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i. Introduction

The purpose of the present paper is to outline some procedures that
are useful for solving particular types of rational expectations models.
The principal application of the techniques described below is in solving
discrete time dynamic games of the linear-quadratic-Gaussian (LQG)
variety. These techniques are nonrecursive or "open loop" in character,
and are derived from the variational methods presented in Sargent
(1979) and Hansen and Sargent (1981). The approach taken in this
paper closely follows that of Hansen, Epple, and Roberds (1985), so that
the analysis below may be taken as a generalization of that paper.

Other techniques are available for solving the sort of models con-
sidered in this paper, such as those described in Levine and Currie
(1984), Buiter (1983), and Whiteman (1986). ‘However, the techniques
presented below may be more useful to those researchers accustomed to
formulating and solving models using the Hansen-Sargent notation and
methodology.

The paper is presented as follows: Section 2 lays out three types of
two player LQG games; Section 3 discusses their solution; Section 4
gives some examples of models that can be addressed by the methodology
of this paper; and Section 5 provides a conclusion. Issues concerning
numerical implementation are discussed in an Appendix.



2. Three Dynamic Games

Below I analyze dymamic games with twcz infinitely lived players,
each having a time invariant, time additive, discounted quadratic ob-
jective functional.  All stochastic forcing variables enter into the
players’ objectives in a linear fashion, and are assumed to be normally
distributed. The two player assumption can be relaxed, subject to
computational constraints, but the other assumpti-ons cannot. The pur-
pose of the other assumptions is to facilitate econometric application by
allowing linear least squares projections to be used in place of condi-
tional means. In terms of notation, let

Uy be a column vector of decision variables of player |
(abbreviated P1) at time t;

t

Usy be analogously defined for player 2 P2);

f T be a column vector of uncontrollable forcing variables
influencing P1’s payoff at time t;

for be analogously defined for P2;

g € (0,1) be a discount factor common to both players.

P1’s objective is given by
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where A(L) and B(L) are matrix polynomials in the lag operator L, of
finite dimension and degree; M I MZ’ M3, N NZ’ and N3 are matri-
ces of the appropriate dimension; M £ MZ’ N {1 and NZ are symmetric;
- and EO is the expectations operator, conditional on information available
at time t = 0. P2’s objective is given by

Jp=Ey 2 ﬁt{let e = [CLIUg 74P [CLI ]
t=0

- DL UZt] %Pz[ )Uzt]

w1y 4Qquy ‘Uét%QZ 2t _uétQ3u1,t}

where C(L) and D(L) are finite dimensional, finite degree matrix poly-
nomials in the lag operator L; Pi’ PZ’ P3, Qi’ QZ’ and Q3 are matri-
ces of the appropriate dimension; P T PZ’ Q {> and Q2 are symmetric;
and EO is defined as before. The definiteness conditions

-



A(B%eiw)’MiA(sfe“iw) . D (g2l P,D(g% %) > 0 (2.1)

. 2
are assumed to be satisfied for w € [-m,7].

The uncontrollable forcing vector process X = [f {t f *1” is assumed
to be Gaussian and to have time invariant fundamental moving average

representation

Xt=F(L)vt+K (2.

N
o

where v, is vector white noise and K is a constant. In the analysis that

follows, K is normalized to equal zero.

Each player i seeks to maximize his objective by choosing a sequence
of strategies '{git}. Each strategy maps the player’s information (Iit)
" into a decision taken at time t; that is, U, =g, (I,;). The appropriate
specifications of information sets for the three dynamic games con-

3

sidered are given below.

2.1 Game ! (Open Loop Nash)

Let Iy represent the information set generated by the initial condi-
tions for all variables in the model, and let {2, represent the information
set generated by the shocks Vis Vi_g» e Then for P1 (numerical super-
scripts indicate the game number)



1 _ g, ™
Iit = Q’t U IO U {{th}tZO} (2.3)

‘while for P2

i _ e, ®
IZt = Qt U IO U {{git}t:O } . (2.4)

Here, gf and gS are anticipated strategy sequences. An equilibrium is
a pair of strategy sequences (g, gzi ) such that g; and gé are optimal

for P1 and P2 respectively, when gfz gy and gg = g -

2.1.1 Notes on Game 1: The strategy sequences g 1 and g, are required

to be optimal for almost every realization of {Vt}' They are also re-
stricted to be affine in {Vt}’ and the resulting sequence of equilibriuzr
decisions must be stable, i.e., of mean exponential order less than g “.
The restriction to affine str*ategies allows for use of the certainty equiv-
alence principle, while the mean exponential order assumption4pr~ovide5
for a convenient resolution of some nonuniqueness problems.  These
restrictions will apply in all games considered in this paper.

Because the information sets in Game 1 contain no state variables
other than uncontrollable shocks, this 5sor‘t of game is described by

' Games in which controllable

dynamic game theorists as "open loop.'
state variables appear in players’ information sets are described as
"closed loop" or "feedback" games. As emphasized by Kydland (1975)
and others, the equilibria of open loop dynamic games will in general be

different from the feedback or closed loop equilibria. The open loop
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approach taken in this paper is justified largely by computational cor-
siderations. Particularly for econometric applications, the open loop
procedures discussed below may offer considerable gains in computa-
tional convenience over the procedures used to obtain closed loop and
feedback equilibria.

It is also important to note that each player’s information does not
include knowledge of the other player’s future decisions, but instead
includes knowledge of the other player’s future strategies. The distinc-
tion between decisions and strategies is an important one. The strategy
sequences are determined once and for all at the beginning of the game.
Decisions are taken simultanedusly by both players in every period.

2.2 Game 2 (Open Loop Staékelberg)

For P1 (the leader)

2
Iit—QtUIO : (2.95)
while for PZ (the follower)

2 _ .1
IZt IZt' (2.6)

An equilibrium for this game is a pau* of strategy sequences (g% , g2 )
such that g, is optimal for P2 when oS [ = g% » and g% is optimal for P1.



2.2.1 Notes on Game 2:  In this game, Pl is not constrained to take

P2’s strategies as given, but is free to exploit the dependence of P2Z’s
choice of strategies on the choice of g;. In equilibrium, the value of

P1’s objective is necessarily no less than in Game 1 (Nash).

One interesting feature of Game 2 is that the same equilibrium ob-

tains if the information of the follower is changed to

x_ e, .
=% Y {{git}t—_-o} (2.7)

where ¥, represents the information set generated by the entire past
history of all the processes in the model, including endogenous process-
6

es.

In Section 3, it is shown that the equilibrium of Game 2 will in
general be time inconsistent. That is, the original equilibrium strategy
seqguence g% will generally not remain optimal as time passes. Without
some mechanism to guarantee that P1 will hold to the initial equilib-
rium strategy sequence, the equilibrium of Game 2 is not viable. For
this reason, another sort of Stackelberg game is considered.

2.3 Game 3 (Time Consistent Stackelberg)

P1’s information is given by

2

3
=1

~4



while P2’s information is given by

B, =1, . 2.9)
Equilibrium is defined as in Game 2, except for an additional restriction
on the strategies of P1. That is, in choosing a time t strategy, Pl is
constrained to ignore the impact of this choice on P2’s choice of strat-
egies dated before time t. In other words, in choosing g?t, Pl must
take as given ggs fors Ct.

2.3.1 Notes on Game 3: The distinctions between Game 2 and Garne

3 will be clarified in the next section. One distinction that deserves
immediate mention is that in Game 3, P2 must be allowed access to the
"larger" information sets {I;t}. That is, if P2 were allowed access
only to Izzv the same equilibrium would no longer obtain in Game 3.

Because of the additional restrictions on the strategy sequence g,
the equilibrium value of P1’s objective in Game 3 can be no larger than
in Game 2. It will in general be quite difficult to compare Games 1
and 3 in this fashion, since both players’ information sets differ across

the two games.



3. Solution Procedures

By "solving" the models described in Section 2 is meant the fol-
lowing: for each of the games, the first order conditions of the two
players will be reduced to a set of finite order expectational difference
equations. These equations, in turn, can be solved for equilibrium laws
of motion in the variables Uy, and U, using known methods for solving
linear rational expectations models. Explicit formulas for the equilib-

rium strategy sequences are not derived.

The solution procedures make heavy use of the techniques developed
by Hansen and Sargent (1981). Especially useful are the following dif-
ferentiation rules. Suppose that {x} and {} are sequences such that

S| = 3 £ Lyl B leLix,]
t=0 '
and

S, = 3 B L)y}’ 4F [dLy,]
t=0

are finite, where a(l)), c(L), and d(L) are matrix polynomials in the lag

operator, and B and F are appropriately dimensioned matrices. Then

83,/ 3y, =p alBL™h) ' Belx D1)

t

85,/ 8y, = 6" d(6L ™) F (L), 02)
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Certainty equivalence is also exploited, in that the models are first
solved for conditional means. Terms involving expectations are then

evaluated using Wiener-Kolmogorov prediction formulas.

3.1 Solution of Game 1

To initiate the solution procedure suppose that P1 knows the sequence
of equilibrium strategies {gét} of P2. It follows that, as of time t, Pl
knows the current and past decisions of P2, and that P1 can correctly
forecast P2’s future decisions. The necessary first order conditions for

P1’s optimization problem are then

[N +AELH M, L1 E,up, + [Ng+ABL ™Y MyBILI] E, U,

=f

e £=0,14,2, 0 3.4)

where again E, represents the gonditional expectations operator. The
operators L and L™! are defined as follows for the sequence of condi-
i . = -i = -
tional means Etuit' L [Etuit] = Et—iut-i’ and L [Etuit] = Etut K
that is, negative powers of L do not shift forward information sets. The

first order condition for P2 is similarly given by

[Qy+D(BL )Py CL) T Eyuy, + [Q,+D (LY /P, DL E,uy,
:f2t’ t=0,14,2, . (3.2)

Now stack equations (3.1) and (3.2) to obtain the system

10



HL) E, Ut =X (3.3)

where
Up=lug w17
and
N, + AL M AL Ny +aech M BL
HL) =

D{L)

| Q3 +DELNPLCL 0 +DELR,

Equation (3.3) is an expectational difference equation of the type ana-
lyzed by Hansen and Sargent. (1981), Whiteman (1983, chapter 4), and
Watson (1985), among others. What follows is a brief outline of the
Hansen-Sargent-Whiteman approach to solving systems such as (3.3).

First, suppose that H(L) can be factored a58
HOL = S(eL ™)/ TWL) | (3.4

where S(z) and T(z) are appropriately dimensioned one sided matrix
polynomials of degree n, n being the largest degree of the matrix poly-
nomials A(z), B(z), C(z), and D(z). It is further assumed that the roots
of det T(z) are distinct and outside the circle |z| = B%, and that the

roots of det ,S(Bz-i) are distinct and inside this circle. One can then

1r



write S(;S?L_i)’-1 in partial fractions form as

syt —— 3.5)

. L-z,

J J
where the N, are matrices of the appropriate dimension and the z, are
the roots of det S(;Sz_1 J. Since, in equilibrium, both players’ decisions

must be of mean exponential order less than § 2, operating on both sides
of (3.3) with S(BL™H)" ™! yields

TL U =sEeLh e s | - (3.6)

Finally, using (3.5) and the Wienér—Kolmogomv prediction formula,
(3.6) can be expressed as

N.
J

t
- L-2
] ?]

0
-

[L” FL) - 2, F(ZJ)J v. G

Again the summation is over the roots of det S(Bz_i). Equation (3.7)
is a feedforward-feedback representation of Uy that, together with ini-
tial conditions, gives the unique stable solution to equation (3.3).
Methods by which systems such as (3.7) can be estimated are described
in Hansen and Sargent (1980).



3.2 Solution of Game 29

To initiate the solution pr*ocedﬁr*e for the open loop Stackelberg
game, suppose that P2 knows the sequence of equilibrium strategies of
P1. Then, as in the Nash game, P1’s current and past decisions will be
known to P2, and P2 will be able to correctly forecast future decisions
of P1. P2’s first order condition will be the same as in the Nash game,
i.e., equation (3.2). Since PZ (the follower) now takes Pl’s strategies

parametrically, it is convenient to rewrite (3.2) as
[Q, + DIBL™) P,DL 1 E, uy,
= - [Qq+DELY PyCL 1 E, upy + £y - 3.8)
The characteristic polyﬁomial of equation (3.8) has factorization
D(gz™)’ P, D@ +Q, = Gigz ™M)’ c@) | 3.9)
where G(z) is a polynomial having degree equal to that of D(z), and the

roots of det G(z) exceed §° in modulus. Again requiring {uy} to be
stable allows eqguation (3.9) to be solved forward, yielding

G(L)uZt:G(gL‘i)"i -[Q3+D(5L‘1)'P3C(L)]Etult+th ,

t=0,1,2, . (3.10)



Equation (3.10) can be thought of as a "closed loop" representation of the
sequence of optimal decisions {UZt}' The members of this sequence are
expressed in (3.10) as a function of lagged values of Usy, and current
and lagged values of Uy and th (after making the appropriate substitu-
tions for terms involving expectations of future variables). Using this
representation, one could go a step further and derive the sequenée of
optimal open loop strategies for P2 by operating on (3.10) with G(L)—l.
However, for the present purpose of deriving the equilibrium law of
motion for Uy, and Uy, this extra step is not necessary.

The next step in solving Game 2 is to formulate P1’s problem as a
constrained maximization problem

max Ji s, t. (3.10) .

The Stackelberg leader P! in effect chooses a strategy sequence for
both playérs. However, the strategy sequence chosen for P2 must be
chosen so that it is optimal for P2, taking P1’s strategies as given;
i.e., the resulting sequence of decisions {uy,} must satisfy (3.10). |

To solve the leader’s problem, form the Lagrangian expression

14



Co= 3 6 { N [- L) u,,
t=0

‘1 /"1 _ ‘i /
+06ELH T (£ - 105+ DAL P CLIEyuyy ]
Here {)xt} is a vector Lagrange multiplier process of the same dimen-
sion as Uy Fort <0, ’\‘t is defined to take on a value of zero. First
order conditions for the leader’s maximization problem are obtained by

differentiating I { with respect to u | and Usy s and are given by

t

[N1+A(5L-i)’MiA(L) ] B uy, + [N3+A(6L-i)’MsB(L)] Etuzt

+[Qy +CELY Py DL TG A =1

e =y (3.11)

[Ny /+B(BL™H)My/AL) T E,uy, + IN,+B(6L™H) /M, BWL)] E, Uy,

+GEL™H 7 E, A, = 0 (3.12)

* and the constraint (3.10), fort =0, 1, 2, . Making the substitution
1, = G A, operating on (3.10) with G(BL™1)’, and stacking (3.11),
(3.10), and (3.12), we obtain the system

U E ur =x* (3.13)



G g

X; =[X,/ 017
and

H L) =

’ -

Qy+CeL™ PO

i} _ | )
Ny’ +B(AL i)’M3’A(L) N,,+B(gL 1)’MZB(L) ! Q,+D(AL 1)’P2D(L)

Equation (3.13) can alse be derived by taking P2’s first order condition
(3.8) as the constraint in P1’s optimization problem.

As with the Nash game, equation (3.13) can be solved by factoring
H*(L) when H*(L) posesses the "right" factorization. The result is a
feedforward-feedback r‘épr‘esentation for the augmented decision vector
U: , which together with initial conditions yields the solution for U:
and hence for Ut'

Of particular interest are the initial conditions for the vector §, of
Lagrange multipliers. At the beginning of Game 2, note that the correct
initial conditions for I, are given by Jlt =0 for t < 0. However, as time

evolves, jt will in general take on nonzero values. Now consider a

16



dynamic subgame of Game 2, beginning in period t > 0. For any such
subgame, the solution of P1’s problem would require that }t be initial-
ized to zero fort < 7. Hence the equilibrium for the subgame will be
different from the original equilibrium, and the optimal strategy se-

quence for the leader is said to be time inconsistent.

3.2.1 Comparison with Whiteman’s Technique: Whiteman (1986) has

proposed an alternative technique for solving for the equilibria of games
such as Game 2. Whiteman’s method differs principally from the one
just presented in that (1) the leader’s problem is formulated in the
frequency domain, and (2) rather than using Lagrangian methods, Whlte-
man in effect substitutes equation (3.10) into the leader’s objective.

*
To compare the two techniques, it is useful to rewrite H (L) in the

form

: _
H O HpO HypO)

H L= oy L) Hoo(L) 0 (3.14)
HipO” Hy,©  Hy,)

where the double prime indicates transposition and "S-conjugation.”
Now use (3.12), i.e., the last component of (3.13), to eliminate Et Et
from (3.13), yielding

17



'y —i r? Iy -1 ‘
Hy g (L Hy (U Hyo (07 H 07 Hy 5 0-Hy, 07Hy L H L)

HZi(L) ‘ HZZ(L)
E.u f

o | Tt _ {t | 3.15)
B, upy | fo

which I abbreviate as @(L) E, U = = X
could be derived by using equatxon (3.10) to substitute out for E ¢ Upy In

Alternatively, equation (3.15)

P1’s objective J {» and then differentiating J, { With respect to E,u =

Essentially, the alternative technique proposed by Whiteman involves
factoring ©(L) and applying the Hansen—Sargent solution algorithm.
Since ©(L) can always be obtained from H* (L), this approach could alsc
be used with the methods presented above.

Some care must be exercised with this approach, however. In obtain-
ing equation (3.15), equation (3.12) was operated on by HZZ(L)—l,
which is in general a matrix rational function (or two sided infinite
order matrix polynomial) in the lag operator L. Since (3.12) is only
guaranteed to hold for nonnegative time, this operation will only be jus-
tified under special circumstances. For example, this operation will be
justified when both players’ objectives have been normalized so that all

variables take on a value of zero for negative time. This operation is

18



also justified if one is only interested in the steady state of the particu-

lar game under consideration.

3.3 Solution of Game 3

The time inconsistency of P1i’s strategy sequence in Game 2 results
because P1’s choice of strategy gy for t > O affects P2’s choice of
strategy g, for O £ s {'t. At time t, if P1 were to recalculate his
optimal policy sequence, these effects would no longer matter, causing

P1 to change his choice of strategies.

These effects enter into the first order conditions for P1’s problem
only through the presence of lagged values of >\t in equation (3.11).
Since, in Game 3, P! is required to ignore these effects, (3.11) must
be replaced by the following first order condition:

[N1+A(5L‘1)’M1A(L) 1E,u, + [N3+A(3L‘1)’M35(L)] E, Uy,

+ {[ Qy” + CeL™ ’P,’ D) ] G(L)-‘i} TR (3.16)

where the notation { } _ means to ignore positive powers of L. Equations
(3.16), (3.10), and (3.12), which correspond to the new first order
conditions for P1’s problem, can now be stacked to yield the system

c c _ ¥
H (L)EtUt =X

¢ (3.17)

where

ie



and
HS L =LY 7.

A characteristic feature of H°(L) is that its rightmost "column" in-
volves no positive powers of L. This means that if H°(L) has canonical
factorization H°L) = SBL™HT°WL), and T°(0) is normalized to be a
diagonal matrix, then the last "column" of T°(L) must be all zeroes.
This last fact in turn implies that in equilibrium, the current value of
Uf does not depend on past values of >\t’ Hence the time path of Ut will
be independent of initial conditions for Ay» and the strategy sequence for

P1 will be time consistent.

Game 3 could also be interpreted as one played by a follower P2
and an infinite sequence of Stackelberg leaders. The time t leader has
an objective given by a time t version of J {» and chooses Uy, SO as to

maximize this objective. The time t leader cannot commit to future

20



values of u {y» @although he can correctly forecast these decisions in
equilibrium. For an example of how the solution of Game 3 can be de-
rived under this interpretation, see Hansen, Epple, and Roberds (1985).

Whiteman (1986) has also proposed a method for solving Game 3.
As with Game Z, one can essentially replicate Whiteman’s method by
eliminating the Lagrange multiplier process from equation (3.17) and

solving the resulting expectational difference equations.



4. Examples

In this section, the methods developed in Section 3 are applied to
three models.

4,1 Whiteman’s "Generic Example"

Whiteman (1986) considers a very simple two player game between a
hypothetical policymaker and a player representing "the public." Al-
though Whiteman’s model differs slightly from the class of models con-
sidered in Section 2, the solution methods presented above are still

applicable.

In this model, the policymaker plays the role of P1 and the public the
role of PZ. ' The scalar forcing process ft is first order autoregressive,
and uit. and U,, are both scalars. P1’s objective is to minimize the
discounted weighted sum of expected fluctuations in the decisions of
both players, i.e.,

Iy

S .2 2
- 3Ey 2 8 [UZ'L'H]uiJ'
t=0

Here, n is a positive weight. P1i’s objective is thus to stabilize fluctua-
tions in u,,, subject to a quadratic cost associated with policy interven-
tions. PZ has an essentially static objective: in each period, choose a

minimum mean squared error forecast of



Q

_ -1 -j
=p Zp [ui-,t+j * ft+_j:l
j=0

where |o| > 5—1. The optimal estimate of y, will be given by

-1

Sy =op (-t

-1 +Ef) (4.1)

)~ (E u

t Yt

which corresponds to equatidn (3.2).

To begin the analysis of this model, note that the optimal strategy for
Pl in Game 1 is to set Uy, = 0 for all t. Since P1’s objective is to
stabilize Uy, if P1 takes P2’s strategies as given, then P1’s optimal

strategy sequence is the trivial one.

In Game Z, the Lagrangian for the leader’s problem is

Iy =Egt > 6 [Uzﬁ’?”izt}
1=0

vEn S BN [u ottt @ e )] @)
0 ¢ |2t P TP e e ST AR AT
1=0

The first order conditions for the leader’s problem will be [cf. equations
(3.11) and (3.12)]

T
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nug +o - B LT =0 (4.3)

Upy + >\t =0. (4.4)

Note that equation (4.3) is valid when A has been normalized to zero

for negative t.

One approach to solution of equations (4.1), (4.3), and (4.4) would
be to stack these equations and apply the method outlined in Section 3.
Because of the very simple nature of the model, however, it is easy to
solve by direct substitution. First, use equations (4.3) and (4.4) to

solve for u,,, which yields
Uy =np (- (B LIy, - | (4.5)

Equation (4;5) holds for positive tj if Uy 4 is normalized to zero, then
it also holds for t = 0. Equation (4.5) can then be substituted into
(4.1), and the resulting equation operated on with (L.—1 - p) to obtain

- - g M- p) - 11E Uy, =, Y

Hansen and Sargent (1980) show that when f; follows the autoregressive
law ft = ¥, { + &, equation (4.6) has solution

Uy = Cqup g+ [cgt/ L= 1 F, (@.7)

-1

where -n (z

-0) (B—iz—p) + 1 can be factored as <o (i—ciz) (1—022-1),

24



cg €0, andcy, cy € (0,1). The optimal strategy for P1 thus consists
of partially offsetting the effect of the current shock fi, subject to a
"correction” of ¢ $94 ¢4+ The ‘time inconsistency of this strategy is
manifested in the fact that equation (4.7) only holds for t = O if Uy _y
has been normalized to zero. If Pl were to recalculate an optimal
strategy sequence starting at some time t > 0, then Uy oot would have

to be set to zero, resulting in a different choice of strategies.

To find the optimal time consistent policy for P1, note that in Game

3, the leader’s first order condition (4.3) must be replaced with

-1
nuy, t+p

A =0, (4.8)
Using (4.8) and (4.4) to eliminate Usy from equation (4.1) then implies
that

L2 _ | .,

- (e~ +1)] Et Uy =f . (4.9)

[neL ¢

Defining dy = —(i+qp2), and d; = no/ (1+qu), equation (4.9) can be

solved for Uy, to obtain

gt |

In Game 3, P!’s equilibrium strategy sequence is by construction
time consistent. This is reflected in the fact that, unlike equation (4.7),
equation (4.9) will hold for all t 2 0, and need not be modified for the

initial peried.

)
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For Games 1-3, the equilibrium sequence of decisions for Uy, can be
derived by substituting the appropriate expression for Pi’s equilibrium
strategy sequence into equation (4.1), and evaluating expectations.

4.2 Linear-Quadratic Duopoly Models

In Hansen, Epple, and Roberds (1985), the methods of Section 3 are
applied to a model of a duopolistic industry that extracts a nonrenewable
resource. These methods can also be applied to other linear-quadratic |
oligopoly models. As an example, consider Kydland’s (1979) model of
an industry where there are adjustment costs.

In this setup, there are two firms in the industry. Entry by other
firms into the industry is not possible. Firm i produces output Y and

invests amount x;, over period t. Investment is determined as

g Ty et T 0y (.14
where d is the depreciation rate. The real cost of investment X;p Lo
firm i at time t is given by

2 |

Gjp e (X; - <5yit) (4.12)

where q is the unit cost of capital and the term c(xit—éyit)z, c > 0,

represents the adjustment cost associated with changing the firm’s capi-
tal stock. Each firm seeks to maximize
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where Py 1s the real price of the firms’ output at time t, net of any con-

stant unit production cost. This price is determined by a linear inverse

demand function
Py = 2~ alyyy +ypl (8.1

where a, is a random shock to demand and « is a positive constant. To
map Kydland’s model into the notation of Section 2, set

Uig = Y1141 (4.14)
AL) =BL) =CL) =DWL) = (t-L)° (4.15)
f, = Bay - [1-BU-9q] (4.16)
M, =P, =2c | (4.17)
MZ:MB:NZ:P1:P3:Q1=0 (4.18)
N{ = 2Ny =Q, = 2Q, = fa . (4.19)

Similar substitutions can be used with other duopoly models. It is
also easy to modify the objective of the second player so that P2
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represents a competitive fringe of small firms thait1 see themselves as

having no impact on the price of the industry output.

4.3 Optimal Growth with a Public Good

As a final example, I consider a simple model of macroeconomic
gr'owtf‘i.z In this model there are two consumption goods and two capital
goods. There are two representative agents, P1 being the "government"
and PZ being a representative nongévernmental agent called "the private
sector.” One type of capital good (call this m) can only be accumulated
by the government. However, the government makes this capital good
freely available to the private sector. The other capital good (k) can
only be accumulated by the private sector. The stock of governmental

or public capital as of time t evolves as
m = ymy +z ’ - {4.20)

where z, is current governmental investment, and y equals one minus
the depreciation rate 4. Governmental investment z, must be financed
by lump sum subtractions from the stock of private capital at time t,
k.. Conversion of private capital into public capital incurs an adjust-
ment cost 4b i(zt—émt)z. When z, is negative, this is interpreted as a
governmental subsidy of private investment. Such subsidies also incur
adjustment costs. The government is not allowed to borrow or lend,
and governmental (dis)investment must equal the amount of lump sum

taxes (subsidies) in every period.



Private capital k, Is assumed to accumnulate according to the law

k :th—i +i -z (4.21)

t t

where i is private investment. Associated with a level of investment
i, are adjustment costs 4b Z(it—ékt)z.

The capital goods m, and k; are used to produce consumption goods g,

and ¢,. Neither g, nor c, are storable, and these goods are produced

according to the linear technology

g Ay A m :
A 117712 t ' (4.22)
C Ay A k

t | 21 722 t

The additional restrictions are imposed that A {12 Ay =0, that Aoo
> AZiZ 0, implying that the A matrix is nonsingular. If one thinks of
g, as a "public” consumption good, and c, as a 'private” consumpticn
good, these assumptions imply that both kinds of capital may be used to
produce both kinds of consumption goods. Governmental capital is more
productive than private capital in the production of the public consump-
tion good g;» and vice versa for the production of the private consumption
good Cy-

The utility associated with consumption (g, c,) Is assumed to be of
the quadratic, additively separable variety:

*\ 2

* 2
Ui (g o) = -6, (g-g )

- 3(1-6)) (c,-c) (4.23)
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fori=1, 2, where g* and ¢ are bliss points and 1 > O, » 0. Both the
government and the private sector seek to maximize the discounted sum
of their respective utili;cges, minus the discounted costs of governmental
and private investment.  After some substitutions, these problems can

be shown to be equivalent to the following:

max —Ji

where

[00)
Ji = 4> Bt {ui (m —mhk)2 + W, (k,c—k*)2

t
- t=0
* * 2
+ Z'Vi (mt—m Yk -k) + bz[(i-yL)kt]

+ by +by) [(L-yLim )% + 26, [(1yLIk] [(1-yLim,] } .

* *
In the expression above, m and k are the stocks of capital necessary

* *
to efficiently produce g and ¢ . The terms U, Vi, and w; are defined
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The model described above may be directly mapped into the setup of

Section 2 using the following substitutions:

Uy, = my (4.24)
Upy = kt (4.25)
AL) =BL) =CL) =DL) = (1L (4.26)
. N
flt:uim + Vik (4.277)
* *
th = vom + wzk (4.28)
Mi:Pi :bi +b2 (4.29)
' MZ = PZ = b2 (4.30)
M3 = P3 = bz (4.31)
Ni =y (4.32)
N2 =wy (4.33)
N3 = vy (4.34)



Q, =w, (4.36)
Q3 =V, . (4.37)

* *
In addition, the term (vim + Wik ) kt must be subtracted from the
government’s utility function.

4.3.1 Simulation of Example 3: Two possible reasons why we might

want to simulate this model are the following: First, in the case where
0; = 0, and the government and private objectives coincide, it might
be a useful normative exercise to derive the equilibrium sequence of
taxes z, under various assumptions .concerning the type of game played
by the government and the private sector. Since the preferences of both
players would coincide, this tax sequence would be optimal for both
players. It is well known for this sort of poli‘cy problem, where there
is only one private agent and the government can impose lump sum
taxes, that the equilibria of the three games studied in this paper will
coincide. N Hence to derive the optimal path of taxes, investment, capi-
tal stocks, and consumption goods, we need only solve Game 1 (Nash).

A second reason for simulating this model would be to investigate the
effect of "perverse’ governmental preferences on the equilibrium paths
of the variables in the model. For example, those responsible for set-
ting government policy might prefer higher levels of consumption of the
public good g, than does the private sector, i.e., 6 {7 5. In such

o2
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cases, the three games studied in this paper are likely to result in dif-

ferent equilibrium outcomes.

To illustrate this last fact, three simulations of the model were run,
using the following hypothetical parameter values. For the first simula-
tion, the values 8 = 0.926, A11 = Ayy = 1.25, AlZ = AZi = 0.75,
by = by = 20, and 0, = 05 = 0.15 were used. Bliss points for ¢ and
g, were set to a value of 100. In the first simulation, Game | was
simulated over 100 time periods, given initial conditions k| = m_, =
10.  In the second simulation, Game | was again simulated after 61
was reset to 0.5. In a third simulation, Game 2 (Stackelberg) was sim-
ulated using the same parametér values as in the second simulation.
Game 3 (time consistent Stackelberg) was not simulated because nu-
merical investigations indicated that the necessary Fsolynomial matrix

factorization did not exist for these parameter values.

The outcomes of these three simulations are depicted in Figures {-4,
and are labelled respectively "Optimal" (i.e., optimal from the stand-
point of the private sector), "Game 1," and "Game 2." Figure 1, which
depicts the time path of m,, shows that when governmental and private
sector preferences coincide, the government will initially subsidize
private investment by converting governmental capital into private capi-
tal. In contrast, when the government overvalues the public consumption
good g, public capital increases menotonically over time. The steady
state stock of governmental capital also increases dramatically in the
second and third simulations. Figure 2 shows that governmental over-
valuation of g, causes the steady state level of private capital to fall

3=
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dramatically. Figure 3 depicts the time path of g, as a percentage of
its bliss value. As might be expected, stronger preferences for g by
policymakers lead to overconsumption of the public good. Figure 4
shows that the opposite holds true for the private good C;-

In gereral, Figures -4 illustrate that the effects of governmental
overvaluation of the public consumption good are what one would in-
tuitively expect, i.e., overinvestment in public capital and underinvest-
ment by the private sector, with corresponding shifts in consumption.
The negative effects of this overvaluation are somewhat less (in the
sense that deviations from optimal values are smaller) in the Stackel-
berg game, where the government is (by assumption) able to credibly
precommit itself to a sequence of tax policies.



9. Conclusion

In this paper, procedures have been suggested for extending the
Hansen-Sargent methodology for solving linear rational expectations
models to various strategic models. Estimation of these models is also
feasible using the maximum likelihood techniques described in Hansen

and Sargent (1980).

Several extensions of the procedures considered above would be rela-
tively easy to implement. One such extension results from the fact that
it is not really necessary to specify P2’s ob Jjective function in order to
obtain the solution to the games described above. If a researcher is not
interested in the follower’s objective function, then he need only posit a
set of expectational difference equations such as (3.2) to obtain the de-

sired solutions.

Another possible extension derives from the insight that Games 2 and
3 represent two extremes in a larger class of hierarchical games. That
is, the assumed pericd of commitment of the Stackelberg leader (P1) to
his originally announced strategies is infinity for Game 2 and zero for
Game 3. Extension to the case of a positive, finite period of commit-
ment would be relatively straightforward. Extension to the case of a
random period of commitment is considered in Roberds (1986).



Appendix: Notes on Numerical Implementation

There are a number of methods of obtaining the factorizations of the
*
HL), H (L), and H°(L) matrix polynomials that are required by the solu-
tion procedures outlined in the text.

Ore simple method is to use the procedure suggested by Whittle
(1983) for factoring the spectral density matrix of a vector moving
average br‘ocess. This method was used in the simulations of Section
4.3. In each simulation, T(0) or T*(O) was normalized as the identity
matrix. In the case of Game 2, using this normalization required that
the second and third rows of H*(L) be interchanged so as to render T*(O)
diagonalizable. This last step is recommended when using this algo-
rithm for Games 2 and 3. |

Dagli and Taylor (1984) have also devised an iterative algorithm for
the purpose of obtaining such factorizations. For large systems, this
algorithm is easier to implement than Whittle’s algorithm. As an itera-
tive algorithm, it would seem to be particularly well suited to econ-

ometric applications.
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Notes

1. In the Stackelberg games considered in this paper, the leader’s cb-
jective will not be time additive after substitution for the follower’s

reactions.

2. These conditions are sufficient for each player’s problem to be well
defined in the Nash game [see Hansen and Sargent (1981)], and for the
follower’s problem to be well defined in the Stackelberg games. Suffi-
cient conditions for the leader’s problem can be derived using the re-
sults in Telser and Graves (1972, chapter 6).

3. The term "information set" is used here in the game theoretic sense;
i.e., a player’s information set as of time t is the domain of his strat-
egy function as of time t.” The notation used for information sets is
intentionally heuristic. L

4. That is, under this assumption one can often show the existence of a
unique homogeneous solution to the players’ first order conditions. See
Hansen and Sargent (1981) for a discussion. For a general discussion of
certainty equivalence, see Witsenhausen (1971).

5. The term "open loop" is usually applied to games under certainty,

i.e., the case for which v, = O for all t in the present setup. Buiter’s

t
(1981) definition of "open loop" for the stochastic case does not allow
open loop strategies to depend on uncontrollable shocks. The present

definition of open loop strategies for the stochastic case corresponds to
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that of Kydland (1975), except for the restriction that strategies be
affine. The reader is referred to articles by Kydland (1975, 1977,
1979) for comparisons of open loop, feedback, and closed loop dynamic

games.
6. See Basar and Olsder (1982, p. 309).

7. That is, the operator L as defined here is identical to the operator B
defined in Sargent (1979, p.337).

8. Throughout this section the existence of such factorizations will be

assumed.

9. Levine and Currie (1984) derive a solution procedure very similar
to the one outlined here for Game 2. Their procedure differs mainly
from the one presented here in that the leader’s problem is formulated

using "state space" notation.
10. Whiteman’s technique also extends to some cases where the meth-
ods of this paper are not applicable. See for example, the policy prob-

lem analyzed by Taub (19835).

11. For an example of this sort of modification, see Hansen, Epple, and
Roberds (1985).

12. All quantities in this example are per capita.

i
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13. Altemativély, J; could be viewed as the discounted sum of con-

sumer surplus minus investment costs.

14, See Hillier and Malcomson (1984). When the government can only
impose proportional taxes, this result will not hold. See Sargent
(1984) for a comparison of Games 2 and 3 in a proportional taxation

" environment.

15. Similar existence problems were  encountered by Kydland and
Prescott (1977) while attempting to simulate a linear-quadratic time
consistent Stackelberg model. This suggests that existence problems

.are likely to be encountered with Garne 3.
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