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ABSTRACT

The statistical significance of variance decompositions and im-
pulse reponse functions for unrestricted vector autoregressions is
questionable. Most previous studies are suspect because they have
not provided confidence intervals for variance decompositions and
impulse response functions. Here two methods of computing such
intervals are developed, one using a normal approximation, the
other using bootstrapped resampling. An example from Sims' work
illustrates the importance of computing these confidence inter-
vals. In the example, the 95 percent confidence intervals for
variance decompositions span up to 66 percentage points at the
usual forecasting horizon.
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1. Introduction

Explaining the relationships among money, interest rates, prices, and output is one of
the most important challenges in macroeconomics. Traditionally, economists have tried
to explain those relationships using structural models which impose a priori restrictions
on the intercorrelations of the data. Recently, Sims (1980a) has championed a different
approach to understanding these economic relationships. He claims that unrestricted
vector autoregressions (VARs) provide a better understanding of macroeconomic rela-
tionships than structural models because structural models use “incredible” identifying
restrictions (Sims 1980a, p.1).

Vector autoregressions have brought with them their own terminology and their own
folklore. Granger-causality, variance decompositions, innovation accounting, and impulse
response functions fill the places in this methodology that parameter estimates, identify-
ing restrictions, and hypothesis testing do in traditional economic modeling.

In this paper I try to determine whether unrestricted vector autoregressions can in
fact help economists understand the empirical relationships among money, interest rates,
prices, and output. I do not examine the theoretical validity of using vector autoregres-
sions to uﬂderstand macroeconomic questions. That issue has been addressed by others,
including Cooley and LeRoy (1985). I also do not question the usefulness of Bayesian
vector autoregressions. (They have been defended by, for example, Litterman 1986.)

What I do is re-examine the inferences that Sims (1980b) has drawn about these
macroeconomic relationships. I ask two types of questions about his results: Do they
depend on incorrectly or arbitrarily chosen data? And are they statistically significant?
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My answers suggest that unrestricted vector autoregressions often do not tell much
about interesting macroeconomic questions. Sims’ results are sensitive to data selection
in unreasonable ways. And the confidence intervals for their variance decompositions
and impulse response functions are often so large that little useful inference can rely on
them.

This paper is organized as follows: Section 2 sets up the theoretical framework for
an empirical evaluation of Sims’ results. Section 3 examines Sims’ particular results
within that framework. Section 4 presents empirical results using different specifications.

Section 5 concludes.

2. Theory

Computing Variance Decompositions and Impulse Re.sponse Functions

Before examining empirical claims that vector autoregressions explain the relationships
among macroeconomic variables, I will review how variance decompositions and impulse
response functions are computed.

Consider the autoregressive representation
(1) Ty = b(L)ZEt -+ e

where z, is a stationary stochastic vector process, L is the lag operator, and e, is the
vector of innovations to z at time £. If such a representation exists, the roots of
det [I — b(z)] = 0 have modulus greater than one. This insures that [I — b(2)] is invert-

ible.



Although VAR estimation is based on this autoregressive representation, most inter-

pretations of VARs are based on the vector moving average representation

(2) z, =n, +a(L)e;, E(e)=0

: W, |kl=0
E(ece, ) = {0’ ‘lk= #£0

where n, is perfectly predictable and the matrix of coefficients of a(L) at lag zero is the
identity matrix. The Wold decomposition theorem shows that the vector of errors e; is
the forecast error of the autoregression given information available at ¢ — 1 if the roots of
a(z) lie outside the unit circle.

To get from the moving average representation to impulse response functions and
variance decompositions requires a normalization. To quantify the cumulative response
of an element of z,—say, industrial production—to an unpredicted innovation in some
component of e,, the components of e, must be orthogonal. Since the sample covariance
matrix W is unlikely to be nearly diagonal, the covariance of the residuals must be ar-
bitrarily divided in some way so that the errors themselves are orthogonal. The usual
convention is to adopt some particular ordering and allocate any correlation between the
residuals of any two elements to the variable that comes first in the ordering.

The variance decomposition is simply a function of the moving average representa-
tion. The variance decomposition of the k-step-ahead forecast is the proportion of the
total forecast variance of one component of z,,,—say, industrial production—due to
shocks to the moving average representation of another variable.

Because variance decompositions and impulse responses are functions of the un-
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derlying parameters of the autoregressive representation, users of VARs could compute
asymptotic standard errors for the estimates of decompositions and response functions.
But because these estimates are complicated functions of the autoregressive parame-
ters, this has not been done. Some authors (for example, Sims 1980b and Fischer 1981)
have estimated empirical confidence intervals for impulse response functions based on
Bayesian methods, but they are rarely used in the VAR literature. Also, no author has
reported even empirical confidence intervals for variance decompositions. Supplying im-
pulse response functions or variance decompositions without confidence intervals is tan-
tamount to using regression coefficients without z-statistics.

A simple example shows why reporting confidence intervals for variance decompo-
sitions and impulse response functions is important. vSuppose that y, has the univariate

autoregressive representation

(3) Y = QYp—1 + €

where |a| < 1 and e, is white noise. The moving average representation of (3) is
(4) y; = 1/(1 — aL)e,

where L is the lag operator. The impulse response function is identical to the moving
average representation. The response of y;., to a shock in e, is a*. According to stan-
dard asymptotic theory, if t'/?(& —a) is distributed as N(0,s2V ~1), then t*/2[g(a) — g(a)]
is distributed as N (0,s*GV~'G"), where s? is the variance of e,, V is the probability
limit of y'y/n, and G = dg(a)/da. Hence, a standard deviation confidence interval for
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the n*® term in the impulse response function is
(5) &™ £ 2ma” & (v'y) )R,

Note that this confidence interval implies that the asymptotic Z-statistic of the n*® term
in the impulse response function goes to zero at the rate a/n. After only a few periods,
the size of the confidence interval grows dramatically compared to the size of the coeffi-
cient. The current shock e, gets multiplied by ¢, so its importance goes to zero.

An extension of this logic to the vector case suggests why the standard errors for
VAR variance decompositions and impulse response functions also should be computed.
Those decompositions and response functions are simply nonlinear functions of the au-
toregressive parameters and their covariance matrix. If the individual coefficients in the
unconstrained vector autoregressions are insignificant, their large standard errors im-
ply large and growing standard errors for the estimates of variance decompositions and
impulse response functions. Typically, tests that constrain all the coefficients of one
or more variables to be zero in one part of a VAR do not reject that null hypothesis.
Therefore, when those high variances are nonlinearly expanded, the result can be huge

confidence bounds.

Computing Confidence Intervals
The standard errors for the variance decompositions of vector autoregressions are com-
puted here using two different methods: first, using a normal approximation to the dis-

tribution of the parameters of the variance decomposition; second, using Efron’s



(1982) bootstrap method to generate confidence intervals based on the empirical distri-
bution of the residuals from the vector autoregression. Because variance decompositions
have been reported more often than impulse response functions, I concentrate on them
here. But the same methods can be used to compute confidence intervals for impulse

response functions.

The underlying logic for using the normal approximation estimator is quite conven-
tional. The parameters of the variance decomposition are functions of the autoregres-
sive parameters of the VAR. The covariance matrix of those autoregressive parameters
is [S ® (X'X)~ '], where S is the covariance matrix of the disturbance terms in the vec-
tor autoregression. Although a VAR is efficiently estimated using OLS, the covariance
matrix for the autoregressive parameters is not the same as that for OLS because of the

cross-equation covariances.

Let g(b) be the function that transforms the autoregressive parameters into the pa-
rameters of the variance decomposition. If t2/2(h — b) is distributed as N0, (S ® V1),
where V = plim X' X/t, then ¢'/2[g(b) — g ()] is distributed as N]0,G(S @V ~1)G'], where
G = dg(b)/db. This is the normal approximation used to form confidence intervals of the
variance decompositions. Deriving the analytic form of g(b) is very hard, but doing that
is not necessary to form the confidence intervals. Numerical differentiation can be used

to estimate G without such an analytic representation.

Because normal approximations to nonlinear functions often perform poorly in small
samples, I also use bootstrapping to generate confidence intervals for variance decompo-
sitions. The basic insight behind the bootstrap is that since the estimated residuals of
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the model are a representative sample of the true disturbances, the order in which the
disturbances occur should not matter. This means that the distribution of the estimator
can be determined by generating many artificial observations from the actual data and

the estimated residuals.

To determine confidence intervals for the variance decompositions of a vector au-
toregression (using my earlier notation), start by estimating the equation X, =
b(L) X, + €.+, and saving the estimated residuals and parameters. Then take the first
m observations (where m is the number of lags in the VAR) as initial conditions, and
generate an artificial realization of X,, ., by randomly selecting one of the disturbance
terms—say, é,— and forming X, + é,. Repetition of this process will generate a com-
plete series of observations for X. To get a bootstrap estimate of the confidence intervals
of the variance decompositions, generate a large number of series of observations—say,
1,000. After each series is generated, estimate all the parameters of interest, including
the variance decompositions. Store these for future analysis. When this is done for all
1,000 replications, compute empirical confidence intervals for single parameters or com-

posite hypotheses. (Below I report 95 percent empirical confidence intervals.)

Using the normal approximation for computing confidence intervals for variance de-
compositions has one problem. Although the bootstrap simultaneously imposes the two
constraints that the variance decomposition parameters each lie between 0 and 100 per-
cent and the parameters for each equation add up to 100 percent, the normal approxi-
mation does not. It imposes the adding up constraint, but not the truncation at 0 and
100. In practice, this does not seem to have much of an effect. (I discuss this fact below,
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along with the empirical results.)

3. Testing Sims’ Results

Sims (1980b) tries to use VARs to test whether monetary policy has a significant effect
on output. If money is not neutral, monetarist theory says that either changes in the
rate of growth of the money supply or unanticipated changes in money will affect subse-

quent output.

The source of this monetary nonneutrality, however, differs with the preferred ver-
sion of monetarist theory: traditional or rational expectations. Traditional monetarists
have emphasized the effect of the rate of monetary growth on output. Friedman and
Schwartz (1963), for example, provide evidence that for much of U.S. history changes
in the rate of growth of money have preceded changes in output. Adherents of this kind
of monetarism do not typically explore the theoretical justification for this form of non-
neutrality; they seem to find the empirical regularity (of movements in output following
movements in money) sufficient. Rational expectations monetarists have, instead, fo-
cused on the price effect of unanticipated changes in the money supply. This version of
monetarism claims that a surprise change in money affects output because people are
fooled into thinking that the resulting change in the price they are paid for their goods

is a change in relative prices.

Sims suggests that both types of monetarism can be tested by examining whether a
significant proportion of the variance in output over some period is due to money. He
thinks vector autoregressions can show whether or not this is true. If either form of
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monetarism is correct, Sims claims, the variance decomposition of output should show

that money explains a large percentage of output variation.

Sims uses a four-variable vector autoregression to test monetarism. He uses U.S.
monthly data for 1947-78 on the logs of the U.S. commercial paper rate, M1, the whole-
sale price index, and industrial production. Sims’ results of a variance decomposition of
that VAR with the ordering interest rates, money, prices, and output are in my Table 1.
They suggest that money has little effect on output: Only 4 percent of the variance in
output is explained by innovations in money. The evidence seems to suggest instead that
innovations in nominal interest rates are the driving force behind movements in both
output and money. Innovations in the commercial paper rate explain 30 percent of the

variance in industrial production and 56 percent of the variance in M1.

While these estimates of variance decompositions are suggestive, Sims provides no
indication of their distribution. I re-estimated Sims’ equations using quarterly data for
the same time period, then computed 95 percent confidence intervals using both the nor-
mal approximation and bootstrapping. The bootsirap estimates are based on a sample

. of 1,000 replications.

The results of neither of these methods confirm Sims’ claim that innovations in
nominal interest rates explain much of the variation in money and output. Figures 1
and 2 illustrate this. They display the point estimates of the percentage of the variance
in money (Figure 1) and output (Figure 2) due to innovations in the interest rate along
with the empirical bootstrap 95 percent confidence intervals for the estimates. As both
figures indicate, the confidence intervals grow rapidly, but seem to stabilize, as do the
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point estimates, within about two years. After 16 quarters {(the standard forecast length
for variance decompositions) the confidence intervals are about 50 percentage points
wide. The lower bound in Figure 2 is close to zero, which means that the hypothesis

that interest rate innovations have almost no effect on output cannot be rejected.

Because the point estimates for bootstrapping must lie between 0 and 100 percent,
asking whether innovations in one variable do not cause any of the variation in another
variable is not appropriate. A better question is whether those innovations explain less
than some small portion—say, 10 percent—of the variance in another variable. For ex-
ample, using the bootstrap, I cannot reject at the 95 percent confidence level the hy-
pothesis that the sum of the percentage of the variance in industrial production
explained by innovations in the nominal variables (mpney and prices) is less than 10 per-
cent.

For comparison, the confidence intervals for the 16-quarter-ahead variance decom-
position using both methods are shown in Table 2. (Programs to compute both kinds of
confidence intervals are available from me.) Both estimates for the parameters that Sims
emphasizes are huge. This questions much inference based ‘on variance decompositions.
For example, the confidence intervals show that a negligible percentage of the variance
in M1 is attributable to innovations in industrial production. This seems to suggest that
monetary growth is not influenced by fluctuations in output.

The similarity of the confidence intervals for the two methods is remarkable. They
only seem to be very different when the point estimate is close to zero. That is under-
standable. Because the normal approximation does not take into account the skewness
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of the parameter distribution at such a point, the normal confidence intervals include
negative numbers. But since the parameter is of no practical significance in such cases,

this error is inconsequential.

Since the normal approximation works so well (and is so much cheaper than boot-
strapping), I use it for all other estimates in this paper. I adopt the convention of trun-
cating the lower confidence interval. If the estimated lower bound is negative, it is re-
ported as zero. (In general, bootstrapping probably should be preferred, but the compu-
tational time it takes is considerable. Each bootstrap estimate computed for this paper
on a Prime 850 Computer used 8 hours of CPU time, while each normal approximation
used about 3 minutes. As computing power becomes cheaper, bootstrap estimates will

probably become more commonplace.)

Since Sims’ (1980b) results originally came from monthly data, I re-estimated his
original specification using monthly data to compute the confidence intervals for variance
decompositions at the 48-month-horizon, the one Sims-uses. The results are in Table 3.
They are similar to those in Table 2. The confidence intervals on the parameters Sims
emphasizes, those in Figures 1 and 2, are very wide. I also cannot r;aject at the 95 per-
cent level either the hypothesis that innovations to money and prices together explain
less than 5 percent of the variance in industrial productior; or the hypothesis that inno-
vations to interest and money together explain less than 5 percent of that variance. I do
reject the hypothesis that all three together explain less than 5 percent of that variance.
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4. Changing Sims’ Specification

So far I have examined only results using Sims’ specification. Supporters of Sims’ results
might still claim that because the point estimates of the variance decompositions are still
the best estimates of the effect of innovations in one variable on another, his conclusions
should still be accepted. But this position is untenable if both the point estimates and
the confidence intervals change markedly with minor changes in the specification. I will
here consider two changes in Sims’ specification: using U.S. Treasury bill interest rates

instead of U.S. commercial paper interest rates and using a trend instead of no trend.

Since most empirical macroeconomic analysis implicitly assumes that the results do
not depend on which interest rate is used, substituting Treasury bill yields for commer-
cial paper yields should not make a difference. In fact, as long as no trend is included, it
does not. Tables 4 and 5 report the variance decompositions of VARs using both com-
mercial paper and Treasury bill yields along with data for money, prices, and output.

A comparison of these and earlier tables reveals that many of the variance decomposi-
tions are very sensitive to the addition of trends. This has been noted by King (1982),
but he does not report any confidence intervals. The addition of a trend makes money
seem more important in explaining the variance of output; in fact, in Table 5, variance
in innovations in money appears to explain more of the variance in output than do inno-
vations in interest rates. But the large conﬁdence intervals of the interesting components
of the variance decompositions suggest that regardless of which point estimate consid-
ered, this analysis provides very little support for drawing strong conclusions about the
effect of innovations in these time series.
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Economic theory may suggest reasons for including or excluding a trend in a par-
ticular regression. When it does not, the sensitivity of the coefficients to that change
should be noted. One possible reason for this sensitivity is that explosive roots may be
present without trends, but trends eliminate them. This would question inference based
on the VARs without trends. However, note that the inclusion of trends does not notice-
ably affect the width of the confidence intervals for variance decompositions.

These results should not be surprising. Since the variance decompositions are
merely functions of the variance of the 16-quarter-ahead forecast, if the forecasting error
is large, then so will be the confidence interval for the variance decomposition. The fore-
casting performance of unrestricted vector autoregressions has been shown to be poor
after about one year. (See, for example, Fair 1979.) Therefore, attempts to estimate the

long-run impact of an innovation in one variable are subject to enormous error.

5. Conclusion

The evidence presented here suggests that drawing strong conclusions about the inter-
relationship of interest rates, money, prices, and output from unrestricted vector autore-
gressions is more difficult than some seem to think. The standard errors of the variance
decompositions in Sims’ (1980b) specification are too large to easily make inferences
about them. Alternative specifications change the parameter estimates, but the stan-
dard errors are still huge. In other words, vector autoregressions may let the data speak

for themselves, but the data are not talking very loudly.
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Table 1
SIMS' RESULTS

Percentage of Variance in Four Variables
Explained by Innovations in Each of Them

(48-Month Horizon, 1047-78, No Trends)

By Innovations in

Variable Explained CP M1 WPI Ir
Commercial Paper Rate 50 19 4 28
M 56 42 1 1
Vholesale Price Index 2 32 60 6
Industrial Production 30 4 14 52

Source: Sims 1980b, p. 253



Table 2
MY RESULTS, USING QUARTERLY DATA
Percentage of Variance in Four Variables
Explained by Innovations in Bach of Them:

Point Estimates and Two 95% Confidence Intervals

(16~Quarter Horizon, 1947-78, No Trends)

By Inmovations in

Variable Explained Ccp Uil WPI Ir

Commercial Paper Rate

Point Estimate 51 20 4 24

Normal Interval (31-71) (0-41)  (~7-14) (4-44)

Bootstrap Interval (31-68) (3-9) (1-24) (7-44)
M

Point BEstimate 55 44 1 1

Normal Interval (17-93) (5-83) (-4-6) (-3-4)

Bootstrap Interval (17-83) (9-76) (0-18) (0-16)
Wholesale Price Index

Point Estimate 2 34 58 6

Normal Interval (-5-9) (-1-68) (22-93) (-8-20)

Bootstrap Interval (0-21) (4-55) (26-82) (1-37)
Industrial Production

Point Estimate 32 7 12 48

Normal Interval (2-62) (-8-21) (-11-36) (13-83)

Bootstrap Interval (8-59) (1-31) (1-41) (18-74)




Table 3
MY RESULTS, USING MONTHLY DATA
Percentage of Variance in Four Variables
Explained by Innovations in Each of Them:

Point Estimates and Normal 95% Confidence Intervals

(48-Month Horizon, 1947-78, No Trends)

By Innovations in

Variable Explained CcP M WPI IP

Commerciasl Paper Rate

Point Estimate 50 16 3 30

Confidence Interval (29-71) (0-36) (0-52) (9-52)
M1

Point Estimate 50 49 0 1

Confidence Interval (11-89) (10-88) (0-1) (0-5)
Wholesale Price Index

Point Estimate 1 33 58 T

Confidence Interval (0-6) (0-68) (23-92) (0-17)

Industrial Production
Point Estimate 29 5 12 54
Confidence Interval (0-58) (0-17) (0-35) (18-88)
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