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ABSTRACT

We propose a definition of time consistent policy for infinite horizon econo-
mies with competitive private agents. Allocations and policies are defined as
functions of the history of past policies. A sustainable equilibrium is a
sequence of history-contingent policies and allocations that satisfy certain
sequential rationality conditions for the government and for private agents.
We provide a complete characterization of the sustainable equilibrium outcomes
for a variant of Fischer's (1980) model of capital taxation. We also relate
our work to recent developments in the theory of repeated games,
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I. Introduction

This paper develops an equilibrium concept and a technique for analyzing equi-
libria in a representative agent economy where the government chooses policy
sequentially and private allocations are determined in a competitive equilib-
rium. This work builds on thrpe distinet literatures. First, we extend the
analysis of policy design in dynamic general equilibrium models without com-
mitment technologies (see Kydland and Prescott 1977, 1980; Calvo 1978; Fischer
1980; and Lucas and Stokey 1983). Second, we build on ideas developed in the
theory of repeated games, particularly in the oligopoly literature (see
Friedman 1971, Fudenberg and Maskin 1986, and Abreu 1988). Third, we build on
- the recent literature on time consistency in macroeconomic models (see Barro
and Gordon 1983 and Rogoff 1987).

The analysis of policy design in models without commitment in turn
builds on the standard framework for policy design in general equilibrium
models with commitment--a framework stemming from Ramsey (1927).  Ramsey
studied a statie, representative consumer economy with many goods. In that
economy, a government requires fixed amounts of these goods, which are pur-
chased at market prices and financed by proportional excise taxes. Given the
excise taxes, prices and quantities are determined in a competitive equilib-
rium. The government's problem is to choose tax rates to maximize the welfare
of the representative consumer over the resulting competitive equilibrium
allocations. An optimal policy together with the resulting competitive equi-

librium is called a Ramsey equilibrium. It is straightforward to extend

Ramsey's formulation to dynamic models by reinterpreting the goods as date-
contingent commodities. In this dynamic context the Ramsey equilibrium can be
interpreted as a one-time choice of policy with consumers making decisions

sequentially. This formulation of the policy design problem is appropriate in



environments where societies have a commitment technology to bind the actions
of future governments.

In many situations, however, it is more appropriate to think of
policies as being chosen at each date and society as having no ability to
commit to future policies. For an environment without commitment, a solution
to the policy design problem requires that policies be sequentially rational,
in the sense that they maximize welfare at each daté. In turn, rationality on
the part of private agents requires that they forecast future policies as
being optimal for society. 1In a finite horizon economy, we can use backward
induction (as in Kydland and Prescott 1977) to solve the forecasting prob-
lem. We compute an optimal poliey for the last period for every state. This
yields a poliecy function describing how policies will be chosen in every
state. Taking this policy function and the resulting competitive equilibrium
function as given, we compute optimal policies for the next-to-last beriod,
and so on.’

For infinite horizon problems, however, this procedure is no longer
available. So we borrow from the game theory tradition to solve the forecast-
ing problem imposed by sequential rationality. We allow policies and alloca-
tions to depend on the history of past decisions by the government. Thus,

policies, allocations, and prices are defined as history-contingent func-

tions. We need to break from the general equilibrium approach of defining
equilibria as functions contingent only on exogenous events because the gov-
ernment is not a price taker. Since the government must predict how private
agents will respond to its decisions, private allocations and prices are
defined as functions of the history of the government's policies. To satisfy
the requirement of sequential rationality, various definitions of equilibrium

have been offered in the literature (see, for example, Lucas and Stokey



1983). To distinguish our definition from others, we call a sequence of
history-contingent poliey rules, allocations, and prices that together satisfy

sequential rationality a sustainable equilibrium.

To illustrate the notion of sustainable equilibrium, we use an infi-
nitely repeated version of Fischer's (1980) model of capital taxation. In the
model, each period is divided into two distinct stages. In the first stage,
consumers have a given endowment and must decide how much 6f it to save and to
consume. In the second stage, they decide how much labor to supply and how
much to consume. At the second stage, the government sets tax rates on capi-
tal and labor supply to finance an exogenously specified amount of government
consumption.

Our results show that there is a unique sustainable equilibrium when
the horizon is finite; but when the horizon is infinite, the set of sustain-
able equilibria is large and difficult to characterize. Fortunately, the set
of allocations and policies resulting from a sustainable equilibrium is easy
to characterize. We show that an arbitrary policy and allocation sequence is
sustainable if and only if two conditions are met. First, the sequence must
be a date-zero competitive equilibrium. Second, it must be the outcome of a

particular sustainable equilibrium called the revert-to-autarky equilibrium.

This equilibrium specifies that both private agents and government continue
with the given sequence if there has been no past deviation from it. If,
however, there has been a deviation, then the equilibrium specifies that all
agents revert to the finite horizon sustainable equilibrium forever. This
result allows us to characterize the set of sustainable policies and alloca-
tions by a simple set of inequalities. We use these inequalities to show that
with suffieciently 1little discounting, even the Ramsey allocations can be

supported by a sustainable equilibrium.



One question that arises in the analysis is, How does the notion of
time consistency considered here relate to the notion of perfection in game
theory? We analyze this matter by mapping our economy, with budget con-
straints and competitive private agents, into an anonymous game. We then show
that the symmetric perfect Bayesian equilibrium outcomes of the game coincide
with the sustainable outcomes of our economy.2

Before turning to the model, we briefly summarize how our work
relates to the three distinet literatures on which it builds: In the litera-
ture on policy design in equilibrium models, the decisions of private agents
and the government depend, at most, on exogenous events; in our formulation
these decisions can depend on the complete history of past policy. This
difference explains why in our formulation the Ramsey plan may be dynamically
consistent, whereas in other formulations it typically is not. From game
theory we borrow the idea of history-contingent decisions and from the litera-
ture on repeated games, Abreu's (1986, 1988) technique of using the worst
equilibrium to characterize the entire set of equilibrium outcomes. In that
literature, however, the games consist of a finite number of players, each of
whom has strategic power. In ours, there is one large agent, the government,
and a continuum of competitive private agents. For this reason, standard
results from the theory of repeated games cannot be applied. Finally, in the
literature on macroeconomic policy games it often appears as if the government
plays a game against a coalition of private agents, who may have different
objectives than the government. In our model the government maximizes the

welfare of private agents, who behave competitively.

II. A One-Period Economy
Consider a one-period economy along the lines of Fischer (1980). The economy

contains a large number of identical consumers and a government. There is a



linear production technology, for which the marginal product of capital is a
constant R > 1 and for which the marginal product of labor is 1. Consumers
make decisions at two distinct points in time: the first stage and the second
stage. At the first stage, consumers are endowed with w units of the consump-
tion good out of which they consume ¢4 and save k. At the second stage, they
consume c, and work ¢ units. Second-stage income, net of taxes, is (1-8§)Rk +
(1-t)2, where § and t denote the tax rates on capital and labor. For simplic-
ity we assume that first-stage consumption and second-stage consumption are
perfect substitutes. A consumer, confronted with tax rates § and T, chooses

(c1,k; ¢5,%) to solve
max U(c1+02,2) (1)

subject to

¢, + k fw

1

c, < (1-8)Rk + (1-1)%.

Notice that when (1-8)R = 1, the consumer is indifferent between saving the
entire endowment w and not saving at all.

The government sets proportional tax rates on ecapital and labor
income to finance an exogenously given amount of second-stage per capita

government spending g. The government's budget constraint is
g < 8Rk + TR. (2)
We assume, throughout, that

g > (R-1)w. (3)



This assumption implies that in any equilibrium, the government must tax
labor. We also assume that it is feasible to finance government spending with

only a tax on labor.

In what follows, we let x = (x1,x2) denote each consumer's first-

and second-stage allocations, where Xy = (e4,k) and Xy = (e5,2).

A, Commitment

Consider, first, the case where an institution or commitment technology is
available through which the government can bind itself to a tax policy at the
beginning of the period. This technology is formalized by the following
sequence of events: the government sets tax rates, then consumers make their
first- and second-stage decisions.

In this setup, a policy for the . government is a pair of numbers
m = {§,7) with 0 £ §,vr < 1. Since the government needs to predict how con-
sumers will respond to its policies, consumer behavior is described by rules
that associate government policies with allocations. Formally, an allocation
rule is a function f that maps government policies into allocations. For any
allocation rule f, the problem of the government is to choose some policy =«

that maximizes consumer utility3

V(n,f) = U(c1(w)+02(n),2(n)) )
subject to the budget constraint

g < SRk(w) + re(w), (5)

where f(x) = (01(1r),k(1r),02(1r),2,(1r)). We then have the following defini-

tion: A Ramsey equilibrium is a policy = and an allocation rule f that sat-

isfy



+ Government maximization. The policy = solves the government's

problem (4).

*» Rationality by consumers. For every poliey =', the allocation

f(w') solves the consumer's problem (1).

In the Ramsey equilibrium (w,f), some particular allocation will be
realized, namely, x = f(w). We call the Ramsey policy together with this

allocation the Ramsey outcome and denote it by (nf,xf).

Proposition 1. The Ramsey Outcome. The Ramsey outcome (nf,xf) has

first-stage allocations cf = 0 and kf = w, and a capital tax rate sf =
£

(R-1)/R. Second-stage allocations cg and 2f and the labor tax rate t* solve
uf = max Ule,,2) (6)
subject to
e, S w+ (1-1)2
-U2/Uc = (1-1)

g £ (R-1w + 8.

Proof. Consider the allocation rule for capital k(w). If the tax

£

rate on ecapital is strictly greater than &, then consumers save zero; if

§ = Gf, consumers are indifferent among all levels of savings; and if 6§ < 6f,

consumers save their entire endowments. For now, assume that when § = Sf, the
allocation rule specifies k(w) = w. The tax on capital acts like a lump-sum
tax when it is selected at any level less than or equal to sf. Clearly, it is
optimal to raise as much revenue as possible from this tax. Since g > (R-1)u,

government spending is greater than the maximal possible revenue from this

capital tax, namely Gme; therefore, it 1is optimal to set & so that



(1-8)R = 1. Faced with this tax, consumers save their entire endowments.
Given these facts, the optimal tax problem reduces to choosing €y, %, and t to
solve (6).

Now suppose that when § = sf, k(w) equals some number o with
O<a<w. We claim that such an allocation rule is not consistent with an equi-
librium. For such an allocation rule, the government's objective function is
discontinuous at § = sf, and no optimal policy exists. With such a rule, the
government can increase its utility by setting § arbitrarily close to but
smaller than ¥ and by setting t close enough to f so that the labor tax can
raise the rest of the needed revenue. Consumers now choose to save their
entire endowments, and the government is strictly better off. Thus, such a

"specification of k(w) is inconsistent with equilibrium. Q.E.D.

B. No Commitment

For the equilibrium just described to be viable, the government needs to have
some special commitment technology by which it can bind itself to specifiec
policies. When no such technology is available, the notion of what consti-
tutes an optimal policy is quite different. Formally, the lack of commitment
is modeled by assuming that the government does not set poliey until after
consumers have made their first-stage decisions. That is, events are timed as
follows: consumers make their first-stage decisions, then the government sets
tax policies, and then consumers make their second-stage decisions.

In this setup,' consumers' second-stage decisions are allowed to
depend on the tax policy. Thus, a consumer's second-stage decisions are
described by a pair of functions f,(n) = (e,(w),8(w)). We call f, a second-

stage allocation rule to distinguish it from a particular second-stage alloca-

tion X5. Consumers' allocations over the two stages are described by a pair

(x4,£5). A poliey for the government is again a pair of tax rates
1742 v



m = (8,7t). An equilibrium is a policy plan and a set of allocation rules that
satisfy certain conditions that are developed recursively. First, we consider
the second-stage problem faced by consumers for a given tax policy. We then
consider the problem faced by the government. Finally, we consider the first-
stage problem faced by consumers. For the second-stage problem, we say the

pair (x1,f2) is rational for consumers at the second stage if for every his-

tory w' of tax poliecy, the second-stage decisions fo(w') solve

) (7)

max U(e
LI

+C

172

subject to

) < R(1-8")k + (1-1')8.

Next, consider the government's problem. Given the decisions X4 and

knowing that second-stage decisions are selected according to the rule f5, the

government selects a policy = that maximizes consumer welfare subject to its

budget constraint. Thus, given x4 and f,, a poliey = is rational for the

government if it maximizes

V(m,x,,f,) = U(c1+02(w),£(w)) (8)
subject to

g < 6Rk + t4(mw).

Finally, consider the consumer's problem at the first stage. Each
consumer picks an individual allocation for the first stage, Xq = (01,k), to-
gether with an allocation rule f, for taking actions at the second stage.
Each consumer takes as given that the future policy is set according to w.

Then, for a given policy 7w, an allocation plan (x1,f2) is rational for con-




- 10 -

sumers at the first stage if x, and f,(w) solve
max U(e,+e,(n),2(m))

subject to

02(“) < (1-8)Rk + (1-1)a(w).

We have now defined the consumer's and the govermment's problems
recursively. Combining these gives an equilibrium with sequential rationality
built in for both the private agents and the government. As a result, we say

the equilibrium is sustainable. Formally, a sustainable equilibrium is a

‘triple (w,x4, f,) that satisfies"

» Sequential rationality by consumers. The pair (x1,f2) is rational

for consumers at the first stage, and for every history =' the
allocation rule fé(n’) is rational for consumers at the second

stage.

» Sequential rationmality by the government. Given X9 and f2, the

policy w 1is rational for the government.

In Section IV we use the sustainable equilibrium from this one-
period model to help characterize the set of sustainable policies and alloca-
tions for the infinite horizon model. To help distinguish these two equi-
libria, we call the sustainable equilibrium for the one-period model the

autarky equilibrium and denote it by superscript a. We then have

Proposition 2. Autarky Equilibrium. In any autarky equilibrium

(na,x?,fg), the first-stage allocations are c? = wand k¥ = 0. The capital

tax §° satisfies (1-6a)R < 1. The labor tax t° is given in the solution to
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the problem

max U{w+(1-1)2,2) (9)
T,%

subject to

-Uz/Uc = (1-1)
g < t%.

The allocation rule fg is defined as follows: for any =', the allocations
fg(n') solve

max  U(w+e,,®) (10)
c,st

subject to

e, < (1-t")e.

Proof. We first verify that any such triple (na,x?,fg) is an equi-
librium. Consider the second-stage allocation rule. By definition this rule
must satisfy (7). With ¥® = 0 and e? = w, the problem (7) reduces to (10),
and fg is rational for consumers. Then consider the first-stage alloca-
tions. If (1-8)R < 1, it is optimal for consumers to save nothing and consume
their endowments. If (1-8)R = 1, consumers are indifferent among all savings
levels, including saving nothing. Thus, x? is rational for consumers for any
6 satisfying (1-8)R < 1.

Next, consider the problem of the government. With k& = 0, the gov-
ernment is indifferent among all capital tax rates, including those rates
satisfying (1-8)R < 1. Thus, any such & is rational for the government.

Notice that any & satisfying (1-8)R > 1 would be inconsistent with consumers'

saving decisions. Finally, consider the labor tax t°. Putting together the



- 12 -

fact that savings are zero and that fg solves (10), we can reduce the optimal
tax problem of the government to (9). Thus, the specified (na,x?,fg) is a
sustainable equilibrium,

It should be clear that no other equilibria are sustainable. Sup-
pose, for example, there were an equilibrium with k > 0. An optimal tax
policy would raise as much revenue as possible from this capital; thus, §
would be set equal to min(g/Rk,1). Since we have assumed g > (R-1)w, this
capital tax would satisfy (1-§)R < 1. For such a tax rate, however, it would
be optimal for consumers to set k = 0. Thus, there can be no equilibria with

positive savings. Q.E.D.

In an autarky equilibrium, the realized second-stage allocations
are fg(va). We let the realized value of utility be denoted U2, where U =
U(w+(1-ta)2a(wa),za(na)). Notice that while there is a unique value of util-
ity realized in an autarky equilibrium, there is a range of capital tax rates
consistent with equilibrium. For concreteness, we define §2 = 1.

It is immediate to show that for this economy, the value of an
institution that allows the government to commit to its policy is strictly

positive:

Lemma 1. The level of utility in the Ramsey equilibrium is strietly
greater than the level of utility in a sustainable equilibrium; that is,
uf > U,

Proof. Comparing the Ramsey tax problem (6) to the autarky tax
problem (9), it is clear that the autarky tax problem is simply the Ramsey
problem with a larger level of g, namely, é = g + (R-1)w. Since the utility

funetion is strictly increasing in both arguments, the maximized value of the

Ramsey problem is strictly greater than that of the autarky problem. Q.E.D.
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I1I. An Infinite Horizon Economy

Consider an infinite repetition of the one-period economy deseribed in Section
II. Each period is indexed by t, for t = 0, 1, ..., and each consumer's util-
ity is the sum of each period's utility discounted at rate 8. We assume
throughout that government spending is constant and satisfies g > (R-1)w. We
consider two versions of this economy, one with commitment and one without.
In the commitment version, the government sets a sequence of tax rates once
and for all at the beginning of time. Consumers then choose a sequence of
allocations for all time. In contrast, in the no-commitment version the
government and the consumers make decisions sequentially. For each period the
timing of decisions is the same as in the one-period problem. We then compare

the optimal policies for these two versions.

A, Commitment

Consider, first, the commitment economy in which the government and the con-
sumers make their decisions at the beginning of time. In particular, let = =
("0’“1”“) denote an infinite sequence of tax rates starting at time zero.
For each period t, let Xy = (X1t’x2t) be the aliocations for the first and
second stages of t, and let x = (xo,x1,...) denote the infinite sequence of
such allocations. For this environment, a policy for the government is an
infinite sequence of tax rates w. An allocation rule is a sequence of funec-
tions f = (fo,f1,...) that maps government policies into sequences of alloca-

tions. We define a Ramsey equilibrium as a policy w and an allocation rule f

that satisfy

* Government maximization. The policy = maximizes

«©

V(m,£) = § BtU(c1t(w)+c2t(n),2t(n)]
£=0

subject to g < stRkt(n) + rtzt(v) for t =0, ..., =,



oy -

+ Rationality by consumers. For every policy =n', the allocation rule

f(=') solves
max z BtU(c
£=0

subject to ¢, < w - k_ and ¢, < (1-6%)Rkt + (1"T£)2t'

1670 %)

We denote a Ramsey equilibrium by the pair (n,f). It immediately follows that
the Ramsey equilibrium for this infinite horizon model is simply the Ramsey
equilibrium for the one-period model repeated infinitely many times. Notice
that any Ramsey equilibrium (w,f) induces some particular outcome (w,x), where
% = f(w). By construction, this outcome satisfies consumer maximization and
the sequence of government budget constraints. Hence, this outcome is some
specific date-0 competitive equilibrium. More generally, we say a pair of

sequences (w,x) is a date-0 competitive equilibrium if it satisfies consumer

maximization and the sequence of government budget constraints (but not neces-
sarily government maximization). (In Section IV we characterize conditions
under which a date-0 competitive equilibrium can be supported by a sustainable

equilibrium.)

B. No Commitment

As in the one-period economy, the lack of a commitment technology is formally
modeled by assuming that the timing scheme is as follows: for each period t,
consumers make their first-stage decisions, then the government sets current
tax rates, and then consumers make their second-stage decisions.

In each period the consumers and the government can vary their
decisions, depending on the history of government policies up to the point
when the decision is made. At the first stage of period t, each consumer
chooses a first-stage allocation as a function of the history ht—1 =

(ns|s=0,...,t-1) and a contingency plan for setting future actions for all
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possible histories. The first-stage consumption and savings decisions are
denoted by f1t(ht-1)‘ After the first-stage decisions have been made, the
government sets time-t tax rates as a function of the current history hy_4 and
chooses a contingency plan for setting future tax rates as a funetion of any
future aggregate history it may face. Let ot(ht_1) denote the time-t tax
rates chosen by the government when faced with history ht-1' At the second
stage of t, an individual's history is he = he 4 ("t)' Faced with hy,
consumers choose a second-stage allocation th(ht) and a contingency plan for
setting future actions for all possible future histories.

To define a sustainable equilibrium, we now need to explain how
policy plans induce future histories. We let at,denote a policy plan for the
government from time t onward; that is, ot = (ot,ot+1,...) is a sequence of
policy rules from time t onward. For any policy plan o = (00,01,...) and any
time t, we call o¥ the continuation of o. Let f¥ denote the corresponding
objects for the allocation rules. Given a history hy_q, the policy plan ot
induces future histories by h, = (ht-1’0t(ht-1))’ and so on.

Consider the second stage of period t. Given some symmetric history

t+1)'

th, an individual consumer chooses a contingency plan (f2t,f Each con-

sumer takes as given that future policies will evolve according to the histo-
ries induced by at+1. Formally, given a policy plan o, the allocation rule f

is rational for consumers at the second stage after the history hy if the

continuation of the rule maximizes

(hy_y)+ey (h),2 (h)))

s-1

subject to

{h ) 2w~k (h

s-1 s’ s-1

)

1s
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e g(hy) < (1—as(hs_1))Rks(hs_1) + (1—Ts(h ))us(hs),

s-1

where for all s = t, the future histories are induced by ot T,

For any his-
tory hy_4, rationality at the first stage of t is defined in a similar fash-
ion.

Next, consider the situation of the government in period t. Given
some history hy_4 and the fact that allocations evolve according to f, the
government chooses a policy plan ot that maximizes the welfare of the consum-

ers subject to its budget constraints. Given an allocation rule f, the policy

plan o is rational for the government after the history ht—1 if the continua-

tion of o maximizes

s-t

V(%% 857" ule, (h__ )+, (n),8_(h)) (11)

ne~1g

g-1) =

s=t

subject to

g <8 (h,_ DRk (h )+t (h )z (h)

S

for all histories induced by o©, for all s > t. Let zt(ft,ht_1) denote the
set of policy plans at that satisfy these budget constraints.

Combining these requirements gives us a type of equilibrium that
will not break down as time evolves, since by construction the various contin-
gency plans will be carried out for any possible set of histories. We then

define a sustainable equilibrium as a pair (o,f) that satisfies

» Sequential rationality by consumers. Given a policy plan o, the

allocation rule f is rational for consumers at the first stage for
every history ht-1’ and this allocation rule is rational for con-

sumers at the second stage for every history h,.

s Sequential rationality by governments. Given an allocation rule f,

the plan o is rational for the government for every history h,_,.
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For later use, let Vo(a,f) denote the value of utility in a sustainable equi-

librium.

IV. Characterization of Sustainable Equilibria
In this section we characterize the allocations and policies that result from
sustainable equilibria. Recall that a sustainable equilibrium (¢,f) is a se-
quence of functions that specify policies and allocations for all possible
histories. Starting from the null history at date O, a sustainable equilib-
rium induces a particular sequence of policies and allocations, say (w,x). We
call this the outcome induced by the sustainable equilibrium. The technique
for characterizing the set of such outcomes builds on Abreu's (1988) seminal
work on repeated games. In our models, however, agents behave competitively
rather than strategicaily; thus, we need to reformulate Abreu's arguments.

We first show that the autarky allocations of the one-period economy
(defined in Section II) are sustainable allocations in the infinite horizon
economy. We then prove that a sequence of policies and allocations can be
induced by some sustainable equilibrium if and only if it can be induced by a

particular sustainable equilibrium called the revert-to-autarky equilibrium.

We use this result to show that an arbitrary sequence of policies and allo-
cations is an outcome of a sustainable equilibrium if and only if it satisfies
two conditions: first, the sequence is a competitive equilibrium at date O;
second, the sequence satisfies some simple inequalities.

Consider, first, the autarky equilibrium (ca,fa), which is defined
as follows. For any history ht-1’ the autarky policy plan sets ai(ht_1) equal
to the autarky policy na, as defined in the one-period problem in Proposition
2. The autarky allocation rule f2 is defined as follows: For the first
stage, for every history ht—1 this rule specifies that consumers save nothing

and consume all their  endowment; that is, set ka(ht_1) = 0 and
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a
by _q)

allocations equal to those defined in the one-period autarky problem, namely,

= w. For the second stage, given any history h; this rule sets the

a

2 is defined in Propositicn 2. We then have

fg(wt), where the function f

Lemma 2. The autarky equilibrium is sustainable.

Proof. We first verify sequential rationality by consumers. For
the first stage it is clear, given aa specifies a capital tax rate of 1, that
it is optimal for consumers never to save. For the second stage, the con-
sumer's problem reduces to the static problem of Proposition 2, so the second-
stage allocations are optimal by construction. We next wverify sequential

rationality by the government. We need to show that for every history he 1,

a .a "t a
Vt(a ,F ;ht-1) > Vt(c ,f ;ht-1)

for every ;t € zt(fa;ht_1). Given that the consumer's contingency plan speci-
fies zero saving for all future histories regardless of the past policies of
the government, the tax problem of the government reduces to a series of
static problems. For each such problem the solution is, by construction, the

autarky policy of Proposition 2. Q.E.D.

In the next lemma we show that the autarky equilibrium is the worst
sustainable equilibrium. Proving this is the key to our methed of charac-

terizing the set of sustainable allocations. We have

Lemma 3. The autarky equilibrium is the worst sustainable equilib-

rium. That is, for any sustainable equilibrium (o,f),

Vo(c,f) > Vo(oa,fa). (12)
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Proof. For a given sustainable equilibrium (o,f), we construct a

plan o that satisfies
Uy(a,£) 2V (3,£) 2 Vy(a®,£%). (13)

Note that VO(G,f) can be well defined even when (o,f) is not an equilibrium.
In the construction, we exploit a fact about sustainable equilibria: second-
stage decisions solve a simple static problem. To see this, notice that at
the second stage of any period t, given the first-stage decisions and the
current tax rates Ty and at, the contingenecy plans 0t+1 and £'*1 have no

effect on the second-stage problem of consumers. More precisely, for any

history hy = (ht_1,wt), the function f2t(ht-1’“t) can be written as some func-

tion f2(kt,wt).given in the solution to the following problem: choose ¢, and
2 to solve
max U(w-kt+02,2) (14)
50t

subject to
c, S (1-6t)Rkt + (1-rt)2.

Let us define o as follows: For any he_q, let Et(ht_1) be the opti-

mal tax policy in the problem

Ud(kt) = max  Uw-k,+c.,8) (15)

c
t 2’
6,1,02,2
subject to
¢, < (1-6)Rkt + (1-1)8
-UQ/UC = (1-1)

g < 8Rk_ + t%,

t
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where ki is given by f1t(ht-1)' Now by construetion of o and the fact that
foy solves (14), it is clear that o is feasible for any such allocation
rule. Thus, the first inequality in (13) follows from the definition of
sequential rationality of the government.

Consider the second inequality in (13). The utility realized under
the autarky plans o® and f2 is simply the discounted value of the one-period
autarky utility repeated forever. We argue that the utility realized under
the plans ¢ and f is at least as high. Let Et denote the history induced
by o. For any t such that f1t(Et-1) specifies zero saving, the time-t utility
coincides with that of autarky. For any t such that f1t(Et—1) specifies
positive savings, the time-t utility exceeds. that of autarky. In any such
period the government will collect a strictly positive amount of revenue using
what is essentially a lump-sum tax on capital. Thus, in period t, the amount
of revenue the government raises using the distortionary tax on labor is
smaller, so welfare is higher. Since this argument holds for any such period
t, welfare under (o,f) must be at least as high as it is under (o¢2,f®), where

all revenue is raised through the distortionary labor tax. Q.E.D.

In the next proposition--which is this paper's main result--we
characterize the conditions under which an arbitrary sequence of allocations
and policies is sustainable. The proof uses a modified version of the autarky

plans, which we call the revert-to-autarky plans. (For those familiar with

Abreu 1988, it will be clear that these plans are related to Abreu's optimal

simple penal codes.) For an arbitrary sequence (w',X'), the revert-to-autarky

policy plans and allocation rules are denoted of and f'. The policy plan of

1 1 - 1 1 1 r -— 1
is defined as follows. If hy 4 = (“O’“1""’“t—1)’ then Gt(ht-1) = mg. For
all other histories, revert to the autarky tax rule of Lemma 2. Define the

revert-to-autarky allocation rules f¥ as follows. If he ¢ =
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1t r - s ] r
(ﬂo,ﬂ1,...,ﬂ£_1), let f1t(ht-1) = Kqp. For all other histories let f1t(ht—1)

as specified in Lemma 2. The second-stage

be the autarky allocations x?

allocation functions are defined similarly. We then have

Proposition 3. Sustainable OQOutcomes. An arbitrary pair of se-

quences (m,%) is the outcome of a sustainable equilibrium if and only if (i)
the pair (w,x) is a competitive equilibrium at date 0 and (ii) for every t,

the following inequality holds:

T ,S-t d 8 a
sgts Uleggreyg Bg) 2 Uky) « 75 U7, (16)

where Ud(k,) is defined in (15).

Proof. Suppose, first, that (=,x) is the outcome of a sustainable
equilibrium (o,f). Sequential rationality by consumers requires that (w,x)
maximize consumer welfare at date 0. Sequential rationality by the govern-
ments implies that (w,x) satisfies the government's budget constraint at date
0. Thus, (m,x) is a competitive equilibrium under commitment. Next, at time
t, given a history h,_4, a deviation to the plan ¢ defined in Lemma 3 is
feasible. Under this deviation, the time-t utility is Ud(kt), as defined in
Lemma 3, and for any s > t, Lemma 3 guarantees that the time-s utility is at
least U®. Clearly, then, the utility of the government must be at least as
large as the right side of (16) for every period t. Thus conditions (i) and
(ii) hold.

Next, suppose some arbitrary pair of sequences (w,x) satisfies (i)
and (ii). We show that the associated revert-to-autarky plans (o', ") consti-
tute a sustainable equilibrium. Consider histories under which there have
been no deviations from = up until time t. Since (w,x) is a competitive

equilibrium at date O, it is obvious that its continuation from time t is
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rational for consumers. Thus, sequential rationality for consumers holds for
such histories. Consider the situation of the government. For any deviation
at time t, the discounted value of utility from time t + 1 onward is given by
the second term on the right side of (16). Recall that the policy plan o was
constructed to maximize time-t utility for any ky. Thus, faced with such a
history, the maximal utility attainable under any deviation by the policymaker
at t is simply the right side of (16). Hence, given that the assumed inequal-
ity holds, then sticking with the specified plan is always optimal.

Now consider histories for whiech there has been a deviation before
time t. The revert-to-autarky rules (or,fr) specify autarky from then on-
ward. Clearly, the autarky allocations are .rational for consumers. Finally,
- faced with .the autarky allocation rule, it is optimal for the government to

choose the autarky policy. Thus, (Gr,fr) is a sustainable equilibrium. Q.E.D.

Proposition 3 completely characterizes the conditions under which an
arbitrary sequence of policies and allocations is sustainable. In particular,
the proposition gives necessary and sufficient conditions for a date-0 compe-
titive equilibrium to be the outcome of a sustainable equilibrium. It is
worth noting that some competitive equilibria cannot be the outcome of any
sustainable equilibrium. Indeed, any equilibrium that generates lower utility
than autarky cannot be a sustainable outcome. For instance, consider an equi-
librium with the tax on capital identically equal to one and with the tax on
labor inefficiently high (for example, let the tax on labor be on the far side
of the Laffer curve). Clearly, this equilibrium generates lower utility than
the autarky equilibrium and, thus, 1s not sustainable. Notice that this
equilibrium cannot be sustained for any discount factor in the unit interval.

It follows from Proposition 3 that if an outcome (w,x) is sustain-

able for some discount factor, then it is sustainable for a larger discount
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factor. A more interesting result also follows: namely, if the discount
factor is sufficiently high, the Ramsey outcome is sustainable. Formally, we

have

Proposition 4. Sustainability of Ramsey Allocations. There is some

discount factor 8 € (0,1) such that for all 8 € (8,1) the Ramsey allocations

are sustainable.

Proof. From Proposition 3 it suffices to show that the inequality
(16) holds for the Ramsey allocations. Recall from Proposition 1 that in the
one-period model, the level of utility under commitment is Uf. For the infi-
nite horizon model, the utility under.the Ramsey equilibrium is. the discounted
sum of these numbers Uf.’ Recall from Proposition 2 that in the one-period
model, the level of utility under autarky is U8, For the infinite horizon
model, the utility under autarky is the discounted sum of utilities. Thus, to
prove the result it suffices to verify the inequality

£

U d,,f B a
E— > Uk ) + T3 u=.
Rearranging terms gives
—B [vfe?] = [ulah)-ut). (17)

1 -8

From Lemma 1, the left side of (17) is strictly positive. Thus, there is
some B strictly less than one such that this inequality holds for all B 2 B.

Q.E.D.

Two remarks about Propositions 3 and 4 are warranted. First, it is
important to emphasize that in the revert-to-autarky equilibrium, consumers do
not "punish" the government when it deviates; rather, they choose the aubtarky

allocations because, taking the future aggregate allocations and policies as
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beyond their control, it is optimal to choose those allocations. Second, in
these propositions, we develop conditions under which an infinite sequence of
specified outcomes can be sustained by an equilibrium. A separate question is
whether or not some specified discounted value of utility can arise in an
equilibrium. For instance, from Lemma 2 it follows that for any discount
factor 8, the autarky utility Ua/(1-6) is sustainable. From Proposition 3 it
follows that for a high enough discount factor, the Ramsey utility Uf/(1-B) is
sustainable. One might wonder if any utility between the two is sustain-
able. Or, to rephrase the question more precisely: Given any number U sat-

f, is there some discount factor such that U/(1-8) is the

isfying B cu<u
date-0 utility level of some. sustainable equilibrium? Clearly, by considering
an equilibrium that alternates in an appropriate fashion between the autarky
and the Ramsey allocations and by choosing the discount factor to be high

enough, any such utility level can be sustained.

V. An Example
We present an example to illustrate four features of sustainable outcomes and
their associated utility levels that follow from Propositions 3 and 4. First,
for low enough values of the discount factor, the only sustainable outcome is
autarky. Second, if a certain outcome is sustainable for some discount fae-
tor, then it is sustainable for a larger discount factor. Third, for large
enough values of the discount factor, éhe Ramsey outcome is sustainable.
Fourth, for large enough values of the discount factor, all utilities between
autarky and Ramsey are sustainable.

We focus on stationary outcomes--namely, outcomes (=,x) for which T
and x, are independent of t. For such outcomes the inequalities in (16)

reduce to the single inequality
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U(e,+ey,8) 2 (1-8)0%(k) + gu®. (18)

In terms of characterizing the set of utilities that satisfy (18), it suffices
to consider outcomes in which 8 = (R-1)/R, in which the tax on labor is set
optimally, and in which k takes on all values in [0,w]. For any k, let U(k)
denote the maximized value of utility under such an outcome. For any discount
factor 8 in [0,1], let E(B) be the set of stationary sustainable utility

levels; that 1is,
E(8) = {U(k)] U(x)2(1-8)0%(K)+6U®, ke[0,u]}. (19)
Let the utility function be

Ul +e,,8) = (e vey)®ey(Z-2)%]"/* (20)

and let o« = -0.3, vy = 1.2, 2 = 100, w = 10, g = 25, and R = 2. For this
example, the set of stationary sustainable utility levels illustrates the four
features (see Figure 1). First, for 8 < 0.1, E(8) = U®., Second, E(B) < E(8')
for 8 < 8'. Third, for g > 0.1, the Uf ¢ E(g). Fourth, the 8 > 0.48, E(B) =
[v2,uf].

Finally, a rather special feature of the example is that for some
values of B--namely, B8 € [0.1, 0.48], the Ramsey utility is sustainable, but
some utilities between the Ramsey utility and the autarky utility are not

sustainable (at least with stationary outcomes).

VI. Anonymous Games

In this section we provide one rationalization of the equilibria considered in
the previous sections, but in a game-theoretic context. 1In particular, we
make precise the relationship between the equilibria of the economies with and

without commitment and the perfect equilibrium of certain games. We first



3.6F

E (0.3)

3.2}

2.6

2.4

2.2F

Fig. 1 —- The set of stationary sustainable utility levels



- 26 -

show that the Ramsey equilibrium is the unique subgame perfect equilibrium of
a game with commitment. More important, we then show that the set of sustain-
able equilibria correspond to the set of symmetric perfect Bayesian equilibria
of a game with no commitment. (For related work, see Atkeson 1988.)

In the economies considered earlier, we modeled private agents as
behaving competitively, in the sense that they assume policies are unaffected
by their individual decisions. We capture this feature in a game by using two
assumptions. First, we assume there is a continuum of agents. Second, we
assume individuals observe only their own decisions and aggregate outcomes. A

game with this feature is called an anonymous game (see Green 1980, 1984).

A. General Setup

‘There is a continuum of private agents, represented by Lebesque measure A on
the interval [0,1], and a player called the government. A policy for the
government is a pair of tax rates m = (8,1) with 0 < &,t < 1. An action
profile for private agents is a pair of measurable functions x = (k,%): [0,1]
> [0,w] x R+. We denote the implied action of an individual agent i by x(i) =

(k(i),z(i)). The single-period payoffs of agent i are

Vi[n,x(i),x) = Ulw-k(i)+(1-8)Rk(i)+(1-T)2(i),8(i)) + W(s,7,K,L), (21)

where K = I k(i)a(di) and L f 2(1)a(di) and where the function W equals zero
if its arguments satisfy g < 6RK + 1L but equals some large negative number,

say -M, if otherwise. The government's payoff is
V(m,x) = [ v, (m,x(1),x)a(ai). (22)

Recall that in the usual definition of a game, there are no budget con-
straints. The function W incorporates the budget constraint of the government

into its preferences in such a way that the government will seek to balance

the budget.
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In what follows, we consider infinite horizon games in which agents

maximize the discounted present value of the stream of single-period payoffs.

B. Commitment Game

In a commitment game, the government first chooses an infinite sequence of
PRSI @

policies 7 = (nt)o. A strategy for the government is thus just an infinite

sequence of policies. Private agents, having seen w, then make their deci-

sions. A strategy profile for private agents is a sequence of functions

f= (ft)g that maps policies = into action profiles x. A strategy profile f
naturally induces strategies for each agent, and these strategies take the
form ft(i,w) for every period. For private agents, the payoffs over strate-

gies are defined as
v Lt .
18" V(£ (1,m),f (m). (23)
£=0

Likewise, the payoffs for the government are
vt
P V[nt,ft(n)). (24)
£=0

We can now define an equilibrium: A subgame perfeect equilibrium for

the commitment game is a strategy = for the government and a strategy profile
f for private agents that together satisfy two conditions: (i) for each agent
i, given the strategies of other agents as specified by f and any policy ='
for the government, the strategy f(i,r') maximizes the agent's payoff, and
(ii) given the strategy profile f, the strategy = maximizes the government's
payoff. Comparing this definition with the Ramsey equilibrium of Section 111,

we immediately have

Proposition 5. Equilibrium Outcomes of the Commitment Game. The

subgame perfect equilibrium policies and allocations (w,f(w)) of the commit-

ment game are identical to the Ramsey policies and allocations.



- 28 -

The proof of Proposition 5 is given in the Appendix. The require-
ment of subgame perfection is cruecial in demonstrating this proposition.
Suppose we drop the requirement of perfection and consider Nash equilibria
instead. Recall that a Nash equilibrium is defined as above, except we re-
quire the strategy profile, say f¥*, to be an equilibrium for private agents
only at the equilibrium policy of the government, say #*. Thus, for policies
other than =* the strategy profile f¥* is unrestricted. It is easy to see that
the set of Nash equilibria is considerably larger than the set of subgame
perfect equilibria. Indeed, any competitive equilibrium (w,x) is the outcome
of a Nash equilibrium. To see this, let the strategy profile f* gpecify x if
‘the policy ¥ is chosen and specify zero .savings and zero labor supply if any
other policy is chosen. By construction of W, the government's payoff is some
large negative number for any policy other than w. Hence, it is optimal for
the government to choose wn. Then, since (w,x) is a competitive equilibrium, x
is a best response to w. Thus, (x,f*) is a Nash equilibrium with outcome

(w,x).

C. The No-Commitment Game

Next, consider a game without a commitment technology. Let the timing of the
moves be the same as in the no-commitment infinite horizon economy. In defin-
ing this game, we must be careful about what the players have observed when
they make their decisions. We formalize this by defining histories both of
the game and for the players. The history of the game is a complete descrip-
tion of all the actions chosen in the past by all players. In particular, at
the first stage of period t, the history of the game is hye = (xs,nsls<t). At
the second stage of t, the history of the game is hop = hqp v (x1t’“t)' In
contrast, the history for a player i consists only of observed outcomes. Each

individual observes only aggregate outcomes and, of course, that individual's
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own past decisions. Thus, a player i's history at the first stage of period t
is hy (i) = [xs(i),Xs,ns|s<t), where X = ] x,(1)a(di).  The history for
player i at the second stage is similarly defined. The other player, the
government, observes only aggregate outcomes. A history for the government at
time t is H = (Xs,wsls<t) U Xqpe

Players' histories correspond to information sets in the obvious
way. For example, player i's history h1t(i) at time t corresponds to the
information set consisting of all histories of the game h,. consistent with
h(i). More precisely, an individual history hy (1) = (xs(i),xs,nsls<t)
corresponds to an iIinformation set consisting of all histories h%t =

- . oy L _ . . _

(xs,ns|s<t) that satlsfy‘xs(l) =z xé(i), Xy = f Xé(l)l(dl), and LN n; for all
s <. t. From now on we .identify information sets with histories in this way.

Consider, next, the strategies for the players in the game. A
strategy for the government is a sequence of functions o = (ct):_O which, for

each t, maps government histories Hy into policies 7. A strategy profile for

private agents is a sequence of funetions f = (f1t’f2t):=0 which, for each
stage, maps histories of the game into action profiles. A strategy profile
naturally induces strategies of the form f?t(i’h1t) and f2t(i’h2t) for each
agent. To be consistent with our informational restrictions, we require that
for each player i, the strategies f1t(i") and fzt(i,-) depend only on indi-
vidual histories. [Technically, we require that ft(i,-) be measurable with
respect to the o-algebra generated by the individual histories.] Such pro-

files will be called anonymous strategy profiles.

Payoffs for the players are naturally defined from the outcomes that
the strategies induce. For example, the payoff for player i at time t, given

a history of the game hyg, 1s

-t .
g® V.(ws,xs(l),x

i )5 (25)

) =
1t S

Wit(c,f(i),f;h s

([ ]

t
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where the future actions are induced from h4 by f and o. The payoff for the

government at time t, given a history of the game hy, is similarly defined:
W (0,f3n.) = ztss‘t V(n £ ), (26)
S=

where the future actions are induced from hy by f and o.

Now we want to define some type of perfect equilibrium for this
game. One approach would be to consider subgame perfect equilibrium. Given
the informational restrictions, however, the only proper subgame is the origi-
nal game itself; hence, any Nash equilibrium is subgame perfect.5 An alter-
native is to consider a type of Bayesian equilibrium. (See, for example,
Fudenberg and Tirole 1988.)

A Bayesian equilibrium consists of strategy profiles together with a

sequence of probability distributions. For every information set there is a
probability distribution over histories of the game consistent with that
information set. Let “(h1t|h1t(i)) denote a probability distribution over the
histories of the game h,. that are consistent with the information set associ-
ated with player i's first-stage history h1t(i). Likewise, let u(ht{Ht) and
u(h2t|h2t(i)] denote probability distributions over a government information
set and over a player i's second-stage information set. Let u denote the
collection of these probability distributions. Given some collection of
probability distributions u and strategies o and f, we can use (25) to write
the expected utility of player i at the information set associated with his-

tory h1t(i) as
/ Wit(o,f(i),f;h1t)du(h1t|h1t(i)).

We use (26) to define the expected utility for the government at the informa-

tion set associated with a history Ht as
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) W, (a,f35h, )du(hy [H).

The payoffs for players at the second-stage are similarly defined.

A perfect Bayesian equilibrium is an anonymous strategy profile f, a

government strategy o, and a collection of probability distributions u such
that (i) for each player i, period t, and history hjt(i), for j = 1, 2, the
continuation of the strategy f(i) maximizes player i's expected payoff; (ii)
for each period t and history Hp, the continuation of ¢ maximizes the govern-
ment's expected payoff; and (iii) u assigns probability one to histories of
the game along the equilibrium path.

To understand condition (iii), consider an example of a probability
distribution over an information set of the government at date 1. The history
- of the game  along the equilibrium path is h1 = Xq = f1(h10), where h10 is a
null history. This history of the game is a member of the govermnment's infor-
mation set corresponding to the history Hy = Xy = [ f1(i,h1o)x(di). Condition
(iii) requires that u assign probability one to this history, namely,
u(h1|H1) = 1, and probability zero to any other history, hi # f1(h10)’ in this
information set. Notice that condition (iii) places no restrictions on u for
histories of the game off the equilibrium path.

In the equilibria of Sections III and IV, we used a representative
agent to model the private agents. The standard interpretation of this con-
struct is that the representative agent stands in for a large number of com-
petitive private agents who act identically in equilibrium. To keep the
analysis of the game model parallel with a representative agent model, the
equilibria must be symmetric. In the commitment game it is easy to see that
all the equilibria are (almost everywhere) symmetriec, so we did not need to
impose symmetry. But in the no-commitment game there typically are asymmetric

equilibria; hence, for that game we require symmetry.
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We say (o,f) is a symmetric perfect Bayesian eguilibrium if, in

addition to satisfying conditions (i)-(iii), it satisfies two other condi-
tions: (iv) the strategies of consumers are symmetric, and (v) p assigns
probability one to symmetric histories (both on and off the equilibrium
path). To understand condition (v) consider, for example, the information set
of player i corresponding to the history h1t(i) = (xs(i),Xs,nSls<t). Condi-
tion (v) requires that u(']h1t(i)) assign probability one to the symmetric
history of the game associated with h1t(i). That 1is, probability one is
assigned to the history of the game h!, = (xé,néls(t) that for each s < t

1t
. o . ' _ . . Vs L -
satisfies TL =T, xs(j) = Xs for each j # i, and Xs(l) = Xs(l). In other
words, condition (v) requires that at any information set, player i believes
with probability one that all the other private agents have behaved symmetri-
cally in the past. Similarly, condition (v) requires the government to be-

lieve with probability one that all private agents have behaved symmetrically

in the past.

Proposition 6. Equilibrium Qutcomes of the No-Commitment Game. The

set of symmetric perfect Bayesian equilibrium policies and allocations of the
no-commitment game is the same as the set of sustainable equilibrium policies

and allocations.

Here we provide an intuitive explanation of the proposition and
relegate the formal proof to the Appendix. The essential difference between
the definitions of a sustainable equilibrium and a symmetric perfect Bayesian
equilibrium is that the latter requires rationality after histories with
private deviations, whereas the sustainable equilibrium does not even consider
such histories. The main point of Proposition 6 is that in the symmetric

perfect Bayesian equilibrium, the extra conditions imposed after such his-
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tories are irrelevant to the set of outcome paths. Part of the proof relies
on a straightforward result from game theory: Consider two equilibria whose
strategy profiles coincide for all histories without simultaneous deviations
in the past. Thé result is that these two equilibria generate identical
outcome paths. The reason is simply that in checking whether a deviation from
a candidate equilibrium is profitable, we need, by the definition of equilib-
rium, to check only deviations by a single player. Intuitively, after any
history without simultaneous deviations, no player acting alone can induce
future histories with simultaneous deviations. Thus, regardless of how we
specify the continuation equilibrium after simultaneous deviations (as long as
it is some equilibrium), we get the same outcome path.

In our anonymous game, the only deviations by private agents that
can influence the future behavior of other private agents or the government
(by affecting their information sets) are ones in which a positive measure of
agents deviate simultaneously and change the aggregate outcomes. By this
result we can ignore such deviations, in the sense that no matter how we fill
in the continuation equilibrium after such histories, we get the same outcome
path. Moreover, given that no single private agent's deviation can affect the
payoff or the information sets reached by other agents, we can ignore single
deviations by private agents. Combining these results and using the defini-
tions of sustainable outcomes and symmetric perfect Bayesian outcomes, the
result follows.

Four factors-—perfection, symmetry, anonymity, and continuum of
players--all play crucial roles in the proof of Proposition 6. First, for
essentially the same reasons as in the commitment game, the set of Nash equi-
libria is much larger than the set of perfect equilibria. Second, the set of

perfect Bayesian equilibria is larger than the set of symmetric perfect Baye-
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sian equilibria. For example, since consumers are indifferent among all
saving levels when (1-8)R = 1, we can have asymmetric equilibria where some
consumers save all of their endowment and others save none. Furthermore, the
assumption that the probability distributions assign probability one to sym-
metric histories is important. Without it, the government's strategies off
the equilibrium path are affected, and consequently the set of equilibria can
be larger.

The third factor, anonymity, is somewhat more subtle. Suppose, for
example, that private agents can observe each other's actions. We can show
that for sufficiently little discounting, it is possible to support. the equi~
librium allocations obtained with lump-sum taxation. We support these equi-
librium allocations, the so-called command optimum allocations, using certain
trigger strategies. These strategies specify that in every period, agents
save their entire endowment and supply the amount of labor specified by the
command optimum--as long as all agents have chosen these actions in the
past. If any player deviates, the strategies specify that each agent chooses
the worst sustainable equilibrium allocations. With sufficiently 1little
discounting, the gains from deviating are outweighed by the future losses, so
no agent will deviate. Notice that while no single private agent has any
effect on current aggregate outcomes, the fact that each agent's actions are
observable means that a deviation by a single agent can trigger a move fo a
"bad" equilibrium. Our restriction that actions are unobservable and our
assumption that there is a continuum of agents together imply that a single
agent can deviate without being detected by any other player in the game. In
our game, these types of trigger strategies are inconsistent with the informa-

tion structure.



- 35 -

Fourth, notice that the type of game set up here is quite different
from the standard repeated oligopoly game of Friedman (1971), as well as the
more general class of repeated games analyzed by Fudenberg and Maskin (1986)
and Abreu (1988). Their games have a finite number of players with standard
information structures. In contrast, our game has one large player and a
continuum of small anonymous players. Such a structure does not fall into the
class of games analyzed by those authors, and their results do not directly
apply. Of course, they also do not directly apply to sustainable equilibrium
either. The essential difference is that in the game, our private agents are

anonymous (or, in the sustainable equilibrium, they are competitive).6

ViIi. Conclusion

We wrote this paper to address four related questions:

e Is it possible to build a simple general equilibrium model in which
private agents are competitive, in which the government maximizes
the welfare of these agents, and which exhibits trigger-type equi-

iibria?

s If so, precisely what is the equilibrium concept; in particular,

what are the decision problems of private agents?
* Is it possible to characterize all the equilibria?

e How is the notion of time consistency related to standard notions

of perfection in game theory?

We analyzed these questions in a variant of Fischer's taxation model. We
developed an equilibrium concept in which private agents are competitive and
in which trigger-type equilibria are possible. We characterized the equilib-
rium outcomes by a pair of simple conditions. And we showed the equivalence

between sustainable outcomes and the symmetric perfect Bayesian equilibrium

outcomes of an appropriately defined anonymous game.
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We believe that our results will readily generalize to a wide vari-
ety of models. For some preliminary work in that direction, see papers by

Chari and Kehoe (1989) and Chari, Kehoe, and Prescott (1989).
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Appendix

Proof of Proposition 5

Actually, to be technically precise the proposition should say that the real-
ized allocations in the subgame perfect equilibrium, say x, coincide with the
Ramsey outcomes, say x¥, almost everywhere [in the sense that for every t, the

measurable functions xt(i) are constant and equal to the scalars x% up to some

set A, that has a Lebesque measure of zero].

Proof. We show that the equilibrium action profiles of consumers in
the game coincide (up to sets of measure zero) with the Ramsey equilibrium
allocation function. It is then immediate that the government's choice is the
same in both environments. Note that for any policy = such that Gt * Gf, all
consumers make the same decisions in the game as in the economic environ-
ment. Suppose, for some t, Gt = Gf and a measurable set of consumers choose
to save less than w. Using the same argument as in Proposition 1, the govern-
ment can increase its utility by choosing a slightly lower capital tax rate
and by raising the rest of the needed revenues from labor taxation. There-

fore, the equilibrium action profiles coincide with the Ramsey equilibrium

allocation function. Q.E.D.

Proof of Proposition 6

To establish Proposition 6, we use a simple lemma which establishes that the
set of strategies and beliefs (the natural analogues of the autarky policy
plans and allocation rules) is a symmetric perfect Bayesian equilibrium. In
the proof of Proposition 6, we only use this lemma in cases where we construct
a continuation equilibrium after histories with simultaneous deviations.
Throughout this section we identify histories with information sets in the

obvious manner.
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The autarky strategies and beliefs (ca,fa,ua) are defined as fol-

. . a .
lows. For any history Hy = (Ht-1’X2t-1’X1t) with Xy = K, let o (Ht) specify
the tax policies that solve (15), with ky replaced by K.. For any history
hy (i), let f?t(i,h1t(i)] specify zero savings. For any history ho (1) with
%qg(1) = ke (1), let fgt(i’th(i)) specify the value of labor that solves (14)
with k. replaced by kt(i). For any information set, let u? assign probability

one to the appropriate symmetric history of the game.

Lemma. The autarky strategies and beliefs (¢2,f%,u®) constitute a

symmetric perfect Bayesian equilibrium.

Proof. We first verify condition (i): optimality by consumers.
Consider the consumer's first-stage problem after some history h1t(i). The
consumer expects the government to set the capital tazes according to
Ga(Ht). Since sa(Ht) solves (15), we know it equals min(g/RK,1). Since, by
assumption, g > (R-1)w, it then follows that [1—6a(Ht))R < 1. Thus, it is
optimal for the consumer not to save. Next consider the consumer's second-
stage problem after some history h2t(i). It is eclear that this consumer's
second-stage action has no effect on the individual's future payoffs. Thus,
the consumer's problem reduces to the static problem of maximizing current
utility given kie(i), 1, and 8, - By construction, the solution is
fgt(i,th(i)).

Now consider condition (ii): optimality by government. Faced with
a strategy profile 2, nothing the government does at t influences its payoffs
from t + 1 onward. Thus, the government's problem reduces to a static problem
of maximizing current utility given the current history. By construction, ua
assigns probability one to the symmetric history of the game in this informa-

tion set. Thus, the problem of the government reduces to (15) which, by

construction, is solved by ca(Ht).
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Next, by construction, conditions (iii)-(v) are satisfied. Hence,

(oa,fa,ua) is a symmetric perfect Bayesian equilibrium. Q.E.D.
Using this lemma, we can now prove Proposition 6.

Proof. Suppose (o,f) is a sustainable equilibrium with outcome
(v,x). We construct a symmetric perfect Bayesian equilibrium (;,f,a) that has
the same outcome. We consider two kinds of histories in the game. First, we
consider histories of the government, H = (wé,xs | s<t), that satisfy Xqg =
f1s(hé_1), Xog = fzs(h;) for all s < t and for all h; = (“6""’“é_1)’ Such
histories are histories with no simultaneous deviations by consumers relative
to the sustainable equilibrium (o,f). For such histories, let ;t(Ht) =
Ut(hé-1)' For all other histories, let ;t(Ht) = ai(Ht), as defined in the
above lemma. The consumer's strategies E are constructed from the alloecation
rule f in the sustainable equilibrium, and the autarky strategies % are con-
structed analogously. [A minor detail is that we set %Zt(i’th(i)) equal to
the decision that solves (14), with k. replaced by xq(1) for all histories
hzt(i)'] The construction of ; is obvious.

For histories with no simultaneous deviations, no player can profit-
ably deviate from (;,%), since (o¢,f) is a sustainable equilibrium. For all
other histories, no player can profitably deviate from (;,§) since from the
above lemma, (ca,fa,ua) is a symmetric perfect Bayesian equilibrium. By

A A A

construetion, (o,f,u) satisfies conditions (iii)-(v) of the definition of such
an equilibrium. Therefore (8,%,;) is a symmetric perfect Bayesian equilib-
rium.

The converse is immediate, since a symmetric perfect Bayesian equi-

librium requires optimality for all histories, whereas a sustainable equilib-

rium requires decisions to be optimal only for histories with no deviations by

consumers. Q.E.D.
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Notes

1This algorithm does not adequately impose sequential rationality
when there are multiple competitive equilibria associated with a given pol-
iey. As will become clear, our proposed definition of equilibrium can address
this problem.

2The difficulty is in modeling the behavior of private agents in the
game so that the equilibrium outcomes are the same as the competitive equilib-
rium outcomes. In addition, the particular set of equilibrium outcomes de-
pends on seemingly small changes in the structure of the game. (These issues
are discussed in Shubik 1982,)

3The value of this utility function coincides with each consumer's
utility level when all consumers choose the same actions. In what follouws, we
consider symmetric equilibria. Alternatively, the government can be thought
of as maximizing the sum of consumers' utilities. For the latter approach,
see Section VI.

qNote that we have defined the government's choice as a pair of
numbers but the consumers' second-stage allocations as a function. Since the
government's optimal policy varies with the first-stage decisions of consum-
ers, why don't we define the government's choice as a function of first-stage
decisions? Indeed, in an earlier version of this paper we defined sustainable
equilibrium precisely that way. It turns out, however, that we don't need to
define the government's optimal decision for all first-stage outcomes, because
no single consumer perceives that the government will change its policies if
that consumer individually changes a decision. However, the government per-
ceives that its poliey choices will alter second-stage decisions. Therefore,
consumers' second-stage decisions must be described as funetions, whereas the
government's decision is described as a pair of numbers. (Also, see Section

VI, where we show that deviations by consumers can be ignored in a game.)
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It should be clear that a large number of rather bizarre (subgame
perfect) Nash equilibrium outcomes exist for this game. Thus, it is not quite
precise to say that dynamic consistency is equivalent to subgame perfection.

®In particular, Fudenberg and Maskin (1986) show that with suffi-
ciently little discounting, any vector of average payoffs that is better than
mutual minimax can be supported by a perfect equilibrium. In our model, this
is not true. By normalizing U(w,0) to be zero, it is clear the the mutual
minimax payoffs are -M. (Each player saves nothing and doesn't work, and the
government cannot meet ifs budget constraint.) In our model, regardless of
the discount factor, no average utility that is lower than autarky (some
.positive number) .can be supported. .The key difference, of course, is that
here private agents are anonymous (or competitive). (Technically, our model

doesn't satisfy Fudenberg and Maskin's "full-dimensionality" condition.)
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