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ABSTRACT

Recent empirical work on financial crises documents that crises tend to occur when macroeconomic
fundamentals are weak, but that even after conditioning on an exhaustive list of fundamentals, a
sizable random component to crises and associated capital flows remains. We develop a model of herd
behavior consistent with these observations. Informational frictions together with standard debt
default problems lead to volatile capital flows resembling hot money and financial crises. We show
that repaying debt during difficult times identifies a government as financially resilient, enhances its
reputation and stabilizes capital flows. Bailing out governments deprives resilient countries of this
opportunity.
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I. Introduction

Financial booms and crises in emerging economies are tightly linked to capital flows: some-

times large amounts of capital flow into a country, leading to a financial boom, and sometimes

large amounts flow out, leading to a crisis. Two common features of financial crises in emerg-

ing economies are key to understanding this phenomenon: crises tend to occur in countries

in which macroeconomic fundamentals are weak, and even after the historical crises data are

conditioned on an extensive list of macroeconomic fundamentals, a sizable nonfundamental,

or random, component to the crises remains. (See Kaminsky 1999 and others.)

That random component of international capital flows is the subject of this study.

In discussing financial crises, Calvo and Mendoza (1995) argue that a country’s “ ‘fall from

grace’ in world capital markets . . . may be driven by herding behavior not necessarily linked

to fundamentals.” We think the herding story is a promising explanation of the random

component of capital flows that drive financial crises.

This paper formalizes that herding story. In our model, when macroeconomic fun-

damentals are weak, capital tends to flow out. However, weak fundamentals alone do not

account for all capital flows; herd behavior drives some of them. Investors are uncertain

about whether countries will repay their debt in difficult times. Informational frictions lead

investors to stampede toward or away from a country when the investors have only bits of

information. Hence, capital flows in our model have the characteristics of hot money.

In our model, we associate financial crises with sudden outflows of capital, as does

Calvo (1998). Our model builds on the work of Banerjee (1992) and Bikhchandani, Hirshleifer,

and Welch (1992), who develop stylized models of herdlike behavior in which investors must

move in a prespecified order. One contribution of our study is that we endogenize the timing



of investors’ moves. In our model, investors can invest at any time. They must decide whether

to make a risky investment in the emerging economy or a safe investment in the rest of the

world. Information about the riskiness of the investment arrives over time. Specifically,

in each period, a signal about the return on the risky investment arrives to the economy

and is privately observed by one of the investors. Investors observe the aggregate amount of

investment in each period and optimally decide whether to invest or wait for more information.

Waiting is costly because of discounting.

Our model generates capital flows which are sensitively dependent on the exact pattern

of signals. If the signals lead investors to be sufficiently optimistic, then investors choose to

forgo the opportunity to acquire information, and they all immediately invest in the emerging

economy. If investors become sufficiently pessimistic, then they all invest in the rest of the

world, and capital flows out of the emerging economy. We call such hot money—like patterns

of capital flows herds.

The source of the investment risk in the emerging economy is the possibility of expro-

priation or default by the country’s government. Our model has two types of government: a

competent, or resilient, type, which can efficiently deal with difficult times, and an incompe-

tent type, which cannot. In the model’s equilibrium, the competent type never defaults on

its debt while the incompetent type does default, but only during difficult times. This feature

captures the idea that in normal times, different types of government may perform equally

well, but difficult times reveal their true nature: some governments crack under pressure

while others do not.

Our model generates the two key features of financial crises documented by Kaminsky

(1999). Fundamentals play an important role in generating crises: capital outflows are more
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likely when fundamentals are weak, and capital inflows are more likely when fundamentals

are strong. But even when fundamentals are weak, crises cannot be accounted for solely by

macroeconomic fundamentals. We show that capital flows in or out depending on the specific

pattern of the realization of signals across investors.

Our model provides two additional insights. One is that by repaying debt during

difficult times, governments pass a test of fire and thus enhance their reputation and capital

flows. Both of those are hurt if governments fail that test. Difficult times are crucial for

identifying financially resilient governments since no such test can occur in normal times.

The other insight from our model is that bailing out governments in difficult times

involves a cost not before appreciated: signal-jamming. Bailouts by outside agents jam signals

to investors about the governments’ financial resilience and thus deprive resilient governments

of the opportunity to enhance their reputations. If unanticipated, bailouts don’t involve moral

hazard, but they do involve signal-jamming.

We interpret our model as suggesting that middle-income countries are most likely to

experience herd behavior. The richest countries have developed institutions to handle crises

well. Hence, investors do not worry about default in these countries, and a steady stream

of capital flows to them. Similarly, investors have no confidence in the poorest countries’

ability to handle crises, and essentially no private capital goes to them. Uncertainty about

the resilience of governments is likely to be the highest among the middle-income countries,

and our model suggests that herd behavior will be most common among them.

Our model has many antecedents. Our modeling of the investors builds on elements

of the literature on herd behavior (for example, Banerjee 1992; Bikhchandani, Hirshleifer,

and Welch 1992; Caplin and Leahy 1994; and Chamley and Gale 1994). Our modeling of the

3



government builds on elements of the debt default literature with signaling. (See the Eaton

and Fernandez 1995 survey.)

Our work is also complementary to models of financial crises driven by sunspots. (See,

for example, Sachs, Tornell, and Velasco 1996; Calvo 1998; Cole and Kehoe 2000; and Chang

and Velasco 2001.) The sunspot equilibria in these models arise from coordination problems.

For example, in Cole and Kehoe (2000), lending is optimal for an individual lender if and only

if other lenders are lending. Morris and Shin (2001) critique sunspot equilibria arising from

coordination problems. They show that in a large class of coordination games, if agents have

an arbitrarily small amount of idiosyncratic private information about fundamentals, there

can be no (nontrivial) sunspot equilibria. Our model is not driven by coordination problems;

nor are our equilibria sunspot equilibria. Thus, our model is not subject to the Morris and

Shin (2001) critique. Nonetheless, one interpretation of our herding model is that it provides

a detailed microeconomic story to explain sunspots. In particular, changes in the order that

signals are observed can change outcomes dramatically, in much the same way that sunspots

can change outcomes in models with coordination problems.

II. Macroeconomic Fundamentals and Financial Crises

The early literature on financial crises, following Krugman (1979), points to the macroeco-

nomic fundamentals that are likely to play a key role. In this fundamentalist literature, crises

can be completely accounted for by macroeconomic fundamentals. (For some recent work

along fundamentalist lines, see Atkeson and Ríos-Rull 1996 and Burnside, Eichenbaum, and

Rebelo 2000.)

The empirical work on financial crises raises two challenges to the fundamentalist view.
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This work shows that fundamentals can account for only a modest fraction of observed crises.

And it shows that even after the historical crisis data are conditioned on an extensive list of

macroeconomic fundamentals, a sizable random component remains. (See the references in

Goldstein, Kaminsky, and Reinhart 2000.)

For example, Kaminsky (1999) develops what seems to be an exhaustive list of indi-

cators of financial crises during 1970—95 for 20 countries, encompassing 102 financial crises.

The indicators are those suggested by the fundamentalist literature, movements in things like

a country’s output, real interest rates, stock prices, bank deposits, exports, imports, terms

of trade, real exchange rate, foreign debt, and M1 money balances. She divides the sample

period into crisis times, defined as the 24 months immediately before an actual financial cri-

sis, and tranquil times, defined as all other times. Using the crisis indicators, she constructs

the probability that a financial crisis will occur in the next 24 months. She finds that, on

average, the probability of a currency crisis occurring is .39 in crisis times and .19 in tranquil

times. That is, on average, her fundamentals model mistakenly predicts no crisis 61 percent

of the time in crisis times and mistakenly predicts a crisis 19 percent of the time in tranquil

times.

As an illustration, consider Figure 1, which displays Kaminsky’s (1999) probability

that a currency crisis will occur in the next 24 months in Malaysia. Crises actually occurred

there in July 1975 and July 1997. The shaded areas of the graph are the crisis times. Notice

that before the 1975 crisis, the model predicts a relatively low probability of a crisis, but

one occurred. In the mid-1980s, the model predicts a high probability of a crisis, but none

occurred. In sum, while the data show that fundamentals play an important role in financial

crises, a very sizable amount of randomness clearly remains.

5



III. Investor Behavior

We build a model which is consistent with those facts. We begin, in this section, by describing

investor behavior during one period of an infinite-horizon dynamic economy, with the risk

structure of investments given exogenously. In the next section, we will build a maximizing

model of government behavior and provide sufficient conditions for the default decisions of

this government to generate the risk structure that we assume here.

A. Herds with Endogenous Timing

Consider one period of a model of a small open economy with domestic and foreign investors.

The single period has V + 1 stages, denoted t = 0, . . . , V.

At each stage, investors must decide whether to make a risky investment in the emerg-

ing economy or a safe investment in the rest of the world. Information about the returns

to the risky investment arrives over time in the sense that at each stage a signal about the

return of the risky investment arrives to the economy and is privately observed by one of the

investors. Investors observe the aggregate amount of investment at each stage and optimally

decide whether to invest or to wait for more information. Waiting has both benefits and

costs. The benefit is the possibility of inferring other investors’ signals from their decisions.

The cost arises from discounting.

The economy has N one-period—lived risk-neutral investors, a fraction λ of whom are

domestic and a fraction 1 − λ of whom are foreign. (We include domestic investors so that

a failure to make domestic investments corresponds to capital flight.) Each investor has 1

unit of resources to invest. Investors have a choice of two types of investment: a safe foreign

investment with a gross return that is normalized to 1 and a risky domestic investment. The
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payoff on the risky investment depends on the state of the economy, denoted g ∈ {G,B},

where G indicates a good state and B, a bad state. The state is realized at stage 0, but is not

known to investors until stage V . The distribution is common knowledge among investors.

The common prior probability of the good state at stage 0 is µG.

Each investor starts at stage 0 with 1 unit invested in the safe investment and at each

stage t chooses whether to switch from the safe investment to the risky investment. Once

investors have switched their unit, they must leave it there until stage V. The risky investment

compounds at a gross rate R > 0. If the state is good, then the investor gets the compounded

amount at state V. If the state is bad, then the investor gets the compounded amount with

probability π0 and gets nothing with probability 1−π0. (In the next section, π0 will turn out

to be the probability that the government is competent.) Hence, an investor who switches at

stage t gets a total expected return of

eR(V−t){Prt(state is G)+ π0Prt(state is B)} (1)

where Prt(state is G) is the conditional probability that the investor assigns to the state being

G,with similar notation for the state being B. An investor who never switches gets a total

return of 1. Notice that after investors switch to the risky investment, they take no more

actions. Hence, we do not need to define payoffs or strategies for such investors.

Investors receive signals s ∈ {G,B} about the state as follows. At each stage t =

0, . . . , S, which satisfies S < V, one signal arrives to the economy and is randomly distributed

to one and only one investor among the set of investors who have not already received a
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signal.1 The signals are informative and symmetric in the sense that

Pr(s = G | g = G) = Pr(s = B | g = B) = α > 1/2. (2)

The only publicly observable events are the number of investments at each stage. Let

nt denote the number of new investments at t. The public history ht = (n0, n1, . . . , nt−1)

records the aggregate number of positive investments at each stage up through the beginning

of stage t. Investors also record the signal they receive, if any, and the stage at which they

receive it. The history of an investor i at t who receives a signal at stage r is hit = (ht, sr, r),

and (ht, ∅, ∅) denotes the history of an investor who has not received a signal.

Notice that at each stage t, given their histories, investors can be described as belonging

to one of several groups. Any investor who has already invested is inactive. The active

investors are of three types: a newly informed investor who has received the signal at the

beginning of stage t, previously informed investors who have received a signal at some stage

r before t, and uninformed investors who have not yet received a signal.

An investor’s strategy and beliefs (or priors) are sequences of functions xt(hit) and

pt(hit) that map the investor’s histories into actions and priors over the state. The payoffs

are defined as follows. Let Vt(hit) denote the payoff for an investor who switches from the

safe to the risky investment at t conditional on the history hit. Then

Vt(hit) = eR(V−t)qt(hit)

where for simplicity we let qt(hit) = pt(hit) + π0[1 − pt(hit)] is the probability of receiving

1Hence, S investors are randomly drawn without replacement from the pool of N investors and assigned a
number designating the stage at which each will receive a signal. The names of the investors and the stages
when they will receive the signals are not observed, but the process for assigning names and stages is common
knowledge.
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the compounded return on the risky asset conditional on the history. Let Wt(hit) denote the

payoff for an investor who waits at stage t. The payoff to waiting is given by

Wt(hit) =
X
hit+1

µt(hit+1|hit)max{Vt+1(hit+1),Wt+1(hit+1)}

where µt(hit+1|hit) is the conditional distribution over investor i’s histories at t+1 given this

investor’s history at t. Notice that the conditional distribution µt(hit+1|hit) is induced from

the strategies and the structure of exogenous uncertainty of the economy in the obvious way.

Notice also that we have imposed symmetry by supposing that all investors who have the

same histories have the same beliefs and take the same actions.

Here a perfect Bayesian equilibrium is a set of strategies xt(hit), a set of conditional

distributions µt(hit+1|hit), and a set of beliefs pt(hit) such that (i) for every history hit, xt(hit)

is optimal for all active investors, and (ii) the conditional distributions µit(hit+1|hit) and the

beliefs pit(hit) are consistent with Bayes’ rule wherever possible, but are arbitrary otherwise.

To simplify the construction of an equilibrium, we let PG(p) and PB(p) be the posterior

probabilities associated with a good signal and a bad signal, respectively, when the prior is

given by p. Thus, from Bayes’ rule we have

PG(p) =
pα

pα+ (1− p)(1− α)
(3)

PB(p) =
p(1− α)

p(1− α) + (1− p)α
(4)

where α is defined in (2). Let P (0) = µG, P (1) = PG(P (0)), P (2) = PG(P (1)), and so on,

and let P (−1) = PB(P (0)), P (−2) = PB(P (−1)), and so on. Thus, P (k) for k > 0 is the

prior probability that the state is good if k good signals have been received, and P (k) for
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k < 0 is the prior probability that the state is good if k bad signals have been received.

Notice from the symmetry in (2) that

PG(PB(p)) = PB(PG(p)) = p. (5)

It follows from (5) that the effect on the prior of a given set of signals is summarized by the

number of good signals minus the number of bad signals in the set. For example, receiving

two good signals and one bad signal yields the same prior as receiving one good signal.

Let Q(k) = P (k) + π0[1 − P (k)]. Notice that Q(k) is an investor’s belief about the

probability of a risky investment paying off a positive amount, since investors believe the

state is good with probability P (k).

Now we consider the region of the parameter space that satisfies these assumptions:

1 < eR(V−S)Q(0) (6)

1 > eRVQ(−1) (7)

eRVQ(0) < νG(P (0))eR(V−1)Q(1) + νB(P (0)). (8)

Here νG(p) = P (s = G|p) = pα+(1−p)(1−α) and νB(p)=P (s = B|p) = p(1−α)+(1−p)α

denote the probabilities that the signal is good and bad, respectively, given a prior of p.

Note that because R is positive, these assumptions imply the following. Assumption

(6) implies that at any stage t, if the investor is forced to choose between the two options of

investing in the risky investment given belief Q(0) or never investing in the risky investment,

investing is better. Assumption (7) implies that at any stage t, if the investor is forced to

choose between the two options of investing in the risky investment given belief Q(−1) or
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never investing in the risky investment, not investing is better. We can think of assumptions

(6) and (7) as conditions on the prior P (0).

Assumption (8) implies that

eR(V−t)Q(0) < νG(P (0))eR(V−t−1)Q(1) + νB(P (0)). (9)

To gain some intuition for (9), consider an alternative economy in which an investor at stage

t expects to receive a signal at stage t+ 1 with probability 1. Suppose also that the investor

is restricted to making an investment decision in either stage t or stage t+ 1. Inequality (9)

implies that in this alternative economy, investing with beliefs Q(0) is dominated by waiting

until stage t+1 and investing if and only if a good signal is realized. To understand the role of

(8) in our model, note that waiting and receiving information is beneficial because investors

have the option of not investing if the signals are sufficiently bad. We call this benefit the

no investment option value. The cost of waiting comes from a kind of discounting, in that

investors forgo the flow return from investing. Assumption (8) requires that the no investment

option value be large relative to discounting. We interpret (8) as an assumption that investors

discount the future little.

Now we will informally describe the strategies of the various types of investors. At all

stages before S, the strategy of the uninformed and previously informed investors is to invest

if and only if the prior is at least P (1). The strategy for newly informed investors is to invest

if and only if the prior is at least P (0). From these strategies, it is easy to construct how

beliefs evolve.

These strategies lead to the following equilibrium outcomes. At the beginning of stage

0, one investor receives a signal and is the newly informed investor. That investor invests if
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the signal is good but otherwise does not. All uninformed investors wait.

The decisions at stage 1 depend on the history from stage 0. If investment was positive

at stage 0, then the uninformed investors infer that the signal at stage 0 was good, their priors

rise to P (1), and they all invest, while the newly informed investor at stage 1 invests regardless

of the signal that investor actually received. We say that this history starts a stampede of

investment, in that all investors invest regardless of their signals. If investment was zero at

stage 0, then the uninformed investors infer that the signal at stage 0 was bad, their priors

fall to P (−1), and they all wait. The newly informed investor at stage 1 invests if the signal

received is good, but waits otherwise.

At the beginning of stage 2, if investment has been zero at both stages 0 and 1,

then uninformed investors’ priors fall to P (−2), and no investor invests at stage 2 or at any

subsequent stage. We will say that this history starts a stampede of no investment, in that

all investors do not invest regardless of their signals. If there has been no investment at

stage 0 but an investment at stage 1, then both the uninformed investors and the previously

informed investor have a prior of P (0), they wait, and the newly informed investor invests if

and only if the signal is good.

More generally, histories of the form (1), (0, 1, 1), . . . , (0, 1, 0, 1, . . . , 0, 1, 1) start stam-

pedes of investment. Histories of the form (0, 0), (0, 1, 0, 0), . . . , (0, 1, 0, 1, . . . , 0, 1, 0, 0) start

stampedes of no investment.

More formally, we proceed as follows. The strategy for uninformed and previously

informed investors is

xt(hit) =


1 if pt(hit) ≥ P (1)

0 otherwise

 (10)
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for t ≤ S − 1 and xS(hiS) = 1 if and only if pS(hiS) ≥ P (0). The strategy for newly informed

investors is

xt(hit) =


1 if pt(hit) ≥ P (0)

0 otherwise

 (11)

for t ≤ S. Note that p(1) is a cutoff level for investment by the uninformed and previously

informed investors and P (0) is that level for newly informed investors. Note, too, that in

order to invest before S, the uninformed and previously informed investors need to be more

optimistic than newly informed investors.

The beliefs of uninformed investors with history hit = (ht, ∅, ∅) are recursively defined.

Given pt−1(hit−1) and a total investment of nt−1 at stage t − 1, the beliefs at t are given as

follows. For pt−1(hit−1) equal to either P (−1) or P (0),

pt(hit) =



PB(pt−1(hit−1)) if nt−1 = 0

PG(pt−1(hit−1)) if nt−1 = 1

P (2) if nt−1 ≥ 2


(12)

where p0(hi0) = µG. For pt−1(hit−1) either greater than or equal to P (1) or less than or equal

to P (−2), pt(hit) = pt−1(hit−1).

The beliefs of the newly informed investors with history hit = (ht, s, t) are simply those

of the uninformed investors, updated by the newly informed investors’ signal: pt(ht, s, t) =

Ps(pt(ht, ∅, ∅)) for s = G,B.

The beliefs of the previously informed investor at t who received a signal at t− 1 with

history hit = (ht, s, t−1) are defined as follows. If no other investor invested at t−1, then this

investor’s beliefs are the same as they were at stage t − 1: pt(ht, s, t) = Ps(pt−1(ht−1, ∅, ∅))

for s = G,B. If some other investor invested at t − 1, then pt(ht, s, t) = P (2). The beliefs
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of previously informed investors who received their signals before stage t− 1 are recursively

defined as those of the uninformed investors, except that the recursion now starts at r, with

the beliefs of the newly informed investor at r, pr(hir, s, r).

Built into these beliefs is the idea that investors look at previous investors’ actions and

try to infer the signals they received. On the equilibrium path and for undetectable deviations

from an investor’s strategy, the uninformed investors infer the following. If they see one unit

of investment at t and the strategies specify that a newly informed investor receiving a good

signal should invest, while a newly informed investor receiving a bad signal should not invest,

then the uninformed investors infer that the newly informed investor received a positive signal.

The uninformed investors update beliefs in a similar way when they see no investment at t.

Notice that when the newly informed investors act differently than their strategies specify,

these deviations cannot be detected by uninformed investors, so that uninformed investors’

beliefs are updated as if the informed investors had not deviated.

On the equilibrium path and for undetectable deviations, the newly informed investors

simply update the beliefs of the uninformed investors with their private signals. The previ-

ously informed investor who was newly informed at t − 1 simply updates the beliefs of the

newly informed investor at t − 1 appropriately. The previously informed investor who was

newly informed at r < t− 1 simply updates the beliefs of the previously informed investor at

t− 1 appropriately.

For detectable deviations, investors infer the following. If an uninformed investor sees

more than one unit of investment, beliefs are updated to an optimistic level, P (2). If an

uninformed investor sees other deviations, beliefs are left unchanged. Previously informed

investors behave similarly. A newly informed investor at t who is active at t + 1 and sees
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investments by others also updates beliefs to the optimistic level P (2).

These strategies and beliefs induce the conditional distributions µt(hit+1|hit) in the

obvious way. We will show that these strategies and beliefs are an equilibrium. An important

feature of the strategies is that the cutoff level for investment is higher for the uninformed

investors than for the newly informed investors. To understand why this is necessary, suppose

first that both types of investors invest if their beliefs are greater than or equal to P (0). To

see why this cannot be an equilibrium, consider a deviation to waiting by an uninformed

investor at t = 0 with beliefs P (0). Since the newly informed investor invests if and only if

the investor’s signal is good, the deviating investor learns the value of the signal. By (8), this

deviation increases payoffs.

Suppose next that the cutoff level for both types of investors is P (1). Suppose the first

signal is B. Then the newly informed at stage 0 does not invest, and the other investors infer

that the newly informed got a bad signal, and their priors are P (−1). The newly informed

investor at stage 1 is supposed to wait regardless of the signal. The prior of the uninformed

investor stays at P (−1), and thus, all newly informed investors at all future stages also wait.

After a history of signals B,G, the newly informed investor at stage 1 has a prior of P (0). A

deviation to investing, by (6), raises the payoffs.

These arguments help explain why the cutoff levels of the informed and uninformed

investors must be different. We now show that when these cutoff levels have the form in (10)

and (11), the strategies and beliefs are an equilibrium.

Proposition 1. Under assumptions (6)—(8), the strategies and beliefs in (10) and

(11) constitute a perfect Bayesian equilibrium.

15



Proof. By construction, the beliefs in (12) satisfy Bayes’ rule. We repeatedly use the

observation that by construction, for any history hit, pt(hit) = P (k) for some integer k.

First consider optimality for histories with no detectable deviations. Consider the

strategies of the uninformed investors with different histories hit. If pt(hit) ≤ P (−1), then by

(7), waiting is optimal. If pt(hit) = P (0), then by (8), waiting is optimal.

More interesting is a history with pt(hit) = P (1). Under the equilibrium, the unin-

formed investor invests and receives eR(V−t)Q(1). Suppose the investor instead deviates and

waits. If, for all future histories, the investor ends up investing, then waiting merely reduces

the length of time in the high return investment, and the investor loses eR at each stage.

Thus, the only way that this deviation can be profitable is if there are some future histories

in which this investor never invests. Consider the most pessimistic information the investor

could receive. Recall that for such a history, all other active investors invest at t. Thus by

waiting, the uninformed investor receives no new information from others. By waiting, the

uninformed investor could receive a signal in the future. But even if the future signal is s = B,

this investor’s belief will be P (0), and by (6) the investor will invest. Thus, even under the

most pessimistic information, investing is optimal; so waiting is not profitable. Finally, for

histories with pt(hit) ≥ P (1), investing is also clearly optimal.

Consider next the strategies of the newly informed investors for some history hit. If

pt(hit) ≤ P (−1), then (7) implies that waiting is optimal. If pt(hit) ≥ P (2), then along the

equilibrium, uninformed investors have already invested, there is no potential information to

learn, and by (6), investing is optimal.

The interesting histories are those in which the uninformed investors’ beliefs are P (0) or

P (−1) and the newly informed investor has just received a good signal, so that the investor’s
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beliefs are P (1) or P (0). The strategy for the newly informed investor specifies investing.

Suppose this investor instead deviates and waits, presumably to garner information about

the signals of subsequent informed investors. If for all future histories the investor ends

up investing, then for this investor, too, waiting merely reduces the length of time in the

high return investment. Thus, again, the only way that this deviation can be profitable is if

there are some future histories in which this investor never invests. After such a deviation, the

beliefs of the newly informed investor are 2 units higher than those of the uninformed investors

in that the newly informed investor has beliefs P (k + 2) when the beliefs of the uninformed

investors are P (k). The reason is that the newly informed investor’s private signal raised

that investor’s beliefs by 1 unit, and the deviation by the newly informed investor did not

affect that investor’s own beliefs while it lowered the uninformed investors’ beliefs by 1 unit.

Consider a history hit in which the uninformed investors’ beliefs are P (−1) and the

newly informed investor receives a good signal and, hence, has beliefs P (0). If the newly

informed investor deviates and waits, then this deviation triggers a stampede with no in-

vestment. To see this, note that the deviation causes the uninformed investors’ beliefs to be

P (−2) permanently. Given these beliefs, uninformed investors never invest. Future newly

informed investors update their beliefs to at most P (−1) and do not invest either. Thus,

this deviation brings the investor no new information. The beliefs of the deviating investor

remain at P (0). Assumption (6) then implies that given these beliefs, the optimal action for

the newly informed investor is to invest at stage t.

Next, consider a history hit in which the uninformed investors’ beliefs are P (0) and,

again, the newly informed investor receives a good signal, so now has beliefs P (1). Suppose

the newly informed investor deviates and waits. Then, at the next stage, the uninformed
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investor’s beliefs fall to P (−1) while the informed investor’s beliefs stay at P (1). Recall

that the deviating investor’s prior is always 2 units higher than the prior of the uninformed

investors and that a stampede of no investment starts when the priors of the uninformed

investors reach P (−2). Thus, the most pessimistic information that the deviating investor

can get leads to a prior of P (0). At this prior, investing is optimal; thus, the deviation is not

profitable.

Finally, after histories with detectable deviations and at stage S, it is easy to check

that no investor has an incentive to deviate. Q.E.D.

Next we show that within a certain class, the equilibrium we have constructed is

unique. We say that a collection of strategies and beliefs is a symmetric, stationary equilibrium

if it is a perfect Bayesian equilibrium and the strategies have the cutoff rule form. Namely,

there are sets of integers I and I 0 such that for t ≤ S − 1 the strategies of the uninformed

and previously informed investors are of the form xt(hit) = 1 if and only if pt(hit) ∈ I, while

the strategy for newly informed investors is of the form xt(hit) = 1 if and only if pt(hit) ∈ I 0.

(Notice that we allow the strategies at S to differ from those at t ≤ S− 1.) We let the beliefs

be defined as before.

Proposition 2. The strategies and beliefs just described are the unique symmetric,

stationary equilibrium.

Proof. Consider the investors’ problem at stage S. Assumptions (6) and (7) imply

that all investors invest if and only if their beliefs are greater than or equal to P (0). Consider

next the investors’ problem at stage S−1. The newly informed investor can learn nothing by

waiting, so invests if and only if the investor’s beliefs are greater than or equal to P (0). Thus,
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the set I 0 is the set of integers with k ≥ 0. By waiting, an uninformed investor who enters

this stage with beliefs P (0) learns the signal of the newly informed investor. And by (8),

waiting is optimal. An uninformed investor who enters this stage with beliefs greater than or

equal to P (1) will invest at stage S regardless of the newly informed investor’s action. Hence,

for that investor, waiting only postpones investment, and investing immediately is optimal.

Thus, the set I is the set of integers with k ≥ 1. Q.E.D.

B. Public vs. Private Signals

Next we demonstrate that there are two senses in which the capital flows described above

have a primary characteristic of hot money; they are excessively volatile. First, we show

that the stampedes in the private signal economy are, in a sense, inefficient relative to an

economy with public signals. Second, we show that the variance of capital flows conditional

on fundamentals is larger in the private signal economy than in the public signal economy.

The relevant benchmark here is a public signal economy which captures the informa-

tional lags built into the private signal economy. Consider an economy with informational lags

in which the uninformed investors learn the realization of the stage t signal after they have

made their stage t investment decisions. Here, as before, newly informed investors observe

the realization of the stage t signal before making their stage t investment decisions. Thus,

at t the relevant history of investors is the history of past investments (m0,m1, . . . ,mt−1) to-

gether with the history of the signals. For the newly informed investor, the history of signals

is st = (s0, s1, . . . , st), while that for all other investors is st−1. An equilibrium is defined as

before. For any equilibrium, the outcome path can be defined recursively from the strategies

and depends only on the history of signals. The equilibrium strategies induce outcomes at
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each stage. For the public signal economy, let mt(s
t) denote the aggregate number of positive

investments at t for history st. Similarly, in the private signal economy, let nt(st) denote the

aggregate number of positive investments along the equilibrium path at t for history st.

We say that the private signal economy has a herd if for some realization of signals st,

the economy has a stampede, in the sense that all investors take the same action from then

on, regardless of their signals, and the stampede is inefficient in the sense that the economy’s

aggregate investments differ from those of the public signal economy. Formally, the private

signal economy has a herd at st if (i) for all future histories sr containing st, nr(s
r) is the

same for all sr and (ii) for some future history containing st,
PS

k=0 nk(s
k) 6= PS

k=0mk(s
k),

where st ∈ sk for all k.We say that the economy has a herd of investment if it has a herd for

some st and

tX
k=0

nk(s
k) = N

where the summations are over sk ∈ st.We say that the economy has a herd of no investment

if it has a herd for some st and

tX
k=0

nk(s
k) < N and nr(s

r) = 0 for all sr, r > t, and st ∈ sr.

Note that we use the term herd to capture both the idea of a stampede, or cascade, in

which investors take the same action regardless of their signal (as in Banerjee 1992 and

Bikhchandani, Hirshleifer, and Welch 1992), and the idea that the actions are inefficient

relative to some benchmark.

Under the following assumption, we show that the private signal economy has herds:

eRVQ(1) < νG(P (1))eR(V−1)Q(2) + νB(P (1))[νG(P (0))eR(V−2)Q(1) + νB(P (0))].(13)
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We think of (13) as a strengthened version of (8), since we know that, given (7), (13) implies

(8). Assumption (13) implies that at any t, investing at P (1) is dominated by the following

strategy: Wait until t+ 1 and at that stage, if the signal is good, invest; if the signal is bad,

wait until t+ 2, and then invest if and only if the signal is good.

Proposition 3. Under (6), (7), and (13), the equilibrium has both herds of invest-

ment and herds of no investment.

Proof. To see that the equilibrium has a herd of investment, consider the history of

signals of length S, (G,B,B, . . . , B). In the private signal economy, n0 = 1 and n1 = N − 1.

In the public signal economy, from (6), (7), and (13), we know that mt = 0 for all t. Clearly,

the equilibrium also has herds of no investment. Consider the history of signals of length S,

(B,B,G,G, . . . , G). In the private signal economy, nt = 0 for all t, while in the public signal

economy, for S ≥ 4 the prior rises above P (0), and investment is positive. Q.E.D.

In (13), we guarantee that in the public signal economy, waiting at P (1) is optimal.

Suppose, instead, that we replace (13) with an assumption that guarantees that in the public

signal economy, investing at P (1) is optimal. Obviously, the equilibrium outcomes of the

private signal economy are not affected by this change. But now the positive stampedes

would not be herds, because they would coincide with the outcomes of the public signal

economy.

One objection to our definition of herds is that the allocation in the public signal

economy may be unattainable through an incentive scheme which respects the privacy of

signals. Hence, the public signal economy may not be the right benchmark by which to

gauge the efficiency of an allocation in the private signal economy. In Chari and Kehoe
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(2002), we investigate conditions under which a tax/subsidy scheme which respects the in-

formational constraints in the private signal economy can achieve the outcome of the public

signal economy. The basic idea there is that the private signal economy has an informational

externality; each investor weighs the private gains and losses when making an investment

decision but ignores the social gain in information that the investor’s own actions provide.

The tax/subsidy scheme varies only with publicly observable events, but helps align private

incentives with social incentives.

C. Macroeconomic Fundamentals vs. Herds

We turn now to the sense in which international capital flows are driven partly by macro-

economic fundamentals and partly by herds. We show that our model is consistent with

two key findings in the empirical work on financial crises. Countries with weak macroeco-

nomic fundamentals tend to have crises more often than countries with strong macroeconomic

fundamentals, and macroeconomic fundamentals alone cannot account for crises.

We think of the underlying state of the economy and the prior π0 as capturing the

macroeconomic fundamentals. We consider an economy with known fundamentals, what we

call a fundamental economy. The differences in the outcomes in the fundamental and private

signal economies result from informational frictions. (We think of the realized signals as

microeconomic fundamentals which fall below the radar screen of macroeconometricians.) In

the fundamental economy, capital flows are driven by fundamentals: in the good state, funds

flow in with probability 1, and in the bad state, they flow out with probability 1.

In the private signal economy, capital flows are driven partly by fundamentals and

partly by herds. For a prior π0 such that assumptions (6)—(8) hold, investments are of size N
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after histories of the form (1), (0, 1, 1), . . . , (0, 1, . . . , 0, 1, 1). Conditional on the state being

G, investments are of size N with probability

pG = α+ (1− α)α2 + (1− α)2α3 + . . . + (1− α)N−1αN =
α− (1− α)NαN+1

1− (1− α)α
(14)

where α is the probability given in (2). Conditional on the state being B, investments are of

size N with probability

pB =
(1− α)− αN(1− α)N+1

1− (1− α)α
. (15)

For other histories, investments are between 0 and S/2. If N is large relative to S and the

state is good, then the distribution of capital flows is well-approximated by a binomial with

realization N with probability pG and 0 with probability 1− pG. If the state is bad, then the

corresponding binomial distribution has probabilities pB and 1− pB.

Capital flows are related to fundamentals. Since pG > pB, capital is more likely to

flow in when the state is good and more likely to flow out when the state is bad. Since

both pG and pB are strictly between zero and 1, capital flows are not perfectly correlated

with fundamentals. Thus, we argue that capital flows are driven partly by fundamentals and

partly by herds. We summarize this discussion as follows:

Proposition 4. Capital flows are related to fundamentals in that pG > pB and are

driven partly by herds in that 0 < pB, pG < 1.

In terms of comparing our theoretical model to the empirical literature, we imagine

that the econometrician obtains many realizations of our herding outcomes–say, one for each

period in the data. For each such period, the econometrician includes enough variables to pick

up the macro-fundamental, namely, the state g ∈ {G,B}, and then computes the conditional
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probability of a financial crisis occurring. This probability is greater when fundamentals

are weak. Nonetheless, even conditioning on the state, the econometrician would find a

nontrivial residual (conditional) variance. If, instead, the outcomes were obtained from the

fundamental economy, then the correlation between crises and fundamentals would be perfect,

and the econometrician would find a zero conditional variance. This is the sense in which our

model is consistent with the empirical work mentioned above.

D. Other Regions and Nonstationary Equilibria

So far, we have focused on what we consider to be the most interesting region of the parameter

space. Now we briefly discuss the characteristics of symmetric, stationary equilibria for other

regions.

If the rate of returnR is so low that eRVQ(1) < 1, then investors never invest regardless

of the signals. If the rate of returnR is so high that eR(V−S)Q(−1) > 1, then all investors invest

at stage 0. If R is lower than what we have, but satisfies eRVQ(0) < 1, yet eR(V−S)Q(1) > 1,

then the equilibrium is very similar to the equilibrium described above. Specifically, the above

equilibrium needs one good signal to set off a positive herd and two bad signals to set off a

negative herd, while this one needs two good signals for a positive herd and one bad signal

for a negative herd.

Next, if parameters are such that the value of waiting at P (0) is less than the value of

immediately investing (if the direction of the inequality is reversed in the analog of (8), where

the right side is now the payoff to the optimal strategy following waiting), then all investors

invest at stage 0.

Finally, we have focused on a region of the parameter space such that, except for the
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last stage, the equilibria are stationary, in that they depend only on the prior and not on time.

If we assume instead, for example, that (7) is replaced by eRVQ(−1) > 1 > eR(V−S)Q(−1),

then the equilibria are necessarily nonstationary and will depend on time as well as the prior.

We have also focused attention on a stationary equilibrium. Under assumptions (6)—

(13), the economy also has nonstationary equilibria. For example, consider the strategies

we have proposed with the single change that the newly informed investor at stage 0 waits

regardless of the signal. Then, at stage 1, the beliefs of the uninformed investors stay at P (0)

regardless of the action of the newly informed investor at stage 0. To show that this is an

equilibrium, we need only show that the newly informed investor prefers to wait when the sig-

nal is good. By (13), waiting is optimal. It is easy to show that the qualitative characteristics

of these nonstationary equilibria are the same as those of the stationary equilibrium.

IV. Endogenous Government Behavior

So far we have worked out the behavior of the investors in our model assuming a particular

set of returns for the risky investment. Now we explicitly model the source of risk as arising

from default or expropriation decisions by governments.

We construct a simple maximizing model of government behavior. In our model, the

government can be either competent or incompetent. Both types of government do equally well

at governing during normal times, but a competent government is better than an incompetent

one at dealing with difficult times. Normal times correspond to the state being good while

difficult times correspond to the state being bad. Investors initially do not know the type of

the government, but have prior beliefs π0 that the government is competent.

After we set up this version of the model, we provide sufficient conditions for the
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competent government to never default on what it owes and for the incompetent government

to default only in difficult times. Under these conditions, the return on the risky investment

is given by (1), as in the model without government. We then derive two new insights from

this model with government.

A. The Dynamic Economy

The dynamic economy is as follows. The economy has an infinite number of periods, each of

which is divided into V +1 stages. The timing and information structure within each period

are as before. The investors live one period and, hence, face the same problem as before. The

interesting agent now is the government, which takes actions on behalf of domestic workers.

The state of the economy, g, follows an exogenously given i.i.d. process over normal

times with probability µG and difficult times with probability µB (= 1−µG). The government

must provide more services in difficult times than in normal times. We denote the level of

government services in normal times by G and that in difficult times by B. The government

must finance spending on these services with a combination of taxes on investment and

distorting domestic taxes. In each period, the tax rates on investment τ ∈ {0, 1}, so that

τ = 1 corresponds to default. Tax revenue consists of revenue from domestic taxes T plus

revenue from taxes on investment τx, where the level of investment x ∈ {0, 1, . . . , N}.

During normal times, both types of government can govern equally well, but during

difficult times, the types differ in how efficiently they can transform tax revenue T + τx into

government services. (For a related setup, see Rogoff and Sibert 1988.) Since both types

of government are equally efficient in normal times, for simplicity we normalize the level of

government services that need to be provided in normal times to be G = 0. During difficult
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times, however, both types need to provide a level of services equal to B. We assume that

a government of type i = C, I (for competent and incompetent) provides 1 unit of services

for every θi unit of revenue it receives. We normalize θC = 1 and assume that θI > 1; θ is

thus an incompetency parameter. In this sense, our model captures the idea that only during

difficult times do the major differences between the two types of government materialize.

During difficult times, the government’s budget constraint is θiB = T + τx. During

normal times, when G = 0, tax revenue is distributed as lump-sum subsidies to workers.

We capture the distortions associated with domestic taxes by letting output be a decreasing

function of domestic tax revenue T, denoted y(T ) as long as T is positive and y(T ) = y(0)

otherwise. An investment of size x generates extra income of wx for the domestic workers,

where w is the labor income generated by each unit of investment. This extra income repre-

sents the benefits to the country of having investment. The consumption of domestic workers

is given by c = y(T ) +wx− T. The period utility function of the government is linear in the

consumption of domestic workers. For algebraic simplicity, we assume that the government

does not care about the consumption of domestic investors. From the budget constraints of

the government and the workers, it follows that the period utility of government i–expressed

as a function of the level of government services g, the investment level x, and the default

decision τ–is given by

U i(g, x, τ) = y(θig − τx) + wx− (θig − τx).

The government discounts future utility at rate β.

The timing of events within a period is as follows. First, the investors receive signals

about the state of the economy and make investment decisions in S stages as described above.
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Second, at stage V the government provides some level of services, and it is publicly revealed

whether times are normal or difficult. Third, the government makes its taxation and default

decisions. And finally, private investors consume.

We assume that the government’s default decision is publicly revealed, but that in-

vestors do not observe domestic tax revenue. (This last assumption prevents the investors

from inferring the government’s type in difficult times, from its budget constraint.)

For an analysis of the government’s decision problem, the relevant aspect of the in-

vestors’ decisions is the probability of investing conditional on the realization of g ∈ {G,B}

given the investors’ priors π. Our equilibrium has only three relevant priors: the initial prior

π0 and priors of 0 and 1. This is because in our equilibrium, either the types pool, and the

prior stays at π0, or they separate, and the prior moves to 0 or 1.

We let pG(x;π) and pB(x; π) denote the probability of an investment of size x when the

prior is π and the state isG and B, respectively. Constructing these probabilities is easy, given

the behavior of investors we have described in the previous section. For example, pG(N ; π0)

is given by pG in (14), while pB(N ; π0) is given by pB in (15). To compute, for example,

pG(1; π0) and pB(1; π0), note that an investment of 1 unit occurs when the signal realization

begins with (B,G,B,B). Thus, pG(1;π0) = (1 − α)α(1 − α)2 and pB(1;π0) = α(1 − α)α2.

When π = 1, it follows from the definition of Q(k) that Q(k) = 1 for all k, and funds of

size N flow in with probability 1. Hence, pG(N ; 1) = pB(N ; 1) = 1. When π = 0, both types

default in our equilibrium, and funds never flow in. Hence, pG(0; 0) = pB(0; 0) = 1.

We focus on a Markov equilibrium in which government strategies and investor up-

dating rules depend only on the state variables π, g, and x. The government takes as given
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the investing probabilities pG(x;π) and pB(x; π) and chooses the default decision τ to solve

W i(π, g, x) = max
τ

U i(g, x, τ) + β
X

g0=G,B
µg0

NX
x0=0

pg0(x
0; π0)W i(π0, g0, x0)

where π0 = Π(π, g, x, τ ) is the updating rule for the beliefs about the type of government

and W i(π, g, x) is the value function for government i. Clearly, if x = 0, there is no default

decision. This dynamic programming problem gives decision rules of the form τ i(π, g, x).

A perfect Bayesian equilibrium consists of default rules for the competent and incom-

petent types of government, τC(·) and τ I(·); an updating rule Π(·) for the prior; and the

probability of investing rules pG(·) and pB(·), such that (i) given the updating and investing

rules, the default rules solve the government’s dynamic programming problem; (ii) the prob-

ability of investing rules are consistent with the optimality of investors’ decisions given their

beliefs; and (iii) the updating rule satisfies Bayes’ rule whenever possible.

We focus on an equilibrium in which the two types of government pool in normal

times and separate in difficult times. More precisely, we focus on equilibria in which if π = π0

or 1, in normal times neither type of government defaults, while in difficult times only the

incompetent type defaults. If π = 0, there is no investment in equilibrium. Off the equilibrium

path, if there is investing, both types default. In our construction of an equilibrium, we define

strategies and updating rules only at the initial prior π0, together with priors of 0 and 1.While

defining strategies and updating rules for all priors is straightforward, none of the other priors

can be reached regardless of the behavior of the investors or the government.

Formally, when x ≥ 1, the strategies are τC(π, g, x) = 0 if π ∈ {π0, 1} and g ∈ {G,B}

and τC(π, g, x) = 1 otherwise, while τ I(π, g, x) = 0 if π ∈ {π0, 1} and g = G and τ I(π, g, x) =

1 otherwise. For x = 0, there is no default decision. The updating rule for beliefs Π(π, g, x, τ)
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is, for x ≥ 1,

Π(π, g, x, τ ) =



0 if τ = 1

1 if τ = 0 and g = B

π if τ = 0 and g = G


(16)

and, trivially, for x = 0, Π(π, g, 0, τ ) = π, for all g.

Along the equilibrium path, the behavior is as follows. Starting from the initial prior

and any investment x ≥ 1, the two types of government pool by repaying in normal times,

and the prior is unaffected. When difficult times come, the types separate: the competent

government repays, and the incompetent government defaults. The priors move to 1 and 0,

respectively. After this separation, investors invest with probability 1 with the competent

government in all future periods, and this government never defaults. Investors never again

invest with the incompetent government.2

For these conjectured strategies and beliefs to constitute an equilibrium, certain in-

equalities must hold. We will develop these inequalities and show that they hold under the

following three assumptions:

y(B −N) +N − y(B) ≤ βwN

1− β
≤ y(θB − 1)− y(θB) + 1− βµB∆

1− β
(17)

where ∆ = [y(θB −N) +N ]− [y(θB − 1) + 1];

βwx̄

1− β
≥ N (18)

2Clearly, we can extend the model to have a more complicated pattern of signaling than that considered
here. By adding more government types and various states, we could have equilibria in which in less severe
crises, only the most incompetent types default and hence separate, while in the more severe crises, all but the
most competent types default and separate. We could also allow government types to evolve stochastically
over time, say, by letting them follow a Markov process (as in Cole, Dow, and English 1995). With such a
specification, after a sufficiently long period has passed after a default, lending restarts as the types drift back
in expectation to the mean. Under either of these extensions, our main results would go through, and while
the pattern of signaling would be richer, the algebra would become significantly more complicated.
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where x̄ = µG
PN

x=0 pG(x; π0)x + µB
PN

x=0 pB(x; π0)x is the expected level of investment x

given a prior π0; and

βw

1− β

NX
x=0

pB(x;π0)x ≥ N [1− pB(0;π0)]. (19)

To interpret (17), suppose that the function y is concave as well as decreasing. Then, if

N were equal to 1, the expression on the left side of the first inequality sign would necessarily

be less than the expression on the right side of the second inequality sign. Assumption (17)

is more likely to be satisfied, then, the more concave is the function y, the larger is the

incompetency parameter θ, and the smaller is N. Concavity of y is a natural assumption

and follows if the marginal deadweight cost of taxation is increasing in tax revenues, as is

typically assumed. Assumption (18) requires that the present value from next period on of

the average extra benefits from investment is greater than the onetime gain in reduced taxes

from defaulting. Notice that both (18) and (19) are more likely to be satisfied the larger is

β. We prove the following proposition in the Appendix:

Proposition 5. Under (17)—(19), the constructed strategies and beliefs constitute a

perfect Bayesian equilibrium.

B. Two Insights

This model with government provides two new insights about financial crises in emerging

economies.

B.1. The Necessity of Difficult Times for Signaling: Tests of Fire

Our model is predicated on the idea that difficult times provide an opportunity for a com-

petent government to signal its competency by taking actions which are too costly for an
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incompetent government to mimic. Thus, we argue that difficult times act as tests of fire

that determine the true nature of a government. But is there some other way for the gov-

ernment to signal its competency–say, by taking some costly action in normal times–which

would work just as well? We say no, because in normal times, whatever a competent gov-

ernment would like to do to separate itself, an incompetent government would like to do at

least as much–and can. If the competent government tried to separate itself by taking some

action, then the incompetent government would mimic this action and destroy the signaling

content of the action. Therefore, for a true separating test, difficult times are needed.

Consider a candidate test in normal times. Suppose an equilibrium exists in which

the competent government takes a costly action during normal times to signal that it is

competent. This action could be interpreted in many ways. It could be thought of, for

example, as some domestic reform that is costly but might be seen as a show of good faith.

For simplicity, here we simply let governments pay money to foreigners to try to signal their

competency. We will show by way of contradiction that such payments could not serve as

a separating signal. The potential for other costly actions, like reforms, to serve as a signal

could be analyzed in a similar way.

For concreteness, suppose a signaling payment z is made to some foreign entity which

proves to investors that the government is competent. If this payment successfully signals

the government’s type, then the competent government will have an incentive to make the

payment while the incompetent government will not. If that is so, then for a government

starting in normal times with a prior of π0, making the payment causes the prior to move to

1, while not making it causes the prior to move to 0.
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Proposition 6. Under (17), a government cannot make payments to signal its com-

petency in normal times.

The idea of the proof of this proposition, given in the Appendix, is straightforward.

For the two types of government, the current-period payoffs are the same. For future payoffs,

however, the incompetent type values a change in the prior from 0 to 1 more than the

competent type does. In the future, the competent type gains only the extra benefits of the

investment project. The incompetent type could mimic the competent type and gain only

these extra benefits, too, but here, as in the equilibrium without a signaling payment, the

incompetent type gains more by defaulting in the bad state. Thus, whatever the competent

government would pay to signal its type, the incompetent would also pay, and such payments

cannot serve as a separating signal.

B.2. The Cost of Bailouts: Signal-Jamming

Our model provides another insight as well, this one about the effects on equilibrium outcomes

of outside agencies bailing out governments apparently about to default on debt. We show

that such bailouts in difficult times can interfere with the signaling process–bailouts jam the

signals to investors about the type of government they have invested in. Thus, while bailouts

may have short-term benefits, they impose long-term costs on the government being bailed

out. We argue that these signal-jamming costs can arise even if a bailout is unanticipated.

To make these benefits and costs concrete, suppose that an economy is in difficult

times, the state has been revealed, and the government is on the verge of defaulting on its

debt. Suppose that an outside agency undertakes a onetime unanticipated bailout by making

a gift of goods to the government equal to the size of the investment x, earmarked for repaying
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investors for their claims.

This bailout clearly has short-term benefits: with it, both types of government can

reduce their distortionary taxes in difficult times by x. For the incompetent government,

the bailout also has long-term benefits: without it, this type of government would reveal its

type by defaulting, while with the bailout, it can conceal its type by not defaulting. For

the competent government, however, the bailout has long-term costs: in effect, the bailout

jams the competent government’s signal of competency. Without the bailout, this type of

government would reveal its type by repaying, while with the bailout, it is deprived of the

opportunity to do that.

The competent government thus faces a trade-off between the bailout’s short-term

benefits of tax reduction and the bailout’s long-term costs of signal-jamming. For this gov-

ernment, the value of utility under a bailout of size x when an investment of size x has

been made is y(B − x) + wx − (B − x) + βV C(π0) since the government is able to reduce

its distorting taxes by x but investors’ priors stay at π0. Here V C(π) denotes the continu-

ation utility of a competent government with a prior of π. The utility without a bailout is

y(B) + wx−B + βV C(1). Thus, the government has higher tax rates in the current period,

but investors’ priors move to 1. The short-term benefits

y(B − x)− y(B) + x (20)

arise because the government needs to raise less tax revenue, which has the direct effect

of raising consumption by x, and the indirect effect of allowing the government to lower

distortions and, thus, raise output. The long-term costs are β[V C(1)− V C(π0)]. These costs

arise because the bailout interferes with the market mechanism that allows the competent
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government to signal its type and raise its prior from π0 to 1. By jamming that signal, these

bailouts lead the competent government to remain in the region with herds and volatile

capital flows instead of moving to a region with no herds and smooth capital flows. Only

when the next difficult times occur is the government able to signal its type. Using t (26)

and (30) from the Appendix, we can derive that these costs are equal to

βw(N − x̄)

1− β
h
1− µB

PN
x=1 pB(x; π0)

i . (21)

In sum:

Proposition 7. Bailouts of governments have short-term benefits, but even if unan-

ticipated, they have long-term costs.

The point of Proposition 7 is that while bailouts may well benefit both types of govern-

ment, they also impose costs. In the literature, most attention has been focused on the moral

hazard costs of bailouts, and these costs are now well understood. If bailouts are unantici-

pated, they do not lead to moral hazard. We show that even unanticipated bailouts impose

another type of cost, arising from signal-jamming, one which has not received attention.

So far we have assumed that governments have no choice on whether to accept or

reject a bailout. It is easy to show that if (20) is larger than (21), then both types will accept

the bailout and that such an inequality is not inconsistent with our other assumptions.

V. Conclusion

Here we have constructed a simple model of how informational frictions in international

financial markets and standard debt default problems produce herdlike capital flows with the

characteristics of hot money. We have shown that our model can qualitatively account for the
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findings of Kaminsky (1999), that financial crises in emerging economies involve both weak

fundamentals and a random component. Further research should assess whether a version of

the model can quantitatively account for Kaminsky’s findings.

For simplicity, we have assumed here that investment is a zero/one decision and that

investors have no means to communicate their signals. In recent work, Chari and Kehoe

(2002), we show that herds also arise in models with continuous investment and communica-

tion.
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Appendix: Proofs of Propositions 5 and 6

Proposition 5. Under (17)—(19), the constructed strategies and beliefs constitute a perfect

Bayesian equilibrium.

Proof. We begin to prove Proposition 5 by analyzing the behavior of a competent

government.

In difficult times, with a prior of π0 or 1 and any investment level x, a competent

government is supposed to repay its debt to investors and get a new prior of 1 rather than

default and get a new prior of 0. For that assumption to be true, the following must hold for

all x:

y(B) + wx−B + βV C(1) ≥ y(B − x) + wx− (B − x) + βV C(0). (22)

That can be rearranged as

β[V C(1)− V C(0)] ≥ y(B − x)− y(B) + x. (23)

Here V C(1) and V C(0) are continuation payoffs to the competent government associated with

priors of 1 and 0, respectively. These continuation payoffs are the present value of expected

discounted utilities from the next period on under the equilibrium strategies. We will show

that for an investment of size N ,

β[V C(1)− V C(0)] =
βwN

1− β
. (24)

Then, from (17) and (24), (23) follows. In particular, we conclude that

βwN

1− β
≥ y(B −N) +N − y(B). (25)
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In (25), the left side of the inequality is the discounted sum of benefits the competent gov-

ernment loses by having the prior move from 1 to 0, while the right side of the inequality is

the current gain the government gets by defaulting today on the investment.

To see this, note that with a prior of 1, funds always flow in, and the competent

government never defaults, so its continuation payoff is given by

V C(1) = µG[y(0) + wN ] + µB[y(B) + wN −B] + βV C(1). (26)

With a prior of 0, funds never flow in, and the continuation payoff is given by

V C(0) = µG[y(0)] + µB[y(B)−B] + βV C(0). (27)

Subtracting (27) from (??), rearranging terms, and multiplying by β gives (24).

Now consider the competent government in normal times with a prior of π0. For this

government to repay at π0 and continue with this prior rather than default and have a new

prior of 0, this must hold for all x:

y(0) + wx+ βV C(π0) ≥ y(0) + wx+ x+ βV C(0) (28)

which it will if it holds for x = N. Thus, we need only show that

β[V C(π0)− V C(0)] ≥ N. (29)

The continuation payoff V C(π0) is implicitly defined by

V C(π0) = µG

NX
x=0

pG(x; π0)[y(0) + wx+ βV C(π0)] (30)

+µBpB(0;π0)[y(B)−B + βV C(π0)]

+µB

NX
x=1

pB(x;π0)[y(B) + wx−B + βV C(1)].
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To understand (30), recall that with probability µBpB(x;π0), difficult times occur, and the

government receives funds of level x from investors. If x ≥ 1, then the competent government

repays the investors and gets a new prior of 1 (while the incompetent government in the cor-

responding state defaults). In the other events, no information is revealed: The government

receives the current payoff under the equilibrium strategy for that event and a continuation

payoff V C(π0).

To establish (29), note first that since the continuation payoffs are increasing in the

prior, V C(1) ≥ V C(π0). Using this inequality in (30) and rearranging gives

V C(π0) ≥ µG[y(0)] + µB[y(B)−B] + wx̄+ βV C(π0). (31)

Subtracting (27) from (31) and rearranging terms gives

V C(π0)− V C(0) ≥ wx̄

1− β
. (32)

Together, then, (32) and (18) imply (29).

In normal times with a prior of 1, the competent government has a similar inequal-

ity. Since the continuation payoff is increasing in the prior, this inequality is automatically

satisfied whenever (29) holds.

Next we analyze the behavior of an incompetent government. In difficult times with a

prior of either π0 or 1, this type of government is supposed to default on its debt and have a

new prior of 0 rather than repay and have a new prior of 1. For that assumption to be true,

this must be true for all x:

y(θB − x) + wx− (θB − x) + βV I(0) ≥ y(θB) + wx− θB + βV I(1). (33)

For (33) to hold, a rearranged version of (33) must hold for x = 1:

y(θB − 1)− y(θB) + 1 ≥ β[V I(1)− V I(0)]. (34)
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Here V I(0) and V I(1) are continuation payoffs for the incompetent government associated

with priors of 0 and 1, respectively. With a prior of 0, funds never flow in, and the continuation

payoff is given by

V I(0) = µG[y(0)] + µB[y(θB)− θB] + βV I(0). (35)

With a prior of 1, funds of size N flow in today. Tomorrow, under the equilibrium strategies,

the incompetent government repays and keeps the prior of 1 in normal times, while it defaults

and gets a new prior of 0 in difficult times. Hence, the continuation payoffs are

V I(1) = µG[y(0) + wN + βV I(1)] + µB[y(θB −N) + wN − (θB −N) + βV I(0)]. (36)

Subtracting (35) from (36) and rearranging terms gives

V I(1)− V I(0) =
wN + µB[y(θB −N)− y(θB) +N ]

1− βµG
. (37)

Using (37) in (34), we need only show that

(1− βµG)[y(θB − 1)− y(θB) + 1] ≥ β {wN + µB [y(θB −N)− y(θB) +N ]} . (38)

Recall that we have defined ∆ = [y(θB −N) +N ]− [y(θB − 1) + 1] . Using that, we can

reduce (38) to

y(θB − 1)− y(θB) + 1 ≥ β

1− β
[wN + µB∆]. (39)

Hence, (34) follows from (17).

Next, in normal times, the incompetent government is supposed to repay its debt with

priors of π0 and 1. Clearly, if the government repays with a prior of π0, it will repay with a

prior of 1; hence, we need only consider a prior of π0. Under this prior, the government is
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supposed to repay and keep the prior π0 rather than default and get a new prior of 0. Hence,

we must have that

y(0) + wx+ βV I(π0) ≥ y(0) + wx+ x+ βV I(0) (40)

for all x, which is equivalent to

β[V I(π0)− V I(0)] ≥ N. (41)

The continuation payoff under π0 is given by

V I(π0) = µG

NX
x=0

pG(x;π0)[y(0) + wx+ βV I(π0)]

+ µBpB(0; π0)[y(B)−B + βV I(π0)]

+µB

NX
x=1

pB(x;π0)[y(θB − x) + wx− (θB − x) + βV I(0)].

To understand this payoff, note that tomorrow, with probability µB
PN

x=1 pB(x; π0),

the government receives funds in difficult times and defaults, and its prior falls to 0. In the

other events, the government does not default, no information is revealed, and the government

continues with the original prior π0. Subtracting V I(0) in (35) from V I(π0) above gives

(1− β{1− µB[1− pB(0; π0)]})[V I(π0)− V I(0)] (42)

= wx̄+ µB

NX
x=1

pB(x; π0)[y(θB − x)− y(θB) + x].

Now the right-most inequality in (17) implies that

y(θB − x)− y(θB) + x ≥ βwx

1− β
(43)
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and (18) implies that

wx̄ ≥ 1− β

β
N. (44)

Using (43) and (44) in (42) gives that the right side of (42) is greater than or equal to

1− β

β
N +

βµBw

1− β

NX
x=1

pB(x;π0)x. (45)

We can use this relation and (42) to imply that a sufficient condition for (41) is that

β

"
1− β

β
N +

βµBw

1− β

NX
x=1

pB(x; π0)x

#
≥
(
1− β

"
1− µB

NX
x=1

pB(x; π0)

#)
N

which, with some manipulation, reduces to

βw

1− β
≥ N

PN
x=1 pB(x; π0)PN

x=0 pB(x;π0)x

which is implied by (19). Q.E.D.

Proposition 6. Under (17), a government cannot make payments to signal its competency

in normal times.

Proof. By way of contradiction of Proposition 6, suppose that such a signaling equi-

librium exists. In particular, suppose that a payment of z successfully signals the competent

government’s type in normal times when there has been an investment of x. Then the com-

petent government must prefer to make the payment and have a prior of 1 rather than not

make the payment and have a prior of 0. Thus,

y(z) + wx− z + βV C(1) ≥ y(0) + wx+ βV C(0). (46)

Moreover, an incompetent government must prefer to not make the payment signaling com-

petency, so that

y(z) + wx− z + βV I(1) ≤ y(0) + wx+ βV I(0). (47)
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To show that (46) and (47) cannot hold, we need only show that

V C(1)− V C(0) < V I(1)− V I(0). (48)

If such a signaling equilibrium existed, an incompetent government would have an incentive

to deviate and actually make the payment. Using (??) and (37), we can write (48) as

wN

1− β
<

wN + µB[y(θB −N)− y(θB) +N ]

1− βµG

which can be rearranged as

βwN

1− β
< y(θB −N)− y(θB) +N.

The result then follows from (17). Q.E.D.
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Figure 1. Predicted Probability of a Currency Crisis in Malaysia
Semiannually, 1970–99
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Note: Currency crises occurred in Malaysia in July 1975 and July 1997. The shaded areas indicate crises times,  defined as 
the 24-month periods preceding the crises. All other times are tranquil times. 

Source: Kaminsky (1999)


