Federal Reserve Bank of Minneapolis
Research Department Staff Report 133

January 1991

INDIVISIBILITIES, LOTTERIES, AND SUNSPOT EQUILIBRIA

Karl Shell Randall Wright

Cornell University Federal Reserve Bank of Minmeapolis
and University of Pennsylvania

ABSTRACT:
We analyze economies with indivisible commodities. There are two reasons for
~doing so. First, we extend and provide mnew insights into sunspot equilibrium

theory. Finite competitive economies with perfect markets and convex consumption
sets do not allow sunspot equilibria; these same economies with nonconvex
consumption sets do, and they have several properties that can never arise in
convex environments. Second, we provide a reinterpretation of the employment
lotteries used in contract theory and in macroeconomic models with indivigible
labor. We show how socially optimal employment lotteries can be decentralized
as competitive equilibria once sunspots are introduced.

The views expressed herein are those of the author and not necessarily those of
the Federal Reserve Bank of Minneapolis or the Federal Reserve System.



1. INTRODUCTION AND SUMMARY

The allocation of resources in the presence of nonconvexities can be an
important and complicated problem. Indeed, King Solomon made his name by
proposing a mechanism to solve one such problem. In this paper, we analyze
economies with indivisible commodities, with two main obje?tives. First, we
extend and provide some new insights into theories of "sunsﬁot equilibria,"”
theories that examine how extrinsic uncertainty can affect a competitive
economy’s resource allocation process and welfare properties. Second, we
provide a reinterpretation of "employment lotteries," devices that have been
used in contract theory and in equilibrium macroeconomics to allocate
resources in economies with indivisible. labor. .

In terms of its relationship to the sunspot literature, this work
continues the program of characterizing environments in which extrinsic
uncertainty plays a role. In convex economies, it is well known that: (1)
finite economies with complete and unrestricted. markets. and competitive
behavior do not allow equilibria in which sunspots matter; (2) allocations
that depend nontrivially on sunspots are never Pareto optimal; (3)
equilibria in economies without extrinsic uncertainty always reappear, once
extrinsic uncertainty is introduced, as degenerate .sunspot equilibria.1
There has been less work on nonconvex settings. Cass and Polemarchakis

(1988) show finite, competitive economies with complete, unrestricted

1See Cass and Shell (1983, 1989). It is also well known that sunspots can
matter in some infinite horizon economies, including overlapping generations
models (e.g., Shell, 1977, Azariadis 1981), and in economies with incomplete
markets (Cass 1984), 1liquidity constraints (Woodford 1986), limited
participation (Cass and Shell 1983), or imperfect competition (Peck and
Shell 1985).



markets but nonconvex production sets cannot have nondegenerate sunspot
equilibria. Guesnerie and Laffont (1987) and Pietra (1989) consider
nonconvex preferences, and do have examples with nondegenerate éunspot
equilibria but no degenerate equilibria, and show that these nondegenerate
sunspot equilibria can be Pareto optimal.

We study finite competitive economies with complete_énd unrestricted
markets, convex preferences and technology, but nonconvex consumption sets.
We show that: (1) these economies can have nondegenerate sunspot equilibria;
(2) sunspot equilibria in these economies can be Pareto optimal and can even
dominate certainty equilibrium allocations; (3) equilibria in the economy
without sunspots do not necessarily reappear as degenerate sunspot
equilibria when extrinsic uncertainty is introduced. These contrast with
results (1)-(3) above for convex economies, and are similar to the results
for the case of nonconvex preferences. Additionally, in contrast to much of
the existing 1literature, instead of ©prespecifying. the probability
distribution of sunspots, we solve for it as part of our equilibrium concept
and we analyze the '"stability" of sunspot equilibria with respect to
generalizations of the exogenous uncertainty and with respect to cooperative
agreements among the agents.

These results led us to explore the connection between sunspots and the
employment lotteries used in macroeconomics by Rogerson (1984, 1988), Hansen
(1985), Greenwood and Huffman (1987, 1988), Hansen and Sargent (1988),
Rogerson and Wright (1988), and others (see Prescott 1986 and Lucas 1987 for
discussions of the relevance for modern business cycle theory). In these
models, labor is indivisible and is allocated randomly by lotteries, as in

versions of the Azariadis (1975) - Baily (1974) labor contract model that



assume indivisible labor or some other nonconvexity.2 Furthermore, these
lotteries are similar to those in the private information economies of
Prescott and Townsend (1984a, 1984b), where opportunity sets éan be
nonconvex due to incentive constraints, and the nonconvex economies studied
by Hyland and Zeckhauser (1979) and Pratt and Zeckhauser (1983).

This literature can be interpreted as studying dﬁtimal randomized
allocations, or optimal employment lotteries. We demonstrate here how to
decentralize these allocations as competitive equilibria with sunspots. 1In
particular, in a version of the environment originally specified by Rogerson
(1984, 1988), we support the optimal randomized allocation as a competitive
equilibrium with complete contingent commodity markets and extrinsic
uncertainty. It seems useful to make explicit this close relationship
between lotteries and sunspot equilibria, especially in the context of a
standard model like the indivisible labor economy. Furthermore, there is an
advantage to supporting these allocations as sunspot equilibria, rather
having agents use individual lotteries, as in Rogerson. The advantage is
that our technique can work with a finite number of agents (since we do not
need to appeal to any law of large numbers). One interpretation of this is
that sunspots can act as a signalling device to coordinate individual

actions as well as a randomization device to convexify opportunity sets.

In spite of much early confusion in the labor contract literature, random
layoffs do not require differences in risk aversion between employers and
workers, nor do they require intrinsic uncertainty at all. The standard
contract model does have stochastic shocks as well as differential attitudes
towards risk, but the random layoffs result from nonconvexities and not from
these assumptions. See Burdett and Wright (1989) for an up-to-date

discussion.



The paper can be summarized as follows. In Section 2 we examine pure
exchange. We show in a simple two agent example that nondegenerate sunspot
equilibria exist and can Pareto dominate the certainty equiiibrium
allocation, and that the latter does not survive as a degenerate sunspot
equilibrium once extrinsic uncertainty is introduced (Proposition 1). We
generalize this to N agents and show how to construct éﬁhspot equilibria
with a minimal number of states (Proposition 2). We then 1look for
equilibria with different distributions of the extrinsic uncertainty. There
can be many distributions consistent with different equilibria with
different welfare properties; but if we assume the distribution is
continuous then there is at most one equilibrium (up to a relabeling). The
allocation supported by this equilibrium is also the unique core allocation
that survives replication (Proposition 3). In Section 3 we study the
indivisible labor economy. It has a unique certainty equilibrium that is
optimal with respect to the set of certainty allocations, but can be
dominated in expected utility terms by an allocation with employment
lotteries (Rogerson’s result). We construct a nondegenerate sunspot
equilibrium allocation that supports this allocation (Proposition 4), and
also show how to reduce the distribution of extrinsic uncertainty to the

minimal number of states. In Section 4 we conclude.3

3We are for the most part here not concerned with questions of the existence
or determinacy of certainty equilibria with indivisibilities; see Mas-Collel
(1977) on these issues. We also neglect literatures on fair allocations
with indivisible commodities, including Crawford and Heller (1979), Svenson
(1983) and Maskin (1987), and on core allocations with indivisible

commodities, including Shapley and Scarf (1974) and Quinzii (1984).



2. INDIVISIBILITIES AND SUNSPOTS IN PURE EXCHANGE

There aré K goods and the commodity space is RE. However, some of the
goods may be indivisible. To say X is indivisible means that it must
either be consumed in a single unit or not at all, xkE{O,l}.4 If we label
goods so that the first J are divisible, the consumption set for each
consumer is given by X = lRi X {0,1}K_J. There is a set I of consumers.
Sometimes I is finite and sometimes it is a continuum in the economies
studied below, and «af(i) is a measure defined on I describing the
distribution of agents. The preferences of individual i are described by a
strictly increasing, strictly concave, von Neumann - Morgenstern utility
function, Ui: X » R. His endowment is given by eieRE, but note that we do
not necessarily assume that eieX. Thus, consumers may be endowed with and
may trade fractional claims on indivisible goods, even though they can only
consume integer quantities.5 There is no intrinsic uncertainty (i.e.,
preferences and endowments are nonstochastic).

An allocation (Xi) is a list of consumption points for all consumers,

and is said to be feasible if x'eX for all i and fxlda(i) = Ielda(i). A

feasible allocation is said to be Pareto optimal with respect to X if there

4More generally, one could assume an indivisible good can be consumed in any

integer quantity, xke{O,l,Z,...}. The results are similar.

5Thus, e.1 is in the commodity space but not necessarily in the consumption
set. An alternative formulation that delivers virtually the same results is
to assume U(xX) is a step function of each indivisible good (a form of local
satiation). Under this interpretation, it does not matter if X actually
restricts indivisible goods to integers or not and, therefore, we could

insist that endowments belong to X without changing the results.



does not exist an alternative feasible allocation (x°) such that ulixh) =
Ut (x') for all i, with strict inequality for a set of agents with positive
measure. A Walrasian equilibrium (WE) is an allocation and a price vector

pemﬁ, normalized so that = = 1, satisfying: (a) for all i, x' maximizes

kPk
Ut (x) over X subject to p'x = p°e1, and (b) Sx'da(i) = Jelda (feasibility).6

We concentrate for now on some examples with one indivisible good, x,

so that X = {0,1}. In fact, we can demonstrate the basic message in the
case of two consumers (N = 2) with e1 = e2 = 1/2. This economy has a unique
WE, with x1 = x2 = 0, which yields utilities Ui = 0 if we normalize Ui(O) to
Zero. This is not Pareto optimal with respect to X; it is dominated by

giving x = 1 to one of the agents and nothing to the other.7 Furthermore,
consider randomizing over the allocationg that are optimal with respect to

X, by forming the lottery

(1,0) with prob L
1 2
x",x7) = { (2.1)
(0,1) with prob .,
where nle[O,ll and n, = l—nl. The expected utilities generated by this
lottery are EUt = niUl(l), for 1 = 1,2, which exceeds the utilities

generated by the Walrasian mechanism. We say that the randomized allocation

6Note that we do not require markets to clear exactly here, in the sense

that the feasibility or market clearing condition may hold with strict
inequality for some good with a positive price, simply because the economy
cannot possibly consume everything when the aggregate endowment of some
indivisible good is not exactly an integer. Very 1little hinges on this

technicality for our purposes.

7The First Welfare Theorem does not hold because it requires that at least
one good be divisible; see, e.g., Quirk and Saposnik (1968), p. 134.



Pareto dominates the WE allocation, although not with respect to X, since it
is not actually an element of X.

The fact that the extrinsic uncertainty introduced by the lottery has a
role here leads us to consider equilibria with sunspots. Returning to the
general model, we introduce extrinsic uncertainty by way of a probability
space (S,Z,m), where S is a set of states s representing sﬁﬁspot activity,
is a o-algebra of subsets called events, and w is a probability measure. By
the definition of extrinsic uncertainty, preferences and endowments do not
depend on s, although in principle, an agent’s behavior might. We model
this by reformulating commodity space as the set of m-measurable functions
of the state, x: S - RJ, that are bounded in the essential supremum norm.
Let this space be denoted by Z. The consumption set is the set of these
functions such that x(s)eX for all s.

In particular, consumer i chooses such a function x1(°) to solve the

following problem,

maximize EUi = Jﬁi[xi(s)]dn(s)

S (2.2)

subject to Jﬁ(s)xi(s)dn(s) = Ig(s)eidn(s) = Wi,
S ) ’
where Wi is wealth, and 5 is a measurable function with the following
interpretation. For any set AeZ, IAEk(s)dn(s) is the cost of one unit of
good k to be delivered Jjust in case event A occurs. If s has a density
function, ¢(s), then we write the budget constraint as fp(s)xi(s)ds = Wi,

where p(s) = p(s)e(s), and the kth component pk(s) is precisely the price of

..} is discrete, we write the

good k in state s. Similarly, if S = {sl,sz,.

budget constraint as ij(sj)xl(sj) < W', where p(sj) = E(SJ)n(sj).8

8Despite the intuitive nature of this formulation, there are some technical

By i



A feasible allocation for the economy with sunspots is a list [xi(')]
with xi(-)eZ for each i, such that fxi(s)da(i) =< jéida(i) with probability
1. It is said to be degenerate if, for all i, x(s) = x' with probability
1; in other words, if the allocation is essentially independent of the
state. It is nondegenerate otherwise. We sometimes abuse terms slightly
and identify an allocation for the economy without uﬂcértainty with a
degenerate allocation in the more general economy; 1i.e., xieX is identified
with xi(-)eZ, where xi(s) = xi for all s. An allocation [xi(-)] is Pareto
optimal with respect' to Z if there does not exist another feasible
allocation [§1(~)] such that IUi[gi(s)]dn(s) = jUi[xi(s)]dn(s) for all i,

with strict inequality for a set of agents with positive measure. A sunspot

issues that need to be dealt with when S is not finite dimensional. The
standard way to define a price system in an infinite dimensional commodity
space Z, is by a continuous linear functional v: Z » R. Then a valuation
equilibrium is a feasible allocation (zi), ziGZ'for"all i, together with a
price system v, such that every i maximizes ui(zi) over Z subject to v(zi) =
v(ei). An inner product representation for v is a vector 5 in the dual
space of 2, such that v(z) = s-z for every zeZ, with the natural
interpretation as the price vector. Our commodity space Z is the space of
measurable functions bounded in the essential supremum norm; thus, 5 should
be an element of the dual space of Z, the set of measurable functions
bounded in the L1 norm, such that

v(x) = J.S(s)x(s)dzt(s) for all xeZ.

Although it is not true for all economies, our economies satisfy conditions
that guarantee such a representation exists for any valuation equilibrium;
hence, we only consider inner product prices in what follows. See Bewley
(1972), Prescott and Lucas (1972), or the discussion in Stokey, Lucas and
Prescott (1989).



equilibrium (SE) is an allocation together with a pricing function p(-),
normalized so that Izksk(s)dn(s) = 1, satisfying: (a) for all i, xi(-)
solves (2.2), and (b) feasibility. A SE is degenerate if the implied
allocation is degenerate, and nondegenerate otherwise.

We review a few facts about convex economies (where X is convex and Ui
strictly concave), all of which are easy to prove. FirSt, in a convex
economy a nondegenerate allocation is never Pareto optimal with resect to Z,
since it is dominated by the degenerate allocation ;i(s) = Iki(s)dn(s) for
all s and for all i. An implication is that, in any. convex economy for
which the First Welfare Theorem holds, there cannot exist nondegenerate SE.
If the First Welfare Theorem does not hold (say, for some of the possible
reasons mentioned in footnote 1), there may exist nondegenerate SE, buit they
are not optimal. Finally, in a convex model, if the allocation (xi) and
price p constitute a WE for the economy without uncertainty, then we can
always construct a degenerate SE by setting xi(s) =nxi for all s and i, and
p(s) = p for all s.

Consider again the trivial economy with X = {0,1}, N = 2 and e1 = e2 =
1/72. Introduce a little extrinsic uncertainty by assuming there are exactly
two states of possible sunspot activity, S = {sl,sé}, with “j ="n(sj).

Problem (2.2) then becomes

. i i i i1
maximize EU™ = nlU [x (sl)] + HZU Ix (Sz)]
(2.3)
. i i
subject to p(sl)x (sl) + p(sz)x (sz) = 1/2,

where p(sj) is the price of the good in state Sj’ as discussed above,

normalized so that p(sl) + p(sz) = 1. Then, the following results hold.



Proposition 1. In the economy with X = {0,1}, N =2, and e1 = ez = 1/2,

we have: (a) If LA ., then SE do not exist. (b) If w, =m, then there are
exactly two SE, with prices p(sl) = p(sz) = 1/2 and one of the following two
allocations

[x'(s)),x (5,01 = (1,0) and [:P(s,),x%(s,)] = (0,1)
(2.4)

[xl(sl),xl(sz)] (0,1) and [xz(sl),xz(sz)] = (1,0,

which are simply relabelings of the same outcome. (c) All SE are
nondegenerate, and in particular, the WE allocation cannot be supported as a
SE. (d) The SE are Pareto optimal with respect to Z and dominate the WE

allocation.

Proof. For any prices the budget set of each agent must contain either
[x(sl),x(sz)] = (1,0) or (0,1). Feasibility entails Zixi(s) = 1 for all s.
These two observations imply that any SE must involve one of the two
allocations in (2.4), and this proves (c). Suppose the first allocation in

(2.4) is a SE; if Mr. 1 is to demand (1,0) we must have
1 1 1 1
nlU (1) + (l—nl)U (0) = nlU o) + (l—nl)U (1).

This implies [01(1)-01(0)](1-21z1) =0, or m = 1/2. Similarly, if Mr. 2 is

to demand (0,1) we must have nl = 1/2, and so nl = 1/2. The same is true
for the other allocation in (2.4), and this verifies (a). Given these
results, the allocations in (2.4) in fact solve problem (2.3) for both
agents if and only if p(sl) = p(sz), which proves (b). Finally, the

statements in (d) are obvious from our earlier discussion of lotteries and

their welfare properties. w

-10-



This example is interesting because it contrasts with the results for
convex economies outlined above. In convex economies, WE always reappear as
SE, so that result (c) could not have held. Result (d) could not haQe held
in a convex economy, where SE are never Pareto optimal; SE are not only
optimal here, they dominate the WE allocation. Also, results (a) and (b) go
beyond the existing literature in that, instead of takiﬂg'the probability
distribution of extrinsic uncertainty as given, we have gone some way
towards deriving what that distribution must be in order for SE to exist
(given two states, here they have to be equiprobable).

To pursue these issues further, we begin to generalize this example.
Continue to assume X = {0,1}, but now let there be N < « agents, with
homogeneous endowments ei = e. There is no loss in generality to assuming e
< 1.9 The unique WE again entails xi = 0, and utilities Ui(xi) = 0 for all
i. Let n = int(Ne) be the integer part of the aggreate endowment. If n =0
the WE is optimal. If n = 1, however, then one can generalize Proposition 1
to show that there exists a SE with N equiprobable states and constant
prices supporting an allocation with x:.L = 1 in exactly n states and xi =0
in the remaining N-n states, for each consumer i. This SE is optimal, and
dominates the WE. However, rather than N states, we'prefer to construct a
SE with as few states as possible.

To this end, let n*/N* reduce n/N to its lowest terms (e.g., 10/4

¥
reduces to 5/2). Let there be N equiprobable states and constant prices,

9More generally, let i’s endowment be yi+e, where yi is the integer part and
e is the fractional part that is common across agents, and let his utility
function be ui:{O,l,..}ék. Then, we can let e:-L = e and define a new utility
function Ui:{0,1}+R by Ui(x) = ui(yi+x) to get exactly the model in the
text.

_11_



* -
p(sj) = 1I/N . Agent i has wealth W= e, which means that the greatest

* %*
number of units he can afford is n (because n +1 units cost more than e).

* .
Given he consumes n units, strict concavity implies he maximizes utility by

* A* *
consuming exactly 1 unit in n states and 0 units in the remaining N -n

states. Therefore, to construct a SE we need only choose an allocation with

two properties: (a) each agent i receives xl =1 inn stétés and xl =0 in
the rest, so that he is maximizing utility subject to his budget constraint,
and (b) in each state the fraction n*/N* of agents receive xi = 1 while the
rest receive 0, so that markets clear. One way to choose such an allocation
is to use a square matrix of size N*, denoted [aij]’ with the property that

*
each element is either 0 or 1, all columns sum to n , and all rows sum to

* * 3
n . Then, for each consumer i = 1,2,...N , Wwe set xl(sj) = aij’ while for

. E3 *-
consumers 1 = N +1,..., we simply reproduce the allocation of the first N .

The matrix [aij] can always be constructed.10 Figure 1la shows the case

*

¥*
N=3and n =1, where Mr. 1 consumes 1 unit in state s Mr. 2 consumes 1

1 H
¥
unit in 52’ and Mr. 3 consumes 1 unit in s3. Figure 1b shows the case N =
. *
3and n = 2, where Mr. 1 consumes 1 unit in states s, and S3» etc. The

general discussion is summarized as follows:
Proposition 2. The economy with X = {0,1} and N consumers with e’ = e
< 1 for all i has a unique WE with xl = 0 for all i. Let n = int(Ne) and

%* %* ¥
let n /N reduce n/N to lowest terms. Then, this economy has a SE with N

*
10The algorithm is as follows: Begin with aij = 0 for all 1i,}j. Ifn =21
%
then change aij from 0 to 1 if i = j; if n = 2 then also change aij from O
* *
to 1 if i = j+1 modulo N ; if n = 3 then also change aij from 0 to 1 if i =

L 3
J*2 modulo N ; and so on. This is known as the method of circulants in

combinatorical analysis.

-12—



* = . *
states, w(s.) = p(sj) = 1/N, and an allocation where xl(sj) = 1 in n

3 * * *
states and xl(sj) =0 in N -n states for all i. If n = 1, then the SE is
optimal with respect to Z and dominates the WE, and the WE does not reappear

as a SE.

The next step is to consider heterogeneous endowmerits. Suppose X

{0,1}, N =2, and 0 < e1 < e2 with e1+e2 = 1. Assume S = {sl,sz} with nj

n(sj), and consider the Edgeworth box in Figure 2, with the endowment point
e on the diagonal. Clearly any SE must have the price line going through e
and also through either the point A = (1,0) or the point B = (0,1). The
former case is shown and implies p(sz)/p(sl) = ez/el. At these prices,
Mr. 1 necessarily chooses point A, while A is also in the demand
correspondence of Mr. 2 if and only if L = 1/2. Thus, for any L = 1/2,

there is a SE with prices [p(sl),p(sz)] = (el,ez) and allocation
[xl(sl),xl(sz)] = (1,0) and [xz(sl),xz(sz)] = (0,1).

Symmetrically, for any T, = 1/2, there is a SE with the prices and the
allocation reversed.
The point of this example is that there can be many different SE, with

different values of m, and, therefore, with different expected utilities.

1

This contrasts with our earlier results, where the equality of endowments

delivered a uniform distribution of states as the unique distribution

consistent with SE. Furthermore, notice that here the equilibrium with T, =
1/2 has both agents consuming x.l = 1 with the same probability and therefore

receiving the same expected utility, even if e1 is very small compared to
2

e”. Mr. 2 starts with more, so why doesn’t he end up with more? One answer

is that with N = 2, a lottery of the form (2.1) is in the core for any .

-13-



However, if we replicate this economy, the lottery with =, = 1/2 may no

1

longer be in the core. For instance, say ez = m/M is a rational number.

Then, any coalition of size M type-2 agents could hold its own lottery,

where each member receives x = 1 with probability m/M = e2 > 1/72.

At the extreme, suppose there is a continuum of agents with unit mass,

and let «, be the fraction of type t, t = 1,2,...T < w, hhere each type t

t

agent has endowment et and ¥ to 1. Then, any coalition of type t agents

£%©
with positive measure could hold a lottery in which each member received xi
= 1 with probability et, and, therefore, any core allocation must have
prob(xi=1) = et for almost all type t agents. At the same time, feasibility
means that total consumption cannot exceed the total endowment, so the set
of agents for whom prob(xi) > ei must be null. We conclude that the core

2

consists of randomized allocations in which prob(xi=1) = e’ for almost all
i. This seems intuitively like what an equilibrium should be; but recall
from the above discussion that there generally can be many SE with different
probability distributions. We claim, however, that unless prob(xi=1) = ei,
the SE will not be "stable" with respect to the introduction of other
probability distributions for sunspot activity.

To illustrate this, let I be the set of agents and let their endowments

satisfy e'el0,1] and Jelda(i) = 1. Now assume that s is a continuous random

variable with density ¢(s). Problem (2.2) then becomes

maximize jUi[xi(s)]w(s)ds
S (2.5)

subject to jﬁ(s)xi(s)ds = ei,

S

where p(s) is the price of a unit of the good in state s. Unless p(s) =
p(s) for almost all s, agents will switch their consumption from states with

p(s) > ¢(s) to those with p(s) < ¢(s) to get more utility at the same cost,

-14-



and markets could not clear. This means that equilibrium requires p(s) =
¢(s), in which case problem (2.5) is solved by setting xi(s) =1 for all s
in any set of measure ei. Any partition Si’ with prob(Si) = e‘l for(all i,
generates a SE with prices p(s) = ¢(s) and an allocation described by xi(s)
= 1 if and only if seSi.

Hence, with continuous sunspots, there is a unique (dp'to a relabeling)

SE. Summarizing, we have:

Proposition 3. Suppose feida(i) = 1. Let s be continuous with density
p(s). Then, up to a relabeling, there is a unique SE, and it has the
following properties: (a) p(s) = ¢(s) for all s, and (b) prob(xi) = ei for
almost all i. The corresponding allocation is the unique core allocation

that necessarily survives replication. With a finite distribution for s,

there can be other SE, with allocations such that prob(xl) e,

We close this section with an example involving two goods, one
divisible and the other indivisible: X = R_x {0,1}. Let I be a continuum
of homogeneous consumers with unit mass. Suppose et = (1/2,1/2) and
Ul(xl,xz) = u(xl) + u(xz) for all i, where u(0) = 0. Then, in WE, exactly
i
1,

(0,1). Note that in contrast to our earlier examples, the WE allocation

half of the consumers receives (x x;) = (1,0) while the other half receives

here is Pareto optimal with respect to X, and yields utilities u' = u(1) for

all i. Yet it is obvious the lottery that gives each agent

(1/2,0) with prob 1/2
i1,
(x1’X2) = {
(1/2,1) with prob 1/2

yields greater expected utility (by strict concavity).

._15_



Following the reasoning of the earlier examples, we could support this
randomized allocation as a SE, which is optimal with respect to Z, with two
equiprobable states and prices pl(sj) = pZ(Sj) for each state Sj' The fact
that the SE is optimal here is more striking because the First Welfare
Theorem implies the WE is optimal with respect to X (while, e.g., in
Proposition 1, the SE dominated é WE that was not even éptimal within the
set of nonrandomized allocations). This economy has some other interesting
properties, but we do not pursue them because things are quite similar in
the perhaps more familiaf model studied in the next section, the indivisible
labor economy of Rogerson (1984, 1988). One important point to note,
however, is that the above example works perfectly well when the set I

contains an even finite number of agents rather than a continuum.

3. EMPLOYMENT LOTTERIES AND SUNSPOT EQUILIBRIA

The consumption set is now X = R, x {0,1}. There is a continuum.of
homogeneous consumers distributed uniformly on [0,1]. Their preferences are
described by the utility function U(xl,xz), where we write (xl,xz) = (e,L).
with the interpretation that the consumption good ¢ is divisible while
leisure L 1is not. It simplifies the presentation to assume U is
continuously differentiable with respect to ¢ and that Ul(c,L) > was c > 0
for all L. The endowment point is e = (0,1). There is a representative

firm, with production set Y = {yeRE: y, = f(yz)}. We write (yl,yz) = (q,h).

1
Assume the production function is twice continuously differentiable, with f*
>0, f” = 0, and f'(h) » w as h » 0. All consumers share equally in the
ownership of the firm and any profit that is earned is distributed back to

them equally as dividends. As above, there is no intrinsic uncertainty:

preferences, endowments, and technology are all nonstochastic.

-16~-



We refer to this model as the indivisible labor economy. A feasible
allocation is a consumption - leisure pair for each iel, xi = (ci,Li)eX, and
a production plan for the firm, y = (q,h)eY, satisfying ILidi + h =‘1 and
Icidi = q. It is Pareto optimal with respect to X if there is no feasible
alternative that dominates it in the obvious sense. A Walrasian equilibrium
is an allocation [(xi),y] together with prices for output énd labor, denoted
{p,w), such that: (a) for all i, xi maximizes U(x) over X subject to pc+wlL =
w+ll, where T is profit; (b) y maximizes II = pgq-wh over Y; and (c) market
clearing.

In WE, each agent will have either xi = (II,1) or {w+I,0). Let p be the
measure of agents that choose the latter option; for obvious reasons, they
are called employed while the others are called unemployed. If pe(0,1) then
U(M,1) = U(w+I,0). It is easy to show that there exists a unique WE (up to
a relabeling). It is Pareto optimal with respect to X by the First Welfare
Theoren. Let Wa‘E be the common utility of consumers in WE. Rogerson’s
insight was to construct a randomized allocation (or lottery) in which each
consumer receives (ci,Li) = (cO,O) with probability pm and (ci,Li) = (cl,l)
with probability 1-y, which yields expected utility V = u.U(cO,O) +
(l—p)U(cl,l). Given the results in the previous section, it should be no
surprise that the application of such a randomization device can be useful
in this economy. In particular, consider the social planner’s problen of
maximizing V by choosing u, gy and Cy» subject to the feasibility
constraint pey * (1-pt)c1 = f(u) and the constraint p = 1 (nonnegativity
constraints can be ignored, given our curvature assumptions).

et A and B be the multipliers on the resource constraint and the

constraint p = 1. Then, the solution to the planner’s problem is fully

characterized by
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U(co,O) - U(cl,l) + Alf(p) - ¢ * 01] =B

uUl(co,O) - uA =0
(3.1)
(1-u)U1(c1,1) - (1-p)a =0

flu) - BCy - (1—p.)c1 = 0,

plus p = 1 and B(1-up) = 0. Let (u*,c;,ct), along witﬁ‘(h*,B*), be the
solution and V* the implied level of expected utility. As long as u* <1,
we "typically" have V* > W*, and the lottery improves welfare even though
the WE is optimal with respect to X.11

Our goal now is to decentralize the planner’s randomized allocation.
Rogerson (1988) discusses the possibility of supporting randomized
allocations as equilibria of a mechanism in which each individual “chooses a
lottery where with probability [u] they work ... and with probability [1-p]
they don’t." This means that individual wage income will be uncertain and,
therefore, it "is assumed that the individual can purchase 1insurance
contingent on the outcome of the lottery." We will use a more conventional
mechanism, with contingent commodity markets rather than individual
lotteries and insurance contracts. This is not only more standard, it also
has one substantive advantage. When Rogerson lets his individuals choose
lotteries, he must appeal to a law of large numbers to guarantee that the
probability of working chosen by each agent equals the actual number who end
up working. As illustrated by the examples in the previous section, our
equilibrium concepts works perfectly well with a small (finite) number of

agents. One interpretation of this is that sunspots can act not only as a

11Utility functions of the class U = ul(c+v(L)), where u(-) and v{(-) are

* *
increasing, concave functions, are the only ones that entail V =W .
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randomizing mechanism, but also a coordinating mechanism.12
As in the previous section, we introduce sunspots by way of a
probability space (S,Z,m). Consumer i choose a measurable, bounded function

of the state, xi: S » X, to solve

maximize EU = Jﬁ[c(s),L(s]]dn(s) i
s (3.2)

subject to J[p(s)c(s)+w(s)L(s)]dn(s) =T + Jw(s)dn(s),
S S
where Tl denotes profit, p(s) is the price of c(s) and w(s) is the price of

L(s). Similarly, the firm chooses a function y: S » Y, to solve

maximize T = j[p(s)q(s)—w(s)h(s)ldu(s). (3.3)
S

A sunspot equilibrium is an allocation [xl(-),y(-)], together with price
functions [p(-),w(-)], satisfying: (a) for all i, xi(r) solves (3.2); (b)
y(-) solves (3.3); and (c) ILi(s)di + h(s) = 1 and Ici(s)di = q(s) for all

s. It is nondegenerate, Pareto optimal etc. if the obvious conditions hold..

12Prescott and Townsend (1984a, 1984b) discuss decentralization of optimal
randomized allocations in their private information economies, where the
objects being traded are lotteries over points in commodity space. They
suggest (1984b, p. 18) the possibility of of supporting these allocations as
decentralized equilibria with allocations indexed by "a naturally occurring
random variable that is unrelated to preferences and technology" that can be
interpreted as our sunspot activity; but this is never explicitly carried
out. Upon pursuing this to fruition, one sees that an advantage of sunspots
is that they not only randomize but also coordinate activity, which means
that economies with finite populations can take advantage of convexification

without appealing to the law of large numbers.
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Proposition 4. In the indivisible labor economy, the planner’s

randomized allocation can be supported as a nondegenerate SE.

Proof. We will construct a particular SE with s distributed uniformly
on [0,1]. Let p(s) = 1 for all s, and let w(s) = f’(u*), where u* is the
employment rate chosen as the solution to the planner’s problen. This
immediately implies from the profit maximization condition, f’[h(s)] = w(s),
that h(s) = u* for all s. Consider consumer i. Let S0 = {seS: L(s) = 0}
and S1 = {seS: L(s) = 1}, and let ; = prob(SO). Problem (3.2) can then be

rewritten (ignoring the superscript i)

maximize EU = Uf[c(s),olds + JU[C(S),l]ds
S

0 Sy (3.4)

subject to Jc(s)ds + Ic(s)ds + (1-;)f’(u*) =T + f’(u?

So 5y

after substituting p(s) and w(s). By strict concavity, the solution to

A

(3.4) involves setting c(s) = c, for all seS. and c(s) = c. for all seS .

0 0 1 1
Problem (3.4) therefore further reduces to
maximize EU = uU(c,.,0) + (1-p)U(c,,1)
0 1 (3.5)

AA A A PN ¥ * E 3 *
subject to pey + (1—u)c1 —pf(p ) =) —puf(n)

* * *
after also inserting T = f(u ) - u £'(u ).
Notice that the only feature of L(s) that matters for this problem is p
= prob[L(s)=0] (consumers only care about the number of states, and not the

names of states, in which they work). Hence, all that is really necessary

~

to solve (3.5) is to choose c Cy» and p. Letting A and B be the

O’

multipliers on the budget constraint and p = 1, first order conditions are
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P -~ A * A ~ A
U(co,O) - U(cl,l) + Alf(up ) - Sy * 01] =B

WU, (c.,0) - A = 0
1o .. (3.6)
(1-M)U1(C1,1) - (1-WA =0

¥* -~ * * AN A A
flp ) + (up ) (u) - ucy - (1-u)c1 =0,

plus p = 1 and B(1-u) = 0. Comparing (3.6) with (3.1), we see that problem

-~ ¥* - * -~ *
(3.5) is in fact solved by setting p = pu , Sy = Sp° and c = & (along with
~ * ~ *
B=RB and A = A ). In other words, the consumer’s demand correspondence

includes the employment probability and consumption the planner chooses.
All that remains is to construct [L'(s)] with two properties: (a)
. * ¥*
SL'(s)ds = l1-p  for all i, so that each individual works in exactly pu
3 * *
states, and (b) JL'(s)di = 1-p  for all s, so that there are exactly p
* <
individuals working in each state. Given p = u , define it (s)] by:
i 0 if ie[i1-p-s,1-s]
if s = 1-p then L™ (s) = {
1 otherwise;-
i 1 if ieli1-s,2-p-s]
if s > 1-pu then L7 (s) = {
0 otherwise.
This is illustrated in Figure 3a for p = 1/3, from which it is clear that

Li(s) integrates to 1-p both horizontally for each i and vertically for each

s. This completes the proof. m

The set of sunspot states in the equilibrium constructed in the proof
is S = [0,1]; but this is not necessarily the minimal set that can be used.
As in the previous section, we can also construct a SE with as few states as
possible. If p is a rational number, let n*/N* reduces p to its lowest
terms. Then, there is a SE with N* equiprobable states, where each

*
individual works in n of them and enjoys leisure in the rest. This is
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shown in Figure 3b, again for the case pu = 1/3. There are three states, S =
{81’32’53}‘ Each consumer works in 1 of the three states, and each state
has 1/3 of the consumers working. The outcome is equivalent to that with a
continuum of states, as in Figure 3a, but whenever p is a rational number we
can economize on the number of states and, therefore, on the number of
contingent commodity markets needed to decentralize the plénner’s allocation
as a SE. If up is irrational, an infinite number of states and markets are
required to support the planner’s allocation exactly.

Finally, we point out that, as in Section 2, there are several features
of this economy that are interesting from the perspective of the sunspot
literature. In the convex version of this economy, SE do not exist, and any
allocation that depends nontrivially on extrinsic uncertainty is
inefficient. Here there is a nondegenerate SE, it is Pareto optimal, and it
dominates the (certainty) WE allocation, even though the latter is optimal
with respect to the set of nonrandomized allocations. And the WE does not
reappear as a degenerate SE since, except for the case of very special
utility functions (or corner solutions), the WE allocation does not solve

the first order conditions (3.6).

4. CONCLUDING REMARKS

This paper has explored the role of extrinsic uncertainty in economies
with 1indivisible commodities. It was demonstrated that nonconvex
consumption sets imply a potential role for lotteries, and that these
lotteries are closely related to the concept of sunspot equilibria. In our
models, sunspot equilibria can be Pareto optimal and can dominate certainty
allocations (even when these allocations are optimal within the set of

nonstochastic outcomes). We also showed for this class of models that not
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all sunspot equilibria are equally plausible: some are not stable with
respect to cooperative coalition formation, and some are not stable with
respect to changes in the probability distribution of extrinsic uncerfainty.
The extent to which these "stability" issues are important in the convex
economies studied in the literature is an interesting open question.
Extrinsic uncertainty, self-fulfilling prophecies, aﬁimal spirits, and
related phenomena have been thought for some time to have a role in
macroeconomics. It has even been suggested that they may be a contributing
factor to problems like inefficiency and unemployment. Here we have
presented models in which extrinsic uncertainty certainly does have a role
to play in the allocation of economic resources, and a role in the
determination of unemployment in particular. But, far from reducing or
inhibiting the competitive mechanism’s welfare properties, extrinsic
uncertainty actually leads to more efficient outcomes here, due to the
ability of sunspots to both convexify opportunity sets and to coordinate

individual actions.
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