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l. Introduction

This paper describes and implements a procedure for estimating the
timing interval in any linear econometric model, This section begins by
explaining why such a procedure may be of interest. The second part of this
section explains why Taylor's (1980a,b) model was chosen for the applica-

tion. An outline of the paper appears in the third part of this section.

l.1l. Why treat the timing interval as unknown?

Why an econometric procedure which treats a model's timing interval
as a free parameter is of interest may not be obvious.- To explain, I need
some simplifying notation. Let N index the length of the timing interval in a
theoretical model, with N = 1 indicating a model in which the timing interval
coincides with the data sampling interval; N = 2, a model in which the timing
interval is half the data sampling interval; and so on. In a fully specified
model, N is an endogenous variable, chosen by the agents whose decisions are
being modeled. Explicitly modeling the endogeneity of N would produce a
relation of the form N = f(¢), where f is some function and ¢ is the vector of
free parameters of the model. [In the general case--not considered here--N
varies with time and the values of the state variables. See Barro (1970) and
Garber (1977) for examples.] This paper supplies a method for estimating N
without restrictions. The method is useful whether or not f is available.

The function f is not available in most empirical applications.
Without an f function, theory provides no guidance about the value of N, so
that it is an unknown parameter (subject only to N > 0). One way of proceed-
ing in this context is to treat N 1like other parameters whose values are
unknown and estimate it. An advantage of this approach is that when a cross
section of time series is available, unrestricted estimates of N and ¢ can be

used to yield information about the properties of f which would be a useful



guide when theorizing about f. To see this, suppose that time series i yields
estimates $i and ﬁi and that there are H time series (i = 1, ..., H). The
assumption that N, = f(¢i) for i = 1, ..., H indicates the nature of f even
when the theory says nothing about it. The procedure in this paper is also
useful as a diagnostic tool when an econometric estimate of N is otherwise not
needed. If the standard route of fixing N = 1 is taken, my procedure can be
used to check whether estimation results are sensitive to that specification.
When f is available, restricted estimates of N and ¢——denoted

Nr, ¢r——can be obtained by imposing the restriction N* = f(¢r) during estima-

tion. A useful test of the model is to then compare ﬁr with ﬁu, an estimate
of N obtained without imposing N = f(¢). The computation of ﬁu requires the
procedure outlined in this paper. (Much of my discussion about identification
and the calculation of the likelihood function would also be relevant for the
problem of computing'ﬁr.)

There is no basis for the nearly universal practice of setting N = 1
and not checking the results for sensitivity to N. Such a basis could exist
only if permitting N to be a free parameter were computationally intractable
or if hypothesis tests and estimates of the remaining parameters were known in
general to be insensitive to the choice of N. Both of these cases may be
ruled out. This paper demonstrates concretely that allowing N to be free is
computationally tractable.r The paper also adds an example to the work thch
has already shown, both theoretically and empirically, that empirical results
can be sensitive to. the choice of model +timing interval [Christiano

(1984,1985), Mundlak (1961), Zellner (1968), and Zellner and Montmarquette

(1971)1].

1l.2. Why study the staggered contracts model?

I apply my procedure to Taylor's staggered contracts model because

it 1s ideal for illustrating how aggregation over time affects model estima-~
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tion and fit as N increases. The simple (benchmark) version of Taylor's
model, in which error terms are white noise, predicts one-way Granger causal-
ity from the price level to output. However, the work of Sims (1971) and
Geweke (1978) has shown that the sampled representation of a one-way Granger-
causal system with N > 1 will in general display bidirectional Granger causal-
ity. This and other considerations mentioned below suggest that raising N
above the value of l--which is what Taylor sets it to--is likely to improve
model fit. Taylor's strategy for improving the model's fit is to introduce
serial correlation in the error terms.

In Taylor's model, the degree of overlap in wage contracts deter-
mines the timing of the model, so that N simultaneously indexes the timing
interval and the degree of contract overlap. Besides freeing up N, I vary the
contract length, n, which Taylor (1980a) fixes a priori at a value of 2. (The
unit of measurement for n is the sampling interval, which is one year.) Thus,
I attempt to improve thé benchmark model and its fit by freeing up two param-
eters, n and N, held fixed by Taylor (1980a). This is an attractive strategy
because the parameters n and N lend themselves more easily to economic inter-
pretation than do Taylor's (1980a) serial correlation parameters, For in-
stance, freeing up n and N and repeating the cross-—country analysis of Taylor
(1980a) would permit a study of the empirical relationships among the contract
length, the degree of contract overlap, and the parameters of government
policy. The policy implications of Taylor's model depend critically on the
contract length and degree of overlap not varying with policy. Under the
invariance assumption, the model implies a policy tradeoff between output and
price stability, which sets the model off sharply from the rational expecta-

tions models of Barro (1976), Lucas (1973), and Sargent and Wallace (1975).



1.3. OQutline

The paper has five more sections. Section 2 presents Taylor's
model, Sections 3 and 4 déscribe the proposed methodology for estimating the
timing interval of an arbitrary linear econometric model. Section 3 describes
how to compute the likelihood function when N > 1 and the data are averages
over the sampling interval. Section 4 discusses the aliasing identification
problem that arises when estimating ¢ with N > 1. Section 5 applies the

methodology to Taylor's model, Section 6 summarizes the conclusions.

2. Taylor's model

In Taylor (1980a), a model of aggregate output and price dynamics is
estimated using annual averaged data for the economies of the United States,
Canada, and eight European countries. The model specifies that half the
population of workers negotiate two-year wage contracts each year,, This
model, once closed by an aggregate demand equation, rest?icts the vector time
series representation of aﬁnual aggfegate output and price data.

The timing interval in Taylor's model is determined by the length of
the period separating contract negotiations. A natural way to modify this
timing is to preserve the specification that two-year wage conéracts are
negotiated, but to have contracts come up for renewal more often. For exam-
ple, a fourth of the population could negotiate two-year wage contracts every
half year or an eighth could negotiate every quarter.. The basic economics
underlying these specifications are the same. However, the specifications
have different implications for the time series representation of the annual
averaged data; some may fit the data better than others. In addition to
permitting the model timing interval to vary, I consider contract periods

longer than two years.
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A formal description of Taylor's model follows. I adopt the normal-
ization that the length of the sampling interval (the period) is 1. (In the
application, the sampling interval is one year.)

To begin, define

n = the number of periods covered by a contract (an integer

greater than 1)

N = a positive integer such that n-period wage contracts are
negotiated every 1/N periods by 1/nN of the population of

workers

x(t) = the log of the wage contract negotiated at the beginning of
period t to expire at the end of period t + n - 1/N, in
deviation from trend

p(t) = the log of the aggregate price level in-the interval [t, t +
1/N), in deviation from trend

y(t) = the log of aggregate output in the interval [t, t + 1/N), in
deviation from trend

e(t) = a shock to x(t)

v(t) = an aggregate demand shock.

The t index ranges over 0, +1/N, +2/N, %3/N, .... Taylor (1980a) sets n = 2,
N=1.

Workers negotiating wage contracfs at the beginning of period t are
assumed to be interested in two factors: their wage relative to other wages

and the current and prospective levels of output relative to trend. 1In par-

ticular, the wage-setting process is modeled as follows:
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nN-1 a nN-1 nN-1

x(6) = ] bl + 2+ RRRELE 5+ L 1 y(& +3) +e(v) (1)

where a caret () over a variable indicates its expectation, conditioned on

information dated t - 1/N and earlier, and

nN - s

Py = AN(av-1) S =1, 2, eee, 0N = 1 (2)
so that EHN -1 b, = 1/2. That is, by is the fraction of a period over which an

n-year wage contract negotiated at the beginning of t + s/N or t - s/N over-
laps with the contract negotiated at the beginning of period t.

Fige. 1 may help visualize the dating in the model. It depicts the
time covered by two adjacent n-period contracts. The upper bar indicates the
interval over which an n-period contract negotiated‘at time % applies. The
lower bar indicates the interval over which the next n-period contract, nego-

tiated at time t + 1/N, applies. ' ‘ .

The remaining equations of the model arel/

y(t) = -Bﬁ(t) + v(t) 0<B8<1 (aggregate demand) (3)
1 nN-1 1
p(t) = N yoox(t - ﬁJ , (price markup) (4)
i=0
v(t) = n(t) + on(t - %& le] < 1 (demand shock)  (5)
e(t) = u(t) + sul(t —'%) ‘lél <1 (wage shock) (6)

where {n(j);j=0,1/N,+2/N,...} and {u(j);j=0,+1/N,+2/N,...} are serially

independent, normally distributed random variables with

ﬂ(j r v, T=20
S DRCCEE ST DER SO (1)

The arguments in Taylor (1980a,b) can be used to show that the reduced form

Y(+ (y(t ,p(t ) process corresponding to (1)-(7) is



A(B)Y(t) = c(B)w(t) (8)

where B = Ll/N (where L is the unit interval time shift operator; that is,

Lz, = zt-l)’ A(B) is a scalar polynomial in B:

A(B) =1 = a. B = eeu - a phli-1 (9)

1 (nN-1)

and C(B) is a 2 x 2 polynomial matrix:

C(B) = I+ CB+ «uu + anBnN
Cll(B) 012(3)
= . (10)
Cpy (B) Cpp(B)

The object A(B) is the unique polynomial with zeros outside the unit ecircle

and lead term eqﬁal to unity that satisfies

A(B)A(B™) = b(B) (11)
where
nN-1
b(B) = y b_B° (12a)
s=-(nN-1)
nN + vy8
by = - W - v8(nN-1) (12Db)
by = b_g (12¢)

and b, for positive values of s is defined in (2). Also, in (11),

y = D(n-1)

a(nN—l) (3

In (10),



Cll(B) = -BCQl(B) + A(B)(1+6B) (1ka)

k. nN
1

Cpy(B) = = ] B° - (14b)
s=]

012(3) = g[A(B) - Co(B)] (1ke)

nN-1 s
022(3) = (1+k2B) SZO B”. (1k44)

The disturbance in (8) is

w, (£) n(t)
wit) = =11 . . (15)
W2(t) Eﬁ-u(t)
Finally,
=1 oy
Ry ‘.X[nN - YB(HN—l)] (16a)
_ -1 nN§ )
kp = _A[nN - YB(nN—l)]' (16b)
Using (1lha)-(1kd),
nN Bk :
det C(B) = A(B)(liB 1+ (x, + 0 - Wl-)s + ek2132]. (17)

Evidently the zeros of det C(B) are those of the three polynomials to the
right of (17). The roots of A(B) lie outside the unit circle. The second
polynomial to the right of the equality in (17) has nN - 1 roots lying on the

unit circle. These are

27 . . s 2m .
cos (Eﬁ'J) + i sin (Eﬁ'j) J =1, 2, eeey 0NN ~ 1

wvhere 1 is the imaginary number. The location of the zeros of the third

polynomial to the right of (17) is uncertain. For example, when N = 2, n = 2,
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8= .8, §=~-.2, 8= .5, and y = .2, the zeros of this polynomial are 4.309
and -1.25T. When § = .9, the roots are -1.217 and -.989.

To summarize, the structure in (1)-(7) implies the covariance sta-
tionary representation (8), with a moving average (MA) part whose determinant
has nN - 1 roots on the unit circle and possibly some inside as well. (The
condition & = § = 0 guarantees that no roots lie inside the unit circle.)

Note from (8) that the theory restricts the time series representa-
tion of Y(t) ='(y(t),p(t)) sampled every 1/N of a period. The data I want to
analyze, however, are period averages sampled once a period. That is, I have
no observations on {¥(t);t=0,+1/N,+2/N,...}. Instead, I have observations on

[¥(t);t=0,%1,+2,...}, where

Y(t) =

==

N-1 .
YoY(t + -%LT-) .
i=0

For example, when N = 12, I interpfet'the 1960 observation of the gross na-
tional product as the geometric average of the (unavailable) 12 monthly obser—
vations. 1In section 3, I show how to calculate the likelihood function condi-
tional on this feature of the data and for a given set of values for the
structural parameters. These are B8, y, §, 0, and the three elements of V in

(7)e For convenience, stack these in the vector ¢, where

o= (Bs Y5 8 0, Vouu Vs Vo) (18)

The vector ¢ is an element of &, which is the subset of R/ such that
2
0<B<1,y>0,[8] <1, 6] <1,V >0, Vyp > 0, VyVpy - V5, > 0, end
the factorization (11) exists.
Section 4 is concerned with the problem of identifying ¢ for given
values of n and N. Readers less interested in the technical details and eager

for empirical results can skip sections 3 and L.
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3« The likelihood function

Here I describe a method for computing the exact log-likelihood of a
set of data, Y(1), e.e, Y(T), given values for the structural parameters, ¢,
and for n and N. The strategy is related to that proposed by Hansen and
Sargent (1980) for estimating the parameters of continuous time systems from
sampled data. An alternative strategy for computing the likelihood function
in this context uses the Kalman filter [Ansley and Kohn (1983)].

If the exact normal likelihood function is to be evaluated, then
R;(T,¢) = BY(t)Y(t-1) T =0, Ly esay T =1 (19)

is required. These are computed by first obtaining Ry(r,¢) = EY(t)Y(t-1)T
from (8). Denote the covariance generating function of {Y(t);t=0,+1/N,+2/N,
ooo]’ by
. oo’ i i .
s (s) = R (=,¢)s - 20
(5 E_w 5 0) (20)
where 8 is the complex variable defined over a region which includes the unit

circles It is a well known result in the analysis of covariance stationary

time series that

-14\T
5, (s) = SalVe(s ) (21)
v A(s)A(s™)
R, may be found by expanding (21) and matching the result with (20).
Write
A(s) = (1-p;8)(1-p,s) e0e(1-p s) (22)

where m = nN - 1 > 0. Comparison with (9) indicates that pi for i = 1, ooy m
are the reciprocals of the roots of the polynomial defined there. Also,
Ipi‘ <1 for all i. Note from (10) that the order of C(s) is m + 1. The

partial fractions expansion of (21) (after some algebra) is



T
m W m W, m
sfe) =} godo+] —L v R ] W (232)
y J=1 pj j=11 - pjs j=1
where
-1
K = Ef-cm+1v {23b)
m
K = -[C VCT + CV -Kla a_-a )]!;- a_ = -1 (23c)
m+l U1 m m 1 m-1l am o~
c<p51>vc(pj)T
T, m » L (234)
(l—pj) b (1 + o - pi(s{j+c>:j )]
i=1
i)
It may be verified that if
~ m
Ry(0,¢) =K + jzl Wj (2ha)
1 .m .
Ry(ﬁ3¢) =K + le Wbpj (24p)
o Nt 2 3
Ry('l‘,(b) = jzl ijj T = ﬁ, ﬁ‘, L) ) (2’-‘-0)
Ry(r,¢) = R;(-r,¢) T<O0 (2h4d)

then (20) and (23a) are satisfied so that (2ha)-(24d) define the covariance
function corresponding to the representation in (8).2/

To get eq. (19), note that

Ro(t,0) 2 EY(£)T(t=1)

N-1 N-1
_oorl Jyrl k T
= E Y(t + <) ][z (t += - 1)
[¥ jZO o 1y kzo 5~ 1]
N-1 N-1
=L 7y Ty R (55 + ), (25)
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Substituting (2L4a)-(24d) into (25) gives (after some algebra)

1l  N-1 T
R§(0,¢) =z K+ 2 (K+K ™)
z N -N\ 1-1 1
+ 3 [ ) (1=p DT {W [1 - oy + N(1-p )]
k=1
+ Wg[l - pg - M(1-p,) ]} (26a)
Lox+ 1 Bl = 1
R-(1,4) == K + W, (= W if N=1) (26b)
Y 02 2 k' L k%
m
~ Nt
R"(T,q’) = 2 W p T = 2, 3, )4, se e (260)
y k=1 k"k
Here

. (1-p) (1-p7")
Wk = Wk ) -1 k = l, 2, seey Mo (26d)
N (1—pk)(1—pk ) :

Define the following block-Toeplitz matrix:

T T
R§(0,¢) R§(1,¢) o o e R§(T-1,¢)

R-(1,9) R-(0,¢) . .. R?(T-2,¢)
a(e) = | ¥ Y Y . (27)

3§(T-1,¢) Ri(T-2,¢) e R§(o,¢)

Let

(1)

Y(T)

=]
0
*

Then the log-likelihood of Y(1), «.., Y(T) for a given value of $ € d,n > 1,

and N > 1 is
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2(T;0,n,8) = - -g- log 21 - —é— log det Q(¢) - —,i,—?‘rsz‘lw)'f. (28)

Dunsmuir and Hanhnan (1976)'show that maximiziné (28) with respect
to ¢ delivers a consistent estimator of ¢ when n and N are known. Dunsmuir
and Hannan's consistency results apply here since they permit unit roots in
the determinant of the MA representation. (Their results assume identifica-
tion, a +topic discussed in section L.) Dunsmuir and Hannan's asymptotic
distribution results do not apply here, since for these results they rule out
unit MA roots. The results of Pham-Dinh (1978) suggest that my maximum like-
lihood estimator of ¢ is asymptotically normally distributed because I impose
the unit MA roots exactly during estimation. Pham~Dinh proves the asymptotic
normality of the maximum likelihood estimator in the scalar ARMA éase when the
MA has & unit root and the restriction is imposed exactly during estimation.
The results of Sargan and Bhargava (1983) suggest that the assumption that the
unit root is imposed exactly is critical. They show that the maximum likeli-
hood estimator of the MA coefficient of a scalar, zero mean, MA(1) represen-
tation is not asymptotically normally distributed if the MA has a root at plus
or minus unity.

To conclude this section, my estimator for n, N, ¢, denoted ﬁ, ﬁ,
$, is defined by

ﬁ, ﬁ, ; =  argmax £(Y;4,n,N).
n»2,N>1,¢cd
When n and N are fixed and known a priori, the problem of estimating ¢ closely
matches the standard estimation problem in time series, and much is known
about the asymptotic distribution properties of $ (as summarized above).
However, in this paper, n and particularly N are treated as unknown and to be

estimated. The sampling theory for this case is left for future research.

Despite this, when reporting the results in section 5, I use the distribution
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theory appropriate when n and N are known. In particular, for given n and N,

I estimate the variance-covariance matrix of ¢, cov (¢), by this formulsa:

-1

»oony | 3%8(Ts4,0,1) . (29)

cov (¢) = %
9¢3¢ $=¢

>

Under the normality assumption on w(t), and assuming n and N are fixed and

A -
known, cov converges strongly to cov.

4, The aliasing identification problem

Estimating a model wiﬁh a timing interval finer than the data sam-
pling interval (with N > 1) involves an identification problem with regard to
¢ that is not present in standard applications (when the two intervals are
assumed to coincide). Section k.1 describes this aliasing identification
problem and compares it with the standard, or classical, identification prob-
lem. Four examples illustrate these concepts and motivate the more rigorous
material in sections 4.2 and L.3.

Section k4.2 presents a set of sufficient conditions that guarantee
aliasing identification when the data-generating mechanism is (8) and the data
are temporally averaged (Theorem 1). One of the examples in section 4.1 and a
new example show that these conditions are not necessary for aliasing identi-
fication, but they suggest that a set of necessary and sufficient conditions
for as general a class of models as (8) will be hard to work out. [This
parallels the findings of Hansen and Sargent (1983) in the continuous time
context.] The virtue of my Theorem 1 is that its conditions are relatively
easy to check, either analytically or computationally. For example, I show
an;a.lytically (in Proposition 2) that Taylor's model with n = 2 and N = 2

satisfies the conditions. Moreover, I describe a computational algorithm for

checking the conditions in the more general case, when n » 2 and N > 2,
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Section 4.3 describes sufficient conditions for aliasing identifica-
tion when the available data are sampled point-in-time (Theorem 2). Some
remarks on the role of data averaging in aiding aliasing identification are

offered there.

4.,1. The problem defined

There is a parameter vector ¢, belonging to a space of admissible

points &, which gives rise to polynomials A(e;¢) and C(+;4) and to V(¢), where

A(B3;¢)Y(%t) = C(B3¢p)w(t) (30)
v(e), t=0
mele)u(s - D7 =9 o ct0

and w(t) is defined in (15). Here B = Ll/N, L is the unit shift operator, A

is an mth

order scalar polynomial in B, and C is an (m+l)th order matrix
polynomial in B. Throughout this section,lI assume m > 0 and N > 1. Eq. (30)
is (8) reproduced here for convenience, using a notation that emphasizes the
dependence of A, C, and V‘on $ € &, the structural parameters.

Standard sasymptotic consistency and distribution results require
that the structural parameters of the model be identified at the true param-
eter values [Dunsmuir and Hannan (1976), Kohn (1979)]. When observations

on {Y(t);t=0,+1/N,+2/N,...} are available, the definition of identification is

standard:

Classical identification condition. Suppose (i) ¢g € ® and (ii) for any
$' €& ¢y * ¢' a value of t e {0,£1/N,2/N,...} exists such that Ry(r,¢o)

#* Ry(r,¢'). Then the model is identified in the classical sense at bg e
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When only observations on {Y(t);t=0,%1,£2,...} (or {¥(t);t=0,+1,t2,
...}) are available, the classical identification condition is not sufficient

to guarantee identification; a stronger condition is required:

Aliasing identification condition. The model is identified in the aliasing

sense at ¢, € ¢ if, for any ¢' ¢ @, % * $',

(i) R§(1,¢O) # Bi(r,¢') for some t ¢ {0,1,2,...} When observations on [¥(%);
t=0,tl,i2,...} are available.

(11) Ry(r,¢o) # Ry(r,¢') for some T ¢ {0,1,2,...} when observations on {Y(t);

t=0,il;i2,...} are available.

To establish the aliasing identification condition when the available data are
averages, the mapping from 99 € @ tO {R§(1,¢O);T=O,l,2,...} must be shown to
have a unique inverse in 9. .If the available data are point-in-time, then the
mapping from ¢y € @ to {Ry(1,¢o);r=0,l,2,...} must be shown to have a unique
inverse in ¢. ‘

The following four examples illustrate the above definitions and
motivate the material in sections 4.2 and 4.3. 1In Example 1, classical iden-
tification obtains almost everywhere in &, but aliasing identification does
not. Examples 2 and 3 modify Example 1 so that aliasing identification does
obtain, Example 2 illustrates how the restrictions of economic theory can
overcome the aliasing identification problem, while Example 3 suggests the
problem may be less severe when the available data are averages. In Examples
1-3, the underlying data-generating mechanism is assumed to be AR(1). Example
L shows that this assumption alone substantially reduces the dimension of the
aliasing identification problem by drastically restricting the between-sample
covariances. The result is that relatively little is left to be accomplished
by the restrictions of economic theory or averaging. [This point, which is

very general, 1s basically the one made by Hansen and Sargent (1983).]
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Example 1: Sampling point-in-time from a scalar AR(1). Suppose N =2, m = 1,

all variables are scalars, A(B3;¢) = 1 — pB, Ipl <1, ¢(B3¢) = 1, and V(¢)

il
Q

> 0. Here ¢ = (p,o2). Evidently & = {x=(xl,x2)eR2:|xll<1,x >0}, W =

2
02/(l-p2), and K = K= 0. The covariance function for this process is, by
(2ha)-(2k4d), Ry(r,¢) = W92IT' for 7 = 0, *1/2, 1, «es. While the classical
identification condition is satisfied for all ¢ e &, aliasing identification
does not obtain if only sampled point-in-time observations on ¥(t) are avail-
able and p # O. In particular, given {Ry(r,¢);r=0,11/2,i1,...} for some
o = (p,cz) e &, there is always another element ¢' = (-p,cz) € & that implies
the same covariance function when sampled atAthe integers. That 1is, while
Ry('r,q)) # Ry('r,q)') for T = %1/2, £3/2, ..., nevertheless, Ry(r,¢) = Ry(t,q;.')
for t = 0, £1, *2, %3, oees The problem is that, although p2 can be deduced
from {Ry(r,¢);r=0,l,2,...}, the equation p = (p2)1/2 has two solutions. (In

‘section L.2, this set of solutions is denoted D(¢) = {p,-p}.)

Example 2: Potential for economic theory to guarantee aliasing identifica-

tion., One way to modify the setup in Example 1 so that aliasing identifica-
tion obtains globally is to use economic theory to restrict things so that
only one element in D(¢) is admissible, that is, corresponds to a ¢ e 4. For
example, this would be true if theory required that p be nonnegative; that is,

o = {x=(xl,x2)sR2:O<xl<1,x2>0}. (Section 4.2 highlights this strategy.)

Example 3: Sampling averages from a scalar AR(1l). Another way to modify the

setup in Example 1 so that aliasing identification obtains globally is to
assume that the available data are not point-in-time but rather temporally
averaged. Then, although both elements in D(¢) are admissible, only one may

be consistent with the sampled covariance function. To see this, note that
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(26a)-(26d) imply that Ri(0,¢) = 2ﬁ/(1+p‘1) and R§(t,¢) = WpQT for v = 1, 2,

..., where ¥ is defined in (26d) and ¥(t) = (1/2)[¥(t) + ¥(t+(1/2))]. Then

L [R(L9]

W= _§§T§:$T——
R=(0,¢)

p=—% .

oW - R§(0,¢)

Here both elements in D(4) are consistent with Ri(r,¢) for T = 1, 2, 3, eees
But one of those elements is inconsistent with R§(O,¢). (Some further com-

ments on the role of averaging appear in section 4.3.)

Example U4: Role of AR(1) assumption in determining dimension of aliasing

problem in Example 1. The aliasing identification problem in Example 1 is of

small dimension in that it requires discrimination between only two observa-
tionally distinet models (that is, {p,oz} and {—p,cz}?. Thus, relatively
small changes in the setup produce examples in which aliasing identification
does occur, (see Examples 2 and 3.) This small dimension is due to the
considerable structure placed on the between-sample covariances by the AR(1)
assumption on {¥(t);t=0,+1/2,#1,.4.}. To see this, note that Ry(r) = WpalTI

for T = 0, 1, *2, «... is consistent with any half-interval covariance func-

tion from the following uncountably infinite set:

Wp2lT', T =0, £1, 22, £3, .e.
R (1) =
y

glt), T = +1/2, £3/2, cee.

Here, g(t) is an arbitrary function constrained only by the requirement that
the implied spectral density of {Y(t);t=0,il/2,il,...} be positive for almost

all frequencies w ¢ (-27,27). For example,
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Wp + k, T = #1/2
glt) =

Wp s T i3/29 £5/2, eoo

will do, where Ikl < (1/2)02/(l+|p|)2. Note that this change in the specifi-
cation of the underlying data-generating mechanism enormously increases the
dimension of the aliasing identification problem without changing the model's
observable implications. Thus, in designing a setup that avoids the aliasing
identification problem, untestable assumptions about the structure of the
underlying data-generating mechanism play at least as important a role as does
averaging or the prior restrictions of economic theory. [Again, this point is

Hansen and Sargent's (1983).]

4,2, Sufficient conditions with averages

Assuming classical identification and some other mild conditions,
the only potential source of aliasing underidentification when the data are
time averaged and the model is (30) is the fact that thé equation z = xl/Nf-
where x is a (possibly complex) scalar--has N solutions. [Phillips (1973)
showed this in a different context.] If z is any solution to this equation,
then the entire set of solutions is given by Zz exp [(27i/N)J], where J ¢
{1,2,e¢4,8}s (Readers not interested in the technical details should skip to
Theorem 1.)

Recall that the mapping from ¢ € ¢ to Rf(.’¢) takes four steps.
First, for a given ¢ € &, a set of parameters A(s34), C(e3¢), V($) is obtained
from (30). Then the roots of A(e;¢)--p, = ppld) for k = 1, ..., m--are com-
puted from (22). ©Next, the p.'s, A, C, and V are used to compute K = K(¢),
K = K(¢), and W, = W(¢) for k = 1, «eo, m from (23a). Finally, R§(.,¢) is

computed from (26a)-(26d) using {K,K,Wk,pk;k=l,...,m}. The aliasing identifi-
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cation condition is established if these steps can be reversed uniquely, so
that ¢ is recovered from R§(.’¢)'

The first step in recovering ¢ from Ri(.’¢) is to obtain Wk and pi
for k = 1, ..., m using (26c). Proposition 1 shows that this can be accom-

plished under weak conditions.

Proposition 1. If ¢ ¢ ¢ and

(i) W_+ W. #0 for k = 1, ses, m and
k k
(ii) p1(¢), cees pm(¢) are distinct and nonzero,
then
N

(iii) relations (26c) permit computing a unique set Wk’ pp for k=1, «oo, m

using Ri(T’¢) for T = 2, 3, ees, 2m + 1.

(The proofs of Proposition 1, 2, and 3 are in Appendix A.)

~

With the W _'s and pg's in hand, K is easily obtained from (26b).
But to proceed further, the pk's are required, and many sets of pk's are con-

sistent with the pg's already computed. The entire class of sets is
~e ~e ~r ~e 2 1
D(¢) = {p=(pl,---,pm)eRm:pk=pk(¢) exp [—-%\;i Jk],k=1,...,m;
Je(1,2,000,N) Jk=1,..0,m}.

Evidently D(¢) contains N elements. (For an illustration, see Example 1.)

Definition., The admissible subset of D(¢) is the set of elements p e D(¢)

such that Sk = 3£(¢) for some ¢ € d.

If the admissible subset of D(¢) is a singleton, then that point must be

[p,(¢)seeesp (4)]. (See Example 2 for an illustration.) Proposition 2 shows
1 m
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that when n = 2 and N = 2, the restrictions, (11), of Taylor's model guarantee

that the admissible subset of D(¢) is a singleton for any $ € d.

Proposition 2. If

(i) N=2,n =2 and

(ii) the mapping from ¢ to p for k =1, ..., m is defined by (22) and (11),
then

(iii) the admissible subset of D(¢) for any ¢ ¢ & is a singleton.

When the admissible subset of D(¢) is a singleton, then a unique set
of pkfs can be inferred from pg for k = 1, eee, me With the pk's, Wy for k =
1, «se, m can be computed from (26d) and R from (26a).

The final step in the inverse mapping is to infer a unique element
in ¢ from {K,K,Wk,pk;k=1,2,...,m}. Proposition 3 shows that this is possible

if the classical identification condition is satisfied.

Proposition 3., If

(1)  the classical identification condition is satisfied at some $g € ¢ and
(i1) ¢' € ¢ and oo * ¢'s

then

(iii) K(¢0) # K(¢') or K(¢O) # K(4') or Wk(¢o) # Wk(¢') or pi(¢g) # pk(¢') for

some k.
To summarize:

Theorem 1. If
(1) the observed data are averages over the sampling interval
(ii) +the data are generated by (30) for some by € 0

(iii) the classical identification condition is satisfied
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(iv) wk+wg¢0fork=1, cee, M

(v) p1(¢0), cees pm( cpo) are distinet and nonzero and
(vi) the admissible subset of D(q;o) is a singleton,
then

(vii) the aliasing identification condition is satisfied at ¢o°

Proof, To establish the theorem, I only need show that ¢ & & can be recov-
ered uniquely from {Ri(T’d’O);T:O’l’Z"”}' Conditions (i) and (ii) imply
that these are given by (26a)-(26d). Conditions (iv) and (v) iﬁxply, by Propo-
sition 1 and eq. (26b), ﬁhat K, W‘k’ and pg for Kk = 1, ees, m may be inferred
uniquely from {R§(T’¢0)5T=l’2"'°}' Condition (vi) implies that p, for k = 1,
seey M may be inferred uniquely from p§ for Kk = 1, ee., m. Given the pk's,
the ﬁk's, and K, eqs. (26a) and (26d) imply unique K and W.'s. Finally,
condition (iii) and Proposition 3 guarantee‘ that a unique ¢0 e & may be in-

ferred from {K,f{',wk,pk;k=1,...,m}. Q.E.D.

A few notes about the conditions of Theorem 1: Condition (i) is
discussed in section 4.3. Condition (ii) plays an important role in guaran-
teeing identification because it places strong restrictions on‘the between-
sample covariances, RSI-:(T,d)) for t £ {0,£1,£2,.s.}. If these could be arbi-
trary (subject only to {-'f(t)} having a nonnegative spectral density), then
there would be little hope for aliasing identification. (See Example L.)
Condition (iii) is satisfied in Taylor's model and must be verified in all
estimation problems, including those with N = 1. Condition (iv) can probably,
by complicating the proof, be replaced by the weaker conditions V # 0, Clpy) #
0, and C(p;l) #0 for k = 1, .o., m (that is, W, # 0). The condition that
c( pk) # 0 simply rules out a redundantly parameterized model, while

_1)

o( P, # 0 would be guaranteed if (30) were required to be an invertible
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representation. Condition (v) can presumably be relaxed to allow for multiple
roots. Then, however, the partial fractions expansion formula in (23a) would
no longer be correct, so neither would the c¢ovariance formulas in (26a)-
(26d). Examples 3 and 5 (the latter appears below) establish that condition
(vi) is also not necessary for the theorem. In the examples, (i)-(v) hold and
(vi) does not, yet aliasing identification obtains, for slightly different
reasons. In Example 3, {Ri(r,¢);r=0,l,2,...} implies a wunique set
{K,K,Wk,pk;k=1,...,m}. In Example 5, {R;(T,¢)§T=O,l,2,...} implies several
sets {K,ﬁ,Wk,pk;k=1,...,m}; however, only one of these corresponds to a

$ € 0. [Example 5 is similar to examples described in Hansen and Sargent

(1983).]

H
Example 5: Sampling averages from a scalar ARMA(1,1). Suppose N = 2, m = 1,

all variables are scalars, A(B;4) = 1 - pB, lpI < 1, C(B;¢) =1 + 8B, 6| <1,

and V(¢) = 02 > 0. Here ¢ = (93930'2)9 % = {X=(Xl,x2,X3)€R3:|X1|<l,|X2|<l’

x3>0}, W o= o2(1+0p™ 1) (1+0p)/(1-p2), W = .25W(l+p)(l+p-l), K = -002/p, and K =
0. Also, R§(0,¢) = (R/2) + 2/ (1+p71), and Ri(r,¢) = %°T for 1 = 1, 2,
«ess Both elements of D(¢) are admissible for all ¢ ¢ & since p has no sign
restriction.if

Let ¢O = (90’60’08) denote some particular element in ¢, with PO > eo
# 0. The quantities % and p2 are uniquely identified from Ri(T’¢O) for t = 1,
2. Denote these by W, = R§(1,¢0)2/R§(2,¢0) and pg = Bo(2,40) /R=(1,4,).  Two
possible values of p are consistent with the pg relation: po and -py. Each
of these produces different values for K and W from (26a) and (26d), respec-

tively. Denote the {K,W} that corresponds to P and -Pg> respectively, by

{ﬁb,wo} and {Ké,w&}. In particular,
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~

L

o oo _ 0
K, = 2Ry(0,¢0) - 961 (31)
Wiy
Rt = 2R=(0,4,.) ~ ——2 (32)
0 yoo%l T T pa1
4
W, = 2o (33)
(1+p0)(1+pO )
L
W! = 0 1 (314')
(l--po)(l—pO )

Thus , R§(1’¢O) for T = 0, 1, 2, e.. maps into two distinct sets——{ﬁo,wo,po}
and {ﬁg,w&,-po}——for every ¢0 e d. By construction, {ﬁo,wo,po} corresponds
to ¢, € . That no other ¢ e & generates {Kb,wo,po} is implied by the fact
that classical identification obtains in this example. If {Kb,Wé,—po} cor-
responds to no ¢ £ &, then aliasing identification obtains at $g > despite the
failure of condition (vi) of Theorem 1. In fact, there are such elements,

¢O e d. To see this, compute all possible ¢'s ‘that correspond to

{ﬁg,w&,-po}. All share the properties that p = -Pg and that § and ¢° satisfy

PAKA
> =—°—e-°- ' (35)
. (1-6p51)(1—epo)(1—p61)02
W = ‘h(1+p0) . (36)

2

Substituting o“ from (35) into (36) and rearranging reveals that values of 8

that solve this system also solve

0° - §6 + 1 =0 (37)

where 8§(¢,) = —h(1+po)ﬁbl[(l—po)ﬁ'] + (p0+p51)

: . 1f |8(py)| < 2, then (37) has

no real solution, in which case the model is identified at ¢O e . Moreover,

the set ¢, € & such that |6(¢0)| < 2 is not empty. For example, ¢q3 =
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(e2,48,1.) implies § = .58. Since § is a continuous function of ¢, there is a

subset A C & of positive measure such that the model is identified.

I provide no proof that Taylor's model is identified in the aliasing
sense when n or N or both are greater than 2. However, the preceding discus-
sion does indicate a computational algorithm for checking identification in
this more general case. Theorem 1 suggests that the only potential source of
underidentification arises if the admissible subset of D(¢) is not a sin-
gleton. Whether or not this is true can easily be determined because D(¢) has
a finite number of eléments; its admissible subset can thus be computed.

.(Such an algorithm would mimic the strategy used to prove Proposition 2.)

4.3, The role of averaging ‘

Condition (i) of Theorem 1, that the data are averages, is crucial
to the theorem. If the condition is dropped and the data are point-in-time,
then the theorem is false. To see this, suppose Cp # 0'so that K # 0. Then
the Wﬁ's and pj's can be recovered uniquely using (2kc). Eq. (24a) would then
permit recovering K, but K could not in general be recovered. Yet if K = 0
(that is, Cp,; = 0), then Theorem 1 remains valid when the data are sampled

point-in-time. For concreteness, this is stated formally:

Theorem 2. If

(1) the observed data are sampled point-in-time and Cm+l(¢0) = 0 and
(ii) conditions (ii)-(vi) of Theorem 1 are satisfied, '

then

(iii) the aliasing identification condition is satisfied at bge

The preceding discussion understates the importance of averaging for

aliasing identification by suggesting that averaging only helps when Cm+l £ 0.
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In particular, recall from Examples 1 and 3 that in the scalar AR(1) case with
N = 2, where Cm+l = 0, the model parameters are identifiable from averaged
data but not from point-in-time data. Another example is provided by the
scalar ARMA(1,1) case with N = 2. Example 5 shows that, on a subset of the
parameter space, the parameters of this model can be identified from the
covariogram of the sampled, averaged data. Yet the parameters are under-
identified at almost all points in ¢ when the data are point—in-time.ﬂf These
examples suggest the possibility that the covariogram of data generated by (8)
contain (weakly) more information about ¢ when the data are averaged than when
they are point-in-time. This conjecture deserves further study.

Finally, here I have only studied the identifiability of ¢ when N >
1 but known. Of greater relevance is the joint identifiability of N and ¢, a
more difficult problem beyond the scope of this paper. [The problem is ex-

plored in the context of a simple example in Christiano (1985).]

5. Empirical results

This section reports the results of restricted and unrestricted
estimation of the model in section 2. Section 5.1 discusses the unrestricted
time series properties of the U.S. output and price data. An important fea-
ture of the data is that the null hypothesis that output fails to Granger-
cause the price level can be rejected. The only way Taylor's model with N = 1
and n > 1 can be reconciled with this fact is to permit serial correlation in
the residuals, that is, to allow §, 6 # 0. Section 5.2 argues that allowing N
> 1 should improve the fit of the § = § = O version of the model. This argu-
ment is supported by section 5.3, which presents the results of maximum like-~
lihood estimation. However, the section also shows that Taylor's (1980a)
strategy of setting N = 1 and freeing up 6 and § produces an even better model

fit., Section 5.4 explores the reasons for this by examining impulse response

functions.
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5.1. The data

The data are linearly detrended annual observations of the log of
output ' (yy) and the price level (p;) for the United States in the period 195kh-
76 and appear in Appendix B. A convenient way to summarize the stochastic
dynamics of the data is to fit an unrestricted vector autoregression (VAR).
These are the results:

= + + . (38)

P, 673 2.04 P, -+371 =.961 Pi_» L

Two of the roots of the determinant of the AR part are 1.03 + «231, which are
close to 1, suggesting near-nonstationarity.zf

The MA representation () of the VAR in (38) is in table 1. Several
features stand out there. First, note the persistent effect of a shock to the
price level. The effect of a price shock on the price level (¢22) builds to a
peak after five years before subsiding. Second, note’ the strong positive
cross effect of an output shock on the price level (wgl). This is statisti-
cally significant, according to a test of the null hypothesis that output does
not enter the price equation in the VAR in eq. (38). The test statistic is
76.79, which is drawn from an asymptotic chi-square distribution with two
degrees of freedom under the null hypothesis that output does not Granger-
cause prices., Third, note the hegative and persistent effect of the price
shock on output (wla). Fourth, note the nonzero effect of an output shock on

output at long lags and the switch in sign between lag 1 and 2 (yi4).

5.2. Reasons for expecting improved model fit when N > 1

According to (8), the MA representation implied by Taylor's model is

Y(t) = T(B)w(t), where T(B) = (a(B)]"tc(B) and
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Pll(B) rlz(B)
(B) = .
P21(B) r22(B)
By (1ka)-(1ka),
k N
r,(B) = -8 n§ "%#%5?335%'* (1+68) (392)
k nN
_ 1 B(1-B)
Io1(B) = 3F TR (390)
(l+k2B)(l—BnN)
rlE(B) = B[l - (l—B)A(B) (39C)
(1+,8) (1-8"")
Too®) = —i55yaEy (394)

The expressions k; and k, are defined in (16a) and (16b) and reproduced here

for convenience:

= _ 1 oy
k= -l —veme] ~ (168)
: _ 1 nN§
ky = "'X[nN - YB(nN-l)]' (16b)

Here X < 0 is defined in (13) and is functionally independent of 8§ and §.

The T''s are the MA representation of the model at the fine time
interval. What is useful for diagnostic purposes is the MA representation
implied by T for the sampled, averaged data. Denote this y(L) = $b + $1L +

V.12 + vee.  TFor a direct comparison with P(L), impose the normalization
w2

EB z I. Formally, for given ¢ € &, P(L) is defined by
I 1 e T
Wz)vp(z"") = § R§(1,¢)z (ko)

T:..uo
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where R§ is defined in (26&)-(26d) and V is a positive definite matrix that is
not of interest here. The indicated factorization is known to exist and be
unique because Sy(iw) in (21) is positive definite at almost all @ g (-w,+x),.
[see Hannan (1970).] The algorithm described in Rozanov (1967, ch. 1, sec.
10) was used in my calculations. Of course, in the special case N = 1, m(L) =
(1) .8/

Three distinct sets of notation for MA  representations have been
introduced. These are summarized in table 2. The similarity between J and y
is one criterion I use to evaluate the quality of model fit.

Taylor (1980a) studies only the version of the model with n = 2, N =
1. T take this as a starting point and define the model with § = 6 = 0, n =
2, N = 1 as the benchmark model. The elements of P(«) [= I'(+), since N = 1]
for this model are reported in table 3.

Comparing table 3 with table 1 reveals that the benchmark model
misses some of the stochastic dynamics in the data. The signs in the elements
of mlz and $22 correspond to thoée of wlz and ¢22, respectively. However, the
peak effect in $12 and $22 is reached quickly, at lag 1, while that in {10 and
Yoo is reached later. Moreover, the benchmark model predicts no cross effects
from an output shock to prices ($21 = 0), an implication strongly contradicted
by the data. Also contradicted is the prediction of the benchmark model that
the impact of an output shock on output (Ell) is felt immediately, without
lage.

Given this evidence, it is not surprising that Taylor (1980a) re-
ports a rejection of the benchmark model against an unrestricted representa-
tion for (y(t),p(t)). Taylor moves away from the benchmark model by letting §
and 8 be nonzero. The effects of this on y(s+) are described in table L.

Comparing tables 1, 3, and 4 shows that allowing §, 6 > 0 moves Taylor's model
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closer to the relevant features of the data, as summarized in table 1. How-
ever, as Taylor points out, moving from the model of table 3 to that of table
4 amounts to concluding that the theory is seriously incomplete, because much
of the dynamics underlying the model in table L4 is delivered by unexplained
dynamics in shock terms. Furthermore, Taylor reports that his modified model
is rejected.

Another way to move away from the benchmark model is to increase the
value of N. This preserves the model's simplicity and has a more straight-
forward economic interpretation than Taylor's approach. Moreover, such a move
should produce results closer to the dynamics in table 1 than the benchmark
model's are.

When 8§ = 6 = 0, the theory predicts that r2l(Ll/N) = 0. However, as
Sims (1971) and Geweke (1978) have shown, when a process with a 2,1 element in
ifs bure MA representation equal to zero is sampled, that element in the
sampled MA representation will be nonzero, unless the process is a first-order
bivariate VAR. Thus, modifying the benchmark model by gsetting N > 1 creates a
potential for reconciling the model with the nonzero Poq elements in table
1. TIn a similar way, temporal aggregation effects can place nonzero elements
at lags greater than 1 in the 1,1 elements of the MA part of the sampled
representation.

Another result of setting N > 1 is that the peak value in the EQZ
weights can occur at a lag length greater than 1. To see this, note that the
order of the autoregressive part on the detrended log of the price level is nN
- 1. As N increases, this increases, and in the (1/N)-period representation
the coefficients of T'(s) may peak later. On the other hand, aggregating over
time works in the opposite direction, moving the peak of the MA coefficients

of the sampled representation to shorter lags. Therefore, the net effect on
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the location of the peak value of ﬁzgrof increasing N is ambiguous. However,.
as 1s shown below, the effect is positive in empirically relevant portions of
the parameter space.

One characteristic that the N > 1, § = 6 = 0 version of the model

shares with the benchmark version is that
Vip T By ¥y = -BYy; (k1)

at lags greater than O. This stems from the form of the aggregate demand
equation (3), which implies that Et—(l/N)y(t) = -BEt_(l/N)p(t), which implies

thet B, 7(t) = -8B, B(t). [Here X(t) denotes (1/N) Ji—tx(t + (1/Mm).]

53¢ Maximum likelihood estimation

‘Now I examine evidence on whether or not setting N > 1 produces a
model fit better than the benchmark model's. I also compare this strategy to
Taylor's (1980a) strategy of permitting §, 6 # O.

Table 5 reports the maximized values of the likelihood function for
alternative values of n and N. These numbers are graphed in fig. 2.- Clearly,
increasing the value of N above 1 improves the quality of model fit, as sec-~
tion 5.2 predicts. The extent of the improvement depends heavily on the
length of the contract period. With two-year contracts (n = 2), almost all
the improvement occurs when N increases from 1 to 2. With three- and four-
year contracts, improvement continues as N increases beyond 2. In fact, the
" results suggest that the optimal value of N lies beyond N = 10 for three- and
four-year contracts. (My estimation routine breaks down when nN > 30, so I
have no direct evidence on this.) Table 5 and fig. 2 also indicate that the
three~year specification fits the data better than the two-year specification
Taylor (1980a) studied. (I have not investigated whether the difference is

significant.,)
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Table 6 presents the parameter estimates corresponding to some of
the results in table S;L Several features stand out. One is that the esti-
mate of B is insensitive to the choice of n and N. This is probably a result

of (L4l), according to which B is identified as the ratio of —ﬁlz to $22 or

=¥,

estimated value of y, in contrast, is insensitive to the choice of N only when

to $21 at lags greater than 1, regardless of the value of n or N. The

n = 2. Also, both the estimated innovation variances (Vll and V22) and the
estimated correlation between the innovations increase with N. I cannot
explain this,.

For comparison, table T presents the results of estimation when §
and 6 are permitted to be free and N = 1. These results agree with table 5's
in suggesting that the model with three-year labor contracts fits the data
better than the two-year specification. Also, a comparison of tables 5 and 7
suggests that freeing & and @ improves model fit‘more than increasing N above
l. Of course, this does not contradict the finding that increasing N does
improve the fit of the benchmark model.

Since Taylor reports a rejection of the n = 2, N = 1, 6, 6 # O
model, the above comparison suggests that my no serial correlation, free n, N
model is also rejected. An open question is whether or not the six-parameter

model (free serial correlation, free n, N) would be rejected.

5.4. The impulse response functions

The reasons for the results of section 5.3 can be further inves-
tigated by studying the impulse response functions graphed in figs. 3-6. The
objective is to discover which features of the serial- and cross-correlation
structure of the data are not explained by the model. The focus is on two

questions: Why does increasing the value of N in the benchmark model improve
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model fit? And why does the N = 1 (8§, 8 # 0) version of-the model fit better
than the N > 1 (§ = 6 = 0) model?

Figs. 3 and L4 show the dynamic response of prices to innovations in
prices and output, respectively; figs. 5 and 6, the dynamic response of output
to innovations in output and pfices, respectively. The same normalization is
applied to all models, namely, that the lead matrix in the impulse response
function is the identity matrix.

Begin by focusing on fig. 3a, for which n = 2. The curve labeled "N
= 1" describes the response of the price level to a price innovation in the

"unrestricted" describes the same relation

benchmark model. The curve labeled
for the unrestricted model and is a graph of the last column in table 1. Note
that increasing the value of N above 1 moves thelnmdel closer to the unre-
stricted model in two respects. The peak in the impulse response function
shifts from lag 1 to lag 2 (as discussed in section 5.2). Also, the impulse
response coefficients themselves become larger. The curve labeled "N = 1
(8, 6 # 0)" in fig. 3a describes the price response to price innovations in
the N = 1 model estimated allowing § and 6§ to vary freely.

In terms of their ability to track Voo the N > 1 (6§ =9 =0) and N
=1 (8, 6 # 0) models seem to do about equally well (or poorly). They both
are improvements over the benchmark model. They both understate the magnitude
of the unrestricted impulse response function and peak too soon. Figs. 3b and
3¢, for which n = 3 and n = 4, tell essentially the same story as fig. 3a.

That the N = 1 curve hugs the horizontal axis in figs. La-c reflects
the benchmark model's implication that output fails to Granger~cause the price
level. This is where most of the improvement in model fit resulting from

raising N should occur. 1In fact, the impulse response functions for N = 4, T,

and 10 are closer to the unrestricted impulse response functions than are
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those for the benchmark model (N = 1). However, the higher N functions fall
short of the unrestricted functions in two respects: they are much smaller in
magnitude and peak earlier.

The impulse response functions implied by the N = 1 (§, 8 # 0) model
in fig. 4 appear not to match the unrestricted response functions as well as
do those implied by N = 4, 7, and 10; their magnitude is far too small. Thus,
the N > 1 (8§ = 8 = 0) model dominates the N = 1 (§, & # 0) model in terms of
its ability to track bpq e

Shifting to output responses, look first at fig. 6. These output
responses to price shocks are similar to fig. 3's price responses to such
shocks. Increasing the value of N increases the magnitude of the impulse
response functions and, when n = 2, shifts the peak to a higher lag. Both
these factors move the model closer to the unrestricted model, although not
much. 'Also, the N = 1 (8§, 8 # 0) model generally does about as well as the N
>1 (8§ =06 =0) model. When n = 3, it does a Dbit better.

The responses of output to output shocks (fig. 5) also suggest that
the benchmark model is seriously deficient. In the benchmark model (N = 1),
an innovation in output has no lagged effect on output. The (unrestricted)
data suggest, however, that an unexpected Jjump in output this year is typi-
cally associated with a Jjump in output next year and a fall in subsequent
yearse. Increasing the value of N is unlikely to help the benchmark model
reproduce this complicated pattern. This is because, as (41l) indicates, $11
and ﬁzl have either the same or the opposite sign at all lags greater than
ZErO. Consequently, the model can match wll and wel either at lag 1 or at
lags greater than 1, but not both. Fig. 5 shows that the estimation criterion

has chosen the second option. Increasing N above 1 moves the benchmark model
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toward the unrestricted representatién for lags greater than 1, but away from
it for lag 1.

Allowing 6 > O but keeping N = 1 has a greater chance of reproducing
the unrestricted function from output shocks to output. This is because, when
8> 0, an .output innovation affects future output both directly and indi-
rectly, through prices. The direct effect is that a one-unit positive shock
hitting output this year drives output up by 6 next year. The indirect effect
is evident in (1). By increasing expectations about next period's output, an
innovation to output this period increases next period's wage if y > 0.
Because of the backward-looking nature of the contract model in (1), this
leads to a jump in every future wage as well. The jump in wages translates
into a Jjump in prices by (h),band that jump pushes output down by (3), start-
ing next period. Next period's positive direct effect should thus be par-
tially offset by the negative indirect effect as long as y is not too big.
Only the indirect effects should exist in periods after the next.

In sum, with 6 > O and v > O but not too big, the N = 1 version of
the model can reproduce aﬁ innovation response pattern from output to output
similar to that found in the daﬁa.

Altogether, the impulse response functions offer several conclu-—
sions. The N > 1 model fits the data better than the benchmark model for all
the reasons in section 5.2. In particular, increasing N above 1 eliminates
the implication that output not Granger-cause prices. Also, increasing the
value of N increases the serial persistence in the model, raising the magni-
tude of impulse response coefficients and shifting their peak to later lags.
A shortcoming of the N > 1 model is that it does not go far enough in these
directions. In addition, the model fails to adequately treat the dynamic

response of output to output shocks. This seems to be the reason that the N =
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1 (8, 6 # 0) model fits the data better than the N > 1 (§ = 6 = 0) model.
The former model captures the switch in sign in the impulse response from
output to output. The importance of this factor in determining the relative
value of the two models' likelihoods is consistent with the fact that the

estimates of 6 in table 7 are from five to ten times their standard errors.

6. Conclusion

This paper shows that by incréésing the degree of overlap in con-
tract wages, the fit of the benchmark version of Taylor's model is improved.
The improvement is due to aggregation over time. As the degree of overlap in
the model increases, the model timing interval shrinks and the model loses the
implicatidn of a one-way Granger-causal relation between annﬁal avérages of
prices and output. Since the data display two-way Granger causality, the
result is an improved model fit.

The empirical example in this paper--together with those in
Christiano (1984,1985), Mundlak (1961), Zellner (196é), and %Zellner and
Montmarquette (1971)--illustrates +the potential sensitivity of empirical
results to timing specification. The approach here is a practical procedure
for estimating the timing interval in a model, thereby avoiding the pitfalls

of timing misspecification.



Notes

l/Eq. (3) is derived from the quantity theory equation: p(t) + y(t)
= m(t) + v(t), where v(t) is velocity and is restricted to have a first—order
moving average representation. Government monetary policy is assumed to obey
the feedback rule: m(t) = (1-g)p(t). Substituting this into the quantity
equation gives m(t) = -gp(t) + v(t). Finally, p(t) is replaced by ﬁ(t) to
reflect the idea that money supply decisions feed back on ﬁ(t), not p(t).
[Strictly speaking, this requires that p(t) also be in the equation for m(%).
See Taylor (1980a, n. 9).]

g-/Inspect.ion of (23a) reveals that in fact 2°® functions Ry(-,¢)
solve (20) and (21). These are obtained by noting that, for each j,
Wj/(l-pjé) has two expansions, one in positive powers of s and the other in
negative. The unique function 3y(-,¢) which solves (20) and (21) and which
has the property that the expansion (20) converges for ‘s in a region that
includes the unit circle is the one in (24a)-(24d). This is the only element
in the set of p2m expansions which can be the covariance function of a co-
variance stationary process. The others either are nonsymmetric or do not go
to zZero as t +> o,

§/Note that when only point-in-time data are available, this model
is underidentified in the aliasing sense for all ¢ e & except those with p=29
= 0. This is because (p,0,0°) and (-p,-0,0°2) imply identical values of W
and K.

EjSee note 3.

éjThe coefficients in (38) were estimated equation by equation by
OLS. Let oi = estimated Euft for 1 = 1, 2, and p = 012/(0102), where o, =

2

estimated Eujiuoi. The results are ci = 2,783, 05.= 885, and p = ~.,117. The



Notes (cont.)

roots of the determinant of the AR part of (38) are 2.554 + 1.230i and 1.033 %
228i. My estimation results differ somewhat from Taylor's (1980a, p. 115).
The difference may be due to data revisions, although I have not checked this
formally.

§/The computer programs required to compute $ are elaborate and are
available from the author on request.

ZJThe results for values of N between 1 and 10 that are not in table
6 are primarily siﬁﬁle interpolations between results for the values listed.
The estimate of y has two exceptions, For n = 3 it rises sharply from .01 to

.86 between N = 9 and N = 10, and for n = 4 it doubles from .12 to .24k between

N=6and N=T.
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Fig. 2. Maximized log-likelihood function for various values of
the contract length n and the timing interval “index N. (Graphs of

data in table 5.)
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Fig. 3. Price response to price innovations. Curves labeled
"unrestricted" are the yo, column in table 1; the others are '1]522

as defined in (L0).
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Fig. L. Price response to output innovations, Curves labeled
"unrestricted" are the ¥oq column in table 1; the others are ?;321

as defined in (40).
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Fig. 5. Output response to output innovations. Curves labeled
"unrestricted" are the ), column in table 1; the others are

as defined in (h0).
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Fig. 6.

"unrestricted" are the "’12 column in +table 1; the others are

l‘[)12

=151
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Table 1

MA representation of unrestricted VAR. a/

Output effect of shock to Price effect of shock to

Output Price level Output Price level
Lag Y11 Y12 Vo1 Yoo
0 1.000 0.000 0.000 1.000
1 k2 ~.1431 673 2.040
2 -.13k -.872 1.298 2.911
3 -.503 ~-1.221 1.748 3.552
4 -T1h -1.h462 2.029 3.952
5 ~-.826 -1.601 2.166 L,120
6 -.870 ~1.646 2.180 _ h.073
7 -.364 -1.607 2.087 3.837
8 ~.817 -1;h96 1.90L 3.4k5
9 -.T36 -1.326 1.651 2.932

10

~-.629 -l.111 1.346 24335

EJWrite the model in eq. (38) as Zy = Mzg_q + Az o +

2 _ 2,-1
Pl + eee = (I - AL - AL ) .



Table 2

Summary of MA representations.

Notation

Description

- Where defined

€

MA representation at
fine level of temporal
aggregation, constrained
by theory

MA representation of
sampled, averaged data,
generated by T

Unconstrained MA
representation of
sampled data

Egs. (39a)-(39d)

Eq. (L40)

Npte to table 1




Benchmark version of Taylor's model

Table 3

(n=2; N=1; 6, 8 = 0). 2/

Qutput effect

of shock to

Price effect of shock %o

Output Price level Output Price level

Lag bqq ¥1o o1 Yoo

0 1.0 0.0 0.0 1.0

1 0.0 -B(1+a1) 0.0 1+ ag

2 0.0 '—Bal(1+al) 0.0 a1(1+a1)
2 2

3 0.0 -3a1(1+a1) 0.0 a1(1+al)
3 3

I 0.0 —Bal(l+al) 0.0 a1(1+al)
L 4

5 0.0 —Ba1(1+al) 0.0 al(l+al)

2/ ne P's are computed from (40), taking

that when N = 1, () =

(o).

into account



Table 4

Taylor's modified model (n = 2; N=1; §, 8 # 0). 2/

Output effect of shock to. Price effect of shock to
Output Price level Output Price level

Lag Y11 1o Vo1 Yoo

0 1.0 0.0 0.0 1.0

1 6 - gk, -B(l+al+k2) Ky 1+a)+ ky

2 -8(1+a )k, -8(a, +k, ) (1+a, ) (1+aq )k (ay+ky) (1+a,)

3 -Ba.l(l+al)kl -Bal(a1+k2)(l+al) r=1.1(1+a.l)k1 al(a1+k2)(1+al)
2 2 2 2

L -3a1(1+al)kl -Bal(al+k2)(1+al) a1(1+al)kl al(a1+k2)(1+a1)
3 3 3 ' 3

5 —Ba1(1+al ).kl -Bal(a.1+k2)(1+al) al(l+a1)kl al(al+k2)(1+a.l)

2/ e y's are computed from (L40), taking into account that when
N=1, () = r(e).



Table 5

Maximized values of the likelihood function £
(6 =0=0),2

Timing Contract length n (years)

interval

index

N 2 3 L

1 -58.17980 ~-56.086T0 -62.11900
2 -5T7 « 44960 ~53.953k40 -59.89430
3 -5T+37090 ~53.26730 -59.21900
L -57.36090 ~52.95050 -58.92500
5 ~57 436130 -52.77220 =58 . 76620
6 ~57.36340 -52.65910 -58 .66850
T -5T.36550 -52.58050 -58 453960
8 ~57 36730 -52.52440 -7
9 =57 +36860 -52.49170 -

10 ~5T7 36980 -52.09910 -

tional on the indicated values of n and N.

sults for cases when nN > 30.

2/ Jhese are the maximized values of £ in (28), condi-

PJComputational difficulties prevented assembling re-



Table 6

Restricted maximum likelihood estimates (5 = § = 0). a/

Parameters

Timing Innovation variances
interval Correlation
index Demand Wage of variances
N 8 Y V11 Voo Vi2 P
Two-year contracts (n = 2)
1 © 2897 .0031 5.212 12.067 hh9 .057
(.0690)2/  (.0080) (1.537) (3.611) (1.663)
h «2911 0036 21.983 28.690 B.678 346
{ .Obk2) (.0089) (6.541) (8.726) {5.820)
T <2917 0037 39.156 45.601 15.883 376
(.0748) (.0117)  (11.743)  (14.887) (10.033)
10 .2916 .0038 56 «304 62.621 22.87T .385
(.0528) (.0092) (16.875) (18.994) (1k.190)
Three-year contracts (n = 3)
1 2771 .0119 5.113 21.610 1.501 .143
(.0671) (.0279) (1.508) (6.413) (2.235) ‘
ly 2736 0129 21.166 59.307 14.853 419
(.0724) (.,0358) (6.149)  (18.078) (7.711)
7 .2731 01k2 37.527 96.199 27.366 A455
(.0146) (.0133) (10.871) (27.439) (13.132)
10 2721 .8632 544177 111.812 37.532 L182
{.0093) (.0219) (15.722) (33.367) (17.202)
Four-year contracts (n = 4)
1 <2792 .1018 4.925 65.328 2.918 .163
(.0765) (.0765) (1.459)  (19.023) (4.091)
L .2751 1223 20.960 216.887 30.30% kg
{.0191) {.0196) (6.124) (60.7h0)  (1bh.940)
7 2749 «2394 37.418 357 .690 55847 183
(.0119) (.0550) (10.896) (100.537) (25.58%)

2/ The parameters are computed by maximizing the log-likelihood
function (28) with respect to B, y, and V holding § = 6 = 0. The correlation
of the variances p = V12(V11V22)'1/2.

-b—/ The numbers in parentheses are asymptotic standard errors, com-

puted from (29).



Table T

Unrestricted maximum likelihood estimates (N = 1; §, 8 # 0). EJ

Parameters
Innovation variances Log-
Contract Wage Demand Likelihood
length shock shock Demand Wage function
n (years) 8 8 8 Y Vi1 Voo Vio 2
2 «0573 8410 <2617 0052 2.7489 11.3858 ~-.8150 ~51.0571
(.2786)2/ (.0815) (.0832) (.0138) (.8616) (3.3708) (1.3218)
3 .6012 . 7493 «2937 .1313 2.8493 13.9760 .1123 -45,.3254
(.8305) (.1524)  (.0788) (.2290)  (.8594)  (4.1496)  (1.7550)
L .5367 .8083 .2846 .4380 . " 2.6110 k2 4373 6461 -51.4181
(.3307)  (.1259)  (.0902)  (.3331) (.8206) (12.3862) (2.517k) :

EJThe parameters are computed by maximizing the log-likelihood function (28)

with respect to §, 6, B, v, V, and £ with the timing interval index N = 1.

E/The numbers in parentheses are asymptotic standard errors, computed from (29) .



Appendix A

Proofs of Propositions

This appendix supplies proofs of Propositions 1-3 in section 4.2 of

the paper. The proof of Proposition 1 requires two lemmas.

Lemma 1. Suppose

(1) R(x) = IR Wap

kM Me for T = 0, 1, 2, «se are given

(ii) the Ak's are distinct, but not zero and
(iii) the Wk's are not zero.
Then

(iv) the following m x m matrix is nonsingular:

R(m-1) R(m-2) . o e R(0)
R(m) R(m-1) .« o . R(1)
i R(2m-2) R(2m-3) .« o R(m-l);

Proof. ©Suppose the lemma is false and the matrix is singular. Then there

exists a set of numbers—-q --not all zero, such that

0, o0y am_l

m-1
2 a-R(T—i) =O T=m—1, m, o e e 2111—2.
o 1
i=0
Alternatively,
k- T -1
y WA a(d ") =0 T=m =1, My eee, 2m = 2 (A.1)
k=1
where a(k-l) T Nt a k-(m-l).
k 0 17k °* m-1"k



- A2 =

Choose the indexes so that a(xil) # 0 for Kk = 1, «ee, n, and if n <

m, then a(kgl) =0 for n < k < m, Note that n cannot be zero since
Uy + g% + eee * am_lzm-l has at most m - 1 zeros. Use this to rewrite (A.1):
& T -1
) WA a(d ") =0 T=Mm =1, M eee, 2m = 2, (A.2)
k=1
X . . T T T
The following n -~ 1 steps successively eliminate Wlkl, W2A2, ey Wn-lxn-l

from the first n equations in (A.2).

Step 1
a. Divide (A.2) by AI to get

TS .
Wla(ll ) + kz2 Wk('i‘]':) Q(Ak ) =0 T=Nn - l, My eeey 2m - 2.

b. Subtract the t = m equation from the T = m - 1 equation, the Tt =m + 1

equation from the vt = m equation, and so on, to get

% W fiE)T(l --ig)a(xgl) =0 T=m-1,m on - 3 (A.3)
k=2 5 M M ' T

Step 2

a. Multiply (A.3) by (xllxz)T to get

A n A A
2 -1 kyT k -1
Wo(1 - ==alal") + v. (=) (1 - =)alr7) =
2( xl) 2 kzs k(xz) ( Al)“ k

T=m—l,m,-oo,2nl—3o

b. Subtract the T = m equation from the vt = m - 1 equation, the Tt =m + 1
equation’ from the t = m equation, and so on, to get

A A A

n
k§3 Wk(lei)T(l-—)\—lf)(l—-i)a(A;l) =0 T=m=1,m, see, 2m = k.

Proceeding in this way eventually yields the following:
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Step n - 1
A A A
n \T n n -1y _
n-1 1 n-1 .

T=m—l,m,-oo,2nl"n-lo

By hypothesis, a(x;l) # 0. Therefore, (A.4) implies one or more of
these conditions: Wn =0, Xn = 0, An = Ai for some i ¢ {l,...,n-l}. But each

of these contradicts the assumptions of Lemma 1. Q.E.D.

Lemma 2. If
(i) Wk+WlT{¢Ofork=l, ese, I,
then

(ii) +there exists a scalar o such that

(a,l-a)wk(li‘a) £0 K = 1, eee, M.
Proof. Define the function fla,2): Rl X {1,2,...,m} > Rl as follows:
£(a,2) = (a,1-a)W, (;% ) = Flas1-a) [ +7 ] (% )
2=1, 2, «ea, m, a € RT.

Under condition (i), no more than two values of o exist such that f(a,8) = O.
Denote this (possibly empty) set Qz for £ = 1, seey, me Let @ be the union of
Q5 sess Que The value of a referred to by (ii) may be chosen from the set of

real numbers, excluding the finite set Q. Q.E.D.

Proof of Proposition 1. First get pi for Xk = 1, ees, me Note that

N N
m m m ) : 0
I (1-p;8) § W "= 1 Wfr-5] 1 [1-—Fle =0
i=1 k=1 k=1 o, 1i=1 o)

ik
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Nt _ N(t-1) ~ _ ~ ~ ~ m _ m N
where ka = oy . Let A(z) =1 - 8% - 8,7 = eee =@ Z = Hk=l(l—pkz).
Then

R;(T’¢) = glR}-;(T-l,d)) + se e + ngS,-_(T-m,d)) (A.S)

T=m+ 2, M+ 3, eee, 2m + 1,

[The Ri's are defined in the paper's eqs. (26a)-(26d).]
Since ﬁk is proportional to W, [eq. (26d)], condition (i) implies

that (i) of Lemma 2 holds. Thus, a 2 x 1 vector y can be chosen so that

YTWLY #0 for Kk = 1, ees, me Write R(7) = YTR5(1,¢)Y for T =m+ 2, m + 3,
eeey 2m + 1. Then pre- and postmultiplying (A.5) by YT and y, respectively,
yields R(T) = glR(t—l) + ceo + ng(r—m) for T =m+ 2, m + 3, ese, 2m + 1. In

matrix notation:

R(m+2) [ R(m+1) ...  R(2) 5
R(m+3) . R(m+2) s e o R(3) 52
R(2m+1) R(2m) o o o R{m+1) Em

Condition (ii) and the fact that YTka #0 for Xk = 1, ..., m guarantee Lemma
1, so the matrix to the right of the equality possesses a unique inverse,

Consequently, the above equation can be solved uniquely for 51, cosy a& . The

pg's are calculated to satisfy

Alz) = 1 (l—ka)-
k=1

The ﬁk's are obtained from



2N 2N ~
(m+1)N ‘ (m+1)N ~
R?(m“'l,(b) pl I oo e pm I Wm

The matrix to the right of this equality also has a unique inverse, if the

P 'S are distinct, as required by (ii). Q.E.D.

Proof of Proposition 2. Suppose a set P1> P2> P3 is available which satisfies

the paper's eq. (11); that is,

b+ gy _ 2 2 2
= T3y = ML ¥ (prreg#03)" + (01 0,%0505%0,0,)° + (010,05)%] (2.6)
%—= l[-(pl+92+p3)(1+plp2+9293+9193) = {0y py*0,05%0,03) (0, py05) ] (A.T)
g = Aoyo, + PP + Py + (p1+05%03) (0 py05) ] (4.8)
-1'-—:_}\ (A 9)
12 P1P2P3 .
where A(B) = (1-plB)(1-p2B)(1—p3B) = 1 - aB - a232 - a3B3 and b(B) =

-[Creay) /(4-3¥8)] + (1/4)(B+B™Y) + (1/6)(B%4B72) + (1/12)(B3+B73). Here
D(4) = {py3PysP53=0) 50503301 5=P53053P; 2Pps=P33
=Py 3=PpaP33P1 =P s=P33=0) 505 5=P33=Py s=Pp0=05] ¢

I show that every element of D except , s violates one of (A.6)-
P12 Pos> P3

(A.9). Consider three cases:
Case 1. Replace (pl,p2,p3) by (-pl,pg,p3). Divide (A.8) by (A.9) to get

R T PoP3 * P03

- (p +p. *p.)e (A.10)
Py PR3 17273
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Suppose -p., p,, p, satisfy (A.6)-(A.9). Then
1 2 3

PPy * PP, - PP
2 2
2 = —2% 3 13 (—pl+92+p3)- . (A.11)
019293

Subtract (A.11) from (A.10) to get 0 = (-2/pq) - 2p1, Or p, = i, the imaginary
number., This is a contradiction, since P> Py and P3 lie inside the unit

circle.
Case 2., Replace (pl,pz,p3) by (—pl,-pz,pB). Divide (A.9) into (A.T) to get -

(p,+p,+po) (140, p +p, 04D, 0,)
_ \PTRoTRg 1P2"PoP3TR, P
3= 575505 + (plpg+pep3+plp3). (A.12)

If (A.6)-(A.9) hold for (—pl,—p2,p3), then

(=p=p*p2) (140, 0 =0, 01=p Do) )
_ VTP =PoTe4 1P27PpP3=P P3 ‘ ,
3" P, P05 * (p1p5mpp05 SLE (4.13)

Subtract (A.13) from (A.12) to get

20py+0y) (140, py) + 205(py0 0, 05)

0 = 2(p,p *p, py) +
273 "173 P1PoP3
or 0 = 2(1+p§)(1+p1p2), which implies Py = i, a contradiction. This rules out

the case in which the sign on any two of P13 Poos p3 can be changed.

Case 3. Replace (pl,p2,p3) by (—pl,—pg,-p3). If (=p1,=pps=p3) satisfy (A.6)-
(A.9), then they satisfy (A.10), so that

PPy T PyPy *+ PP
2= L2 273 13, (p,+p.*p.)e (A.1k)
0192p3 1 "2 73

Adding (A.10) to (A.1L) gives 4 = 0, a contradiction.
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Conclude that the only element in D(¢) which satisfies the restric-

tions of Taylor's model, (11), is (pl,pg,p3). Q.E.D.

Proof of Proposition 3. Suppose the contrary. That is, there exist b, ®' ¢ @

for ¢ # ¢' such that {K(¢'),ﬁ(¢'),Wk(¢'),pk(¢');k=l,...,m} = {K(¢),§(¢),
Wk(¢),pk(¢);k=l,...,m}. Then there must be no T ¢ {O,il/N,i2/N,...} such

that Ry(7,¢') # Ry(t,6). But this contradicts condition (i). Q.E.D.



Appendix B

U.S. Data Used in the Paper

Real gross national product

Consumer price index

Year Log (y%) Detrended log (yi) Log (p%) Detrended log (py)
1954 6.420 -0.309 -0.217 9.529
1955 6.484 2.688 -0.221 -~ 6.032
1956 6.505 1.318 -0.206 L.392
1957 6.523 -0.375 -0.171 L.769
1958 6.521 ~4.066 ~0.1h4L h.336
1959 6580 =1.707 -0.136 2.017
1960 6.602 ~2.,9k42 -0.120 0.48L
1961 6.627 ~3.947 -0.110 -1.631
1962 6.683 -1.796 -0.099 ~-3.645
1963 6.722 " -1.k03 -0.087 -5.563
1964 6.TTh 0.238 -0.0Th ~T.387
1965 6.831 2.475 ~-0.057 -8.804
1966 6.889 L. 770 -0.028 -9.111
1967 6.915 3.970 0.000 ~9.395
1968 '6.958 L7167 0,041 -8 .405
1969 6.984 3.816 0.093 -6.295
1970 6.980 0.006 0.151 -3.668
1971 T.010 ~0.529 0.193 -2.583
1972 7.066 1.569 0.226 -2.463
1973 T.119 3.396 0.286 0.k52
1974 T.105 -1.492 0.390 T.T36
1975 7.092 -6.259 0.477 13.358
1976 T.148 -4.188 0.53L 15.843
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