For the most part the policy decision variables change as expected to increases in government

consumption G. The linear part of the income tax structureτ1 is the major part of the income tax,

and it increases as G increases. In contrast the quadratic part of the income tax structureτ2 moves

from a positive number to increasingly negative numbers. This indicates that the tax structure moves

from one which is progressive to ones which are more and more regressive. The rate of money

creationλ increases as G increases, but somewhat surprisingly it changes very little and remains

negative for all values of G. Also surprising is that the changes in policy decision variables, as well

as the changes in other variables in the table, indicate approximate linearity with respect to G. This

is surprising because while the model is linear-quadratic with respect to consumption and leisure, it

appears to be highly nonlinear with respect to the policy decision variables.

The means of budget variables reveal two big surprises. First, the table indicates how much

of the increase in government consumption is absorbed by a cut in transfers. For instance, the table

shows that when G increases from 0.0000 to 0.0500, average transfers Tr̄ decline by 0.0495, from

0.0186 to −0.0309. Thus, average expenditures Ex̄ increase by only 0.0005, from 0.0186 to 0.0191.
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The second surprise is that taxes T¯ increase by more than Ex̄, so that the government’s budget surplus

grows slightly as G increases. Evidently, the government’s deflation subsidy grows even though the

rate of deflation falls. As we see for the next set of variables, the deflation subsidy increases because

real money holdings, the base for the deflation subsidy, rise more than the deflation rate declines.

Individual decision variables respond as expected to the changes in budget variables. Because

their transfers in the second period decline, individuals wish to save more to replace some of that lost

income. Therefore, they increase their demand for real savings m, which drives down the price level.

And because an increase in G represents a loss in their income and consumption, the individuals

desire to replace some of the loss by working more.

The means of consumption, labor, and income all behave as expected. The table indicates

that as G increases, the loss is spread by agents over their consumption and leisure. This results in

lower means for consumption in each period, higher average labor supply, and hence higher average

output.

Although utility functions include variances of consumption and leisure as their measures of

instability, the table next includes coefficients of variation. While they are not the proper measures

of instability, they are independent of choice of units and are easier to interpret. The table indicates

that as G increases, agents accept more variation in each period’s consumption, in leisure, and in

income.

The final set of variables illustrates two points. The first is that higher government

consumption results in a welfare loss, as shown by declining values of EW. The second is that when

agents and the government adapt optimally to higher government consumption, the welfare loss is

distributed. Welfare associated with first-period consumption EW[c1], with labor EW[L], and with

second-period consumption EW[c2] all decline. Agents accept both more distortion (lower EW1) and

more instability (lower EW2).
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The results in Table 1, as well as those for intermediate values of G, are displayed in Figures

1–7. The figures indicate the relationships among the variables as well as the surprising linearity of

the relationships of the variables with respect to G.

A sensitivity analysis was conducted by doing versions of Figures 1–7 for different parameter

values. New sets of parameters were constructed by changing A, B, c*,β, andθ by about 10 percent

from their initial values in Table 1. Perturbations were done one at a time. For all parameter sets

the qualitative relationships shown in Figures 1–7 held.

Table 2 compares the outcomes for G = 0 whenλ is restricted to be zero and when it is

chosen optimally. The first column comes from Miller (1993a). The second column is the same as

the first column in Table 1. Table 2 shows that when the government is free to choose the rate of

money growth, it shrinks the money stock. It finances the deflation subsidy with higher taxes and

makes the tax structure more progressive. The reason for the greater progressivity is contained in

Miller (1993a). The tax/transfer scheme in this model serves two purposes: it allows goods to be

transferred across generations, and it provides insurance by (potentially) reducing income instability.

When the government deflates, agents hold more real balances, as indicated in the table, and hence

more of the transfer of goods to be handled through the money channel. The tax/transfer system is

then used more for insurance, and more progressivity leads to less instability.

When the government deflates and has a more progressive income tax structure, the main

effect on individuals is that they substitute from first- to second-period consumption. In the table ¯c1

declines by 0.0076, from 0.6843 to 0.6767, while ¯c2 rises by 0.0062, from 0.3400 to 0.3462.

Similarly, EW[c1] declines by 0.0989, from −22.1482 to −22.2471, while EW[c2] rises by 0.0815,

from −24.1139 to −24.0324. Agents are also willing to trade off a little more distortion for a little

less instability.
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Finally, Table 3 indicates how the results are affected by an increase in the assumed level of

serial correlation in the productivity shock q. The table shows that the variables change qualitatively

the same when G increases from 0.00 to 0.05 whether q = 0.50, 0.55, or 0.60 (seen by comparing

columns (1) and (2), (3) and (4), or (5) and (6)). However, as q rises, taxes T, transfers Tr, and the

deflation subsidy −λ all decrease (seen by comparing columns (1), (3), and (5), or (2), (4), and (6)).

While taxes fall, the degree of progressivityτ2 rises. As q rises, agents save more and work more,

and the changes occur more in good states than in bad states. For instance, LB and LG both increase

and LG increases more than LB. These changes result in more consumption in each period.

Accordingly EW[c1] and EW[c2] both rise while EW[L] falls. The changes result in both lower

distortion EW1 and less instability EW2. An interpretation is that a higherλ increases predictability

and lowers the probability that savers in a good state are going to face a low return on their savings

when they are ready to spend them. Thus, they are willing to work and save more and, therefore,

need less incentive to do so in terms of a lowerτ2 and λ. Moreover, since they produce more in

good times, the extra income has less marginal value, so that they are willing to transfer more to

second-period consumption via a higherτ2.

Conclusion

The most striking finding of this analysis is that higher government consumption should be

financed primarily by cuts in social security benefits. This finding goes so against the grain of

current political thinking that it brings into question the validity of the model. Yet this finding is not

as crazy as it initially seems.

The contrast between politicians’ defense of social security and the model’s attack on it can

be attributed to two sources:
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1. Politicians care about the wishes of current voters, while the model is concerned about the

current young and all future generations.

2. The social security system in practice involves a lot of redistribution among agents of the

same generation, while the model’s system involves none.

In terms of objective functions, it can be argued that voters’ choices do not properly account

for the welfare of future generations, so that their choices are suboptimal in terms of social welfare.

That is, in the case of social security, voters might choose to protect it, when in the country’s long-

run interest, as represented by the model’s social welfare function, it should be diminished.

However, even from a social welfare point of view, the model’s EW function can be properly

criticized for ignoring the utility of the initial old, and those agents would clearly be hurt by a cut in

social security payments. Including the utility of the initial old would imply that a cut in social

security payments would not be Pareto optimal. Yet if a welfare function were assumed that was a

discounted sum of utilities of the initial old, the initial young, and all future generations, and the

discount rateδ on ∑∞
t=0δ

tUt were not too low, then the welfare gains of the initial young and all future

generations would overwhelm the welfare loss of the initial old. Thus, voters’ preferences may be

an inadequate guide to what is in the long-run interests of the economy. A social welfare function

which does provide an adequate guide and incorporates the utility of the current old is not likely to

overturn the model’s finding about the desirability of reducing social security in light of a permanent

increase in government consumption.

But that finding would have to be tempered in applying it to our current system. The current

system can be thought of as a redistribution from the young to the old as well as a redistribution

among the old. The model’s system involves a redistribution only from the young to the old. The

model thus suggests that if government consumption permanently increased, it would be best to alter

tax rates just a little and finance the majority of the increase by a cut in social security benefits to
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middle- and upper-income individuals. By cutting these benefits the young and future generations

could best adapt their employment and private savings decisions to the loss implied by higher

government consumption. This logic is similar to that used by Feldstein (1987), Miller (1993b), and

Becker and Ehrlich (1994) in arguing to replace the intergenerational transfer part of social security

with a private pension system.

With all this said, one could still wonder what the model would imply if social security could

not be touched, as the current political climate would demand. This might be implemented in the

model by fixing transfers at their optimal levels for G = 0, sothat when G increases, the transfers

stay at those levels. Since the transfers don’t fully absorb the increases in G when they are free to

adjust, one can be confident that the qualitative results of the model with respect to taxes will still

hold when transfers don’t absorb any of the increases in G: explicit taxes will increase; the rise in

taxes will create more distortion, causing the tax structure to become more regressive—that is,τ1 will

increase andτ2 will decrease—and since both explicit and implicit taxes distort, desirable policies will

spread the distortion, causing the rate of money creation to increase. The question which does not

have a readily apparent answer is, Couldλ ever become positive? A guess is that it could, since

agents would want to lower their leisure and consumption in each period, and with transfers fixed a

higherλ is the main incentive for agents to save less and consume less in their second period. Thus,

if G became large enough, it would seem thatλ could go positive.

Given misgivings some may have about some of the model’s assumptions, it seems reasonable

to wonder which of the findings are likely to be robust. I suggest three:

1. The desired level of social security benefits cannot be considered independently. It

depends on what’s going on in the rest of the budget, with respect to both expenditures and

taxes. This has long been the CBO’s (1992, pp. 33ff) position.
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2. As government spending increases, the income tax structure should become more

regressive to serve efficiency. As the tax burden rises, tax distortion becomes more of a

problem which regressivity can mitigate.

3. As government spending increases, the optimal rate of money growth should increase.

Since all available taxes distort, a higher tax burden should be spread among all taxes, both

explicit and implicit.
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Notes

1Models following the standard approach include Chari, Christiano, and Kehoe (1994),

and Krussel, Quadrini, and Rios-Rull (1995). Auerbach and Kotlikoff (1987) use an overlapping

generations structure as in my model, but their agents live for many periods and that would tend

to prevent valued fiat money. Thus, while their model can be calibrated, they analyze public

finance questions in a real economy. Much of the focus of my research is to examine such

questions in a monetary economy.

2It is shown in this model that if a government has access to lump-sum taxes, the tax

should be higher in the good state than in the bad state. This indicates a role for economic

stabilization, since if minimal distortion were the sole goal, a lump-sum tax constant across states

would do.

3“B” and “G” also denote, respectively, a parameter in the utility function and government

consumption. However, the notation should not lead to confusion, since when, and only when,

B and G appear as superscripts, do they represent states of technology.

4McGrattan’s solution method requires good initial estimates of the maximizers. When

G = 0, initial values forτ1, τ2, andλ are chosen by using a grid search to find the maximizing

values ofτ1 andτ2 with λ restricted to be 0. For each incrementally higher value of G, Gi = Gi−1

+ ∆G, the initial estimates ofτ1, τ2, andλ for Gi are the maximizing values found for Gi−1. After

finding McGrattan’s solution, we do a grid search to increase the precision of the solution.
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Table 1

[A,B,c*,β,θ,q] = [2,10,4,0.9,1.5,0.5]

Value of Variable When G =

Variable 0 .0500 .1000 .1500 .2000

τ1 .0173 .0189 .0207 .0221 .0235

τ2 .0009 .0000 −.0010 −.0018 −.0026

λ −.0042 −.0041 −.0040 −.0038 −.0037

T̄r .0186 −.0309 −.0802 −.1296 −.1788

T̄ .0199 .0205 .0213 .0219 .0228

Ēx .0186 .0191 .0198 .0204 .0212

Def −.0013 −.0014 −.0015 −.0015 −.0016

mB .2986 .3229 .3470 .3711 .3953

mG .3540 .3826 .4109 .4392 .4675

LB .7067 .7107 .7146 .7185 .7223

LG .8928 .8991 .9057 .9121 .9185

c̄1 .6767 .6565 .6362 .6162 .5959

L̄ .7998 .8049 .8101 .8153 .8204

c̄2 .3462 .3232 .3003 .2771 .2542

ȳ 1.0230 1.0297 1.0365 1.0433 1.0501

cv(c1) 41.6686% 43.0576% 44.5633% 46.1438% 47.8541%

cv(L) 11.6306% 11.7059% 11.7953% 11.8744% 11.9594%

cv(c2) 9.8845% 11.2436% 12.8011% 14.6170% 16.7577%

cv(y) 30.9116% 30.9806% 31.0625% 31.1349% 31.2129%

EW −52.7622 −53.4218 −54.0855 −54.7533 −55.4253

EW[c1] −22.2471 −22.5180 −22.7905 −23.0624 −23.3384

EW[L] −6.4827 −6.5677 −6.6541 −6.7404 −6.8273

EW[c2] −24.0324 −24.3361 −24.6409 −24.9505 −25.2596

EW1 −52.5145 −53.1708 −53.8307 −54.4950 −55.1631

EW2 −.2477 −.2510 −.2547 −.2583 −.2622



Table 2

Parameters <A,B,c*,β,θ,q> = <2,10,4,0.9,1.5,0.5>,

G = 0.00

Variable λ ≡ 0 λ endog.

τ̂1

τ̂2

λ̂

.0157

.0006

.0000

.0173

.0009
−.0042

T̄r
T̄
Ēx
Def

.0168

.0168

.0168

.0000

.0186

.0199

.0186
−.0013

mB

mG

LB

LG

.2956

.3508

.7080

.8938

.2986

.3540

.7067

.8928

c̄1

L̄
c̄2

ȳ

.6843

.8009

.3400
1.0243

.6767

.7998

.3462
1.0230

σc1
/c̄1

σL/L̄
σc2

/c̄2

σy/ȳ

41.4%
11.6%
9.7%

30.9%

41.7%
11.6%
9.9%

30.9%

EW
EW[c1]
EW[L]
EW[c2]
EW1

EW2

−52.7624
−22.1482
−6.5004

−24.1139
−52.5133

−.2491

−52.7622
−22.2471
−6.4827

−24.0324
−52.5145

−.2477



Table 3

[A,B,c*,β,θ] = [2,10,4,0.9,1.5]

q = 0.50 q = 0.55 q = 0.60

Variable
G = 0.00

(1)
G = 0.05

(2)
G = 0.00

(3)
G = 0.05

(4)
G = 0.00

(5)
G = 0.05

(6)

τ1 .0173 .0189 .0140 .0160 .0108 .0130

τ2 .0009 .0000 .0017 .0006 .0024 .0012

λ −.0042 −.0041 −.0037 −.0036 −.0032 −.0030

T̄r .0186 −.0309 −.0163 −.0331 .0140 −.0352

T̄ .0199 .0205 .0175 .0182 .0150 .0158

Ēx .0186 .0191 .0163 .0169 .0140 .0148

Def −.0013 −.0014 −.0012 −.0012 −.0010 −.0010

mB .2986 .3229 .2990 .3230 .2990 .3266

mG .3540 .3826 .3600 .3886 .3668 .3952

LB .7067 .7107 .7078 .7117 .7088 .7126

LG .8928 .8991 .8941 .9007 .8957 .9022

c̄1 .6767 .6565 .6775 .6574 .6783 .6582

L̄ .7998 .8049 .8010 .8062 .8023 .8074

c̄2 .3462 .3232 .3470 .3240 .3480 .3247

ȳ 1.0230 1.0297 1.0245 1.0314 1.0262 1.0330

cv(c1) 41.6686% 43.0576% 41.3551% 42.7372% 40.9933% 42.3264%

cv(L) 11.6306% 11.7059% 11.6315% 11.7231% 11.6493% 11.7447%

cv(c2) 9.8845% 11.2436% 10.5213% 11.9613% 11.3102% 12.8649%

cv(y) 30.9116% 30.9806% 30.9124% 30.9963% 30.9287% 31.0162%

EW −52.7622 −53.4218 −52.7596 −53.4191 −52.7566 −53.4158

EW[c1] −22.2471 −22.5180 −22.2347 −22.5044 −22.2225 −22.4898

EW[L] −6.4827 −6.5677 −6.5022 −6.5890 −6.5239 −6.6091

EW[c2] −24.0324 −24.3361 −24.0227 −24.3256 −24.0102 −24.3169

EW1 −52.5145 −53.1708 −52.5134 −53.1692 −52.5118 −53.1675

EW2 −.2477 −.2510 −.2462 −.2499 −.2447 −.2483
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Figure 3      A=2, B=10, c*=4.0, beta=0.9, theta=1.6
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0 0.1 0.2
-26

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

EW[c1] -  EW[c2] --  EW[L] +

Figure 6      A=2, B=10, c*=4.0, beta=0.9, theta=1.6



0 0.1 0.2
-60

-50

-40

-30

-20

-10

0

EW -  EW1 --  EW2 +
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