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ABSTRACT

In this appendix I present details of the model and of the empirical analysis and results of counter-

factual experiments omitted from the paper. In Section 1 I describe a simple example that illustrates

how, even in the absence of (technological) human capital acquisition, productivity shocks, or sep-

aration shocks, the learning component of the model can naturally generate mobility between jobs

within a firm and turnover between firms. I also present omitted details of the proofs of Propo-

sitions 1, 2, and 3 in the paper. In Section 2 I provide an overview of the numerical solution of

the model. In Section 3 I discuss in detail model identification. In Section 4 I briefly describe the

original U.S. firm dataset of Baker, Gibbs, and Holmström (1994a), on which my work is based. In

Section 5 I derive the likelihood function of the model. In Section 6 I present results from a Monte

Carlo exercise to show the identifiability of the model’s parameters in practice. In Section 7 I derive

bounds on the informativeness of jobs at competitors of the firm in my data, based on the estimates

of the parameters reported in the paper. Finally, in Section 8 I present estimation results based on

a sample that includes entrants into the firm at levels higher than Level 1. Results of counterfactual

experiments omitted from the paper are contained in Tables A.12—A.14.
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1 Omitted Model Details

1.1 An Example

I consider here a simple example that illustrates how the model produces nontrivial transitions between

jobs within a firm as well as turnover between firms. Although this example implies less rich dynamics

than my model in the paper, it is sufficient to clarify several key features about equilibrium in my

model. First, it makes clear that, even if the model does not include any search frictions and all

firms have the same beliefs about a worker’s ability, the model implies a nondegenerate distribution of

workers to jobs (aside from the limiting case in which all uncertainty about ability is resolved). Second,

the example makes clear that the model does not imply perfect short-term assortative matching

(outside of the limiting case). Third, it makes clear that the model naturally implies job-to-job

mobility between firms in equilibrium.

In this example, I assume that the model has one firm of type (that is, technology)  and at least

two firms of type , so that firm  has a replica. Firm  has two jobs, simply referred to as 1 and

2. Each firm of type  has only one job, simply referred to as 1.

1.1.1 Simplest Case

I set up the example so that all of the interesting dynamics occurs for workers who are first assigned to

job 2. To this end, I assume that job 1 is uninformative about worker ability (that is, 1 = 1),

job 2 is moderately informative (with 2 =  and 2 = ), and job 1 is perfectly informative

(that is, 1 = 1 and 1 = 0). I also assume that the model has only two time periods  = 1 2 and

features no technological human capital acquisition, productivity shocks, or separation shocks. Also,

all workers are of the same skill type; hence, I denote the prior belief that a worker is of high ability

in the first period simply by . I assume that   .

In this simple example the expected output of the worker at firm  ∈ {} in job  is a linear

function given by

 ( ) =  ( ) + (1− ) ( ) =  ( ) +
£
 ( )−  ( )

¤
 =  +  (1)

where  ( ) =  + (1− ),  ( ) =  + (1− ),  =  ( ), and

 =  ( )−  ( ). I assume that parameters are such that

(0 1)  (0 2)  (0 1) and (1 1)  (1 2)  (1 1) (2)

Notice that (2) implies a form of complementarity between ability and jobs: a worker known to be

of low ability is best suited to 1, next-best suited to 2, and least suited to 1, whereas a worker

known to be of high ability is best suited to 1, next-best suited to 2, and least suited to 1. Figure

1 illustrates the implied specification of the expected output functions in (1).

Trivially, under (2), if the economy starts with each worker’s ability known, so that some workers

are known to be of low ability ( = 0) while others are known to be of high ability ( = 1), then the
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model implies that low ability workers work in job 1 and high ability workers work in 1. That

is, the model implies a rather degenerate distribution of workers to jobs, with perfect assortative

matching between workers and jobs, and no job mobility within or between firms. The whole point of

the learning component of my model, however, is that a worker’s ability is imperfectly known. Thus,

better matching takes place only over time. (And, as the paper documents, the data point to the

existence of substantial initial uncertainty about a worker’s ability.)

Thus, consider now the more interesting case in which  is interior to [0 1]. From Proposition 3

in the paper, we know that the match surplus value problem for firm  in the first period reduces to

 
1 () = max

∙
max
∈{12}

¡
(1− )( ) + 

©
()


2 (()) + [1− ()]


2 (())

ª¢


(1− )( 1) + 
©
1()


2 (1()) + [1− 1()]


2 (1())

ª¤


where () = +(1−) and 1() = 1+1(1−). The subscript in the value function
denotes the time period, the subscript, the firm. I have written the time discounting so that period 2

stands in for a long future. The notation is the same as in the paper with obvious modifications.

Consider solving the model by backward induction from the last period, here, period 2 In the last

period, the job assignment decision is static. Clearly, from (2) the static job assignment policy is to

assign job 1 at low enough priors, assign job 2 at intermediate priors, and assign job 1 at high

enough priors.

More formally, define ̄2 as the static cutoff prior between jobs 1 and 2, which satisfies

(̄2 1) = (̄2 2). Similarly, define ̄1 as the static cutoff prior between jobs 2 and 1, which

satisfies (̄1 2) = (̄1 1). From (1) and (2), it follows that ̄2 = (1 − 2)(2 −1)

and ̄1 = (2 − 1)(1 −2). Hence, the match surplus value in period 2 is

 
2 () =

⎧⎪⎨⎪⎩
( 1), if   ̄2

( 2), if  ∈ [̄2 ̄1)
( 1), if  ≥ ̄1

(3)

The interesting period is period 1. Observe that the only nontrivial updating rules are for job 2.

I simplify the notation for them from 2() and 2() to

() =


+ (1− )
and () =

(1− )

(1− )+ (1− )(1− )


The updating rule for job 1 is simply 1() = 1() = . The updating rules for job 1 are

1() = 1 for   0 and 1() = 0 for   1. Thus, the probabilities of high output are given by

1() = 1, 2() = + (1− ), and 1() = .

Now consider the first period allocation between jobs 1 and 2. Since job 2 has an informational

advantage over job 1, the cutoff prior ̂2 at which the firm is indifferent between assigning the worker
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to jobs 1 and 2 satisfies

̂2  ̄2 (4)

Likewise, since job 1 has an informational advantage over job 2, the cutoff prior ̂1 at which the

firm is indifferent between assigning the worker to jobs 2 and 1 satisfies

̂1  ̄1 (5)

So a worker with initial prior   ̂2 starts in job 1 a worker with initial prior  ∈ [̂2 ̂1) starts
in job 2, whereas a worker with initial prior  ≥ ̂1 starts in job 1.

To say more than this, I need to calculate where such workers are assigned after success and failure

in these jobs. For concreteness, I focus on a region of the parameter space in which three conditions

hold. First, the worker with the lowest initial prior who is assigned to job 2, namely, the worker

with prior ̂2, stays in job 2 after a success; that is,

(̂2)  ̄1 (6)

Note also that at ̂2 a worker who fails is demoted to job 1, since (̂2)  ̂2 if    and

̂2  ̄2 by (4). Thus, (̂2)  ̄2. Second, the worker with the highest initial prior at job 2

is again assigned to job 2 after a failure; that is,

(̂1) ≥ ̄2 (7)

which is to be interpreted as (̂1 − ) ≥ ̄2 with   0 arbitrarily small. Third, the worker with

the lowest initial prior who is assigned to job 1, ̂1, is again assigned to 1 after a success; that is,

(̂1) ≥ ̄1 (8)

which is also to be interpreted as (̂1− ) ≥ ̄1 with   0 arbitrarily small. Figure 2 illustrates

these assumptions graphically.1

Next, I calculate the dynamic cutoff priors. Consider calculating ̂2, the cutoff prior at which

the firm is indifferent between assigning the worker to jobs 1 and 2 in the first period. This cutoff

value solves

(̂2 1) = (1− )(̂2 2) + {2(̂2)((̂2) 2) + [1− 2(̂2)]((̂2) 1)} (9)

The left side of (9) is the value of assigning the worker to job 1 in period 1 at prior . Here

I have used the fact that job 1 is uninformative about ability, so the prior is not updated after

1Observe that the following conditions–1  2  1,1+1  2+2  1+1, 0  ̂2  ̂1  1,
(̂2)  ̄1, (̂1)  ̄2, and (̂1)  ̄1–are simultaneously satisfied for the following set of parameters:
 = 06,  = 045,  = 01, 1 = 3, 2 = 2, 1 = 0, 1 = 1, 2 = 5, and 1 = 75. Alternatively, these
restrictions are satisfied for  ∈ [05 095],  = 002,  = 095, 1 = 3, 2 = 29, 1 = −101645, 1 = 1, 2 =
12, and 1 = 144145. By reducing , the same parameter values would work for values of  higher than 095.
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either a success or a failure, and the worker stays in job 1 in the second period. To see this result,

note that a worker assigned to job 1 in the first period must have an initial prior   ̂2. Since

1() = 1() =   ̄2 by (4), the worker is assigned to job 1 in period 2 as well.

The right side of (9) is the value of assigning the worker to job 2 in period 1 at such a cutoff

prior. Under (6), the worker is assigned to job 2 after a success. In contrast, the worker is assigned

to job 1 after a failure, since (̂2)  ̄2, as argued above.

Consider next the calculation of ̂1 the cutoff prior at which the firm is indifferent between

having the worker at jobs 2 and 1 in the first period. This cutoff value solves

(1− )(̂1 2) + {2(̂1)((̂1) 1) + [1− 2(̂1)]((̂1) 2)}

= (1− )(̂1 1) +  [̂1(1 1) + (1− ̂1)(0 1)]  (10)

The left side of (10) is the value of assigning the worker to job 2 in period 1. By (8), the worker is

assigned to job 1 after a success, and by (7) and (̂1)  ̂1  ̄1 by (5), the worker is assigned

to job 2 after a failure. Under these assumptions, the job assignment policy in the first period is⎧⎪⎨⎪⎩
Job 1 if   ̂2

Job 2 if  ∈ [̂2 ̂1)
Job 1 if  ≥ ̂1

I have set up the example so that the interesting dynamics is generated by workers who start in

job 2 in the first period. After a success, these workers move from job 2 to(
Job 2 if  ∈ [̂2 −1 (̄1))

Job 1  ∈ [−1 (̄1) ̂1)
(11)

where I have used the facts that (̂2)  ̄1 by (6) and ̄1 ≤ (̂1) by (8). After a failure,

these workers move from job 2 to(
Job 1 if  ∈ [̂2 −1 (̄2))

Job 2  ∈ [−1 (̄2) ̂1)
(12)

where I have used the facts that (̂2)  ̄2 by the argument above and ̄2 ≤ (̂1) by (7).

Figure 3 illustrates these outcomes.

1.1.2 A More General Case

In the more general case, I place no restrictions on the distribution of signals at different jobs except

that I assume that    at each job. So job 1 has 1 and 1, job 2 has 2 and 2, and

job 1 has 1 and 1. Since several cases are possible, for concreteness only I continue to assume
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(2), so that the static cutoffs continue to satisfy

(0 )̄2  ̄1( 1)

and the job assignment policy in the second period is

job 1 for  ∈ [0 ̄2), job 2 for  ∈ [̄2 ̄1), and job 1 for  ∈ [̄1 1]

Note that the relation between the static cutoffs ̄2 and ̄1 and the dynamic ones ̂2 and ̂1

depends on the relative informativeness of the jobs. If job 1 is more informative than job 2, then

job 1 has an informational advantage over job 1 so ̄2  ̂2 (if we abstract from the trivial case

of equality between the two cutoffs). Thus, at  ∈ [̄2 ̂2) even though job 2 statically dominates
job 1, assigning job 1 in period 1 is still optimal because the informational advantage of job 1

implies that job has a higher (dynamic) match surplus value. In contrast, if job 2 is more informative

than job 1, then the opposite relation holds: ̂2  ̄2 (again if we abstract from the trivial case

of equality between the two cutoffs). The same analysis applies to comparing job 2 to job 1: if 2

is more informative than 1, then ̄1  ̂1, whereas if job 1 is more informative than 2, then

̂1  ̄1

Note also that for any given interval of priors at which a given job is assigned in period 1, this

interval typically splits into subintervals, which determine a worker’s assignment after a success or

a failure. To be concrete, consider job 2, which is assigned at all initial priors  ∈ [̂2 ̂1).
To indicate what happens after a success, as before I divide this interval into two subintervals, a

left subinterval [̂2 
−1
 (̄1)) and a right subinterval [

−1
 (̄1) ̂1). In the left subinterval, a

success in job 2 leads the worker to stay in that job, since (̂2)  ̄1 by (6), whereas in the

right subinterval a success in job 2 leads the worker to move to firm  and work in job 1, since

(̂1) ≥ ̄1 by (8).

Likewise, to indicate what happens after a failure in job 2, I divide the interval into two other

subintervals: a left subinterval [̂2 
−1
 (̄2)) and a right subinterval [

−1
 (̄2) ̂1). In the left

subinterval, a failure in job 2 leads the worker to be demoted to job 1, since (̂2)  ̄2 by

(4), whereas in the right subinterval, a failure in job 2 leads the worker to stay in that job, since

(̂1 − ) ≥ ̄2 by (7).

So far I have discussed what happens to workers who start in job 2 A new possibility arises for

workers who start in job 1, those with initial priors  ∈ [0 ̂2). To determine job assignment after
a success here, I split this interval into three subintervals: a left subinterval [0 −1 (̄2)), a middle

subinterval [−1 (̄2) 
−1
 (̄1)), and a right subinterval [

−1
 (̄1) ̂2). In the left subinterval, a

success leads the worker to stay in job 1, in the middle subinterval, success leads to a move to job

2, and in the right subinterval, success leads the worker to move to firm ’s job 1. Of course, for

this to happen, job 1 has to be sufficiently informative.

Likewise, workers who start in job 1 have three possibilities after a failure: those in a left

subinterval move to job 1, those in a middle subinterval move to 2, and those in a right subinterval
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stay in 1.

So far I have assumed firm  has two jobs and firm  has one job. The more general case–with

three jobs at firm  and three jobs at each of the other firms , , , and so on, each of which has

a replica–yields to many more cases. In this sense, even this very simple model can generate rich

patterns of job mobility. When I incorporate into this model technological human capital acquisition,

productivity shocks, and separation shocks, the model is flexible enough to generate the rich non-

linear, non-monotone patterns of mobility I observe in the data.

1.2 Omitted Proofs

Proof of Proposition 1. Consider first equilibrium states at which firm  employs the worker.

Observe that when firm  employs the worker, the match surplus value between firm  and the

worker is given by

 ( ε) = max
∈

(
(1− )[( ) + ] + (1− )

Z
+1

 (+1 ε+1| ) (ε+1)
)
(13)

by the argument in the paper, which can be rewritten as

 ( ε) = (1− )[( ) + ] + (1− )

Z
+1

 (+1 ε+1| ) (ε+1)

with  = ( ε) Compute now the match surplus value between firm  and the worker if,

instead of accepting firm ’s offer, the worker accepts firm  ’s offer. Based on equilibrium strategies,

the match surplus value in such a case would equal

(1− ) ( ε) + (1− )

Z
+1

[ (+1 ε+1| ) +Π(+1 ε+1| )] (ε+1)

= (1− ) ( ε) + (1− )

Z
+1

 (+1 ε+1| ) (ε+1)

by definition of  (·). Now, firm’s optimality and the worker’s indifference between firm ’s and firm

 ’s offers in any Markov perfect equilibrium (MPE), at states at which firm  employs the worker,

imply that

(1− )[( ) + ] + (1− )

Z
+1

 (+1 ε+1| ) (ε+1)

≥ (1− ) ( ε) + (1− )

Z
+1

 (+1 ε+1| ) (ε+1) (14)

Consider now equilibrium states at which firm  employs the worker. Now the match surplus value
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between firm  and the worker in this case is given by

(1− ) ( ε) + (1− )

Z
+1

 (+1 ε+1| ) (ε+1)

The match surplus value between firm  and the worker–if, instead of accepting firm  ’s offer, the

worker accepts firm ’s offer–is given by

(1− )[( ) + ] + (1− )

Z
+1

 (+1 ε+1| ) (ε+1)

where, by the cautious equilibrium restriction, the choice of  = ( ε) satisfies (13). At equi-

librium states at which the worker accepts firm  ’s offer, the worker must weakly prefer firm  ’s offer

over firm ’s offer, whereas firm  must weakly prefer not employing over employing the worker. (The

worker is indifferent between the two offers when firm  happens to be the second-best firm; firm  is

indifferent between employing and not employing the worker when it happens to be the second-best

firm and the MPE is cautious.) Hence,

(1− ) ( ε) + (1− )

Z
+1

 (+1 ε+1| ) (ε+1)

≥ (1− )[( ) + ] + (1− )

Z
+1

 (+1 ε+1| ) (ε+1) (15)

By combining (14) at states at which firm  employs the worker and (15) at states at which firm

 employs the worker, we see that  (+1 ε+1) equals

max

(
max
∈

(
(1− )[( ) + ] + (1− )

Z
+1

 (+1 ε+1| ) (ε+1)
)


(1− ) ( ε) + (1− )

Z
+1

 (+1 ε+1| ) (ε+1)
)
 (16)

which proves Proposition 1.

Proof of Proposition 2. The worker’s indifference between firm ’s and firm  ’s offers implies that

(1− )( ε) + (1− )

Z
+1

 (+1 ε+1| ) (ε+1)

= (1− ) ( ε) + (1− )

Z
+1

 (+1 ε+1| ) (ε+1) (17)

Now, by rearranging the cautious equilibrium restriction for firm  , we see that

 ( ε) =  ( ) +  +


1− 

Z
+1

h
(1− )Π

 (+1 ε+1| )
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−(1− )Π
 (+1 ε+1| )

i
 (ε+1) (18)

Substituting this last expression into (17) yields that

(1− )( ε) + (1− )

Z
+1

 (+1 ε+1| ) (ε+1)

−(1− )

Z
+1

 (+1 ε+1| ) (ε+1) = (1− )[ ( ) + ]

+

"Z
+1

(1− )Π
 (+1 ε+1| )− (1− )Π

 (+1 ε+1| )
#
 (ε+1)

or, equivalently,

( ε) =  ( ) + 

+


1− 

Z
+1

n
(1− )[Π

 (+1 ε+1| ) + (+1 ε+1| )]

−(1− )
h
Π (+1 ε+1| ) + (+1 ε+1| )

io
 (ε+1)

Since, by definition,   (+1 ε+1|·) = Π (+1 ε+1|·)+ (+1 ε+1|·), Proposition 2 follows.
Proof of Proposition 3. From (18), we see that  ( ε) =  ( ) +  when the difference

between the relevant continuation values is zero. This, together with (16), proves the desired result.

2 Numerical Solution of the Model

My numerical approach to computing the match surplus value and the job-specific match surplus

values builds on the work of Rust (1987, 1988, 1994) on the solution and estimation of stochastic

dynamic discrete choice programming problems. Here I show how I apply Rust’s method to the

equilibrium best-response retention and job assignment problem that each firm faces in my model.

2.1 Decision Problem

I first describe the match surplus problem of my firm, firm . I make assumptions that ensure that

this problem is stationary from tenure  = 8 on. Given these assumptions, I can break the problem

into one stationary problem from tenure  = 8 on and seven non-stationary problems, one for each of

the tenures 1 through 7. Of course, the (expected present discounted) continuation value at tenure

1 is the value at tenure 2, and so on, so that the continuation value at tenure 7 is the stationary

value at tenure 8. Thus, my match surplus maximization problem consists of both non-stationary

and stationary parts. Nonetheless, adapting the work of Rust (1994, p. 3108) to my problem is

straightforward.

To render the match surplus problem stationary from tenure 8 on, I make two assumptions.

First, I assume that from tenure  = 8 on, the stock of technological human capital acquired by any

manager has the same productive value, regardless of a manager’s employment history at the firm.
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(The reason is that, due to the high rate of attrition, the sample contains only a small number of

observations on retained managers at high tenures and the employment outcomes of these managers

from  = 8 on display little variation. So the estimation of different human capital parameters

from  = 8 on for managers with different outcome histories at the firm proved unfeasible.) Thus,

( − 1 −1 ) = ( ) at  ≥ 8. Second, I assume that from tenure 8 on the separation shocks

are independent of tenure at each job, and I denote their common value across tenures at any job 

by .

Consider now the stationary match surplus problem from the eighth year of tenure on. Omit the

firm superscript and the firm and tenure subscripts and denote by ε the current value of productivity

shocks and by ε0 their future value. Then the value of firm ’s problem is

8( ε) = max
∈{0123}

{8( ε )} = max
∈{0123}

{8( ) + } (19)

where, for Levels  ∈ {1 2 3},

8( ) = (1− )( ) + (1− )()

Z
0
8(() ε

0) (ε0)

+(1− )[1− ()]

Z
0
8(() ε

0) (ε0) (20)

and the value of separation, 8( 0), is approximated as discussed in the paper.

For tenures  ranging from 1 through 7, the match surplus problem has state  = ( − 1 −1)
and value

 ( −1 −1 ε) = max
∈{0123}

{ ( −1 −1 ε )} = max
∈{0123}

{( −1 −1 )+} (21)

where

( −1 −1 ) = (1− )( −1 −1 )+ (1−)()
Z
+1

 (()   ε+1) (ε+1)

+(1− )[1− ()]

Z
+1

 (()   ε+1) (ε+1) (22)

with  (+1   ε+1) = 8(+1 ε+1) when  = 7.

2.2 Algorithm

I turn now to the numerical calculation of the match surplus value. Under the assumption that

the shocks ε = (0 1 2 3) have joint conditional (on ) multivariate type I extreme value

distribution, their density is given by

(0 1 2 3|) = Π3=0 exp(− − ) exp[− exp(− − )]

9



where  = 05772 is the Euler constant. Recall that the density function of a type I extreme value

distribution is () = 1

exp(−+


) exp[− exp(−+


)], with mean () = +  and variance  () =

226. For all shocks to have mean zero and variance 26, as I assume in the paper, the location

parameter of the distribution of each shock, , must equal − and the variance parameter, , must
equal 1.

Observe that, under this distributional assumption, at any tenure the match surplus problem is

akin to a standard dynamic multinomial logit problem. Hence, standard techniques can be applied to

derive probabilities of observed job assignment and separation.

I solve for the probability of an observed assignment in three steps, as follows. In the first step

I solve for firm ’s match surplus value function at tenure  ≥ 8, and in the second step I use this
computed value as the terminal value in a backward induction routine that solves for firm ’s match

surplus value from tenure  = 1 until  = 7. In the third step I derive the probabilities of interest.

First I compute the value function for firm ’s problem from tenure  = 8. Note that at any prior

0,

Z
0
8(

0
 ε

0) (ε0) =
Z
0

max
0∈{0123}

{8(0 0) + 00} (ε0) = log
⎧⎨⎩ X

0∈{0123}
exp

£
8(

0
 

0)
¤⎫⎬⎭  (23)

which implies that 8( ) from (20) can be rewritten as

8( ) = (1− )( ) + (1− )() log

⎧⎨⎩ X
0∈{0123}

exp
£
8(() 

0)
¤⎫⎬⎭

+(1− )[1− ()] log

⎧⎨⎩ X
0∈{0123}

exp
£
8(() 

0)
¤⎫⎬⎭  (24)

To complete this step, given the approximation for 8( 0), I solve this three-dimensional contraction

mapping problem:

Γ(8)( ) = (1− )( ) + (1− )() log

⎧⎨⎩ X
0∈{0123}

exp
£
8(() 

0)
¤⎫⎬⎭

+(1− )[1− ()] log

⎧⎨⎩ X
0∈{0123}

exp
£
8(() 

0)
¤⎫⎬⎭ 

 = 1 2 3, where Γ is an operator on the function 8(·). Note that here I follow the formulation

in Rust (1988, 1994), where the functional operator to be solved for is defined as a fixed point of

the (expected present discounted) value of choosing an action, rather than the related formulation of

Rust (1987), in which that operator is defined as a fixed point of the (expected present discounted)

continuation value of choosing an action.

The second step in solving for the probability of an observed assignment is to use the numerical
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solution of the match surplus value at  ≥ 8 as input to the backward induction recursion defining the
match surplus values at the remaining tenure dates. Specifically, consider tenures between  = 2 and

 = 7. For these tenures, given (21)—(24), I can compute ( − 1 −1 ) as

( −1 −1 ) = (1−)( −1 −1 )+(1−)() log
⎧⎨⎩ X
0∈{0123}

exp
£
(()   

0)
¤⎫⎬⎭

+(1− )[1− ()] log

⎧⎨⎩ X
0∈{0123}

exp
£
(()   

0)
¤⎫⎬⎭ 

where the continuation value at  = 7 is (+1   
0) = 8(+1 

0). Next consider the match
surplus value functions at  = 1. These value functions differ from the values just derived because, as

argued in the paper, the state only consists of 1 rather than , − 1, and −1.2

For the third step, I compute the probability of an observed assignment by taking as input the

match surplus values at each tenure calculated above. From Rust (1994), then, the probability of an

observed assignment  =  for a manager of type  at any tenure between  = 2 and  = 7 is given by

Pr( = | − 1 −1) = (1− −1−1)
exp{( − 1 −1 )}P

0∈{0123} exp{( − 1 −1 0)}
(25)

with 1 ≤  ≤ 3, and

Pr( = 0| − 1 −1) = (1− −1−1)
exp{( − 1 −1 0)}P

0∈{0123} exp{( − 1 −1 0)}
+ −1−1 (26)

with  = 0. The probability of an assignment  with 1 ≤  ≤ 3 at  = 1 is given by

Pr(1 = |1) = exp{(1 )}P
0∈{0123} exp{(1 0)}

(27)

whereas the probability of an assignment  with 1 ≤  ≤ 3 at  = 8 is given by

Pr( = |) = (1− −1−1)
exp{8( )}P

0∈{0123} exp{8( 0)}
 (28)

and the probability of the assignment  = 0 at  = 8 is given by

Pr( = 0|) = (1− −1−1)
exp{8( 0)}P

0∈{0123} exp{8( 0)}
+ −1−1 (29)

2.3 Prior Grid

I compute recursively the job-specific match surplus values 8( ) by value function iteration. I

discretize the support of , [0 1], to a uniform grid of 100 equidistant points. (I also experimented with

2Given the varying size of the output level parameters, continuation values in the relevant functional equations are
computed using the fact that log(1 + 2) = log


−(1 + 2)


=  + log(1− + 2−).
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finer grids, but results are virtually unaffected, and the increase in computational cost is substantial.)

Observe that under my setup the process for beliefs is much richer than is often assumed in (binary

signal) learning models in which all actions (here, jobs) are equally informative and information is

symmetric across high and low states of nature (here, managers of high and low ability). Such a

model, in fact, would have only one  and one  for all jobs, because all jobs are equally informative,

that is,  =  and  = , and, by symmetry,  = 1− . Thus, starting with a prior  at tenure

, the belief reached after the experience of a success and a failure, or after the experience of a failure

and a success, is (()) = (()) = .

I assume neither that all jobs are equally informative about ability nor that information is sym-

metric across managers of high and low ability. Thus, I rely on a nearest-neighborhood procedure

to ensure that the posterior probability +1 that a manager is of high ability, computed for each

possible prior value  on the uniform grid for the interval [0 1], is a point on the same grid.

I view my assumptions as allowing for a more flexible specification for the belief process than is

typical in the literature. Conversely, information on job assignment, performance ratings, and wages

for managers experiencing different sequences of performance ratings helps pin down  and  at the

different jobs.

3 Identification

As discussed below and in the paper, in estimation I impose a number of restrictions, which lead to

75 parameters to be estimated for the sample of entrants into the firm at Level 1. The model has

a sizeable number of parameters, but it is also being fit to rich data on the sequence of yearly job

assignments, paid wages, and recorded performance ratings for more than 1,400 managers over eight

years. I now discuss identification of the model based on these data. The Monte Carlo results below

provide additional evidence on the fact that the variation in the data helps pin down quite precisely

the model’s parameters.

3.1 Discrete-Choice Component of the Model: Retention and Job Assignment

Consider the retention and job assignment problem of my firm over the first eight years of tenure of a

manager, which constitutes the discrete choice component of my model. Recall that beliefs, which are

unobserved to the econometrician, are modeled as a nonparametric finite mixture distribution with

known components. In the model, job assignment depends on beliefs, a manager’s human capital, and

the realization of (type I extreme value) productivity shocks. Hence, the discrete choice component

of my model features a nonparametric mixture of parametric component distributions.

Hence, the identification of the discrete choice component of my model amounts to the identification

of the process {  } for the observed assignment , the unobserved prior , and the observed
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human capital . Now, by the law of conditional probability, we know that

Pr(+1 +1 +1|  ) = Pr(+1|   +1 +1) Pr(+1|   +1) Pr(+1|  )
(30)

which, using the implications of the model, can be simplified to

Pr(+1 +1 +1|  ) = Pr(+1|+1 +1) Pr(+1| ) Pr(+1| ) (31)

The equality of the first term on the right side of (30) with the first term on the right side of (31) follows

because the next period job assignment depends only on the next period prior and human capital by

the Markovian nature of the match surplus problem and by Rust’s formulation, as discussed above.

The equality of the second terms in these expressions follows because the next period human capital

depends only on current human capital and job assignment by assumption (see in the paper the

specification of the process of technological human capital acquisition). The equality of the third

terms follows because the next period prior depends only on the current prior and job assignment by

Bayes’ rule.

As for the productivity shocks determining Pr(+1|+1 +1), note that the role of productivity
shocks is auxiliary to the main focus of the estimation exercise, which is the recovery of the primitive

parameters of the informational and technological human capital process and of the firm’s technology.

Productivity shocks simply contribute to make the job choice of the employing firm stochastic from the

point of view of the econometrician, conditional on the current period prior and the sequence of past

level assignments and performance. Specifically, these shocks ensure that all observed assignments

have non-zero probability under the model. For instance, together with the process for beliefs and the

classification error in performance ratings, productivity shocks help the model account for observations

on managers with the same characteristics (age, education, and year of entry) and history of level

assignments and recorded performance ratings, who are assigned next period to different jobs after

having been assigned to the same job and experiencing the same recorded performance rating in the

current period.

Here I first provide an intuitive argument for the parametric identification of the model based

on specific moments of the distribution of the observables. Then, I provide an argument for the

nonparametric identification of the process governing the evolution of the state variables,  and ,

and the choice variable, , based on Hu and Shum (2012) and Kasahara and Shimotsu (2009).

The reason for providing these two arguments is as follows. The logic of the arguments of Hu

and Shum (2012) and Kasahara and Shimotsu (2009) for the nonparametric identification of dynamic

discrete choice models suggest that a long enough panel dimension, as in my sample, can be sufficient

to ensure the nonparametric identification of the discrete choice component of my model. However,

Hu and Shum (2012) and Kasahara and Shimotsu (2009) provide arguments for identification that

are based on high-level assumptions, and neither exploits restrictions on outcomes implied by the

underlying economic model.

Therefore, here I start by providing a moment-based argument for identification that is transparent
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and based on the implications of the model about level assignments, performance ratings, and wages,

which I discuss in the paper when presenting the data and the main descriptive statistics. This

moment-based argument is based on the logic that different moments of the distribution of observed

job assignments, performance ratings, and wages naturally identify different structural parameters in

light of the restrictions implied by the model.

3.1.1 A Moment-Based Argument

I start with a simple example illustrating how the combination of assumptions and functional form

restrictions of the theory provide a source of identification of the mixture discrete choice component

of my model. I then present the moment-based argument for the general case of my model.

An Illustrative Example: Parametric Local Identification. Here I provide an argument for the

local identification of a semiparametric mixture model of discrete choice with type I extreme value

components and fixed (two, for simplicity) number of components. The identification of the more

general case with multiple components follows the same logic. I assume that there exist two unobserved

types of individuals  = 1 2 with utilities 1 and 2, and denote by  = Pr( = 1) the probability

that an individual is of type 1. For the following argument not to be trivial, I assume that  ∈ (0 1).
Denote by  ∈  ⊆ R an observed individual characteristic (in my case  amounts to age or experience
at entry into the firm: it is just sufficient to treat age or experience at entry as a continuous variable

for this argument to hold) and by (·) a differentiable function of . Let  ∈ {0 1} be the observed
discrete choice, which relates to the latent variable ∗ as follows

() =

(
1, if ∗() = () + 1( = 1) + 2( = 2) + 1 ≥ 0 + 0

0, if ∗() = 0 + 0 ≥ () + 1( = 1) + 2( = 2) + 1

where 1 and 2 are identically and independently distributed type I extreme value disturbances.

Denote their cumulative distribution function by  (·) and their probability density function by (·).
This model implies

 () = Pr(() = 1) = Pr(() + 1 + 1 − 0 ≥ 0) + (1− ) Pr(() + 2 + 1 − 0 ≥ 0)

=


1 + exp{−()− 1} +
(1− )

1 + exp{−()− 2} =  (() + 1) + (1− ) (() + 2) (32)

Observe that with  () = 1(1 + exp{−})

() =
exp{−}

(1 + exp{−})2

and

 0() =
− exp{−} (1 + exp{−})2 + 2exp{−}(1 + exp{−}) exp{−}

(1 + exp{−})4 =
exp{−}(exp{−}− 1)

(1 + exp{−})3 
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Note for later that

 0()
()

=
exp{−}(exp{−}− 1)

(1 + exp{−})3 · (1 + exp{−})
2

exp{−} =
exp{−}− 1
1 + exp{−} 

Proposition 1. Assume that  ∈ (0 1) and there exists an open set ∗ ⊆  such that for  ∈ ∗,
0() 6= 0. Then, the parameters  = ( 1 2) are locally identified.

Proof : The proof draws on the well-known equivalence of local identification with positive definiteness

of the information matrix. Specifically, in the following I will show the positive definiteness of the

information matrix for model (32). The argument builds on Meijer and Ypma (2008) and Fu (2011).

I will break the argument in two distinct claims.

Claim 1. The information matrix Υ() is positive definite, if and only if, there exists no  6= 0 such
that 0 () = 0 for all .

Proof : Note that the loglikelihood of an observation ( ) is

() =  ln[ ()] + (1− ) ln[1−  ()]

and the score function is given by

()


= 

 ()

 ()
− (1− )

 ()

1−  ()
=

∙


 ()
− (1− )

1−  ()

¸
 ()



=
 [1−  ()]− (1− ) ()

 () [1−  ()]

 ()


=

 −  ()

 () [1−  ()]

 ()




Hence, the information matrix Υ() is given by

Υ() = 

∙
()



()

0
|
¸
= 

½
[ −  ()]2

 ()2 [1−  ()]2
 ()



 ()

0
|
¾

=
[ −  ()|]2
 2() [1−  ()]2

 ()



 ()

0
=

 () [1−  ()]

 2() [1−  ()]2
 ()



 ()

0
=

1

 () [1−  ()]

 ()



 ()

0


Since  () ∈ (0 1), if follows that the desired result holds.

Claim 2. If 0 () = 0 for all , then  = 0.

Proof : Observe that  () is given by

 ()


=  (() + 1)−  (() + 2) = 0

 ()

1
= (() + 1) = 0

 ()

2
= (1− )(() + 2) = 0
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Suppose that 0 () = 0 for all  for some  = (1 2 3), that is,

1[ (() + 1)−  (() + 2)] + 2(() + 1) + 3(1− )(() + 2) = 0

The derivative of this expression with respect to  evaluated at some  ∈ ∗ is given by

1[(() + 1)− (() + 2)]
0() + 2

0(() + 1)
0()

+3(1− ) 0(() + 2)
0() = 0 (33)

Let () = (() + 1)(() + 2). By dividing the left-hand side and the right-hand side of (33)

by (() + 2) and 0(), I obtain

1

∙
(() + 1)

(() + 2)
− 1
¸
+ 2

 0(() + 1)

(() + 2)
+ 3(1− )

 0(() + 2)

(() + 2)
= 0

It follows

1 [()− 1] +2
 0(() + 1)

(() + 1)
() + 3(1− )

 0(() + 2)

(() + 2)
= 0

or, equivalently, using the fact that  0()() = (exp{−}− 1) (),

1 [()− 1] +2 (exp{−()− 1}− 1) (() + 1)()

+3(1− ) (exp{−()− 2}− 1) (() + 2) = 0

or, equivalently,

[1 − 2 (1− exp{−()− 1}) (() + 1)]| {z }


()

−[1 + 3(1− ) (1− exp{−()− 2}) (() + 2)]| {z }


= 0 (34)

Since () is a non-constant exponential function of , (34) holds for all  ∈ ∗ only if both terms 
and  in (34) are zero for each  ∈ ∗, that is, if

1 − 2
1− exp{−()− 1}
1 + exp{−()− 1} = 0 (35)

and

1 + 3(1− )
1− exp{−()− 2}
1 + exp{−()− 2} = 0 (36)

Now a necessary condition for (35) and (36) to be zero at all  ∈ ∗ is that their derivative with
respect to  evaluated at any  ∈ ∗ is zero. Taking the derivative of (35) with respect to , evaluated
at  ∈ ∗, it follows

2
exp{−()− 1}0()(1 + exp{−()− 1}) + (1− exp{−()− 1}) exp{−()− 1}0()

(1 + exp{−()− 1})2
= 0
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which, since 0() is different from zero by assumption and (1 + exp{−() − 1})2 is also different
from zero, can be rewritten as

2 (exp{−()− 1}+ exp{−()− 1} exp{−()− 1})

+2 (exp{−()− 1}− exp{−()− 1} exp{−()− 1}) = 0

or, equivalently,

22 exp{−()− 1} = 0

Since  ∈ (0 1), it follows 2 = 0. Hence, by (35) it also follows that 1 = 0.
Similarly, taking the derivative of (36) with respect to , evaluated at  ∈ ∗, it follows

3(1− )
exp{−()− 2}0() (1 + exp{−()− 2})

(1 + exp{−()− 2})2

+3(1− )
(1− exp{−()− 2}) exp{−()− 2}0()

(1 + exp{−()− 2})2
= 0

which, since 0() is different from zero by assumption and (1 + exp{−() − 2})2 is also different
from zero, can be rewritten as

3(1− ) (exp{−()− 2}+ exp{−2()− 22}+ exp{−()− 2}− exp{−2()− 22}) = 0

or, equivalently,

23(1− ) exp{−()− 2} = 0

Since  ∈ (0 1), it follows 3 = 0.
Note that in principle the same approach could be extended to a dynamic framework, under the

assumption that () has a strictly positive derivative everywhere in ∗. Note, however, that
this intuition is merely suggestive. The reason is that if () stands in for the relevant value function

in a dynamic version of this problem à la Rust (1987), then (), 1, and 2, for instance, are no

longer linearly separable. For this reason, I now turn to a more general moment-based argument.

A Moment-Based Argument. First, note that the proportions of managers entering the firm be-

tween 1970 and 1979, who are assigned to Levels 1, 2, and 3 between tenure  = 1 and  = 7, provide

a set of moments that identify the output parameters , −1, and , given the prior beliefs

{1}4=1, the parameters { }3=1, and the discount factor  (which is fixed at 095 in estimation).
Next, note that the only output parameter to be identified in the eighth tenure year is 38. To see

this, recall that, as discussed in the Appendix in the paper, the exogenous separation rates at  ≥ 8
at Level 3 are normalized at zero. Then, 38 can easily be recovered from the empirical frequency of

separations in  = 8 in the sample. Similarly, exogenous separation rate parameters are identified by

the tenure profile of the hazard rate of separation at each level. Note that in my framework exogenous

separations differ from endogenous separations in that the incidence of exogenous separations does

not vary with beliefs or performance. Indeed, in the data the fraction of separations in each year at
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each level and tenure is very weakly or practically unrelated to performance or wages. (See also the

discussion in Baker, Gibbs, and Holmström (1994b, p. 931). This feature of the data suggests that

exogenous separations are a quantitatively important determinant of turnover, as estimation results

confirm.

Next observe that after entry, the same distribution of managers across Levels 1, 2, and 3 can be

generated through different patterns of transitions of managers across levels. Hence, given , at each

level and tenure the hazard rates of retention at a level (no job change), promotion from a level to

a higher one (positive job change), and demotion from a level to a lower one (negative job change)

provide information on {1}4=1 and { }3=1. Specifically, the extent to which job switching varies
with the number of times managers have been assigned to a given level helps identify { }3=1,
whereas differences in the assignment probabilities early versus late in tenure help identify the initial

prior distribution. (See Crawford and Shum (2005) for a similar argument.) Also, recall the discussion

in the paper of the descriptive statistics from the sample. The timing of promotions and the fraction

of promoted managers at different tenures, as well as the distribution of ratings among promoted and

unpromoted managers, help identify the number and fraction of managers of different skill types and,

thus, the distribution of initial priors. As explained below, the observed distributions of wages at each

level and tenure provide further moments that help pin down beliefs.

Lastly, the observed distribution of performance ratings provides a direct source of identification

for { }3=1 and the parameters governing classification error. Indeed, note that differently from
most estimation exercises of dynamic learning models, my data include information about all man-

agers’ performance ratings in each year of employment, which, under the model, correspond to the

distribution of output signals. To see how this information provides a crucial source of identification

for { }3=1, note that the probability of a high rating for manager  of skill type  at tenure  is

Pr(
 = 1|

 ) =
X

∈{}
Pr(|  )[Pr(

 = 1| = 1 

 ) Pr( = 1|

 )

+Pr(
 = 1| = 0 


 ) Pr( = 0|

 )]

where 1 = Pr(|  1),  = (  ) denotes the vector of observed characteristics of
manager , namely, age at entry, education at entry, and calendar year of entry, 

 denotes the

observed rating, 
 denotes the observed level, and  denotes the realized rating (of manager 

of type  in period ). Equivalently,

Pr(
 = 1|

 ) = Pr(

 = 1| = 1 


 )

X
∈{}

Pr(|  ) Pr( = 1|
 )

+Pr(
 = 1| = 0 


 )

X
∈{}

Pr(|  )[1− Pr( = 1|
 )]
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which can be rewritten as

Pr(
 = 1|

 ) = 0(

 )+ [1−0(


 )−1(


 )]

X
∈{}

Pr(|  ) Pr( = 1|
 )

(37)

with 0(

 ) = Pr(


 = 1| = 0 


 ) and 1(


 ) = Pr(


 = 0| = 1 


 ).

I now explain how each term in (37) is identified. Consider first the classification error rates,

0(

 ) and 1(


 ). Lewbel (2000) proves that binary choice models in which classification

error is covariate-dependent are semiparametrically identified. In particular, Lewbel (2000) shows

that classification error rates are nonparametrically identified under the assumption that a certain

monotonicity condition, already invoked by Hausman, Abrevaya, and Scott-Morton (1998), is satisfied.

In my setting, this monotonicity condition corresponds to the requirement that the probability of a

reported high rating increases with the probability of a true high rating, and this condition is equivalent

to the restriction that 1  0, which is satisfied by my estimates.

Consider the last term in (37). For given {1}4=1, which is identified as discussed, the distribution
of performance ratings among managers continuously assigned to Level 1 identifies 1 and 1. In turn,

given {1}4=1, 1, and 1, the distribution of ratings among managers in their first year at Level 2,

after promotion from Level 1 to Level 2, identifies 2 and 2. Hence, { }2=1 are identified.
A similar argument shows that 3 and 3 are also identified by the distribution of performance

ratings of managers in their first year at Level 3, after having been assigned to Levels 1 and 2. However,

as explained in the paper, in estimation I do not use information on performance ratings of managers

at Level 3 but, rather, rely on the hazard rate of retention at Level 3 to pin down 3 and 3, as

detailed above.3

3.1.2 An Argument Based on Hu and Shum (2012)

I divide the discussion into three parts. First, I show that my problem can be cast into the framework of

Hu and Shum (2012). Second, I discuss the identification of the processes for the two state variables,

Pr(+1| ) and Pr(+1| ). Third, I discuss the identification of the process for the choice
variable, Pr(+1|+1 +1), and the primitive parameters determining Pr(+1|+1 +1) according
to (25)—(29).

Reformulation à la Hu and Shum (2012). To see how my identification problem can be cast into

the framework of Hu and Shum (2012), I borrow their notation and let  = () denote the

vector of observable variables consisting of the choice variable in period , , and of the observed

state variables in period , . Let 
∗
 denote the unobserved state variable. Hu and Shum (2012)

consider the problem of nonparametric identification of Pr(
∗
 |−1∗

−1) in the special case in
which

Pr(
∗
 |−1∗

−1) = Pr(
∗
 |−1−1∗

−1) = Pr(|−1−1
∗
 )

3Note also that in the spirit of the test by Pakes and Ericson (1998) for Bayesian learning, the fact that the empirical
process for observed performance ratings, as well as the empirical process for job assignments and wages, does not appear
to be first-order Markov provides evidence for the presence of learning.
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·Pr(|−1−1∗
 ) Pr(

∗
 |−1−1∗

−1)

that is, when Pr(|·) and Pr(|·) do not depend on ∗
−1. My problem is an instance of theirs in

that

Pr(
∗
 |−1−1∗

−1) = Pr(|
∗
 ) Pr(|−1−1) Pr(∗

 |−1∗
−1)

To see this, let (
∗
 ) = (  ) = ( ( − 1 −1) ), where  denotes tenure at my firm.

So from (31) it follows that

Pr(
∗
 |−1−1∗

−1) = Pr(  |−1 −1 −1)

= Pr(| ) Pr(|−1 −1) Pr(|−1 −1)

= Pr(|
∗
 ) Pr(|−1−1) Pr(∗

 |−1∗
−1) (38)

Processes for the State Variables. Here I provide an argument for the identification of the processes

for , which represents the informational human capital of a manager, and for , which represents

the technological human capital of a manager. In this argument, I initially treat the distribution of

signals, governed by { }3=1, as known.
If the distribution of signals is known, then the law of motion for the state is known up to the

initial prior distribution. To see why, consider first Pr(+1| ). Note that conditional on current
human capital  and job assignment , the law of motion for human capital is deterministic, in that

Pr(+1| ) = Pr( |− 1 −1 ).
Consider now Pr(+1| ). Observe that Pr(+1| ) does not depend on either a manager’s

unobserved ability  or a manager’s skill type . That this law of motion does not depend on  is

obviously implied by the model, because  is unknown to all model agents. That the law of motion

Pr(+1| ) does not depend on a manager’s skill type  follows because the probabilities { }3=1
governing the output signals about ability are assumed to be independent of a manager’s skill type.

Technically, this feature of the discrete choice component of the model rules out serially correlated

individual-specific heterogeneity in job assignment conditional on . Hence, if the distribution of out-

put signals is known, then the only remaining unknown object is the distribution of initial conditions

Pr(1|0 0), which, as discussed in the paper, is assumed to reduce to Pr(1). Thus, the identification
problem for the law of motion for the state reduces to identifying the distribution of initial priors,

Pr(1).

To see how Pr(1) is identified, observe that the panel dimension of the sample ( ≥ 5) implies
that the identification result by Hu and Shum (2012) for dynamic discrete choice models applies. Hu

and Shum (2012) consider a general class of dynamic discrete choice problems with serially correlated,

time-varying unobserved state variables and prove that conditional choice probabilities, the law of

motion for the state, and the distribution of initial conditions are all nonparametrically identified. In

particular, their result covers frameworks like mine in which the unobserved state variable (that is,

the prior) is time-varying and can evolve depending on past values of the observed state and choice
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variables. Their result applied to my model then ensures the nonparametric identification of Pr(1).
4

Now consider the case in which the distribution of signals is not known. As just mentioned, the

law of motion Pr(+1| ) for the unobserved state  is nonparametrically identified, according to
the result of Hu and Shum (2012). Next, notice that Bayesian updating provides the functional form

for the state dependence of the belief process. So in my framework the result of Hu and Shum (2012)

can be specifically invoked just to establish the nonparametric identification of the distribution of

observed assignments (that is, the choice probabilities), output signals, and the initial prior.

Process for the Choice Variable. I now turn to the argument for the nonparametric identification

of the process for the choice variable, namely, the probabilities of job assignment and (endogenous)

separation Pr(+1|+1 +1), as well as the output parameters, , −1, and , determining it.

As mentioned, the identification result of Hu and Shum (2012) implies that the conditional choice

probabilities, here, Pr(+1|+1 +1), the law of motion for the unobserved state, here, Pr(+1| ),
and the distribution of initial conditions, here, Pr(1), are all nonparametrically identified. So

Pr(+1|+1 +1) is identified. Hence, what is left to argue is that, given Pr(+1|+1 +1), output
parameters are also identified.

Consider the firm’s problem in the first seven years of tenure, taking as given the value function

in the eighth year of tenure. For these initial years, I can identify the output parameters based on

the result of Magnac and Thesmar (2002) on the nonparametric identification of models of dynamic

discrete choice. Specifically, first note that my formulation implies that the law of motion for be-

liefs, human capital, and productivity shocks satisfies the usual conditional independence assumption

common in models of dynamic discrete choice. That is, the distribution of future beliefs, human

capital, and productivity shocks is independent over time conditional on their current period values.

Second, observe that the discount factor and the distribution of the (additive) productivity shocks are

known. Also, as discussed in the paper, I treat a manager’s employment at the second-best competitor

of my firm as the reference alternative and set its value to zero. Hence, the result of Magnac and

Thesmar (2002) (in the version without unobserved fixed effects) ensures that per-period utilities are

nonparametrically identified.

Consider now the eighth period of tenure. In this last period, the firm solves an infinite-horizon

match surplus maximization problem in which, however, only one parameter of static expected utility

is unknown. Thus, if all other parameters are identified, we can easily see that this parameter is too.

Combining these two arguments, I conclude that output parameters are identified.

So far I have relied on Hu and Shum (2012) to argue identification as my model falls into their

basic framework. However, when the unobserved state variable is continuous, as in my model, their

nonparametric identification result relies on higher-level assumptions (like the invertibility assumption

and distinctive eigenvalues assumption), which are difficult to verify explicitly for a specific model.

(See the discussion in the Appendix of Hu and Shum (2012).) Therefore, I find it useful to supplement

their argument for identification with a more direct and constructive argument based on Kasahara

4 I specify Pr(1) as a finite mixture with known components,  = 1     . Notice the usual lack of identification of
the prior distribution with respect to , because the type distribution is invariant to permutations of the points in its
support. See Buchinsky, Hahn, and Kim (2010) for caveats regarding the identifiability of finite mixtures with known
components in applied frameworks.
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and Shimotsu (2009).

3.1.3 An Argument Based on Kasahara and Shimotsu (2009)

An alternative approach to identification follows from Kasahara and Shimotsu (2009). These authors

analyze the nonparametric identification of the number of type components and component probabil-

ities of finite mixture dynamic discrete choice models. Their argument covers the case in which choice

probabilities are nonstationary and that in which choice probabilities are first-order state-dependent.

However, their results do not apply when choice probabilities are simultaneously nonstationary and

state-dependent. Even more critically for my application, they consider models in which the unob-

served state is time-invariant. Hence, their results do not immediately apply to frameworks like mine

in which the unobserved state, here the prior, evolves over time.

Suppose, however, that the distribution of signals is known. (See, for instance, the logic follow-

ing (37).) Recall, as mentioned, that Bayesian updating implies that the state-dependent process for

beliefs is known up to the initial prior and the distribution of realized performance. Then, the identifi-

cation of the discrete choice component of the model reduces to the identification of the nonparametric

mixture of initial priors, that is, the unobserved distribution of types, and of the type-specific compo-

nents, that is, the job assignment probabilities conditional on the type-specific initial prior. (Recall

the argument above showing that the (conditional) process of technological human capital acquisition

is completely determined by the process of beliefs and job assignment.) Hence, by applying the argu-

ment in Kasahara and Shimotsu with { }3=1 known, I can conclude that the distribution of the
prior, Pr(1), and the process Pr(+1|+1 +1) are nonparametrically identified.

Kasahara and Shimotsu (2009) also provide guidance as to when a certain completeness condition

for identification is satisfied. Intuitively, when the panel length of the sample is greater than three,

this condition amounts to requiring that observed covariates vary sufficiently over time in a way that

these changes in the covariates induce heterogeneous changes in choice probabilities across types (see

Remark 2(i) after Corollary 1 in their paper). In essence, time-varying covariates help the identification

of unobserved heterogeneity. In my framework, interpreted as a case in which the model admits only

time-invariant covariates, the time-series variation in observed choices substitutes for the required time

variation of covariates. Specifically, the sufficient conditions for identification reduce to the following:

(a) the panel dimension of the sample is greater than twice the number of types minus one, (b) choice

probabilities differ across types, and (c) the probability of the first-period choice is strictly positive

and different across types. (See Remark 3 at p. 149 in their paper.) It can be shown that my model

satisfies all three of these conditions (counting tenure from the second period on).

3.2 Continuous-Choice Component of the Model: Wages

Consider now the identification of the wage parameters. Recall that in my specification of the process

for wages, I assume that the coefficients 1, 2, and 3 on, respectively, , 
2
, and , are

equal at Level 1 and Level 2, and denote their common value by 1, 2, and 3, whereas I denote by

13, 23, and 33 the coefficients on , 
2
, and  at Level 3. I also restrict the coefficients
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on the dummies for the year of entry so that  = 0 for  = 0 1 2 3, and 4 = 5.

As for the remaining parameters, recall from the Appendix in the paper that I allow for a tenure

trend only at Level 1, parameterized as 11 = 111(  5) + 115( ≥ 5) with 115 = −111, to
account for the progressively greater proportion of managers at Level 1, who are paid low wages from

the fifth tenure year on. Recall that, to conserve on parameters, I assume that 2, the coefficient

on the first-degree prior term, does not vary with . I also assume that the coefficient on the second-

degree prior term in the polynomial for the learning and human capital premium in wages is identical

across levels and denote its common value across levels by 3. Lastly, recall that I assume that the

variance of the lognormal disturbance  does not vary across skill types at Level 3. Hence, the

estimated wage parameters are {01}4=1, (123132333), {}9=5, 111, and {2}4=1,
whereas the estimated variance parameters are ({1 2}4=1 3). (See the Appendix in the paper for
a discussion of specific parameter restrictions.)

To see how these parameters are identified, note from the expressions in the paper for the estimated

wage equation that conditional on beliefs, (log) wages can be formally thought of as determined

by a linear regression model with nonparametric random intercept and slope, in which the term

(  ), parameterized by 0, 1, 2, 3, 13, 23, 33, and {}9=5, denotes
the time-invariant, type-specific, and individual-specific constant. (A large literature focuses on the

nonparametric identification of the distribution of random coefficients in the linear regression model;

see, for instance, Hoderlein, Klemelä, and Mammen (2010).) Now for any given manager of skill

type , if beliefs are identified by the assignment distribution at entry, by the dynamic pattern of the

observed level choices and performance ratings, as argued above, then the average log wage in the

first year of tenure of managers with the same age, education, and year of entry if they entered the

firm after 1973, provides information about 01, 2, and 3.

In particular, observe that 01 and 2 flexibly capture the non-random variability in wages at

each level for individuals with the same priors and observed characteristics and outcomes. Hence,

here, as in a standard semiparametric finite mixture model with lognormal components, 01 and 2

are identified by the distribution of wages at each level as well as by changes in this level distribution

of wages with tenure. Conditional on {1}4=1 and { }3=1, a further source of identification for
each 2 is the time variation in the average wage of managers of the same skill type (and, thus,

initial prior), education, and age, who entered the firm between 1970 and 1973, or in the same year if

they entered after 1973, are continuously employed at the same level but experience different realized

performance leading to different posteriors. In principle, the same argument ensures the identification

of higher-degree prior terms in the expression for average log wages. In estimation, however, the

coefficient 3 has proved not significantly different from zero (as well as coefficients on higher-degree

prior terms from the learning and human capital premium in wages).

The dummy level parameters {0203}4=1 are identified by the average wage of managers of the
same skill type, prior, age, education, and year of entry if they entered after 1973, who are assigned

to Level 2 or Level 3, respectively, compared to individuals with the same characteristics retained at

Level 1. The parameter 111 is identified by the residual variation with tenure of the average wage of

managers of the same skill type, prior, age, education, and year of entry if they entered after 1973,
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continually assigned to Level 1.

The average wage of managers entering the firm in the same year, or before 1974, of the same skill

type, prior, and level assignment but different age or years of completed education at entry identifies,

respectively, 1, 2, and 3, for managers assigned to Levels 1 and 2, and 13, 23, and 33, for

managers assigned to Level 3. Similarly, the average wage of individuals of the same skill type, prior,

age, education, and level assignment, who entered the firm between 1974 and 1979, compared to those

who entered in earlier years, identifies , 5 ≤  ≤ 9.
Finally, second moments of the distribution of wages at each level for managers with the same age,

education, and year of entry in the firm if they entered after 1973, pin down {1 2}4=1 at Levels
1 and 2, and 3 at Level 3. Recall that  is the standard deviation of the sum of the productivity

shock at the job offered by the second-best firm to managers of type  assigned to job  at my firm,

, and of measurement error, 

.

Lastly, note that the implications of my model for wages also yield a set of additional moments

for the identification of the distribution of the unobserved state variable, the prior. For instance, the

distribution of yearly wage changes among managers continuously assigned to a same level provides

additional information about beliefs and { }3=1. By treating  and  as known at Levels 1

and 2, as argued above, from the distribution of observed performance ratings, this wage information

provides a direct source of identification for Pr(1).

4 Data

The original BGH dataset includes 74,071 employee-year observations on 16,133 managers at one U.S.

firm over the twenty-year period between 1969 and 1988. BGH report that management constitutes

approximately 20 percent of total employment each year. Over the sample years, 12,439 managers

enter the firm. (In the sample of 74,071 individuals, 3,694 have missing tenure information when first

observed.) The average age of manager entrants is 33 years, with a standard deviation of approximately

8 years, from a minimum of 20 to a maximum of 71. Their average number of years of education

is 15, with a standard deviation of approximately 2 years, from a minimum of 12 to a maximum

of 23. Of these 12,439 managers, 3,891 enter the firm between 1970 and 1979, for a total of 30,675

employee-years.

Exit from the firm is substantial in each year. For the sample of entrants into the firm between

1970 and 1979, 10.7 percent leave the firm after one year, whereas 21.1 percent leave after two years,

and 60.2 leave by the tenth year. Equivalently, only 39.8 percent of managers have careers lasting 10

years or longer; see Table II in BGH. Overall, only 6,577 managers have missing level information over

the sample years, so the total number of observations on individuals at Levels 1—4, in total 65,851,

accounts for 97.6 percent of managers who do not have missing level information, for a total of 67,494

(= 74 071−6 577) observations. In the original sample, 45,673 individuals have recorded performance
ratings, of which 36,750 (80.46 percent) are either 1 or 2.

BGH aggregate job titles into levels according to the pattern and frequency of transitions of

managers across titles. Specifically, as explained in detail by BGH, the original data have 276 different

24



job titles, but 14 titles, each representing at least 0.5 percent of employee-years, comprise about 90

percent of all observations and 93 percent of those with titles coded. In order to fill the job ladder from

the bottom to the top of the firm’s hierarchy, BGH add to these 14 titles the title of Chairman-CEO

and the only two titles observed in transitions from the 14 major titles to the position of Chairman-

CEO, producing a total of 17 titles. Then, BGH construct transition matrices to analyze movements

of employees between these 17 titles, both for individual years and over the sample period.

Based on these transitions, BGH construct eight hierarchical levels. According to the procedure

that BGH follow, Level 1 consists of the three titles that employ almost only new hires. Most

transitions from Level 1 within the firm are to six other titles, identified as Level 2. Transitions out

of Level 2 are almost exclusively to three other job titles, classified as Level 3. After major titles are

assigned to levels, less common titles are allocated to levels based on observed movements between

them and titles already assigned. This process is continued until all 17 titles are assigned to a level.

The literature on the internal economics of the firm commonly argues that higher level jobs of a

firm’s hierarchy correspond more to general management, whereas lower level jobs depend more on

specialized functional knowledge and require performing less complex tasks. This pattern of the task

content of jobs at different levels appears in the BGH data. For instance, as described by BGH, at

Levels 1—4 about 60 percent of the jobs relate to specific ‘line’ (revenue-generating) business units, po-

sitions that involve direct contact with customers or creating and selling products. Approximately 35

percent are ‘staff’ or ‘overhead’ positions in areas such as Accounting, Finance, or Human Resources.

At Levels 5—6 these two percentages decrease to 45 and 25 percent, respectively, while general man-

agement descriptions such as ‘General Administration’ or ‘Planning’ increase to about 30 percent. At

Levels 7—8 all jobs are of this latter type, and they entail managing large groups, coordinating across

business units, and strategic planning.

5 Likelihood Function

I estimate the vector of model parameters, , by full-information, full-solution, nonparametric maxi-

mum likelihood. The loglikelihood function for the sample is derived as follows.

Formally, let  = (  ) denote the vector of characteristics of manager  at entry

into the firm, which consists of the manager’s age (), years of completed education (), and

year of entry into the firm (). Recall that, in light of the high separation rate in each year and

tenure in my data, I restrict attention to the first eight years of tenure of a manager at the firm.

Specifically, for each manager at each tenure I compute the probability of the observed assignment

and wage up to tenure  = 8 (included) and the probability of the observed performance rating up

to tenure  = 7 (included). Let then  = min{ 8} be the length of the observation period for
manager , corresponding to the minimum between the last year of tenure of the manager at the

firm () and the eighth year of tenure. By the same convention adopted by BGH, here the event

in which level assignment and performance rating are simultaneously first missing is interpreted as a

separation.

Let  = (
 


 


) denote manager ’s outcome in period  and  = (

 

 


)
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the manager’s period  outcome when of type . Here 
 


 ∈ {0 1 2 3} represent the observed

level assignment in period  for manager  and for manager  of type , respectively. (Recall that

the assignment to Level 0 corresponds to a separation.) Similarly, 
 


 ∈ {∅} ∪ {R+} denote the

observed wage, possibly missing, and 
 


 ∈ {∅ 0 1} the observed performance rating, possibly

missing, in period  for manager  and for manager  of type , respectively. Recall from the paper that

 denotes the (unobserved by the econometrician) performance realized in period  for manager ;

 is similarly defined when the manager is of type . Thus, the probability of manager ’s outcome

history  = (1     ) conditional on  = (  ) can be expressed as

Pr(1      |) =
X

=1

Pr(|)
X

∈{}
Pr(|  1)Pr(1      |  )

=

X
=1

 [1 Pr(1      |  ) + (1− 1) Pr(1      |  )]  (39)

where  = 4, as discussed in the paper, Pr(|) = , Pr(|  1) = 1, and Pr(|  1) =
1− 1. Note that since a manager’s ability is unknown to the econometrician, a manager’s likelihood

contribution is obtained by integrating over the two possible unobserved ability levels of the manager.

Similarly, because the prior belief about a manager’s ability and the manager’s wage depend on the

manager’s skill type, also unobserved by the econometrician, computing the likelihood of a manager’s

outcome history requires integration over the manager’s possible skill types.

The probability of an observed assignment is computed as follows. First, recall that I maintain that

level assignment is measured in the data without error, so the observed level assignment for a manager

at any given tenure corresponds to the firm’s preferred choice in that period. Second, note that

the assumed process for recorded performance ratings implies that, conditional on a manager’s true

performance, observed performance has no impact on level assignment. The reason is that conditional

on true performance, recorded performance is independent of a manager’s ability or beliefs about it.

Thus, recorded performance does not provide any additional information about a manager’s ability (or

skill type) besides the information provided by realized performance. Third, according to the model,

because neither the firm nor a manager observe the manager’s ability , the firm’s assignment policy

depends on only the current posterior that a manager is of high ability (which is just a function of the

initial prior and the sequence of past level assignments and realized performance), on the accumulated

technological human capital (which is just a function of tenure at the firm and the previous period

level assignment), and on the current vector of productivity shocks.

Formally, let  = (1|
1 1     


−1 −1) denote the updated or posterior belief in

period  that a manager of skill type  is of high ability, from the prior 1 and the history of past level

assignments (
1     


−1) and realized performance (1     −1). The above observations

then imply that

Pr(
|

1 

1 1     


−1 


−1 −1   )

= Pr(
|(1|

1 1     

−1 −1) − 1 

−1) (40)
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where (1|
1 1     


−1 −1) is given by

1

1
(1− 1)

1−1 · · ·−1
−1

(1− −1)
1−−11

1

1
(1− 1)

1−1 · · ·−1
−1

(1− −1)
1−−11 + 1

1
(1− 1

)1−1 · · · (1− 1)

by Bayes’ rule, with  ∈ {1 2 3} and 
∈ {1 2 3},  = 1      − 1. Note that the

dependence of  on the sequence of past level assignments is due to the fact that the distribution

of performance is allowed to vary in the job a manager performs. Also, recall that the parameters

{ }3=1 governing the output signals about ability are assumed to be independent of a manager’s
skill type.

As for wages, according to the model a manager’s wage in a period only depends on the manager’s

current level assignment, prior, skill type, observed characteristics at entry into the firm as recorded

by , and tenure at the firm. Thus, I denote the probability density function of the observed wage


 in period  for manager  of type  assigned to job 

 by (

|

    ).

As for performance ratings, recall that realized performance is unobserved by the econometrician.

For the econometrician, the joint likelihood of the observed and true performance ratings of a manager

in a period does not depend on the prior about the manager’s ability, conditional on the manager’s

ability. Therefore, for any  ∈ {1     }, we know that

Pr(
 |

1 

1 


1 1     


−1 


−1 


−1 −1 

 

   )

= Pr(
 |

  ) = Pr(

| 


 ) Pr(|

 )

Based on these observations, the likelihood of the outcome history (1     ), conditional

on , , and , for manager  of type  is given by

Pr(1      |  ) = Pr(
1 


1 


1     




 


 


|  )

=
X
1

X
2

· · ·
X


Pr(
1 


1 


1 1     


  


  


   |  )

which can be also expressed as

Pr(1      |  ) =
X
1

X
2

· · ·
X


Pr(
1|1)(

1|
1 1   1)

·Pr(
1 1|

1 1 ) · · ·Pr(


|(1|
1 1     


−1 −1)  − 1 

−1)

·(
 |

  (1|
1 1     


−1 −1)   ) Pr(


   |

   ) (41)

Finally, the sample likelihood is the product of the probabilities in (39) over the  managers:

L(|1      ) =
Y
=1

X
=1

Pr(|)
X

∈{}
Pr(|  1)Pr(1      |  )
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To compute the estimated value of , I employ a standard nested fixed-point algorithm that relies

on the repeated full solution of the employing firm’s match surplus maximization problem at each

trial parameter vector. The optimization algorithm I use to maximize the likelihood function is a

straightforward implementation of the downward simplex method. Finally, I compute asymptotic

standard errors based on the outer product of the scores of the loglikelihood function. I performed all

numerical routines in Fortran 90. At the estimated parameter vector, the loglikelihood for the sample

is 752871.5

6 Monte Carlo Analysis

The model relies on a multidimensional non-linear maximization routine to implement the maximum

likelihood estimator. I now discuss evidence from a number of simulation-based experiments conducted

in order to investigate the practical identifiability of the model’s parameters. For these experiments,

I simulate 1 426 realizations of the shocks (the size of the estimation sample) 50 times with each

parameter in  set equal to its estimated value. Next, I reestimate the model based on each simulated

dataset. Then, I compare the estimates obtained based on these simulated data with the estimates

obtained based on the actual data. Table A.1 displays statistics on the sample distribution of the

parameter estimates across the 50 simulated datasets.

Formally, denote by b the estimated value of the parameter , 1 ≤  ≤ 75, based on dataset
 ∈ {1     50}, by b its mean estimated value across the 50 datasets, by  the sample standard
deviation of b across the 50 datasets, and by b the asymptotic standard error of the parameter
 estimated on the -th dataset. In the second column of Table A.1, I report the estimate of each

parameter based on the original sample of 1,426 individuals and in the third column, the simulation

bias, that is, the average deviation of each estimated parameter from its true value (that is, the value

estimated based on the original data) across the 50 experiments. Namely, I compute this bias as

 = b −  =
1

50

X50

=1

b − 

In the fourth column of Table A.1, I report the -statistic of this bias, obtained from the standard

deviation of the estimated parameters over the 50 experiments, as

-  =
√
50

Ãb − 


!


where I compute the average or sample standard deviation  of each estimated parameter b over
the 50 experiments as

 =
s
1

49

X50

=1

µb − 1

50

X50

=1

b¶2
5Note that, given the two-parameter lognormal assumption for the distribution of wages at each level, the actual

wage for each manager in each year is a constant that can be factored out in computing the likelihood. I follow this
convention in reporting the likelihood value.
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I report the values of  in the fifth column of Table A.1. Finally, in the sixth column of that table I
report the average estimated standard error of each parameter estimate, each obtained from the outer

product of the scores of the loglikelihood function. I compute this mean estimated standard error as

(b) = 1

50

X50

=1
b 

Observe that biases overall seem quite small and mostly precisely estimated. The only parameters

for which the bias seems at all substantively significant are 12, 23 + 124, 25 + 125, 26 + 125, 337,

and 38. But for all of these, the bias is negligible as a fraction of the parameter values.

Since the model features several dimensions of heterogeneity and I do not have direct information

about a manager’s output at the firm, estimating parameters governing beliefs, the distribution of

performance ratings, and job assignment choices might be expected to be difficult. Yet, based on the

empirical standard deviations of these parameters across these experiments, it is apparent that most

of the model’s parameters (the values of which equal the baseline estimates in the second column of

Table A.1 plus the biases in the third column) are themselves precisely estimated. Standard errors

based on the Hessian matrix are only slightly understated, with the exception of the parameters 12,

23 + 124, and 38, which are significantly overstated. Overall, I interpret the results of this Monte

Carlo exercise as providing evidence in support of the model being identified.

7 Information Bounds

In the paper I have focused on the implications of my estimates for the one firm for which I have

data. Here I argue that I can derive some lower and upper bounds on the informativeness of jobs at

my firm’s (best) competitor, firm  , as measured by the likelihood ratio of high output between a

manager of low and high ability,  , based on the estimates of the parameters of the wage

process at my firm.

To do this, I exploit the model’s implication that the wages paid by my firm are the sum of the

one-period expected output of a manager at the best competitor of my firm and of a compensating

differential for a manager’s foregone informational and technological human capital, which could have

been acquired with employment at the best competitor. In turn, the best competitor’s expected

output embedded in paid wages is informative about the distribution of (true) performance at the

jobs of the best competitor. Recall the notation in the paper; for simplicity, let  = () and

 = (). The formal result is contained in the following:

Proposition 2. If 1 ≤ 0 and  + 0(1− ) ≥ 0, then




≤ (  ) + 1(− 1)

(  ) + 1(− 1) + 2
 (42)
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Instead, if 1 ≥ 0 and  + 0(1− ) ≤ 0, then

(  ) + 1(− 1)
(  ) + 1(− 1) + 2

≤



 (43)

Note that if  ≥  , then the ratio  ranges from zero to one. In practice, based on

the parameter estimates, the ratio  appearing on the left-side of (42) and on the right-side

of (43) ranges between 0.795 and 0.886 for managers assigned to Level 1, between 0.802 and 0.886 for

managers assigned to Level 2, and between 0.806 and 0.887 for managers assigned to Level 3. Observe

that, by Bayes’ rule,

() =


 + (1− )
=



 + (1− )


so that updated probabilities depend on only the ratio  . Thus, based on (42) and (43), I

can compute lower and upper bounds on the number of years that the market would take in order

to learn about a manager’s ability, if a manager were employed at firm  rather than at my firm.

Starting from an average prior of 0473 across the four manager skill types (that is,
P

 1 = 0473

based on the estimates in the paper), I estimate that it would take between 11 and 20 consecutive

years of high output at firm  for this prior to converge to 0.90. At my firm, this number ranges

between 20 years at Level 1 and 23 years at Level 2 or 3. Hence, analogously to the findings about

the speed of learning at my firm reported in the paper, learning at the best competitor of my firm

also occurs slowly, albeit somewhat faster than at my firm.

The proof of Proposition 2 is as follows. Recall that, by definition, firm  ’s expected output at

state  and job , per unit of labor input, net of productivity shocks is given by

 ( ) =  + ( − ) + ( − )( − ) (44)

Recall that for manager  of type  with observed characteristics (  ), I specify  ( )

as

 ( ) = (  ) + 1(− 1) + ̄ (45)

so from (44) it follows that

(  ) + 1(− 1) =  + ( − )

and ̄ = ( − )( − ). From the expressions for paid wages in the paper,

ln(
) = (  ) + 1(− 1) + 2 + 3

2
 + 

(  ) = (  ) + 0(1− )

As discussed, in estimation 2 has proved independent of the job assignment at my firm, . By

definition, 2 = ̄ + 1(1 − ). So both ̄ and 1 can be thought, without loss, as being
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independent of . Thus, 2 = ( − )( − ) + 1(1− ). Simple manipulations

yield that

(  ) + 1(− 1) =  + ( − ) + 0(1− ) (46)

(  )+1(− 1)+2 = +(−)+ (0+1)(1− ) (47)

From (46) and (47) it also follows that




=

(·) + 1(− 1)−  − 0(1− )

(·) + 1(− 1) + 2 −  − (0 + 1)(1− )
 (48)

To derive (42), I now use (48) to obtain an upper bound on  . Suppose that 1 ≤ 0, so
that the compensating wage differential is decreasing in the prior, and suppose that +0(1−
) ≥ 0. Thus,




≤ (·) + 1(− 1)−  − 0(1− )

(·) + 1(− 1) + 2 −  − 0(1− )
≤ (·) + 1(− 1)

(·) + 1(− 1) + 2
 (49)

where the first inequality follows from 1 ≤ 0 and the second, from  + 0(1− ) ≥ 0.
Now to derive (43), I use (48) to obtain a lower bound on  . Suppose that 1 ≥ 0, so

that the compensating wage differential is increasing in the prior, and  + 0(1− ) ≤ 0. By
inverting (48) I obtain




≤ (·) + 1(− 1) + 2 −  − 0(1− )

(·) + 1(− 1)−  − 0(1− )
≤ (·) + 1(− 1) + 2

(·) + 1(− 1)
 (50)

where the first inequality follows from 1 ≥ 0 and the second, from  + 0(1− ) ≤ 0. This
completes the proof of the claim.

8 Estimation Including Entrants at Higher Levels

Note that the probability of selection into the sample, equal to the probability of the observed as-

signment for a manager in the first year of employment at the firm, is determined within the model.

Under the model, this probability is a function of prior beliefs, whose distribution is estimated to-

gether with the rest of the model’s parameters. The assumption implicit in this formulation, and in

line with the equilibrium assignment policy implied by the model, is that unmeasured determinants of

the initial probability of assignment, and thus of entry into the sample, are pure noise conditional on

the distribution of the initial prior. So, in this sense my estimation already takes into account issues

of sample selection due to the non-randomness of the data.

However, in order to address potential concerns about selection induced by the filtering rules I

applied to the original data to obtain the estimation sample, here I report and discuss estimates of

the model’s parameters obtained from a sample that also contains information on managers entering
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the firm at levels higher than Level 1. I begin by describing this extended sample. I then turn to

the specification estimated on this sample, detailing the main differences between the specification

estimated on it and that estimated on the sample of managers entering at Level 1. Finally, I present

the estimation results based on the extended sample.

Note that I could have, alternatively, estimated the model on separate samples, corresponding

to entrants into the firm at different levels. An argument for such a choice is that all parameters

governing job assignment, performance evaluations, and wages may be specific to different types of

managers as determined by their entry level. The reason I instead opt for one sample that includes all

entrants at Levels 1—4 is to perform a clear-cut comparison between the parameters estimated on the

sample of entrants at Level 1 and those estimated on the sample of entrants at Level 1 and higher,

without relying on the flexibility of allowing all parameters to vary across managers depending on

their entry level.

8.1 Estimation Sample

Here I first describe the construction of the extended sample and then discuss the main differences in

terms of job and wage patterns between the original and extended samples.

8.1.1 Sample Construction

As mentioned, the original BGH dataset contains 30,675 observations on entrants into one U.S. firm

between 1970 and 1979, for a total of 3,891 managers. Restricting attention to entrants at Level 1

over the period 1970—1979 leads to 21,905 observations (accounting for 714 percent of all observations

on entrants between 1970 and 1979) and a total of 2,714 individuals.

Observe that of all individuals entering the firm between 1970 and 1979, 30 such entrants have

missing level information, for a total of 187 employee-years. So of the 3,861 (= 3 891−30) individuals
with recorded level entering into the firm between 1970 and 1979, 70.3 percent (that is, 2 714 of

3 861, corresponding to (2 7143 861) · 100 = 703 percent of managers) were assigned to Level 1;

29.3 percent of entrants, instead, were assigned at entry to Levels 2—4 (that is, 1,133 individuals of

3,861, corresponding to (579 + 365 + 189)3 861 · 100 = 293 percent of managers). Note that 14

managers (= 3 861 − 2 714 − 1 133) entered at Level 5 and higher, specifically 10 at Level 5 and 4
at Level 6. (Since positions at Levels 5 and 6 correspond to top management and involve performing

different tasks, I do not include observations on these managers in the larger sample.)

Of the total 2,714 individuals entering the firm at Level 1 between 1970 and 1979, 129 managers

(for a total of 283 employee-years) have missing level information at least once over their first 10 years

at the firm. Deleting these individuals reduces the sample to 2,585 (= 2 714−129) managers or 20,630
employee-years. Instead, of the 1,133 individuals entering the firm at Levels 2, 3, and 4 between 1970

and 1979, overall 51 managers (for a total of 118 employee-years) have level information missing at

least once over their first 10 years at the firm. Deleting these individuals reduces the sample to 1,082

(= 1 133− 51) managers or 8,032 employee-years.
Of the candidate sample of 2,585 managers entering the firm at Level 1, I further restrict attention
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to individuals with at least 16 years of education at entry, for a total of 1,570 individuals and 10,790

employee-years. (Here 1,022 managers have between 16 and 18 years of education, and 548 managers

have more than 18 years.) Of the candidate sample of 1,082 managers entering the firm at Levels 2,

3, and 4, I further restrict attention to individuals with at least 16 years of education at entry, for a

total of 615 individuals and 4,236 employee-years. (Here 310 managers have between 16 and 18 years

of education, and 305 managers have more than 18 years.)

Of the 1,570 managers entering the firm at Level 1 with at least 16 years of education at entry,

further deleting those individuals whose recorded number of years of education changes over time

reduces the sample to 1,447 individuals, for a total of 9,398 employee-years. No such individual has

either age or year-of-entry information missing. Of the 615 managers entering the firm at Levels 2, 3,

and 4 with at least 16 years of education at entry, further deleting those individuals whose recorded

number of years of education changes over time reduces the sample to 593 individuals, for a total of

3,971 employee-years. Of these individuals, 319 enter at Level 2 whereas 274 enter at Levels 3 and 4.

One such individual has age information missing, but none has year information missing.

Of the 1,447 entrants at Level 1, dropping the 17 individuals promoted from Level 1 to Level 3

during the first six years at the firm reduces the sample to 1,430 individuals. Of the 593 entrants at

Level 2 and higher, dropping the three individuals demoted from Level 2 to Level 1 during the first

six years at the firm, and one individual demoted from Level 3 to Level 2 from tenure 8 to tenure 9,

reduces the sample to 589 individuals. Finally, deleting the individual with age information missing at

entry reduces this latter sample to 588 individuals. Of these 588 individuals, 314 individuals entered

the firm at Level 2, and 274 individuals entered at Levels 3 and 4. Finally, of the sample of 1,430

managers entering the firm at Level 1, I discard the 4 individuals with unusually high and low starting

salaries whose level assignment and wage histories appear markedly different from the histories of the

other managers entering at Level 1, leading to a total of 1,426 managers entering at Level 1. This

is the sample I use to obtain the estimates in the paper. Applying a similar criterion to entrants at

Levels 2, 3, and 4 leads me to discard three more individuals from the sample of managers entering

the firm at Levels 2, 3, and 4, yielding a total of 585 managers entering at Levels 2, 3, and 4.

As a result, the extended estimation sample consists of 2,011 individuals corresponding to 1,426

individuals entering the firm at Level 1 and 585 entering at Levels 2, 3, and 4 between 1970 and 1979

with at least 16 years of education at entry, with no level (over the first 10 years at the firm), age,

education, or year-of-entry information missing, and without any change in the recorded number of

years of education.

I maintain the same conventions as in the paper that observations on managers at Level 3 and

higher in the data are treated as observations at job 3 in the model and ratings of 2, 3, 4, and 5 in

the data are reclassified as ratings of zero.

8.1.2 Differences Between Original and Extended Samples

I now discuss the salient differences between the original and extended samples. Consider the distrib-

ution of managers across levels and the associated hazard rates of separation, retention at a level, and
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promotion at each level in Tables A.2 and A.3. (See the corresponding Tables 6 and 7 in the paper.)

Note that the proportion of managers separating from the firm at each tenure is very similar to the

one in the sample of entrants at the firm at Level 1. The pattern of assignment to the other levels is

quite similar, with two main differences. First, the profile of assignment to Level 2 implies that the

proportion of managers assigned to that level peaks in the second rather than the third tenure year

and, past the second tenure year, the proportion of managers assigned to Level 2 is smaller than in

the sample of entrants at Level 1. Second, the pattern of assignment to Level 3 in the larger sample

mirrors these difference in the pattern of assignment to Level 2 across the two samples: a greater

fraction of managers is assigned to Level 3 at all tenures, with, naturally, most pronounced differences

at low tenures. For instance, the proportion of managers assigned to Level 3 in the original sample in

the first three years of tenure is 0.0 percent in the first year, 0.0 percent in the second year, and 8.7

percent in the third year, whereas in the extended sample these proportions are 13.6, 15.6, and 23.9,

respectively.

As for the hazard rates, note that, given the absence of demotions, the hazard rates of separation,

retention at a level, and promotion (to Level 2) at Level 1 in the extended sample are identical to those

in the original sample of entrants at Level 1. The hazard rates of separation at Levels 2 and 3 are

also very similar across the two samples. The hazard rates of retention at Level 2 and promotion from

Level 2 to Level 3 are also strikingly similar across the two samples. The hazard rates of retention

at Level 3 are very similar, too, across the two samples. The distribution of recorded high ratings at

Levels 1 and 2 is also quite similar across the two samples; see Table A.4.

Consider now the distribution of wages in Table A.5. Naturally, the distribution of wages at Level

1 is identical in the two samples. As for the distribution of wages at Levels 2 and 3, the main difference

compared to the sample of entrants at Level 1 is that wages are on average higher at all tenures. This

feature of the extended sample implies that individuals entering at Level 2 and higher receive on

average higher wages compared to entrants at Level 1, even when assigned to the same level in the

same tenure year. This is one piece of evidence in support of modeling the existence of persistent

differences across managers entering into the firm at different levels. I do so below by allowing for

differences in initial priors across managers (of a same skill type) depending on their entry levels.

8.2 Empirical Specification

Here I present the empirical specification of the model, namely, the parameterization of the processes

governing initial prior beliefs, level assignments, exogenous separations, performance ratings, and

wages, respectively, for a total of 99 parameters. For each set of parameters, I discuss the differences

between the specification estimated on the extended sample and that estimated on the original sample

of entrants at Level 1.

Initial Prior Beliefs Parameters. In specifying the distribution of the initial prior beliefs, I allow for

differences in this distribution across the subsample of entrants in the firm at Level 1 and the subsample

of entrants at higher levels. I allow for this greater flexibility in the specification of the initial prior

for two reasons. First, it provides an opportunity to validate the estimates of the parameters {1}4=1
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obtained in the paper from the sample of entrants at Level 1. Second, this richer formulation allows

the model to better fit the larger dataset, in light of the fact that crucial parameters, like those

governing the distribution of performance ratings and exogenous separations, are not allowed to vary

across entrants at different levels.

Formally, I still assume that managers are one of four possible skill types, known to all model

agents but unknown to the econometrician. (Here, as in the paper, I use the transformation 1 =

exp{1}[1+exp{1}], where 1 is a parameter that ranges on the entire real line, to avoid boundary
problems in estimation.) However, I now allow the value of each type’s initial prior that a manager

of that type is of high ability to depend on whether the manager at entry has been assigned to Level

1, resulting in the four prior parameters {1}4=1; to Level 2, resulting in the four prior parameters
{1}8=5; or to Levels 3 and 4, resulting in the four prior parameters {1}12=9. Now, the prior parame-
ters for entrants at Levels 3 and 4 did not significantly differ from those for entrants at Level 2 across

all relevant sets of parameters. For this reason, I set them equal. (That is, 91 = 51, 101 = 61,

111 = 71, and 121 = 81.) To conserve on parameters, I also assume that 71 = 31 and 81 = 41,

based on model diagnostics (the Akaike information criterion) and fit. (I also allow for interaction

terms between a manager’s unobserved skill type and observed entry level among the parameters of

the distribution of wages; see below.) Thus, estimated prior parameters are 11, 21, 31, 41, 51, 61,

1, 2, and 3.

Productivity and Technological Human Capital Parameters. I assume the same process for produc-

tivity and technological human capital acquisition as specified in the paper, that is, the technological

human capital acquired by a manager at the firm is just a function of the manager’s acquired human

capital before entry into the firm, 1, tenure at the firm, − 1, and previous period level assignment,
−1. Note that my data do not contain direct information about the output of a manager at my firm
and beliefs determine both the match surplus value of separation and assignment to the firm’s jobs.

Hence, as standard, based on the information I have available on managers’ job assignments, I can

(at most) identify differences between the expected output of a manager at my firm and the expected

output of a manager at the second-best firm, the reference alternative. As discussed in the paper, I

normalize 0 and 1 at zero and, thus, interpret the parameters of expected output as measuring

the differences between the magnitude of each such parameter at my firm and the corresponding

parameter at the second-best firm.

In light of the flexibility of the productivity and technological human capital process I specify,

I conserve on parameters in several ways, following the same procedure I adopted in the paper; see

the discussion in the Appendix in the paper. First, I set to zero any parameters that turn out to

be quantitatively insignificant, when constraining them to be equal to zero does not affect any other

parameter estimate. Any case in which a productivity parameter equals zero is to be interpreted as a

case in which the value of that parameter does not significantly vary across my firm and the second-

best firm. Second, when differences in parameters across tenures for the same level or across levels,

either for the same tenure or different tenures, are quantitatively insignificant, and have no effect on

any other parameter estimate, I set the relevant parameters equal to each other. As in the paper, I

allow the slope parameters for one-period expected output to have common components across Levels
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1, 2, and 3.

Specifically, for entrants at Level 1, I maintain the same parameterization of expected output as in

the paper. The main difference between the specification estimated in the paper and the present one

is as follows. Since managers entering into the firm at different levels may be differentially productive

due, for instance, to their human capital acquired prior to entry into the firm, I now distinguish

managers by their entry level through the variable  ∈ {1 2 3}, where  = 1 denotes entrants at Level
1 (in the data),  = 2 denotes entrants at Level 2 (in the data), and  = 3 denotes entrants at Levels

3 and 4 (in the data). Recall that, for the purpose of level assignment and separation, an individual’s

state variable at the beginning of period  is (  ), which can be expressed as ( 1 − 1 −1 )
for any  ≥ 2. Assuming that  captures the effect of 1 on the productivity and technological human
capital process and that, as in the paper, the only relevant dependence on  is through beliefs, I denote

expected output at job  at tenure  by

(  − 1 −1 ) =  +
X3

0=1
−1(−1 = 0) + 

By the discussion above and that in the paper, the parameters , 

−1, and  are to be

interpreted as differences between the relevant parameters at my firm and those at the second-best

firm, 0 and 1. (As in the paper, here too terms of degree higher than one in the polynomial

for the match surplus value from separation, (   − 1 −1 0), proved negligible and the values
(  − 1 −1 ),  = 1 2 3, proved close to linear.) So, any case in which any of the parameters
, 


−1, and  are found to be not significantly different from zero, and, hence, set to zero, is

to be interpreted as a case in which the corresponding constant terms and slope term for expected

output are the same across my firm and the second-best firm. Lastly, since none of the parameters

−1 significantly differ across entrants into the firm at different levels, I set them equal and simply

denote them by −1.

As a result, at Level 1 expected output is given by

(  − 1 −1 1) = 111( = 1)( = 1) + 112( = 1)2( = 2)

+[123(2 = 2) + 113( = 1)3]( = 3) + 123(3 = 2)( = 4)

+125(4 = 2)( = 5) + 125(5 = 2)( = 6) + 125(6 = 2)( = 7)

1 ≤  ≤ 12, with 111 = 1 000 (the same normalization as in the paper), 123, 124 = 123, 125, and

127 = 126 = 125. Thus, estimated parameters at Level 1 are: 123, 125, 
1
12, and 113. Next, at Level

2 expected output is given by

(  − 1 −1 2) = 221( = 2)( = 1) + 122[( = 1) + ( = 2)]2( = 2)

+123[( = 1) + ( = 2)]3( = 3) + 124[( = 1) + ( = 2)]4( = 4)

+[125( = 1) + 225( = 2)]5( = 5) + [
1
26( = 1) + 226( = 2)]6( = 6)
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+[126( = 1) + 226( = 2)]7( = 7) + 1288( = 8)

with 221 = 1 000, 22 = 12, 2 ≤  ≤ 4, 127 = 126, 
2
27 = 226, and 328 = 228 = 128. Omitting

level-specific, level-general, and tenure-specific components that have proved to be insignificant, at

the estimated parameter values 122 = 22 − 123, 
1
23 = 23 − 123, 

1
24 = 24 − 123, 

1
25 = 25 − 125,

126 = 26 − 125, and 128 = 28 − 125. In practice, 28 has proved negligible. In sum, estimated

parameters at Level 2 are 22, 23, 24, 25, 
2
25, 26, and 226. The only common component across

Levels 2 and 3 turns out to be 24. To see this, note that at Level 3 expected output is given by

(  − 1 −1 3) = [131( = 1)1 + 331( = 3)]( = 1) + 131( = 1)2( = 2)

+[333(2 = 3) + 131( = 1)3]( = 3)

+(333(3 = 3) + {134( = 1) + 234[( = 2) + ( = 3)]}4)( = 4)

+(335(4 = 3) + {135( = 1) + 235[( = 2) + ( = 3)]}5)( = 5)

+(336(5 = 3) + {135( = 1) + 236[( = 2) + ( = 3)]}6)( = 6)

+(337(6 = 3) + {137( = 1) + 237[( = 2) + ( = 3)]}7)( = 7) + 1388( = 8)

with 331 = 1 000, 334 = 333, 
1
34 = 24 + 131, 

1
35 = 24, 

1
36 = 135, 

3
3 = 23 for 4 ≤  ≤ 7, and

338 = 238 = 138. Differently from the specification estimated in the paper, since 131 has proved not

to be significantly different from zero, I set 131 equal to zero. Hence, estimated parameters at Level

3 are 333, 335, 336, 337, 
2
34, 

2
35, 

2
36, 

1
37, 

2
37, and 138. Note that expected output at each level in

 = 8 is specified in the same way as in the paper. (In the first of the two estimated specifications, I

also restrict 237 = 137 since their difference proved insignificant.)

Exogenous Separation Parameters. To conserve on parameters, I assume that at Level 1 the

parameters of the probabilities of exogenous separation satisfy 12 = 11 and 18 = 17 = 16 = 15 =

14. So estimated separation rate parameters at Level 1 are 11, 13, and 14 just as for the sample of

entrants at Level 1. (More precisely, for the specification in the paper, 12 = 11, 13 = 14 + 3, and

18 = 17 = 16 = 15 = 14, and estimated parameters are 11, 3, and 14.) At Level 2, here I assume

that 22 = 21, 24 = 23, 26 = 25, and 28 = 27. Then estimated separation rate parameters at

Level 2 are 21, 23, 25, and 27, whereas for the sample of entrants at Level 1, I estimate 21, 24,

25, 26, and 27. (For the specification in the paper, 22 = 21, 23 = 22 + 3, and 28 = 27.) At

Level 3, I assume that 34 = 33 = 31, 37 = 36 = 35, and 38 = 0. Thus, estimated separation rate

parameters at Level 3 are 31, 32, and 35, whereas for the sample of entrants at Level 1, I estimate

only 31. (For the specification in the paper, 33 = 32 = 31, 3 = 2, 4 ≤  ≤ 7, and 38 = 0.)

Performance Ratings Parameters. I model the process for performance ratings here in the same

way as I do in the paper. Thus, here as before, estimated parameters for the true and recorded

distribution of ratings are { }3=1 and (0 2(1) 2(2)).
Wage Parameters. In analogy to the specification in the paper, I assume here that at tenure  the

(log) wage of manager  of skill type , 1 ≤  ≤ 12 ( denotes here the ‘effective type’ resulting from
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the interaction between the unobserved skill type and the entry level of a manager), is given by

ln(
) = (  ) + 1(− 1) + 2 + 3

2
 + 

where the intercept term (  ) is given by

(  ) = 0 +1 +2
2
 +3 +

X9

=1
( = )

I allow the intercept term 0 to vary across managers’ entry levels only when Level 3 is assigned.

(This restriction amounts to 09 = 05 = 01, 010 = 06 = 02, 011 = 07 = 03,

and 012 = 08 = 04 if   3.) To avoid parameter proliferation, based on model diagnostics

(the Akaike information criterion) and fit, I assume that the coefficient on the first-degree prior term

differs only across entrants at Level 1 and entrants at Levels 2, 3, and 4. (Equivalently, 29 = 25,

210 = 26, 211 = 27, and 212 = 28.)

I discuss here the two main differences between this specification for wages and that in the paper.

The first difference, as just mentioned, is that here I allow the intercept term 03 at Level 3 and the

slope term 2 to vary across managers entering into the firm at different levels. In terms of 03,

to conserve on parameters, I impose 053 = 013 and 093 = 013 since their differences proved

insignificant. In terms of 2, to avoid parameter proliferation, I restrict these parameters to be equal

across entrants at Levels 2, 3, and 4, as discussed in the previous paragraph. Observe also that since

the parameters 2 prove not to differ substantially across levels, conditional on a manager’s skill

type/entry level, I also restrict them to be the same across levels as for the specification estimated in

the paper. The second difference is that, in light of the additional observations on wages at Level 3 in

the new sample, here I let the variance of the random disturbance at Level 3 vary with a manager’s

skill type. To conserve on parameters, I assume that the variance term  to be identical at Level

, 1 ≤  ≤ 3, for managers of the same skill type entering the firm at different levels. (Specifically,

9 = 5 = 1, 10 = 6 = 2, 11 = 7 = 3, and 12 = 8 = 4.) I also restrict

23 = 13.

Here, as in the specification estimated in the paper, I set 1, 2, and 3, respectively, the

coefficients on , 
2
 and , equal at Levels 1 and 2. I denote their common value by 1,

2, and 3. In terms of the coefficients on the year-of-entry dummies, I set  = 0 for 0 ≤  ≤ 3
and 4 = 5, so that estimated parameters are (56789), as for the specification

in the paper. As for the remaining coefficients, here as in the paper, at Level 1 I assume that the

coefficient on tenure is 11 = 111(  5)+115[( = 5)+ ( = 6)], with 115 = −111. Once more,
as in the paper, the coefficients on tenure at Level 2, 12, and Level 3, 13, prove not significantly

different from zero. In estimation, the parameter 3 proves not significantly different from zero, as in

the paper. As a result, the estimated wage parameters are {010203}4=1, 063, 073, 083,

0103, 0113, 0123, 1, 2, 3, 13, 23, 33, {}9=5, 111, {2}8=1, {1 2}4=1, 13, 33,
and 43.

38



8.3 Estimation Results

I now present and discuss the results of the estimation of my model based on the extended sample. I

estimate two versions of the model that differ only in the specification of the error in wages at Level

3 and in one parameter normalization. Namely, in Specification 1, I assume that the error in wages

at Level 3 is distributed according to a standard two-parameter lognormal distribution, as I assume

when estimating the model on the original sample, and I assume that 237 = 137, since their difference

proves insignificant. (Recall that  denotes the difference in expected output, for managers entering

the firm at Level , between a high and a low ability manager at job  and tenure .) In Specification

2, I assume that the error in wages at Level 3 follows a more flexible three-parameter lognormal

distribution.

Overall, both specifications are successful at fitting the data. (In assessing model fit, I simulated

3,000 prior realizations per manager, drawn from the estimated nonparametric distribution of initial

priors for each specification.) One difference is that Specification 2 fits the distribution of wages at

Levels 2 and 3 better than Specification 1 and the specification in the paper.

The estimates of the main parameters of interest, namely, those governing initial uncertainty about

ability, learning, and error in recorded performance ratings, are remarkably similar to those in the

paper, as discussed below. According to this finding, then, the filtering rules applied to the original

data to obtain the estimation sample do not seem to induce appreciable selection.

8.3.1 Specification 1

I start with the fit of Specification 1 to the data. I will then discuss the main parameter estimates.

Here, as in the paper, I evaluate the fit of the model by comparing observed and predicted outcomes

along three dimensions: (1) the distribution of managers across levels by tenure and the hazard rates

of separation, retention at a level, and promotion to the next level at each level and tenure, (2) the

distribution of performance ratings at Levels 1 and 2 by tenure, and (3) the distribution of wages at

each level by tenure.

Model Fit. Overall, as Tables A.2—A.5 make clear, the model estimated based on the extended

sample successfully captures the tenure profile of separation and assignment to the main jobs of the

firm’s hierarchy, as well as the distribution of performance ratings at Levels 1 and 2 and the wage

distribution at each level and tenure. Specifically, in terms of the distribution of managers across

levels, in Table A.2, the model tracks the observed distribution remarkably well. In terms of the

hazard rates in Table A.3, the model also fits well overall. Some discrepancies can be detected for the

hazard rate of separation at Level 1 between the fourth and sixth years of tenure and in the hazard

rate of promotion to Level 2 in the third and fifth years of tenure. The largest difference between

observed and predicted outcomes at Level 2 is in the hazard rate of promotion between the second

and third years of tenure; all other differences are modest. Instead, the hazard rates of separation and

retention at Level 3 are almost perfectly matched.

Table A.4 displays the distribution of performance ratings at Levels 1 and 2 by tenure for the

data and the model. The distribution of high ratings predicted by the model at each tenure tracks
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very closely the observed one at each level. The main discrepancy between observed and predicted

outcomes concerns the fraction of high ratings at Level 2 in the first year of tenure. One reason for

this discrepancy is the small number of observations at Level 2 in this tenure year: at entry only 15

percent of managers are assigned to Level 2 while more than 70 percent are assigned to Level 1.

Finally, consider the distribution of wages by level and tenure in Table A.5 for the data and the

model. Clearly, the model is quite successful at fitting these distributions, apart from Level 1 in the

seventh year of tenure and Level 3 at the highest tenures. These features of model fit are analogous

to similar features discussed in the paper.

The Pearson’s 2 test for goodness of fit provides more favorable evidence in support of the

model, not surprisingly, given the larger sample size. Specifically, in terms of the distribution of level

assignments, the model is never rejected at conventional significance levels. In terms of the hazard

rates of separation, retention at level, and promotion, the model is only rejected between the second

and fourth years of tenure at Level 1 and between the second and third years of tenure at Level 2.

In terms of the distribution of performance, the model is only rejected in the first year of tenure at

Level 2. In terms of the distribution of wages, the model is only rejected at Level 1 in the first year

of tenure but it is still rejected at Level 3 at most tenures.

Parameter Estimates. The loglikelihood of the sample at the estimated parameter values is 900979,

and all parameters prove significant at the 1 one percent level.6 Given the larger sample size, almost

all parameters are more precisely estimated than when I only use observations on entrants at Level 1.

From Table A.6 a few patterns emerge. I focus here on the parameters governing initial uncertainty

about ability, learning, and error in recorded performance ratings. Note that the initial priors that a

manager is of high ability for the first, second, third, and fourth skill types are given, respectively, by

11 = 0382, 21 = 0372, 31 = 0466, and 41 = 0610 for entrants at Level 1, and by 51 = 0360,

61 = 0400, 71 = 31, and 81 = 41 for entrants at Levels 2, 3, and 4 (recall that 91 = 51,

101 = 61, 111 = 71, and 121 = 81). The proportions of the first, second, third, and fourth skill

types are given, respectively, by 1 = 0102, 2 = 0290, 3 = 0360, and 4 = 0248. According to

the estimates in the paper, instead, the initial priors that a manager is of high ability for the first,

second, third, and fourth skill types are given, respectively, by 11 = 0338, 21 = 0381, 31 = 0465,

and 41 = 0607. There the proportions of each such type are, respectively, 1 = 0155, 2 = 0211,

3 = 0313, and 4 = 0321.

Observe that the proportion of each type is roughly comparable across the two samples. In terms

of the support of the initial priors, the main differences between the estimates obtained from the

extended sample and those from the original sample concern the initial prior for managers of the first

and second skill types. Note that for the last two types the estimates of the initial priors are almost

identical across samples. Specifically, entrants at Level 1 of the first skill type are now estimated to

have a higher initial prior than the original sample prior (0382 compared to 0338), whereas entrants

at Level 1 of the second skill type are now estimated to have a slightly lower prior (0372 compared

6Recall that, given the two-parameter lognormal assumption for the distribution of wages at each level, the actual
wage for each manager in each year is a constant that can be factored out in computing the likelihood. As before, I
follow this convention in reporting the likelihood value.
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to 0381). Entrants at the firm at Levels 2, 3, and 4 of both the first and second skill types are

estimated to have higher initial priors than the paper’s initial priors for the first and second skill

types (respectively, 0360 compared to 0338 for the first skill type and 0400 compared to 0381 for

the second). This finding accords with intuition: if ability is more valuable at higher levels, then

managers entering into the firm at Levels 2, 3, and 4 are perceived to be more likely to be of high

ability than managers entering at Level 1. Indeed, the average initial prior for entrants at Level 1

is 0.466 (from
P

 1, compared to 0.473 in the paper) with a standard deviation of 0.092 (from

[
P

 (1−
P

 1)
2]12), whereas the average initial prior for entrants at Levels 2, 3, and 4 is 0.472

with a standard deviation of 0.087.

Note also that the estimates of the learning parameters are remarkably similar in magnitude and

patterns to those in the paper: the estimates from the extended sample are (1 1) = (0514 0456)

at Level 1, (2 2) = (05432 0491) at Level 2, and (3 3) = (05429 0490) at Level 3, whereas the

estimates from the original sample are (1 1) = (0514 0456) at Level 1, (2 2) = (05437 0491)

at Level 2, and (3 3) = (05435 0490) at Level 3. Analogously to the estimates reported in the

paper, these estimates imply that a manager of either high or low ability has the highest success rate

at Level 2, the second-highest at Level 3, and the lowest at Level 1. Also, analogously to the estimates

in the paper, here Level 1 is more informative than Level 3, which, in turn, is more informative than

Level 2, since 13 = 0252  31 = 0248 and (1−1)(1− 3) = 0248  (1−3)(1− 1) = 0249,

32 = 0267  23 = 0266, and (1− 3)(1− 2) = 02327  (1− 2)(1− 3) = 02330.

Finally, the fact that 0 = 0487, 2(1) = −0668, and 2(2) = −0525, compared to the original
sample’s 0 = 0521, 2(1) = −0703, and 2(2) = −0544, implies comparable estimates for the
recording error in performance ratings across the two samples.

8.3.2 Specification 2

In the specification estimated in the paper and in Specification 1, wages at each level are assumed to

be distributed according to a standard two-parameter lognormal distribution. In both specifications,

the model does not capture very well the distribution of wages at Level 3 at high tenures. For this

reason, I estimate a second, more flexible specification that allows wages at Level 3 to be distributed

according to a three-parameter lognormal distribution, which, compared to the two-parameter version,

features an additional location parameter.

In this new specification, Specification 2, I set the location parameter of this distribution equal to

a lower bound on the wages observed over the first eight years of tenure in the original and extended

samples. More precisely, I set this lower bound at $20,000 (1988 constant U.S. dollars) since the lowest

observed wage is $20 847. The reason for this normalization is the known computational difficulty in

estimating the location parameter of a three-parameter lognormal distribution by maximum likelihood.

I now discuss model fit and some of the estimates of the parameters of interest.

Model Fit. I compare observed and predicted outcomes in Tables A.7—A.10. Not surprisingly,

overall this specification of the model fits the data better than did the others. In terms of level

assignments, the fit is remarkable. Consider now the hazard rates of separation, retention at level,
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and promotion at each level. Not surprisingly, given the small fraction of managers retained at Level

1 over time, the largest discrepancy between predicted and observed hazard rates emerges at Level

1, between the third and fourth years of tenure. At Level 2 the largest difference between observed

and predicted outcomes is for the hazard rate of promotion between the second and third years of

tenure. At Level 3, the predicted hazard rates are very close to the observed ones. In terms of

the distribution of observed ratings here, as in the previous specification, the largest discrepancy is

between the observed and predicted fraction of high ratings at Level 2 in the first year of tenure. Yet,

overall, Specification 2 seems to fit the observed distribution of ratings better than Specification 1.

Lastly, the model fits the distribution of wages at each level and tenure remarkably well. In particular,

the fit of the distribution of wages at Levels 2 and 3 is not only substantially better but overall quite

successful.

Correspondingly, the Pearson’s 2 test provides more favorable evidence in support of the model.

Specifically, in terms of the distribution of level assignments, the model is never rejected at conventional

significance levels. In terms of the hazard rates of separation, retention at level, and promotion, the

model is only rejected between the second and fourth years of tenure at Level 1 and between the

second and third years of tenure at Level 2. In terms of the distribution of performance, the model is

only rejected in the first year of tenure at Level 2. In terms of the distribution of wages, the model is

only rejected at Level 1 in the first year of tenure and at Level 3 in the first few years of tenure.

Parameter Estimates. For Specification 2, the loglikelihood at the estimated parameter values

is 27 904358 and all parameters prove significant at the 1 percent level. Consider the estimation

results reported in Table A.11. For this specification, too, I confine attention to the discussion of the

parameters governing initial uncertainty about ability, learning, and error in recorded performance

ratings. Note that the initial priors that a manager is of high ability for the first, second, third, and

fourth skill types are given, respectively, by 11 = 0440, 21 = 0381, 31 = 0465, and 41 = 0607 for

entrants at Level 1, and by 51 = 0350, 61 = 0400, 71 = 31, and 81 = 41 for entrants at Levels

2, 3, and 4 (recall also that 91 = 51, 101 = 61, 111 = 71, and 121 = 81). The proportion of

each type, from the first to the fourth, is given, respectively, by 1 = 0123, 2 = 0284, 3 = 0317,

and 4 = 0276. Recall that the corresponding estimates in the paper are 11 = 0338, 21 = 0381,

31 = 0465, and 41 = 0607 with proportions 1 = 0155, 2 = 0211, 3 = 0313, and 4 = 0321.

Hence, in terms of the support of the initial priors, the only difference between the estimates

obtained from the extended sample and those obtained from the original sample concerns the initial

prior for entrants at Level 1 of the first skill type and the initial prior for entrants at higher levels of

the first and second skill types. Indeed, for the last two types of managers entering at any level, the

estimates of the initial prior are identical across samples. Specifically, as with Specification 1, entrants

at Level 1 of the first type are now estimated to have a higher prior than that estimated based on the

original sample (0440 compared to 0338). Here, as with Specification 1, entrants at Levels 2, 3, and

4 of both the first and second skill types are estimated to have higher priors than the priors estimated

in the paper (respectively, 0350 compared to 0338 for the first skill type and 0400 compared to 0381

for the second). The proportion of each such type is quite similar across the extended and the original

samples.
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BGH suggest that one way to explain the difference in career paths between entrants at Level

1 and those at higher levels, typically more varied, is that ‘innate’ abilities of new hires at higher

levels vary more than those of entrants at Level 1. My estimates for Specification 2 confirm that

intuition: the average initial prior for entrants at Level 1 is 0.477 (from
P

 1, compared to 0.473

estimated in the paper) with a standard deviation of 0.087 (from [
P

 (1−
P

 1)
2]12), whereas

the average initial prior for entrants at Levels 2, 3, and 4 is slightly lower, 0.472, but with a larger

standard deviation of 0.091.

Finally, the estimates of the learning parameters are very similar in magnitude and patterns to

those in the paper: the estimates on the extended sample are (1 1) = (0514 0457) at Level 1,

(2 2) = (0543 049059) at Level 2, and (3 3) = (0544 049058) at Level 3, whereas the estimates

on the original sample are (1 1) = (0514 0456) at Level 1, (2 2) = (05437 0491) at Level 2,

and (3 3) = (05435 0490) at Level 3. Finally, the fact that 0 = 0507, 2(1) = −0693, and
2(2) = −0539, whereas the estimates based on the original sample are 0 = 0521, 2(1) = −0703,
and 2(2) = −0544, implies similar estimates for the classification error rates in performance ratings
across the two samples.
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FIGURE 1. Static Expected Output and Statically Optimal Policies 
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FIGURE 2.  Bayesian Updating in Job A2 
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FIGURE 3. Jobs Assigned in Period 2 After Job A2 at Firm A in Period 1* 
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TABLE A.1 
Results from Monte Carlo Simulations 

 
Parameters 

 
Baseline 
Estimates 

 
 

Bias 

 
t-Statistic  
of Bias 

St. Dev. of 
Estimated  
Parameter 

Mean of  
Estimated  
St. Error 

Prior Distribution     
 φ11 (p11 = 0.338)  −0.672  −0.017  −3.428  0.035  0.069 
 φ21 (p21 = 0.381)  −0.484  0.002  0.416  0.042  0.003 
 φ31 (p31 = 0.465)  −0.141  0.005  1.392  0.027  0.001 
 φ41 (p41 = 0.607)  0.435  0.032  5.117  0.045  0.003 
 q1  0.155  −0.021  −9.613  0.016  0.019 
 q2  0.211  −0.015  −7.200  0.015  0.001 
 q3  0.313  0.010  2.755  0.026  0.002 
      
Probability of High Output     
 α1  0.514  0.0001  0.443  0.002  0.026 
 β1  0.456  −0.0003  −1.249  0.002  0.008 
 α2  0.5437  −0.0002  −1.756  0.001  0.004 
 β2  0.491  0.00001  0.103  0.001  0.013 
 α3  0.5435  −0.0003  −2.205  0.001  0.001 
 β3  0.490  0.0001  0.720  0.001  0.019 
      
Ratings Error     
 d0  0.521  −0.007  −0.645  0.079  0.007 
 d2(1)  −0.703  0.003  0.395  0.048  0.001 
 d2(2)  −0.544  −0.001  −0.122  0.033  0.033 
      
Human Capital     
 b124  −704.735  −0.837  −0.515  11.493  3.166 
 b125  −479.607  −0.304  −0.609  3.535  2.823 
 c12  2,960.515  −3.752  −1.078  24.612  46.467 
 γ22 (= c22 + b124)  1,858.714  0.381  0.221  12.185  1.930 
 γ23 (= c23 + b124)  1,505.367  4.036  1.961  14.554  33.448 
 γ25 (= c25 + b125)  1,629.309  3.025  1.375  15.555  8.282 
 γ26 (= c26 + b125)  1,745.184  2.476  1.623  10.786  1.959 
 b334  853.477  1.874  0.588  22.518  16.670 
 b335  202.791  1.115  1.200  6.570  0.693 
 b337  228.069  2.124  1.325  11.334  2.620 
 c31  −399.955  −1.758  −0.885  14.047  10.633 
 c37  2,190.704  0.541  0.326  11.724  1.112 
 c38  2,003.340  4.183  2.769  10.681  232.904 
      
Exogenous Separation     
 η11  0.145  −0.0001  −0.721  0.001  0.001 
 ξ3  0.033  −0.0004  −2.597  0.001  0.0002 
 η14  0.050  0.0001  1.830  0.0002  0.0001 
 η21  0.136  0.0001  0.592  0.001  0.004 
 η24  0.142  −0.0002  −2.796  0.001  0.0001 
 η25  0.121  0.0001  1.253  0.001  0.027 
 η26  0.115  −0.0002  −1.596  0.001  0.007 
 η27  0.111  0.0002  1.808  0.001  0.0003 
 η31  0.122  −0.0002  −1.498  0.001  0.001 

 
 



TABLE A.1 (Continued) 
Results from Monte Carlo Simulations 

 
Parameters 

 
Baseline 
Estimates 

 
 

Bias 

 
t-Statistic  
of Bias 

St. Dev. of 
Estimated  
Parameter 

Mean of  
Estimated  
St. Error 

Parameters of ωik(age,edu,year)    
 ϖ011  8.805  −0.025  −7.553  0.024  0.145 
 ϖ021  9.288  0.042  13.374  0.022  0.003 
 ϖ031  9.213  0.019  8.559  0.015  0.005 
 ϖ041  8.865  0.007  3.328  0.015  0.009 
 ϖ012  8.969  −0.026  −7.148  0.026  0.061 
 ϖ022  9.359  0.044  14.110  0.022  0.002 
 ϖ032  9.281  0.022  11.035  0.014  0.004 
 ϖ042  8.945  0.010  4.855  0.015  0.006 
 ϖ013  9.534  −0.019  −3.785  0.035  0.002 
 ϖ023  9.813  0.050  11.745  0.030  0.002 
 ϖ033  9.738  0.030  7.684  0.028  0.004 
 ϖ043  9.418  0.003  0.711  0.026  0.006 
 ϖ1  0.028  0.0003  4.928  0.0004  0.001 
 ϖ2  −0.0003  −0.000004  −3.800  0.00001  0.000001 
 ϖ3  0.022  0.0003  2.533  0.001  0.00001 
 ϖ13  0.010  0.0003  3.855  0.001  0.0001 
 ϖ23  −0.0001  −0.000004  −2.630  0.00001  0.000002 
 ϖ33  0.021  0.0003  1.600  0.001  0.0002 
 ϖy5  −0.063  0.009  5.509  0.011  0.0003 
 ϖy6  −0.107  0.002  1.167  0.012  0.002 
 ϖy7  −0.140  −0.003  −1.303  0.014  0.002 
 ϖy8  −0.208  −0.005  −3.244  0.011  0.002 
 ϖy9  −0.169  0.002  1.128  0.012  0.001 
      
Coefficient on Tenure     
 ω111  0.007  −0.0004  −2.942  0.001  0.0001 
      
Coefficients on Prior by Type    
 ω21  2.371  0.006  0.644  0.068  0.010 
 ω22  1.833  −0.098  −13.330  0.052  0.007 
 ω23  1.316  −0.054  −11.105  0.034  0.005 
 ω24  1.364  −0.042  −9.473  0.031  0.003 
      
Wage Standard Deviations     
by Type and Level    
 σ11  0.076  −0.017  −29.924  0.004  0.00002 
 σ21  0.070  −0.009  −17.459  0.004  0.001 
 σ31  0.057  −0.008  −17.998  0.003  0.001 
 σ41  0.044  −0.006  −23.703  0.002  0.0004 
 σ12  0.063  −0.021  −41.064  0.004  0.00001 
 σ22  0.047  −0.014  −41.553  0.002  0.0004 
 σ32  0.0302  −0.008  −38.472  0.002  0.0002 
 σ42  0.0303  −0.008  −34.107  0.002  0.0002 
 σ3  0.047  −0.021  −146.134  0.001  0.00004 



 
 
 
 

TABLE A.2 
Percentage Distribution of Managers Across Levels by Tenure  

(Extended Sample Specification 1) 
  Separation  Level 1  Level 2  Level 3 
Tenure  Data Model  Data Model  Data Model  Data Model 

1  0.0 0.0  70.9 70.8  15.5 15.6  13.6 13.6 
2  14.4 14.9  32.4 32.1  37.6 37.7  15.6 15.3 
3  27.3 28.8  11.9 11.7  36.9 36.4  23.9 23.2 
4  37.5 38.5  5.5 5.2  22.5 22.4  34.6 33.8 
5  46.1 46.4  3.3 3.3  13.9 14.2  36.7 36.2 
6  52.1 52.8  2.0 2.2  9.4 9.5  36.4 35.5 
7  57.6 58.5  1.5 1.6  6.0 6.3  34.9 33.6 

 
 
 
 

TABLE A.3 
Hazard Rates of Separation, Retention at Level, and Promotion (Percentages) 

(Extended Sample Specification 1) 
   Separated  Retained  Promoted 
Level Tenure  Data Model  Data Model  Data Model 
Level 1 1 to 2  14.4 14.4  45.7 45.3  39.9 40.3 
 2 to 3  14.6 14.4  36.9 36.4  48.5 41.8 
 3 to 4  12.1 13.6  45.8 44.7  42.1 26.2 
 4 to 5  11.8 5.4  60.0 62.2  28.2 21.7 
 5 to 6  9.1 5.4  62.1 66.5  28.8 20.1 
 6 to 7  12.2 5.4  73.2 74.0  14.6 14.7 
           
Level 2 1 to 2  16.3 19.0  60.3 59.2  23.4 21.8 
 2 to 3  16.1 19.0  56.3 60.9  27.6 20.1 
 3 to 4  15.8 14.4  47.3 53.2  36.9 32.4 
 4 to 5  15.9 14.4  54.9 58.0  29.2 27.6 
 5 to 6  13.3 13.0  60.9 62.4  25.8 24.6 
 6 to 7  14.3 12.9  60.8 62.8  24.9 24.3 
           
Level 3 1 to 2  12.1 12.7  87.9 87.3    
 2 to 3  13.1 13.9  86.9 86.1    
 3 to 4  12.5 12.7  87.5 87.3    
 4 to 5  12.7 12.7  87.3 87.1    
 5 to 6  10.6 12.2  89.4 87.7    
 6 to 7  10.6 12.2  89.4 87.8    

 



 
 
 
 

TABLE A.4 
Percentage of High Ratings at Levels 1 and 2 

(Extended Sample Specification 1) 
  Level 1  Level 2 
Tenure  Data Model  Data Model 

1  52.7 51.3  58.8 67.3 
2  34.9 35.3  56.1 55.2 
3  20.0 22.1  42.8 42.4 
4  11.8 12.7  26.0 30.5 
5  2.4 7.1  17.7 20.6 
6  3.7 3.7  11.3 13.3 
7  0.0 1.9  12.9 8.4 

 
 
 
 

TABLE A.5 
Percentage Wage Distributions by Level and Tenure 

(Extended Sample Specification 1) 
   Between 

$20K and $40K 
 Between  

$40K and $60K 
 Between 

$60K and $80K 
Level  Tenure  Data Model  Data Model  Data Model 
Level 1 1  59.1 55.6  40.5 43.7  0.4 0.7 
 2  54.5 55.6  44.7 43.5  0.8 0.9 
 3  55.8 56.6  44.2 42.2  0.0 1.3 
 4  54.2 55.7  45.8 42.7  0.0 1.5 
 5  64.1 65.9  35.9 33.1  0.0 0.9 
 6  69.2 66.7  30.8 32.1  0.0 1.0 
 7  75.0 68.0  25.0 30.7  0.0 1.1 
           
Level 2 1  13.3 12.5  67.7 69.5  18.7 17.7 
 2  29.0 28.5  65.6 65.5  5.4 5.9 
 3  29.4 33.0  66.3 63.4  4.3 3.6 
 4  34.7 35.4  60.5 61.1  4.8 3.5 
 5  35.6 36.7  60.6 59.7  3.8 3.5 
 6  40.7 37.6  54.8 58.6  4.5 3.7 
 7  38.9 38.2  58.4 57.9  2.7 3.8 
           
Level 3 1  6.9 3.7  36.8 31.5  48.9 35.1 

 2  5.3 4.7  45.7 40.7  43.1 34.1 
 3  4.1 6.0  64.2 59.7  30.2 25.4 
 4  4.5 8.3  72.4 68.2  22.4 18.8 
 5  4.2 9.4  74.9 69.6  20.1 17.1 
 6  5.5 10.4  77.7 69.3  16.5 16.9 
 7  3.7 11.3  77.5 68.7  18.8 16.7 

 
  



 
 

TABLE A.6 
Estimates of Model Parameters (Extended Sample Specification 1) 

 
Parameters 

 
Value 

Asymptotic 
Standard Error 

Prior Distribution   
 φ11 (p11 = 0.382)  −0.480 0.033 
 φ21 (p21 = 0.372)  −0.525 0.027 
 φ31 (p31 = 0.466)  −0.138 0.018 
 φ41 (p41 = 0.610)  0.447 0.026 
 φ51 (p51 = 0.360)  −0.575 0.048 
 φ61 (p61 = 0.400)  −0.405 0.036 
 q1  0.102 0.009 
 q2  0.290 0.045 
 q3  0.360 0.092 
   
Probability of High Output   
 α1  0.514 0.032 
 β1  0.456 0.012 
 α2  0.5432 0.003 
 β2  0.491 0.068 
 α3  0.5429 0.007 
 β3  0.490 0.010 
   
Ratings Error   
 d0 0.487 0.037 
 d2(1) −0.668 0.037 
 d2(2) −0.525 0.028 
   
Human Capital   
 1

12c  2,476.092 16.758 
 b123 −705.921 5.452 
 1

13c  2,419.015 8.489 
 b125 −1,092.881 1.880 
 γ22 (= 1

22 123c b+ ) 2,692.672 8.209 

 γ23 (= 1
23 123c b+ ) 1,800.283 2.316 

 γ24 (= 1
24 123c b+ ) 1,860.990 1.612 

 γ25 (= 1
25 125c b+ ) 1,275.078 2.297 

 2
25c  8,145.406 1.493 

 γ26 (= 1
26 125c b+ ) 1,546.718 1.536 

 2
26c  2,664.069 1.015 

 b333 1,267.237 1.660 
 2

34c  1,789.365 2.008 
 b335 153.565 3.918 
 2

35c  7,631.714 2.325 
 b336 180.222 2.053 
 2

36c  1,879.019 3.449 
 b337 327.530 2.195 
 1

37c  2,615.709 36.094 

 1
38c  2,054.190 0.292 

 
  



 
 

TABLE A.6 (Continued) 
Estimates of Model Parameters (Extended Sample Specification 1) 

 
Parameters 

 
Value 

Asymptotic 
Standard Error 

Exogenous Separation   
 η11 0.144  0.004 
 η13 0.136  0.002 
 η14 0.054  0.0001 
 η21 0.190  0.003 
 η23 0.144  0.001 
 η25 0.129  0.0003 
 η27 0.123  0.0003 
 η31 0.127  0.001 
 η32 0.139  0.001 
 η35 0.122  0.0003 
   
Parameters of ωik(age,edu,year)  
 ϖ011  8.431  0.007 
 ϖ021  9.217  0.004 
 ϖ031  9.055  0.006 
 ϖ041  8.758  0.010 
 ϖ012  8.589  0.006 
 ϖ022  9.283  0.004 
 ϖ032  9.143  0.005 
 ϖ042  8.845  0.007 
 ϖ013  9.168  0.006 
 ϖ023  9.773  0.006 
 ϖ033  9.647  0.007 
 ϖ043  9.377  0.013 
 ϖ063  9.735  0.010 
 ϖ073  9.627  0.009 
 ϖ083  9.404  0.019 
 ϖ0103  9.852  0.004 
 ϖ0113  9.692  0.005 
 ϖ0123  10.095  0.007 
 ϖ1  0.037  0.0001 
 ϖ2  −0.0004  0.000002 
 ϖ3  0.018  0.0005 
 ϖ13  0.017  0.0003 
 ϖ23  −0.0002  0.000005 
 ϖ33  0.016  0.001 
 ϖy5  −0.062  0.003 
 ϖy6  −0.147  0.004 
 ϖy7  −0.151  0.003 
 ϖy8  −0.215  0.003 
 ϖy9  −0.152  0.003 

 
  



 
 
 
 

TABLE A.6 (Continued) 
Estimates of Model Parameters (Extended Sample Specification 1) 

 
Parameters 

 
Value 

Asymptotic 
Standard Error 

Coefficient on Tenure   
 ω111  0.007  0.0003 
   
Coefficients on Prior by Type   
 ω21  2.674  0.060 
 ω22  1.758  0.038 
 ω23  1.359  0.018 
 ω24  1.335  0.015 
 ω25  2.604  0.091 
 ω26  2.001  0.049 
 ω27  1.598  0.020 
 ω28  1.486  0.016 
   
Wage Standard Deviations by Type and Level  
 σ11  0.077  0.001 
 σ21  0.070  0.001 
 σ31  0.056  0.001 
 σ41  0.041  0.001 
 σ12  0.079  0.001 
 σ22  0.057  0.001 
 σ32  0.044  0.0004 
 σ42  0.037  0.0004 
 σ13  0.081  0.0005 
 σ33  0.048  0.0005 
 σ43  0.091  0.001 

 
 



 
 
 
 

TABLE A.7 
Percentage Distribution of Managers Across Levels by Tenure  

(Extended Sample Specification 2) 
  Separation  Level 1  Level 2  Level 3 
Tenure  Data Model  Data Model  Data Model  Data Model 

1  0.0 0.0  70.9 70.8  15.5 15.6  13.6 13.6 
2  14.4 14.3  32.4 32.4  37.6 38.1  15.6 15.2 
3  27.3 27.8  11.9 12.0  36.9 36.9  23.9 23.4 
4  37.5 38.0  5.5 5.4  22.5 22.4  34.6 34.2 
5  46.1 46.2  3.3 3.3  13.9 14.1  36.7 36.4 
6  52.1 52.5  2.0 2.2  9.4 9.5  36.4 35.7 
7  57.6 58.1  1.5 1.7  6.0 6.2  34.9 33.9 

 
 
 
 

TABLE A.8 
Hazard Rates of Separation, Retention at Level, and Promotion (Percentages) 

(Extended Sample Specification 2) 
   Separated  Retained  Promoted 
Level Tenure  Data Model  Data Model  Data Model 
Level 1 1 to 2  14.4 13.6  45.7 45.8  39.9 40.3 
 2 to 3  14.6 13.6  36.9 36.9  48.5 41.0 
 3 to 4  12.1 13.2  45.8 44.9  42.1 26.5 
 4 to 5  11.8 5.3  60.0 62.3  28.2 21.8 
 5 to 6  9.1 5.3  62.1 66.4  28.8 20.4 
 6 to 7  12.2 5.2  73.2 77.1  14.6 12.7 
           
Level 2 1 to 2  16.3 18.1  60.3 61.4  23.4 20.4 
 2 to 3  16.1 18.1  56.3 61.8  27.6 20.0 
 3 to 4  15.8 14.7  47.3 52.2  36.9 33.0 
 4 to 5  15.9 14.7  54.9 57.6  29.2 27.6 
 5 to 6  13.3 13.2  60.9 62.6  25.8 24.1 
 6 to 7  14.3 13.1  60.8 62.5  24.9 24.3 
           
Level 3 1 to 2  12.1 13.4  87.9 86.6    
 2 to 3  13.1 14.6  86.9 85.4    
 3 to 4  12.5 13.5  87.5 86.5    
 4 to 5  12.7 13.4  87.3 86.6    
 5 to 6  10.6 11.8  89.4 88.1    
 6 to 7  10.6 11.8  89.4 88.2    

 



 
 
 
 

TABLE A.9 
Percentage of High Ratings at Levels 1 and 2 

(Extended Sample Specification 2) 
  Level 1  Level 2 
Tenure  Data Model  Data Model 

1  52.7 51.5  58.8 67.9 
2  34.9 34.9  56.1 55.6 
3  20.0 21.4  42.8 42.5 
4  11.8 12.0  26.0 30.3 
5  2.4 6.5  17.7 20.3 
6  3.7 3.4  11.3 13.0 
7  0.0 1.7  12.9 8.0 

 
 
 
 

TABLE A.10 
Percentage Wage Distributions by Level and Tenure 

(Extended Sample Specification 2) 
   Between 

$20K and $40K 
 Between  

$40K and $60K 
 Between 

$60K and $80K 
Level Tenure  Data Model  Data Model  Data Model 
Level 1 1  59.1 55.2  40.5 44.2  0.4 0.6 
 2  54.5 55.2  44.7 43.9  0.8 0.9 
 3  55.8 57.2  44.2 41.4  0.0 1.4 
 4  54.2 56.8  45.8 41.5  0.0 1.7 
 5  64.1 67.4  35.9 31.6  0.0 0.9 
 6  69.2 68.7  30.8 30.1  0.0 1.0 
 7  75.0 69.6  25.0 29.0  0.0 1.0 
           
Level 2 1  13.3 13.6  67.7 68.9  18.7 17.3 
 2  29.0 27.5  65.6 66.6  5.4 5.8 
 3  29.4 32.4  66.3 63.8  4.3 3.8 
 4  34.7 35.0  60.5 61.2  4.8 3.8 
 5  35.6 35.8  60.6 60.3  3.8 3.8 
 6  40.7 36.4  54.8 59.2  4.5 4.3 
 7  38.9 37.0  58.4 58.5  2.7 4.4 
           
Level 3 1  6.9 0.8  36.8 32.7  48.9 35.8 
 2  5.3 1.6  45.7 43.1  43.1 34.1 
 3  4.1 2.3  64.2 64.8  30.2 24.6 
 4  4.5 3.7  72.4 75.1  22.4 17.0 
 5  4.2 4.3  74.9 76.9  20.1 15.5 
 6  5.5 4.9  77.7 77.5  16.5 14.7 
 7  3.7 5.4  77.5 77.1  18.8 14.7 

 
  



 
 

TABLE A.11 
Estimates of Model Parameters (Extended Sample Specification 2) 

 
Parameters 

 
Value 

Asymptotic 
Standard Error 

Prior Distribution   
 φ11 (p11 = 0.440) −0.242 0.026 
 φ21 (p21 = 0.381) −0.486 0.034 
 φ31 (p31 = 0.465) −0.140 0.018 
 φ41 (p41 = 0.607) 0.433 0.026 
 φ51 (p51 = 0.350) −0.618 0.036 
 φ61 (p61 = 0.400) −0.407 0.032 
 q1 0.123 0.011 
 q2 0.284 0.041 
 q3 0.317 0.058 
   
Probability of High Output   
 α1  0.514 0.065 
 β1  0.457 0.011 
 α2  0.543 0.006 
 β2  0.49059 0.013 
 α3  0.544 0.007 
 β3  0.49058 0.010 
   
Ratings Error   
 d0 0.507 0.037 
 d2(1) −0.693 0.037 
 d2(2) −0.539 0.028 
   
Human Capital   
 1

12c  2,546.379 60.027 
 b123 −921.611 44.749 
 1

13c  2,654.591 39.086 
 b125 −1,222.480 42.863 
 γ22 (= 1

22 123c b+ ) 2,528.019 47.190 

 γ23 (= 1
23 123c b+ ) 1,981.858 118.413 

 γ24 (= 1
24 123c b+ ) 1,749.285 5.412 

 γ25 (= 1
25 125c b+ ) 1,228.735 7.245 

 2
25c  4,315.857 29.517 

 γ26 (= 1
26 125c b+ ) 1,511.991 20.117 

 2
26c  5,074.299 71.326 

 b333 1,586.090 22.701 
 2

34c  1,713.867 14.304 
 b335 352.196 50.346 
 2

35c  3,544.000 645.993 
 b336 182.064 0.047 
 2

36c  4,046.057 30.651 
 b337 322.609 1.695 
 1

37c  2,463.459 9.025 

 2
37c  4,727.139 7.344 

 1
38c  2,025.335 108.838 



 
 
 

TABLE A.11 (Continued) 
Estimates of Model Parameters (Extended Sample Specification 2) 

 
Parameters 

 
Value 

Asymptotic 
Standard Error 

Exogenous Separation   
 η11 0.136  0.003 
 η13 0.133  0.002 
 η14 0.053  0.0001 
 η21 0.181  0.002 
 η23 0.148  0.001 
 η25 0.132  0.0003 
 η27 0.126  0.0003 
 η31 0.134  0.001 
 η32 0.146  0.001 
 η35 0.118  0.0004 
   
Parameters of ωik(age,edu,year)  
 ϖ011  8.398  0.006 
 ϖ021  9.275  0.005 
 ϖ031  9.140  0.008 
 ϖ041  8.904  0.010 
 ϖ012  8.559  0.007 
 ϖ022  9.340  0.004 
 ϖ032  9.217  0.006 
 ϖ042  8.990  0.008 
 ϖ013  8.511  0.008 
 ϖ023  9.317  0.008 
 ϖ033  9.136  0.009 
 ϖ043  8.849  0.013 
 ϖ063  9.333  0.013 
 ϖ073  9.172  0.011 
 ϖ083  9.041  0.024 
 ϖ0103  9.508  0.008 
 ϖ0113  9.275  0.006 
 ϖ0123  9.904  0.009 
 ϖ1  0.036  0.0001 
 ϖ2  −0.0004  0.000002 
 ϖ3  0.012  0.0005 
 ϖ13  0.010  0.001 
 ϖ23  −0.0001  0.00002 
 ϖ33  0.018  0.001 
 ϖy5  −0.062  0.003 
 ϖy6  −0.114  0.004 
 ϖy7  −0.151  0.004 
 ϖy8  −0.222  0.003 
 ϖy9  −0.162  0.003 

 
  



 
 

TABLE A.11 (Continued) 
Estimates of Model Parameters (Extended Sample Specification 2) 

 
Parameters 

 
Value 

Asymptotic 
Standard Error 

Coefficient on Tenure   
 ω111  0.008  0.0003 
   
Coefficients on Prior by Type   
 ω21  2.767  0.040 
 ω22  1.917  0.044 
 ω23  1.487  0.018 
 ω24  1.324  0.014 
 ω25  3.228  0.083 
 ω26  2.196  0.046 
 ω27  1.747  0.020 
 ω28  1.507  0.015 
   
Wage Standard Deviations by Type and Level  
 σ11  0.087  0.001 
 σ21  0.069  0.001 
 σ31  0.057  0.001 
 σ41  0.043  0.001 
 σ12  0.081  0.001 
 σ22  0.057  0.001 
 σ32  0.038  0.0005 
 σ42  0.036  0.0004 
 σ13  0.112  0.001 
 σ33  0.098  0.001 
 σ43  0.135  0.002 

 
 



 
 
 
 
 
 
 

TABLE A.12 
Counterfactual Experiments: Importance of Experimentation for Wages 

Baseline, Equal Informativeness as Levels 1, 2, and 3* 
  Wages in Each Case 
 
Statistic 

 
Baseline 

Equal Informativeness as 
Level 1 Level 2 Level 3 

Means by Level     
 Level 1 $39,584 $39,763 $39,785 $39,791 
 Level 2 43,179 42,600 43,031 43,027 
 Level 3 48,963 48,818 48,874 48,881 
     
Standard Deviations by Level     
 Level 1 $6,936 $6,902 $6,942 $6,945 
 Level 2 7,077 6,831 7,094 7,106 
 Level 3 8,046 7,971 7,890 7,914 
     
Cumulative Growth Rates     
 Tenure 2 4.6% 0.9% 0.9% 0.9% 
 Tenure 3 8.9 17.6 9.3 9.3 
 Tenure 4 13.8 20.5 14.3 14.3 
 Tenure 5 15.9 21.6 16.6 16.6 
 Tenure 6 17.5 22.1 18.3 18.2 
 Tenure 7 18.5 22.2 19.2 19.2 
 Tenure 7 (Balanced Panel) 19.4 23.3 20.2 20.1 

*Equal Info as Level: 1, 1 1
ˆˆ , , 2,3;k k kα = α β = β =  2, 2 2

ˆˆ , , 1,3;k k kα = α β = β =  3, 3 3
ˆˆ , , 1,2k k kα = α β = β =  

  



 
 
 
 

 
 
 

TABLE A.13 
Counterfactual Experiment: Importance of Experimentation for Level Assignments 

Baseline and Equal Informativeness as Level 2* 
  Separation  Level 1  Level 2  Level 3 
 
Tenure 

  
Base. 

Equal Info. 
As L2 

  
Base. 

Equal Info. 
As L2 

  
Base. 

Equal Info. 
As L2 

  
Base. 

Equal Info. 
As L2 

1  0.0 0.0 100.0 100.0  0.0 0.0 0.0 0.0 
2  14.5 14.5 45.7 84.8  39.8 0.6 0.0 0.0 
3  26.5 26.9 17.2 14.6  47.3 49.1 8.9 9.3 
4  37.1 37.6 8.1 6.0  29.2 29.7 25.6 26.7 
5  45.3 45.9 5.3 3.6  18.3 18.1 31.2 32.4 
6  51.5 52.2 3.4 2.2  12.6 12.2 32.5 33.4 
7  56.9 57.5 2.7 1.7  8.3 7.9 32.1 32.9 

*Equal Informativeness as Level 2: 2 2
ˆˆ , , 1,3k k kα = α β = β =  

 
 
 
 
 

TABLE A.14 
Counterfactual Experiment: Importance of Experimentation for Level Assignments 

Baseline and Equal Informativeness as Level 3* 
  Separation  Level 1  Level 2  Level 3 
 
Tenure 

  
Base. 

Equal Info. 
As L3 

  
Base. 

Equal Info. 
As L3 

  
Base. 

Equal Info. 
As L3 

  
Base. 

Equal Info. 
As L3 

1  0.0 0.0 100.0 100.0  0.0 0.0 0.0 0.0 
2  14.5 14.5 45.7 84.8  39.8 0.6 0.0 0.0 
3  26.5 26.9 17.2 15.3  47.3 48.1 8.9 9.7 
4  37.1 37.5 8.1 6.5  29.2 29.1 25.6 26.9 
5  45.3 45.8 5.3 4.0  18.3 17.8 31.2 32.4 
6  51.5 52.1 3.4 2.5  12.6 12.0 32.5 33.4 
7  56.9 57.4 2.7 1.9  8.3 7.8 32.1 32.8 

*Equal Informativeness as Level 3: 3 3
ˆˆ , , 1,2k k kα = α β = β =  
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