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ABSTRACT

Recent advances in duality theory have made it easier to discover rela-
tionships between asset prices and the portfolio choices based on
them. But this approach to arbitrage-free securities markets has yet to
be extended and applied to economies with transactions costs. This
paper does so, within the context of a general state-preference model of
securities markets. Several applications are developed to illustrate
the nature of the theory and its potential to resolve a host of issues
surrounding the effects of transactions costs on securities markets.
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those of the Federal Reserve Bank of Minneapolis or the Federal Reserve
System.



What effects do transactions costs have on the structure of
asset prices, the nature of securities trading, and the types of secu-
rities issued? Can the corpus of financial theory be modified to
readily address these questions? To find an answer to these questions,
this paper reexamines one of the major developments in financial theory
during the past 25 years: the discovery and application of linear valua-
tion operators, which govern relative asset prices in arbitrage-free
economies.

These operators, also dubbed state price measures or equiva-
lent Martingale measures, are typically used in two ways. First, they
are used to establish relationships among asset prices, which follow
from the seemingly innocuous assumption that markets eliminate arbitrage
opportunities. For example, with the additional assumptions of complete
markets, no short sales constraints, and no transactions costs, their
use yields simple proofs of such results as the Modigliani-Miller
Theorem, the spot-futures parity relation, and the put-call parity
relation of options pricing. Second, under these assumptions, the
valuation operator is unique, in which case it is represented by the
familiar normalized, Arrow-Debreu state prices. As such, via the so-
called duality approach, the operator can be used to simplify a trader's
consumption-portfolio choice problem by decomposing it into two, often

simpler, problems:

1. the choice of a utility maximizing, state-dependent con-
sumption plan among those feasible at Arrow-Debreu prices.
2. the calculation of a trading strategy to guarantee the

attainment of this consumption.1



In recent years, He and Pearson (1988a,b), Pagés (1987), and
related papers have extended this duality framework to incorporate the
effects of incomplete markets and short sales constraints. This is
achieved by forming a dual minimization problem whose solution, called a

minimax measure, provides the analog of the normalized Arrow-Debreu

prices in problem 1 above.

In this paper, this duality framework is modified to inelude
the important effects of transactions costs. Adopting the representa-
tion of transactions costs effectively used by Garman and Ohlson (1981),
a dual problem is developed whose solution is a minimax measure for the
portfolio choice problem with transactions costs, incomplete markets,
and short sales constraints in a finite horizon, discrete time set-
ting. The nature and utility of the duality approach are made evident
by a number of applications in static finance theory. Finally, utiliz-
ing a format adopted by Breeden (1987), the last section generalizes the
single-period results to the familiar finite horizon, discrete time,
event-tree model. Future work will develop applications of the multi-
period results to guestions involving the effects of transactions costs

on securities trading.

I. A One-Period Model
A standard, one-period, state-preference approach is
adopted.2 Traders are endowed with e units of a single consumption good
¢ at either the beginning of the period, the end, or both. Uncertain
states drawn from a set @ = {u;,...,u,} determine both end-of-period
endowments (if any) and marketed asset payoffs. There are N primary
assets available for trade at the beginning of the period; asset i pays

Xi(mj) of the consumption good to the buyer from the seller when state j



occurs at the period's end. Following Garman and Chlson (1981), non-
negative transactions costs incurred in trading assets are paid to third
parties, are proportional to the number of units traded, and are allowed
to differ across assets and across states. In addition, transactions
costs incurred may differ when buying than when selling, and they may
also differ between the beginning of the period (when trading takes

place) and the end of the period (when payouts are made).

Table I

Transactions Costs Per Unit Traded

Transaction Costs Beginning of
Per Unit of Asset i: Period End of Period
Bought at beginning T; t;(mj)
Sold at beginning T, ti(mj)

Table I summarizes the notation used for the various possi-
bilities. To clarify matters, let 6; denote the nonnegative number of
units of asset i bought at the beginning of the period. This incurs a
beginning-of-period transactions cost of e;T;, which must be paid to the
agents brokering the transaction. The ftotal purchasing cost is then
e;T; + e;Pi, where P; is the asset's price, which is paid to the
seller. At the period's end in state w;, this purchaser must pay
e;t;(wj) to close out the position, and receives asset proceeds of

B;Xi(w ). A seller of e; units of the asset incurs a beginning-of-

J
period transactions cost of BET; and an end-of-period transactions cost
of egt;(mj) when the short position is closed. The inability to sell

asset i short can then be modeled by requiring e; = 0. Without loss of



generality, we assume that the last L assets can't be shorted.
A trader's feasible consumption by asset trading must then

satisfy the following condition.

DEFINITION 1: The bundle (co,c) is in the feasible consumption set

C(eo,e) if and only if there exists 6 satisfying

c.-e I 0
() o2 (2 mma (55, ) o2 g

where a subscripted I is used to denote the identity matrix of sub-

seripted order, and
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The first inequality in (1) requires that the beginning-of-
period consumption ¢, not exceed beginning~of-period endowment €qs Dlus
any beginning-of-period revenue generated by short sales, minus any
costs of taking long positions and ftransactions costs incurred in all
positions. The other inequalities similarly constrain end-of-period

consumption in each state after all positions are closed.



A trader's portfolio-choice problem would then be to solve
max U(co,c) subjeet to (1) (2)
0
where U is always strietly inecreasing in all of its arguments.
Any condition necessary for (2) to have a solution must also
be necessary for any equilibrium notion in which traders solve (2). The
following familiar, no-arbitrage property of P(T) and A is such a condi-

tion.

DEFINITION 2: There are no arbitrage opportunities when there are no 6

satisfying

Hv
o

(K%B) 030 aa(h; Jo ®

A glance at (1) shows that the existence of 6 satisfying (3)
would permit consumption in excess of endowment. By choosing an arbi-
trarily large number A > 0, the portfolio A6 would then provide arbi-
trarily large feasible consumption, and a solution to (2) thus would not
exist.

For the case without short sale constraints, Garman and Ohlson
(1981, p. 274) point out that Tucker's Theorem of the Alternative (Man-
gasarian (1969), p. 29) could be used to provide a dual representation
of the no-arbitrage condition (3). This dual representation demon-

strates the existence of a strictly positive, state price vector useful

for bounding asset prices. To see this, Tucker's Theorem states that

1 1
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there is no 6 satisfying (3) if and only if V ,...,V;) > 0 and

2 V2 V2
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o) |5 ¥ =o. (1)
N-L
Divide (4) by Vé > 0, and define scalars q; = V}/Vé > 0,
. 2 .1 . 2 1
j=1, ..., k; Wy = V.l/V0 g 0, i =1, ..., N; and u; = VN+i/V0 g 0,

i=1, ..., N-L. Substituting these scalars into (4) and defining
state price probabilities Qj = qj/2§_1qj yields the following analog of

Garman and Ohlson's Proposition 2.

THEOREM 1. There are no arbitrage opportunities if and only if there

v

exist W, >0, i=1, ...y Nj u;

2 i2 0, i=1, ..., N-L; and strictly

positive probabilities Qj, j=1, ..., k satisfying

k
Y (X () - ti(w)]Q, +
. E [X.-t.
P 4 r J+w.zQ[11]
i i 1 +r i 1+r
;I ()]
X.(w.) + £.(w.)|Q. -
P, - T, = J=1 - ) ) -u, < EQEE}iEil
i i 1 + r i 1+r
for i =1, ..., N-1L (5)
5 “w )]
X.(w,) - t.(w.)|Q. +
KPR S it J E.[X-t.]
P, + T = J=1 + W, > Q- i
i i 1 + r i 1+r

for i =N-L+1, ..., N

where the riskless discount factor 1/(1+r) = 2?=1qj denotes the price of
a hypothetical, riskless asset paying 1 unit in all states without
fransactions cost. - EQ[~] denotes the mathematical expectation with
respect to Q.

The probability measure Q is analogous to an equivalent Mar-

tingale measure because it relates (net of transactions cost) asset



payoffs to asset prices via an expected discounted value operator. But
here, with transactions costs paid teo third parties, there are error
terms w; and u; in the cum-transactions cost price to payoff relation-
ships.3 When positive, these error terms cause the expected discounted
value operator to underestimate the beginning-of-period cost of buying
an asset and to overestimate the net revenues earned from selling it
short.

To interpret these error terms, consider a trading strategy
long 1 unit of asset i and short 1 unit of asset i. Using (5), subtract

Py - T] from Py + T; to find the expression

t(m)+t(m))
L Qg = Wy + 1. - (&)

(THT7) + Lz{
1 1 .=

The first term in (6) is the beginning-of-period portfolio
transactions cost, while the second term is the expected discounted
value of end-of-period transactions costs (with respect to the probabil-
ity measure Q). Thus, W; + u; 1is the round-trip transactions cost of
the portfolio valued at state prices. Because both w; and u; are always
nonnegative, any asset that can be traded without transactions costs
will have both w; and u; equal to zero. In other words, there will be
no error terms in its pricing equation.

Rearranging the inequalities in (5) yields bounds for the

deviation of asset prices from their Q-exzpected discounted payoffs:



-(1} + EQ[t;]/(1+r)) < By = Eg[X,1/(14r) ¢ T] + EgI71/(1+r)

for i =1, ..., N-1L
(7)
(17 + E[tT1/(14r)) < P, - E.[X.1/(14r)
17 7Q =i QM

for i=N-~-L+ 1, ..., N,

From (7), it is easy to see that if there were no transactions
costs incurred in trading the first N - L assets, Q would be an equiva-
lent Martingale measure for pricing assets spanned by them. If, in
addition, there were no short sales constraints, i.e., L = 0, then Q
would be an equivalent Martingale measure for all marketed assets. This
special case of Theorem 1 has been developed by Green and Srivastava
(1985) using more complex separation arguments. Finally, if in addition
there are N = k linearly independent assets (i.e., complete markets),
the equations P; = EQ[Xi]/(1+r) implicitly define a unique measure Q¥ of
normalized, Arrow-Debreu state prices.

In fact, it is possible to strengthen Theorem 1 using the
following proposition, which is critical to applications developed

later.

PROPOSITION 1: No ftrader would take simulfaneous long and shorf posi-

tions in any asset i subject to transactions costs.

Proof: Suppose not, i.e., suppose there exists 1 < i £ N - L such that
e; > 0 and 91 > 0. Consider an alternative trading strategy produced by
replacing the simultaneous long and short position with the net position

e; - e;. By economizing on transactions costs, the alternative strat-

egy's beginning-of-period cost is no more than the hypothesized strat-



egy's cost, and it will actually cost less when either T; or T; is
positive. Yet, the alternative strategy's state-dependent payoff is
never less than the hypothesized strategy's payoff, and it will actually
be more if either t;(wj) or t;(wj) is positive for some j = 1, ..., k.
Any trader with preferences strictly increasing in consumption will
prefer the alternative strategy, contrary to the hypothesis that simul-
taneous positions are held.

Partition the portfolio 6 = (8%,6”). Proposition 1 asserts
that there is no loss in generality in restricting feasible trading
strategies to those satisfying gte0” = 0, where "-" denotes the inner

product. These are called orthogonal strategies.

The proof of Proposition 1 shows that the existence of a
nonorthogonal arbitrage opportunity implies the existence of an ortho-
gonal arbitrage opportunity (i.e., substitute net positions for simul-
taneous ones). The contrapositive of this is that there are no ortho-
gonal arbitrage opportunities when there are no nonorthogonal ones. But
the converse may not be true: There may be orthogonal arbitrage oppor-
tunities when there are no nonorthogonal ones. This prospect permits us
to sharpen the criteria by searching for the existence of separate
solutions to subsystems of (5) defined by the orthogonality restriection.

More specifically, examine subsystems of N - L equations
chosen from the first 2(N-L) equation in (5), in which exactly one of
each pair (wi,ui) occurs. For example, when N = 2 and L = 0, there are

four, or 2N‘L, such subsystems whose left-hand sides are
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These are the subsystems dual to orthogonal trading strategies. Let w
form=1, ..., 2N-L denote the set of all triples, (Q,w,u) & unit k - 1
simplex X RE X Rf, which solves the mth subsystem. Let = denote the
set of triples solving the last L equations. The following result

sharpens Theorem 1.

THEOREM 2. There are no orthogonal arbitrage opportunities if and only

if

Proof: Common to each hypothetical, orthogonal arbitrage opportunity is
the nonexistence of solutions to a subsystem of N equations consisting
of N - L equations chosen as above and the last L equations of (5).

Thus, the nonemptiness of each L is both necessary and

L
sufficient to rule out orthogonal arbitrage opportunities and, there-

fore, is also sufficient to rule out nonorthogonal arbitrage oppor-

tunities.
Theorem 2 only requires that each L @, while Theorem 1
N-L
requires that Np=1 ™m ™ L # @. The no-arbitrage criterion of Theorem 2

is weaker than that of Theorem 1. And while Theorem 2 requires one to
examine multiple subsystems, the dimension of each subsystem is smaller
than in the single system of Theorem 1.

Furthermore, some solutions for some subsystems can be
inferred by inspection of their duals. In the example of N = 2 and
L = 0 above, the first two subsystems usually won't admit arbitrage
opportunities. Strategies dual to the first listed subsystem have both

assets long, and hence, they must incur a positive beginning-of-period
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cost. By definition, these can't be arbitrage opportunities. Suppose
that both assets have striectly positive payoffs in excess of transac-
tions costs. Then the second subsystem, which corresponds to short
positions in both assets, must also have a solution because its dual has
negative payoffs in all states, and hence, it can't be an arbitrage
possibility. We depict this case in Figure 1.

In the special case shown in Figure 1, the vectors

(P +T7. P -T ) and (P —T1,P2+T ) both lie between their respective cum-

1’
transactions cost, asset-payoff columns. As such, not only is there no
arbitrage, but there exist equivalent Martingale measures, that is,
neither w's nor u's need be present in the pricing equations of (5).

However, had (P +T1,P2-‘1‘ ) lay to the right of Z, while (P -T,,P +T2)

1’
lay to the left of 21, then wy > O would enter the pricing equation for

asset 1. Had (P +T7 o) lay to the left of Z while (P +T ,P -T2)

1? 2 2
lay to the right of Z,, then w, > 0 would enter the pricing equation for
asset 2. Price vectors lying further outside the columns admit or-
thogonal arbitrage opportunities.

Although the main purpose of this paper is to develop the
theory of transactions costs, several applications of the measures
defined by (5) will be presented later in the paper, in the spirit of
Ross (1978). But to do so, we first need to develop the duality

approach to problem (2).

II. A Duality Approach to Problem (2)

As shown below, an alternative characterization of the fea-
sible consumption set (1) is possible under the maintained assumption
(3) of no arbitrage. It is this characterization that is required for
the duality approach to solving problem (2). The following modification

of a nonhomogenous version of Farkas' Theorem is needed to derive this.
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LEMMA 1: A Strictly Positive, Nonhomogenous Farkas' Theorem.
For a given p x n matrix M, vectors b ¢ R%, d ¢ RP, and a

scalar g, either
b'x > 8, Mx < d has a strietly positive solution x > 0, or (1)

i. M'y >b, d'y < 8, or
(11)

1
ii. <_g,) y 2 0 has a nonnegative solutiony > O

but (I) and (II) never both hold.

Proof: Following the general method of Mangasarian (1969, p. 32),

introduce a strictly positive scalar e and rewrite (I) as

e >0
b' x -8 >0

x>0 (1)
-Mz+ed >0

which in matrix form is

b' -8
o 1 (:) >0
I 0

where 0 is an n x 1 vector of zeroes and

(- M d) (ﬁ) > 0.

By Motzkin's Theorem of the Alternative (Mangasarian (1969),
p. 28) either (I') has a solution (:) or there exist vectors y, > 0 and

V3 2 0 satisfying
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0
¥y
1
R ¥q :
b 0 I Mt y
W2 e (2)-e
-8 1 0 : :
y11+n yg

but never both.
There are two possible forms of solution to (II'). If
1+

.y; =Y 2 Ofor j=1, ..., n

0 _ ' : p
vy = 0, then (II') requires that zi=1MiJ

and zg=1diy§ = —yl < 0, with a least one of the n + 1 inequalities
striet, i.e., _g: y ; 0.

Alternatively, if y? > 0 then divide each equation in (II') by
y? and redefine y = y/y? to obtain M'y 2 b and d'y < B. The lemma is
thus proven.

The desired alternative representation of the feasible set (1)

is the budget feasible set (He and Pearson (1988a), p. 14) defined

below:

DEFINITION 3: The budget feasible set for Q is

BQ(eO,e) = {(co,c)lEQ[c—e]/(1+r) <eg - co}.

That is, (cO,c) is budget feasible for Q if its Q-expected discounted

value doesn't exceed the expected discounted value of the endowment.

DEFINITION ii: The budget feasible set

B{e.,e) = n B.(e.,e)
0 Q:(5) ¢ °



-1 -

where Q:(5) means that the intersection is taken over all probability
measures Q satisfying (5). In other words, (cjy,c) is budget feasible if
and only if it is budget feasible for all probability measures Q satis-
fying (5).

Using Lemma 1, it is easy to show the relationship between

B(ey,e) and the feasible consumption set C(ey,e) defined by (n.
THEOREM 3. No-arbitrage implies B(eo,e) = C(eo,e).

Proof: Replace the objeets in Lemma 1 with the following objects

defined on page U:

=
"

A (t)! p:e

]
o
~
—
+
3
i

Q
o
]

-P(T)"

b=c-e B=e, -c y = 6.

Then, system (I) requires (co,c) to be budget infeasible at all prob-
ability measures Q satisfying (5). System (II(i)) requires that (cj,c)
€ C(eo,e), while system (II(ii)) requires that & is an arbitrage oppor-
tunity satisfying (3).

To show that C(ey,e) < B(eqy,e), let (ecqy,¢) e C(ey,e) so that
(II1(i)) has a solution. Then, by Lemma 1, system (I) must not have a
solution, that is, a probability measure Q satisfying (5) for which
(egsc) is budget infeasible must not exist. Thus, (ey,e) e Bleg,e).

To show that B(eo,e) c C(eO,e), let (cq,c) ¢ B(eo,e) so that
system (I) has no solution. Lemma 1 then requires that either (II(1i))
or (II(ii)) has a solution. But the assumption of no arbitrage means
that (II(ii)) has no solution. Therefore, (II(i)) must have a solution,

or (ey,c) e C(eg,e). O
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By Theorem 3, the portfolio-consumption problem (2) is equiva-
lent to problem (8):

max U (e.,c) s.t. (e,,c) € B(e,,e) = n B.(e.,e). (8)

e 0 0 0 Q:(5) Q70

The duality approach to solving (8) starts with the following

problem (9) with a single constraint, and its associated value function

V:

DEFINITION 5: The problem (Pél is

V(Q) = 22?0 U(co,c) s.t. (co,c) € BQ(eO,e). (9)

Following He and Pearson (1988b, p. 21), define

DEFINITION 6: A minimax probability measure Q¥ satisfies (5) and

argmax(Pé*) = argmax(8).

If a minimax measure can be found, then solutions to problem
(8) with an infinite number of constraints (which, by Theorem 3, coin-
cide with solutions to problem (2) with a finite number of constraints
(1)), coincide with solutions to the singly constrained problem
(Pé*). The latter, which may be much simpler to study, is one of the
main benefits of the duality approach. The term minimax is motivated by

the following theorem.

THEOREM 4. Define the dual problem to be

min V(Q). (10)
Q:(5)



- 16 -

Then Q* is a minimax probability measure only if it solves (10). If, in
addition, U is strictly concave and if Q* solves (10), then Q¥ is a

minimax probability measure.

Proof: The proof is along the lines suggested by He and Pearson (1988b,
p. 22), where there are no transactions costs. To prove necessity,
suppose Q¥ is a minimax probability measure. Then by definition
U(argmax (8)) = U(argmax(Pé*)) = V(Q*¥). For purposes of contradiction,
hypothesize that Q* doesn't solve (10), that is, a Q exists which satis-
fies (5) with V(Q¥) > V(Q), so that U(argmax (8)) > V(Q). However,
because (Pé) has only one of the constraints present in (8), U(argmax

(8)) < V(Q), which is a contradiction.

To prove sufficiency, suppose Q¥ solves (10). Let (co*,c*) =
argmax(Pé*). Add a constraint and examine the more heavily constrained

1 1 .
problem (PQ*nQ) defined by:

max U(ey,e)  s.t. (cgrc) € Bgx 0 By

If argmax(Pé*nQ) = argmax(Pé*), can be proven, then
argmax(Pé*) € BQ*nQ for the arbitrarily-chosen Q satisfying (5). Hence,

argmax(P',) ¢ n B_.(e.,e) = B(e,,e)
* s @O 0

and it must solve the more heavily constrained (8) as well. By Defini-
tion 6, Q¥ would then be a minimax probability measure, and sufficiency

would be proven. So it only remains to establish:

Lemma 2: argmax(Pé*nQ) z argmax(Pé*).
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Proof: Hypothesize, for purposes of contradiction, that this is not
so. Strict concavity of U ensures that there is at most one maximizer
to the concave program (Pé*), so that U(argmax(Pé*nQ)) < V(Q¥). If
there exists Q¥*¥* satisfying (5) for which argmax(Pé*nQ) = argmax(Pé**),
then the above inequality yields U(argmax(Pé**)) < V(Q¥*), and it contra-
dicts the theorem's supposition that Q¥ = argmin(10).

The desired Q¥¥* can be explicitly constructed. Denote the two
nonnegative, Kuhn-Tucker multipliers for the two 1linear inequality
constraints of (Pé*nQ) as ugs and UGy respectively. Because U is
strictly increasing, one of the constraints must bind, so that gener-
ically ugx *+ ¥g > 0. Let A1 = “Q*/(”Q*+“Q)’ and define the probability
measure Q¥* = 2,Q¥ + (1-14)Q. Because (5) defines a convex set of
probability measures, Q¥¥ satisfies (5). Now multiply and divide the
Lagrangian saddle point condition for (Pé*nq) by ugs + ug to show that
(argmax(P/ ),uQ*+uQ) is the Lagrangian saddle point for the concave

Q¥*nQ

program (Pé**). Therefore, Q¥* is indeed the required measure. [

Theorem U4 can be used to complete the duality approach to

problem (2). Using the notation on p. 4, I now prove Proposition 2.

PROPOSITION 2: Assuming the utility function is continuously differen-

iable, 6% = A¥/u.., where A* is a vector of Kuhn-Tucker multipliers o
tiabl * */ Q% h * i t £ Kuhn-Tuck ltipli £

(10), and gaifis the multiplier in problem (P!.), or the marginal util-
™

ity of beginning-of-period consumption.

Proof: The first-order condition for (10) is

grad .V + A(t)A*/(1+r) = O (1)

Q*
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where the first N components of A¥ are the multipliers on the con-
straints for long positions, and the last N - L multipliers are asso-
ciated with short positions. Applying the envelope theorem to the prob-

lem (Pé*), compute

gradyy V = -upe(c*-e)/(1+r) (12)
where the first-order condition of (Pé*) yields

Mo = aU/acO(c*,c*) > 0. : (13)
Substituting (12) into (11) yields

o* - e = A(E)AR/uy. (14)

Because U is striectly increasing, the feasibility constraint
(1) must be binding. Coupled with (14), (1) forces the optimal vector

of asset demands 6% to satisfy

O = A*¥/uoy (15)
and
cg = P(T)o%* + ey (16)

Analogous to the duality approach to the microeconomics of
consumer demand, the researcher is free to specify any economically
rational, indirect utility V. For example, those V leading to econo-
metrically useful functional forms for A¥ might be useful in empirical

studies.
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II1I. Asset Pricing
It is not surprising that few specific, asset pricing formulas
can be derived in a framework as general as this. The following propo-
sitions relate minimax measures to asset prices, and will be used in the

following applications section.

PROPOSITION 3: Assume that dual problem (10) is nondegenerate, that is,

it satisfies the strict complementarity conditionk that positive multi~

pliers are associated with binding constraints and that zero multipliers

are associated with nombinding constraints. Then, there exists a parti-

tion of the set {1,...,N-L} into the cells B, S, and I satisfying

+ +
Pb + Tb = EQ*[Xb—tb]/(1+r)
beB
Py = T < EqulX +t71/(14r)
P - Ty = EqelX+t21/(14r) (17)
s e S
+ +
Ps + TS > EQ*[XS-ts]/(1+r)
+ +
Pi + Ti > EQ*[Xi-ti]/(1+r)
iel

P, - T, < EQ*[Xi+t;](1+r).

Proof: Combining Propositions 1 and 2 yields the condition

AEag =0, i=1, ..., N-L. (18)

With strict complementarity, B corresponds to assets held long

with x§ > 0, S corresponds to assets held short with l§+i >0, and I

corresponds to assets not held with x? = l§+i = 0.
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The following proposition is an extension of an argument in

Varian (1985).

PROPOSITION 4: Assume that U is additively separable in ¢, and is a Von

Neumann-Morganstern expected utility over c¢. Then

_+* _+
cov“[xi ti,Q /w] + E“[Xi ti]

1+r

o

+

=3
v

) ) (19)
cov_ [Xi-i-ti,Q*/ﬂ] + Ew[Xi+ti]

1+r

o
1
~
bl
(172N

where wm is the trader's subjective probability measure over states, and

cov [-] and E [-] are the covariance and expectations operators taken

with respect to .

Proof: Solve the first order condition for the Von Neumann-Morganstern
case of (Pé*) to find an expression for Q*. Then, follow the derivation
of Varian (1985).

Unfortunately, much more restrictive assumptions are needed to
go beyond this. The only strengthening of (19), attributed to
Rubinstein (1976) and Breeden and Litzenberger (1978) by Varian (1985),
is for the case of either no transactions costs, short sales con-
straints, or incomplete markets. Thus, it is possible to show that if
all traders have the same subjective probability distribution = over
states, Q¥/7 in (19) is unique and can be replaced by some function of
aggregate consumption.

With otherwise heterogeneous agents, even this modest step
can't be achieved in the presence of any of the three previously men-

tioned market imperfections. The reason for this is the variation of Q¥
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across traders. Unless traders have identical preferences and endow-
ments, it is not generally possible to guarantee that (10) will have the
same solution for each trader. Of course, with complete and perfect
markets, there is a unique minimax measure Q* satisfying (5), which is
the only feasible point for each trader's problem (10). But outside of
this special case, restrictions on preferences and endowments must be

made to ensure that Q¥ is invariant across traders.

IV. Applications
In the spirit of Ross (1978), several applications -of the

theory are developed below.

A. Default Premia

Suppose two of the primary assets are a default-free, zero-
coupon bond and a risky bond with the same face value, F. Let D <
{m1,...,mk} denote a nonempty subset of default states for the risky
bond. The costs associated with redeeming the risky bond in default
states are assumed to be no less than those incurred in redeeming the
default-free bond. Denoting the default-free bond as asset 1 and the

risky bond as asset 2, the payoffs are

X1(wj) =F j=1, ..., k

+ + .
XZ(wj) = F, tz(wj) t1(wj) jJ£D (a1

+
XZ(wj) < F, tz(wj)

v

t;(wj) j = D.

Using (17), a minimax measure Q¥ for a trader holding a riskless bond

must satisfy

P+ T = EQ*[x1-t‘1‘]/(1+r) = F/(14r) = Epylt}1/(1+r) (42)
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while a minimax measure Q for a trader holding a risky bond must satisfy

P. o+ T

o+ Ty = Ea[xz-t;]/(1+r) = Ea[xz]/(1+r) - Ea[t;]/(1+r). (A3)

By assumption (A1), the right-hand side of (A2) is strictly

greater than the right-hand side of (A3). So

P, + T‘; > By + T; (A4)

as long as both assets are held somewhere in the economy.

That is, the cum-transactions cost of buying a default-free
bond must exceed the cum-transactions costs of buying a risky bond with
the same face value. The latter's cum-transactions cost yield to matur-
ity is thus higher, reflecting a positive default premium. Note that
this must be true regardless of the relative sizes of the transactions

costs T? and T; incurred in purchasing the bonds.

B. Modigliani-Miller Theorem

Suppose a firm must raise C dollars to finance its only ven-
ture, which will payoff f(wj). To finance the cost, the firm sells 8,
bonds with face value F per bond, while the rest is financed by issuing
8, shares of equity. Denoting the default set D = {j: f(wj) < 91F -

e1t1(mj) - 92t2(mj)}, the payoffs are

X1(wj) = F,
X2(mj) = [f(mj) - 9,F - e1t;(mj) - 92t£(mj)]/92 j£D (B1)
x1(wj) = [f(mj) - e1t;(mj> - e2t§(wj)]/e1, X2(mj) =0 jebD
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and immediately note that

e1x1 + 92x2 =P - 911:1 - 92t2. (B2)

The finaneing constraint is
C =0,(P,-T)) + 8,(P,-T,). (B3)

Assume that the firm issuing debt and equity is one of the models'

traders. Use (17) to compute
Bi(Pi-Ti) = eiEQ[Xi+ti]/(1+r) for i =1, 2 (BY)

where Q is the firm/trader's minimax measure. Add across i and use (B2)

and (B3) to find
C = EQ[f]/(1+r). (B5)

The Modigliani-Miller Theorem holds because changes in 6, and 6, don't
affect EQ[f], and therefore affect the cost of debt and equity used to
finance it. Note that this derivation isn't valid in the absence of the

assumption that the firm is a trader.

C. Project Selection Criterion

Should the firm in (B) undertake the venture with payoff f
costing C? Assume that there exists a portfolio 8 with payoff
-f = A(t)a after transaction costs are paid, meaning that -f is in the
cone generated by the columns of A(t). The revenue earned from port-
folio short sales net of all costs is P(T)g. IrCc« P(T)g, then it is
beneficial to undertake the venture because financing it by P(T)g leaves
P(T)g - C > 0 available for additional beginning-of-period consumption,

at no loss (V-V = 0) of end-of-period consumption. From (5), compute
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P(T)e

- - + +
% 0 (P,-T]) - ; 61 (P, +T])

[E AN

- - + +
; eiEQ[Xi+ti]/(1+r) - % eiEQ[Xi-ti]/(1+r) (c1)

EQ[§ 0T (X +t]) - ; 07 (X, -t])]/(1+r)

EQ[f]/( 1+r).

Thus, C < EQ[f]/(1+r) is a necessary condition for C <
P(T)se. But unlike the case of no transactions costs or short sales
constraints, it is no longer a sufficient condition for project selec-

tion. However, if some trader holds 6, then (17) yields P(T)e

EQ[f]/(1+r), so the condition is also sufficient.

D. A Simple Test For Welfare Improvement

In the absence of complete markets without transactions costs,
it is well known that the issuance of additional assets may leave some
traders worse off in the new equilibrium. Also, changes in transactions
costs and/or asset prices might occur, with unexpected welfare effects.

To investigate this, examine the effect on a single trader of
changes in P(T) and/or A(t), including the addition or subtraction of
assets changing their dimensions. Any such changes will cause the
minimax measure solving (10) to change from Q¥ to 6. Assuming a convex,

differentiable V, the change in trader welfare is
V(Q) - V(Q¥) 2 (Q-Q%)' gradQ*V. (D1)

Substituting (12) into (D1) and simplifying, a sufficient

condition for the right-hand side of (D1) to be positive is

Exlc*-e] > Egle*-e] (D2)
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or equivalently, using (11) and (15},
EQ*[A(t)e*] > Ea[A(t)e*]. (D3)

That is, the trader's welfare will definitely increase if the expected
payoff of the pre-change portfolio exceeds its expected value using the
post-change minimax measure.

This in accord with intuition. 1In states j, where traders'
need more consumption, c*(wj) - e(wj) > 0, the trader benefits when the

state price, Q;, falls. In states where the trader desires less con-

j’
sumption, c*(wj) - e(wj) < 0, the trader would like Qj to rise. This
explains the plausibility of (D2).

By (5), -P(T)' > A(t)'Q*/(1+r). Directly compute to find the

more observable, sufficient condition
-P(T)o¥* > Ea[A(t)e*]/(1+r) (DY)

that is, welfare improves if the old portfolio's initial market wvalue,
after transactions costs are paid, exceeds the old portfolio's expected

discounted value using the post-change minimax measure.

V. A Finite Horizon, Discrete Time Model
A standard, T-period, state preference approach will now be
modified (see Dothan (forthcoming), Huang and Litzenberger (1988), or
Duffie (1988)). There exists an event-tree which graphically depicts
the resolution of uncertainty over time, starting from the knowledge of
2 = {wgy...,0} at t = 0 and ending with the knowledge of the particular
state occurring at time T. Such information is common to all traders,

and is captured by the notion of an information structure.
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DEFINITION T: An information structure {ft} is a sequence of partitions

fo, ceey fT satisfying

(i) fo Q = {m1,...,mk}

(i1) ¢

T {{w1},{w2},...,{wk}}

(iii) ft+1 is finer than ft for 0 £ £t <T - 1.

(See Dothan (1990).) An event-tree corresponding to a particular infor-
mation structure is illustrated in Figure 2.

A trader's consumption and endowment vectors at each time t
must be constant in cells of ft; one says they are adapted to the infor-
mation structure. In addition, there are N assets, whose prices, divi-
dends, and/or other payoffs are also adapted to the information struc-
ture.

Finally, all transaction costs incurred in trading are adapted
to the information structure. As such, consumption, endowment, asset
payoffs, and transactions costs can be represented by vectors, with each
component corresponding to a different cell in the information struc-
ture.

Denote the number of cells in f. by ki, and let zz=0kt =
1+ - k, = K+ 1 be the total number of cells in the information
structure. Then a trader's consumption and endowment vectors (co,c) and
(eo,e) can each be represented by a K + 1 vector, whose first component
corresponds to cell 0 (at t=0). Label other components of these vectors
by numbering cells in the event-tree from top to bottom and from left to

right, as illustrated in Figure 2.
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Investment opportunities may also be represented as K + 1 vec-
tors. We adopt the following notation for trader cash flows arising

from the six conceivable occurrences listed in Table II.

Table I1

Cash Flows Per Unit Asset i Traded In Cell j > O

Transaction Cash Flow
+
Buy -[%; ()19 ]
Short Sell X, (3) - T;(j)
Sell From Holdings X,(3) - t;(j)
Cover Previous Short -[%,(D+67(9 ]
Long Position Dividend Di(j)
Short Position Foregone -D.(J)
Dividend *

To illustrate this notation, denote two investment oppor-

tunities possible in the event-tree depicted in Figure 2:

Investment Opportunity A: Buy asset 1 at t = 1 in cell 2,
collect dividends and/or other intermediate cash flows (for

example, coupons) for one period, and sell it in period 3.

Investment Opportunity B: Short sell asset 1 at £ = 1 in cell
2, forego dividends and/or other intermediate cash flows for

one period, and cover the short in period 3.
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Table III lists the cash flow vectors associated with the two

investment opportunities.

Table III

Vector Representation of Investment Opportunities

Time Cell # Cash Flow "A" Cash Flow "B"
0 0 0 0
1 1 0 0
1 2 -[x,2) + T;(2)] X,(2) - T3(2)
2 3 0 0
2 u D, (%) -D, ()
2 5 D,(5) -D,(5)
3 6 X,(6) - £7(6) -[x,(6) + £3(6)]
3 T x1(%) - tﬁ(?) é
3 : : :
3 9
3 10 é ;
i

s 00 0

3 11 X, (i1 - tj(11) -[x, (i) + t;(11)]

Clearly, there is a relatively large number of investment
opportunities. At t = O, there are T possible long positions for each
of the N assets, or one position for each possible holding perilod
through time T. In the absence of constraints, there would also be

T analogous short positions for each asset. For each asset at any time
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0< t £ T, there are T - t long positions for each of the kt cells:
Each position corresponds to buying an asset in some possible cell with
some possible holding period. In total, there are N ZE:O(T-t)kt long
investment opportunities that are possible, and (N-L) zzzo(T—t)kt short
investment opportunities that are possible, where L 1is the number of
assets the trader may not short.

In the example of Figure 2, suppose that there are N = 2
assets and L = 0 short sales constraints. Thus, there are 20 long
investment opportunities: The first six are buy-and-hold strategies at
t = 0 (three for each asset), the next eight are four buy-and-hold
strategies (two for each asset at each of the two cells at t=1), and the
last six are buy-and-hold strategies (one for each asset at each of the
three cells at t=2). Because L = 0, there are also 20 short investment
opportunities, paired with the long opportunities, as in the example of
Table ITI. The total number of investment opportunities is S.

As before, denote t = O prices and transactions costs by the
relevant case of P = T,

Let & = (8%,8”) be the nonnegative S-vector of long and short
positions. There are St =N ZE=O(T-t)kt components in 6% and S~ =
(N-L) EE=O(T‘t)kt components in 8~.

In the definition of the ~feasible consumption set (1),

redefine
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Then (1) still describes the feasible consumption set of (2), with the
S-row vector P(T) corresponding to t = O cash flows from the S invest-
ment opportunities and the K x S matrix A(t) formed from the S invest-
ment opportunity columns.

With this reinterpretation, condition (3) is also still valid,

and the calculations preceding Theorem 1 lead to the next theorem.

THEOREM 5. There are no arbitrage opportunities if and only if there
exists a strictly-positive probability Qj for each node j in the event-

tree, j =1, ..., K, such that

(i) the cost of a long investment opportunity initiated at some
node j is underestimated by the conditional, expected dis-

counted value of its future cash inflows.

(ii) the revenue from a short investment opportunity initiated at
node j is overestimated by the conditional, expected value of

its future cash outflows.

(iii) in both (i) and (ii), the discount rate r(j) depends on j,

the node where the opportunity is initiated.

To illustrate the theorem and to finish its proof, examine
investment opportunity A in Table III, which 1is initiated at node 2
(when t=1). The steps leading to Theorem 1 show

11
[x,(2) + T3]0, 3 D()Q + D (5)Qy + j26[X1(j) - £1(]e;. (20

Divide both sides of (20) by the sum of all probabilities on

its right-hand side (all probabilities attached to successor nodes of

j=2). Defining Q,/(Q+Qc+ 2}16Qj) = 1+r(2), rewrite (20) as
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X,(2) + T7(2) 2 E [D+X1-t: [§=2]/1+r(2) (21)

Q

which is the inequality promised by (i). Similarly, for investment

opportunity B, find
X, (2) - T3(2) ¢ EQ[D+X1+t; [j=2]/1+r(2) (22)

as promised by (ii).

Of course, for any strategy initiated at node 0 (at t=0), the
conditional expectation is Jjust the unconditional expectation with
respect to the measure Q.

Generalizations of the earlier one-period results are trivial
to establish. In particular, under the relatively standard assumptions
employed herein, among the measures satisfying Theorem 5 are the minimax
measures Q*, minimizing the value function V(Q) of problem (9). The
optimal multiplier vector in the dual problem (10) equals the
S-dimensional vector 6% of optimal investment opportunity shares. The

optimal consumption vector (c¥,c*) solves the single constraint problem

(Ps) -

VI. Conclusion

In the presence of transactions costs, no one will take simul-
taneous long and short positions in any single asset priced to eliminate
arbitrage opportunities. This simple proposition is the key to unlock-
ing the power of the duality approach to portfolio choice in the pre-
sence of transactions costs. Solutions to each trader's portfolio
choice problem can then be interpreted as trader-specific Martingale
(i.e., state price) measures governing the evolution of asset prices net

of transactions costs paid. Several applications show that these
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trader-specific measures play a role analogous to the measures already

developed in the absence of transactions costs.
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NOTES

'For an introduction to linear valuation operators and their
uses, see Ross (1976, 1978) or Garman (1980). Some references to the
duality approach in continuous time are Cox and Huang (1987a, b).

%See Dothan (forthcoming) or Huang and Litzenberger (1988) for
the usual development without transactions costs.

It is interesting to note that if third parties were not
involved, that is, transactions costs were always paid from the buyer to
the seller or vice versa, then w; and u; =0, i =1, ..., N, and Q would
thus be a cum-transactions cost, equivalent Martingale measure.

*See McCormick (1976, p. 33-34) for another use of strict

complementarity.
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Figure 1:
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Figure 2:

An Event-Tree
(adapted froz Dothan {fortheoming. Chapter 3))
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