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ABSTRACT

We examine the validity of one version of the Coase Theorem: In any economy in which property
rights are fully allocated, competition will lead to efficient allocations. This version of the theorem
implies that the public goods problem can be solved by allocating property rights fully and letting
markets do their work. We show that this mechanism is not likely to work well in economies with
either pure public goods or global externalities. The reason is that the privatized economy turns out
to be highly susceptible to strategic behavior in that the free-rider problem in public goods economies
manifests itself as a complementary monopoly problem in the private goods economy. If the public
goods or externalities are local in nature, however, market mechanisms are likely to work well.
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1. Introduction

Over the years, two approaches to the allocation of resources for, the provision of public
goods have evolved. The first approach, identified loosely with Coase (1960), holds that if there is
a problem at all, it is that property rights are not fully assigned and moreover, if they were,
competition would lead to an efficient allocation. This statement has come to be known as the Coase
Theorem. The second approach, even more loosely associated with Samuelson (through his 1954
paper), espouses quite a different view, holding that individuals will strategically misrepresent their
true desires regarding the provision of public goods. This free-rider problem will lead to inefficient
public goods provision.

These two schools of thought have strikingly different implications for public policy.
According to the first, nothing need be done save to develop a system for the full assignment of
property rights. (Perhaps the judicial system is expected to serve this purpose.) According to the
second, the government has an important role in actively participating in the provision of public
goods.

This difference of opinion would not matter if it could be clearly identified that one or
the other of the approaches was right. The problem is that both approaches have intuitive appeal.
In particular, one can think of examples in which it seems likely that the Coasian policy
recommendation would be successful. Classic examples include that of the beekeeper and the apple
orchard owner (Meade (1952)) and that of the candy maker next to the doctor (Coase (1960)). In
other examples, such as acid rain and national defense, it seems likely to fail. The ideal theory
would give the intuitively correct prediction for each of these examples.

The ultimate goal is to develop a taxonomy that could be used to classify economic
situations to decide which of the above approaches is appropriate. We will fall considerably short

of that goal, but we hope our results shed some light on the issue.
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To develop a further understanding of the Coase Theorem, we will have to be precise
about both the meaning of the full assignment of property rights and the nature of competition in the
marketplace. We address the property rights issue by recasting an economy with externalities as a
private goods economy in which endowments play the role of property rights. We address the
competition issue by considering a large class of theories of decentralized exchange, each of which
is explicit about strategic interactions between agents. In doing so, we borrow heavily from the
literature on mechanism design (Hurwicz (1972)). This literature allows us to represent a large class
of theories by axioms on abstract mechanisms. We argue that our class of theories provides a
description of the workings of markc;t-like arrangements. We show that all of the theories in our
class predict the same outcome: market-like arrangements provide extremely inefficient levels of
public goods. An interesting feature of our analysis is that it identifies the free-rider problem in a
public goods environment with a complementary monopoly problem in the private goods economy.
Our analysis also suggests that this monopoly power diminishes when the public goods are local, a
result reminiscent of Tiebout (1956). Thus, when public goods are local, market mechanisms seem
likely to work well.

Section 2 develops three illustrative examples. These serve as a motivation for the
subsequent, more general, development. In Section 3, we prove several results that show how the
free-rider problem manifests itself as a complementary monopoly problem in privatized public goods
economies with complete information. These results show that for a large class of mechanisms the
outcome is the least efficient one consistent with individual rationality and feasibility. The
mechanisms in this class are required to satisfy a strong assumption of voluntary trade. This
assumption gives monopoly power to individuals and leads to inefficient outcomes. In Section 4,
we give two generalizations of the results of Section 3 when tastes are private information. We

replace the strong notion of voluntary trade by the standard assumption of individual rationality in
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private information economies and show that outcomes are extremely inefficient. Private information
turns out to confer monopoly power to individuals. Taken together, the results in Sections 3 and 4
show that there is a tradeoff between the strength of informational assumptions and restrictions placed
on mechanisms. Section 5 considers alternative distributions of property rights and identifies a

slightly different type of free-rider problem. Section 6 offers concluding comments.

2. Examples

We begin with a simple standard example. We follow the ;approach to the problem
suggested above—we start with an economy with an obvious externality, add the needed markets,
assign the property rights for these new goods, posit a form for competition, and calculate the

equilibrium.

Example 1: Consider an economy in which there is a town with a number of firms, each
producing the same final product for sale to an external market. Assume that each producer owns
a factory that produces smoke in addition to the output. Assume that the smoke emanating from each
factory spreads uniformly over all locations throughout the town and is (for simplicity) proportional
to the output of the factory. Then the total smoke over any location in the town is proportional to
the total output of the industry. Assume that each firm can produce as much of the output as it likes

at zero marginal cost and that demand for the final product is linear in price:

D(p) = a - bp,

where a > 0,b > 0, and a > b. We assume that the firms are perfect competitors in the output
market. We could formalize this assumption through Bertrand price competition among any finite
number of firms or approximate it arbitrarily well by assuming quantity competition among a very

large number of firms.
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Finally, we assume that there are n residents in the town. We assume for simplicity that

the residents have utility functions over money m and smoke consumption s of the form U(m,s) =

m - (s/n). (We will see in a moment why it is s/n and not s.)
The equilibrium for this example is clear: p* = 0, aggregate output of both the final

good and smoke is a, and the utility of the residents is m* - a/n, where m* is the initial allocation
of money. The example is standard enough; in their calculations of profit-maximizing production
plans, the firms ignore the social cost of their production of smoke, thereby imposing an externality
on the residents. Thus, the market acts as if the marginal social cost of both output and smoke is
zero while in reality it is $1 ($1/n of disutility to each resident for each unit of smoke produced).

In terms of the Coase Theorem, the problem in this economy is that no markets for
pollution over the homesites exist. The solution is equally straightforward: Introduce such markets,
and let competition proceed as usual. Here we run into problems. First, how do we formally treat
these goods in both production and consumption? And second, how are the endowments of these
new goods to be assigned, and what are their initial quantities? To address these questions, we will
have to be a little more formal and introduce a little more notation.

Let each household be endowed with S units of smoke rights, where S is a large positive
number (at least as large as a). Smoke rights are a “good” rather than a “bad” from the residents’
point of view. We define preferences over smoke rights as follows. The utility of a resident who

sells s units of smoke rights in this private goods economy is
Ui(m, s) =m+ (S — s)/n.
Thus, utility is increasing in the consumption of smoke rights. (Note that if all of an individual’s

smoke rights are used in production, then in effect the utility function in the externalities economy

is scaled up by S/n.)
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Each firm must purchase one unit of each smoke right to produce one unit of output. We
have defined a private ownership economy with perfect complementarities for which the nonwasteful
allocations coincide with the feasible allocations of a public goods economy. (Foley (1967), Milleron
(1972), and Starrett (1972) used this connection between public goods economies and perfect
complementarities in private goods economies as a device to facilitate the proof of the existence of
Lindahl equilibrium. However, they did not exploit the relationship between this equivalence and
problems of market power.) In keeping with the spirit of competitive product markets, we assume
that the firms take the prices of the smoke rights as given.

In the perfectly competitive outcome, each of the smoke rights sells for a price p; = 1/n
and the final good sells for p = 1, and quantities a - b of the final product and of each of the two

types of smoke are produced. It is easy to see that this equilibrium is efficient (and is the Lindahl
equilibrium of the original economy).

Given that the markets for the individual smoke rights are so thin, the assumption of
price-taking behavior is questionable. For this reason, we examine a different, more strategic, notion
of equilibrium. Note that this approach is not contrary to Coase’s original intent in any way. In
fact, Coase seemed to think that efficient allocations would arise out of bargaining between the
parties (although exactly what he had in mind is unclear).

| For the moment, we assume that competition takes the form of residents setting prices
for their site-specific smoke rights. Residents are fully cognizant of the effects of their decisions on
the production of the final good as well as their neighbors’ incentives. Thus, if resident i prices his
or her smoke rights at p;, then firms act as if their marginal cost of production is ¥} —p;. In this

case, the price in the final good market is ¥ p; (because of our assumption of perfect competition

in the final good market). Then output is q(p) = a - b(¥ p;), and revenues from sales of smoke
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rights for the households are r; = p;q(p), giving utility m* + r; + (S - @)/n. It is straightforward

to check that, given the prices set by other residents, the best price for resident 1 is given by

2.1 D=1 a.b sy,
2.1 p1(P—_1) o 3t = gﬁ:lp1

It follows that the equilibrium prices for smoke rights are given by

(22) p; = a/b + 1/n
n+1

for all i. Hence, from the firms’ point of view, the marginal cost of production (and hence the price

of the final good as well) is

(2.3) p=_1"0
n+1l

o'l m
+
B

Note that the price of the final good is greater than 1, which is the Lindahl equilibrium price, and
that the quantity produced is less than the Lindahl equilibrium quantity.

In this example, in effect, each resident is selling an output that costs $1/n per unit to
produce (the dollar cost of the loss of one unit of smoke rights) and is maximizing profits. If the
residents could get together and sell their inputs to the firms jointly, they could do much better. In
this case, the best price for them to charge is (1 + a/b)/2n apiece, which gives a final product price
of (1 + a/b)/2 which is less than the equilibrium price in (2.3).

As another point of comparison, consider the case where the residents are not adversely
affected by smoke at all (i.e., utility is given by U(m, s) = m). In this case, a simple calculation
shows that the equilibrium price of the smoke rights is p; = a/(n + Db. Then the marginal cost

of production of the final good (and its price) is given by (n/n + 1)(a/b). Note that this price
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exceeds even the monopoly price of the output (which is a/2b). Thus, the equilibrium is even less
efficient than monopoly when we use the standard measure of producer plus consumer surplus.

That the equilibrium is inefficient is probably not surprising since we have given the
residents an element of monopoly power which they exploit. In light of this, a natural question to
ask is whether the monopoly power diminishes as the number of residents is increased. From (2.3)
we see that as the population increases, the equilibrium price of the final product converges
monotonically to the reservation price, a/b. So as the population increases, output of the industry
and, therefore, production of smoke converges monotonically to zero. The monopoly power, instead
of diminishing, causes output to deviate far from the efficient level.

Note that through our choice of normalization, we have constructed a sequence of
economies in which the Lindahl equilibrium is unchanged as a function of the population size n, in
the sense that the output and price of the final product are independent of n. Of course, the prices
of the individual smoke rights do change with the population size as they are given by 1/n in the nth
economy. (Thus, we have adopted the normalization recommended by Milleron (1972). Roberts

(1976) uses an alternative normalization in which the reservation price is na/b and U = m - s for

all n.)

Example 2: In Example 1, residents of the town have property rights to the air quality
over their land. As we saw, this gives each resident a monopoly over the air quality over his or her
plot of land. An obvious question is, To what extent are the problems identified in the strategic
formulation of Example 1 a product of this monopoly power? To answer this question, we consider
an economy where the property rights to air quality over a particular plot of land are not distributed
to the owners of the land. Rather, they are distributed to a third party (or group of third parties)

who neither resides in the town nor consumes the output of the industry. The third party sells the
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rights to produce (and hence pollute) to both the residents of the town and the firms producing the
final output. The third party can be interpreted either as the government or as individuals. The
purpose of this exercise is to ask whether, in this situation, residents of the town have sufficient
incentives to buy these rights so as to reduce pollution and whether or not this procedure will
generate efficient outcomes.

The demand function is the same as in Example 1. The amount of the property rights
distributed to the third party is the same for each plot of land and is denoted by S. We assume that
S = a. The utility of a resident who consumes m units of money and x units of smoke rights is
given by Ui(m, X) = m + x/n.

As in Example 1, firms must purchase one unit of each type of smoke right to produce
one unit of output. Thus, the complementarity between the smoke rights as productive inputs
remains though the initial ownership is different.

If' S is at least as large as a - b (the Lindahl equilibrium output level), then it is easy to
show that the perfectly competitive equilibrium outcome is the Lindahl equilibrium. Each resident
purchases S - (a - b) units of smoke rights over his or her land, and firms purchase the rest. Each
of the individual smoke rights is priced at 1/n, which results in an equilibrium price of 1 for the final
output as in the previous example.

We turn now to a strategic formulation of this economy. To focus attention on the nature
of the strategic behavior of the town residents, we adopt the simplifying assumption that firms,
purchasers of the final good, and owners of the smoke rights behave as price takers. We allow
residents to buy smoke rights only over their own land. For simplicity, we analyze a price game
in which residents act as price leaders with the output market acting as a competitive fringe. The
owners of the smoke rights sell these rights inelastically. Accordingly, each resident sets a price,

p;, for the smoke rights over his or her plot of land. Let P denote the vector of these prices.
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Because the firms must buy one unit of each of the smoke rights for each unit of output produced,

their marginal cost of production is ¥'p;. It follows that the price of the final outputisp = Yp;,
and thus output is given by q(P) = a — bY p;. Each resident therefore purchases S - q(P) units of

smoke rights and pays p;(S - q(P)). The utility of household i is thus
U =m" - pS - q@) + (§ ~ ¢®)/n.

Given the prices set by the other residents, the best price for resident 1 is then

2.4) pi(P—p = 1/2b [a -S+bm-bY pl]
izl

ifS =2a—b. If S < a-b, then resident 1 sets the price according to

pip-p = max{ llb[a -$-bY pi}, 1/2b[a -S+bm-bY% pi”.

ixl izl
From (2.4) it is straightforward to calculate that the equilibrium prices are
(2.5) p; = {[(a - S)/b] + (lln)}/(n + 1)

ifS =a-—b.
It follows that the marginal cost of production—and, hence, the price of the final

product—is given by
Yp; = n/(n + 1){[(a ~ S)/b] + (1/n)}

ifS =a-—b.
In equilibrium the residents buy S - q(P) units of smoke rights. Using the demand curve,

we see that this quantity is



10
2.6 S-ap)=C —-@-b)/n+1)

ifS=a-b.

It is easy to show that if S < a - b, in equilibrium the residents do not purchase any
smoke rights.

From (2.6), we see that as the population grows, the amount of smoke rights residents
purchase converges to zero. Therefore, production reaches the maximum level possible given the
initial distribution of smoke rights. |

This example illustrates that the efficient level of smoke will not be produced under
alternative property rights systems unless the amount auctioned off is chosen correctly, that is, unless

S = a-b. Inparticular, schemes that distribute large quantities of pollution rights in the hope that

residents will restrict output to the optimal level through their voluntary purchases will not work in
general. In one such scheme, for example, firms are allocated pollution rights according to their
historical level of output and trade is then allowed. Such schemes may be superior to direct
regulation of output in that they are likely to promote allocative efficiency across firms, but they will
not yield the efficient level of pollution overall. Schemes that require voluntary contributions in
order to reduce the overall level of pollution will be inefficient because they create free-rider
problems. When individuals choose their levels of contributions, they ignore the benefits received
by others from the resulting reduction in output. Therefore, they contribute less than the optimum
amount. In essence, this alternative distribution of property rights changes the nature of the problem
from one of externalities to one of public goods. Therefore, although the outcomes differ, the

inefficiency remains.
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Example 3: Our third example is a slight modification of Example 1. Consider an

economy like that considered in Example 1 except that there are two towns, each with n residents
and many price-taking producers of the final product. To make the problem as simple as possible,
we abstract away from the fact that the final product is now being produced at different locations.
That is, we proceed as if transportation costs for the final product are zero, and hence consumers
treat output from the two locations as perfect substitutes. This assumption is roughly equivalent to
assuming that neither town has a specific productive advantage over the other. It is, of course, a
strong assumption, but one that greatly simplifies our exposition.

Assume that demand for the final good is as in Example 1. Finally, assume that smoke
from the factory in one town has no effect on the residents of the other town.

The economy without smoke rights clearly has many competitive equilibria which differ
only in the proportion of final output produced in the two towns. That is, in all of the equilibria,

p* = 0 and g* = a, but any combination of quantities that add up to a can arise in equilibrium.

Now let us introduce individualized pollution markets as we did in Example 1. A
fundamental difference between this economy and the one we considered earlier is that in order to
produce a unit of output, a firm need not buy one unit of smoke rights from each household; rather,
it need only purchase one unit from each household in the town in which it plans to produce.
Clearly, this difference could have a substantial impact on the nature of the equilibrium: now firms
may be able to get residents in the two towns to compete against one another in pricing their smoke
rights. Note that in some sense markets are just as thin as they were before—individuals still have
monopoly power over the smoke rights at their individual locations—but now these products are no
longer as complementary. In fact, there is now a perfect substitute for each of the smoke rights and,
moreover, a perfect substitute for an exhaustive list of the smoke rights of each town. In other

words, there is now a perfect substitute for each of the two production sites (i.e., towns).



12
Formally, let S - s; be the amount of smoke rights consumed by resident i, i = 1, ...,
2n, where for simplicity we will assume that residents 1 through n live in town 1 and the rest live

in town 2. The utility functions are given by

. S - si).
n

Uy(m, s4, ..., $90) = m

It is immediate that the Lindahl equilibria (there are many) of this economy have each smoke right
priced at 1/n and the final output priced at 1.

As before, we assume that residents set prices for their individual smoke rights, which
the producing firms then take as given. We assume that firms are already producing in both towns.
(This assumption is irrelevant; we could have them choose their sites as a function of the announced
smoke rights prices, with the same result.) We also assume that, as before, firms behave as perfect
competitors in that they charge marginal cost for their output. We assume that only output from the
town with the lower cost of production is sold and that, in case of ties, the market is split evenly.
(These assumptions are familiar in economics; we discuss them in more detail below.)

Letting p; be the price announced by resident i and II; be the sum of the prices in town
1 and II, the sum of the prices in town 2, we see that the payoff to resident i as a function of the

announced prices is then

m; + (a - le)(pl - 1/n) if Hl < H2
Uiy, - Do) — S/ = ] my + (a - bI)(; - U/)2  if I; = I0, [

m

i if I, > II,

fori = 1, ..., n and similarly fori =n + 1, ..., 2n.
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The Lindahl equilibrium (i.e., p; = 1/n for all i) for this economy is clearly a symmetric
equilibrium of the game as given: if any resident raised his or her price, no production would take
place in that town and hence the resident would be no better off than before; of course, no residents
would lower their price. It turns out that this is the only symmetric equilibrium for the game in
which output of the final product is positive. The argument for this result is familiar. If all charge
some price higher than 1/n, then any individual can bring all of the production of the industry to his
or her town by lowering his or her own price only slightly. Since the marginal benefit of this change
is 1 and the marginal cost is 1/n, the individual will be better off by making this change.

There are at least two other types of equilibria as well. These arise due to the difficulty
of coordinating price offers among residents in a town. First, suppose that for all combinations of
n - 1 residents of each town, the sum of the offered prices is larger than the reservation price, a/b.
Then no individual resident can, by lowering the price unilaterally, lower the marginal cost of
production in his or her town to the point that any firm could break even and sell a positive quantity.
Second, if all of the residents of one town charge the one-town equilibrium prices outlined in
Example 1, and all groups of n - 1 residents of the other town charge prices summing to more than
that of the first town, then we have an equilibrium with production in only one town. Again, since
no individual in the second town can lower his or her price enough unilaterally, there will be no
production in that town.

We can also consider alternative distributions of property rights for this example as we
did in Example 2. Again, consider a game where residents of each town set prices for smoke rights
and firms, consumers, and sellers of smoke rights behave competitively. Efficient outcomes can be
supported by an equilibrium where residents of both towns set prices for smoke rights at 1/n,
production is split evenly, and the price of the final good is 1. This is an equilibrium because by

lowering the price, a resident can bring all production to his or her town, and by raising the price,
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the resident can move all production to the other town. The change in revenues is of order 1 and

the change in the cost of pollution is of order 1/n.

Some Comments

(i) Cournot (1838, Chapter 9), in fact, considered a version of Example 1 in a quite
different setting. He framed the problem as one of complementary monopoly. In his model a
monopolist producer of zinc and a monopolist producer of copper produce for a perfectly competitive
market for brass. He assumed that demand for the final product (brass) was linear and that copper
and zinc could be used only to produce brass. This model is formally equivalent to our Example
1. (Note that Cournot considered the analogue of our case in which the disutility from smoke on the
part of the residents is zero.) In addition, Cournot considered the n-input complementary monopoly
problem analogous to our first example and obtained similar results. An interesting feature of our
Examples 1 and 2 is that they illustrate that complementéry monopoly problems are pervasive in
privatized public goods economies. The problems caused by complementarities are recurrent themes
in the literature on the foundations of perfect competition. Examples include Hart (1980), Makowski

(1980), and Jones (19872) and (1987b) in addition to Cournot (1838).

(if) Many readers may not find Example 1 too surprising. Even with many residents, the
markets for smoke rights are highly individualized and hence intrinsically thin. Thus, although it
might be surprising that the problem gets worse as the number of residents grows, it should not be
surprising that the inefficiency does not go away. As Arrow (1970) argues, although you can get
rid of an externality problem by creating markets for pollution rights, these markets are likely to be
thin, so that perfect-competition may not be the correct notion of equilibrium to employ.

One should not make this judgement too hastily, however. Just because only one

individual is selling in the market for the individualized smoke rights does not necessarily imply that
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the individual has market power to exploit. Indeed, the model examined in Mas-Colell (1975), Hart

(1979), and Jones (1987a) is an example in which each individual has sole ownership of some good,
yet because good substitutes exist, the individuals have no market power. To see that monopoly
power does not necessarily imply market power, note that the thin-markets argument by itself would
lead one to believe that individual residents have market power in the local real estate market as well.
This will not be true, however, if the number of sellers is sufficiently large and potential residents
regard different plots of land as good substitutes. All this is not to say that the thin-markets
argument is wrong. We just want to point out that it is much too subtle an issue to pass over without
thought. Example 3 further illustrates this point. Each resident in a town has a monopoly over his
or her smoke rights but no market power because of competition from residents of the other town.
In summary, the complementarity of the goods in the production process plays a crucial role in the

examples.

(iii) The results of Example 1 might be expected for another reason familiar to those in
public finance. A simple reinterpretation of our game will make this cleaf. Instead of assigning
property rights and letting residents price these rights as they see fit, suppose we assume that each
resident announces per-unit damages due to the smoke over his or her property and is paid this
amount times the total quantity of smoke produced. This restitution program is financed by an ad
valorem tax equal to the total per-unit damage announced. If we maintain our assumptions that firms
in the output market are perfect competitors and that residents fully and correctly anticipate the
effects of their announcements on the output market, then this game and that in our examples are
formally equivalent.

Of course, no one should be surprised that the outcome of the game when stated in this

way is inefficient: there is a free-rider problem. The same free-rider problem shows up in Example
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2, in which residents pay firms to reduce pollution. The residents have incentives to understate their
marginal disutility to take a free ride on the reduction in pollution due to other people’s payments.
Thus, it should be no surprise that the inefficiency does not go away in large economies; this is

exactly the situation in which the free-rider problem is commonly believed to be most severe.

(iv) The role of the strategic formulation of the equilibrium problem considered here is
interesting. The price-taking and price-setting equilibria differ in efficiency because of differences
in perceptions about the constraints facing decision makers. That is, in the price-taking version of
the economy, agents act as if they could set smoke levels independently of the actions of the other
agents. The fact that this is not possible is imposed only in equilibrium, not in the individual
decisions. Introducing strategic play restores these social constraints in the individual decision

makers’ problems and produces the adverse effects on welfare.

(v) We can now give a better (though still very imperfect) summary of the role of market
mechanisms in providing public goods. Example 1 shows that such mechanisms will not work in
full generality. Further, it is clear that such mechanisms can do very badly in large economies.
Taken together, however, the examples suggest that the problem in the large economies result of
Examples 1 and 2 is the high degree of complementarity. Further, Example 3 suggests that the
Coase mechanism (and perhaps other mechanisms as well) may allocate the costs of externalities
reasonably well in an interesting class of large economies. We should emphasize at this point that
this seems to be limited to those economies in which both the externalities are local in nature and
there are many potential locations. Thus, for example, it seems quite plausible that the mechanism
will work for Meade’s (1952) beekeeper and apple orchard example. (If the price charged by the
orchard owner is too high, go to another orchard.) The mechanism might also work in Coase’s

(1960) candy maker and noise creation example. (Move the candy factory, or move the doctor.)
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It seems highly unlikely to represent a reasonable solution to either the acid rain problem or the
problem of allocating funds for national defense.

The force of the local public goods result is very much in the spirit of Tiebout (1956).
Unlike Tiebout, however, we do not require mobility of residents across locations to generate good

outcomes with local public goods.

3. A More General Approach

The examples of the previous section suggest two possible approaches to the public goods
problem. The first approach is to ask how a central authority might ensure efficient public goods
provision by designing a set of rules restricting the behavior of private agents. This approach has
been extensively explored in the mechanism design literature (e.g., Hurwicz (1972), Groves and
Ledyard (1977, 1985)). The second approach is to ask what outcomes market-like arrangements will
produce.

We take the second approach. We must first take a stand on what constitute the key
features of market-like arrangements. The mechanisin design literature provides a convenient
language for this purpose. We formalize market-like arrangements by considering a large class of
mechanisms sharing two key properties: a strong notion of property rights and a uniform continuity
requirement. We show that if a mechanism satisfies these two properties, decentralized voluntary
exchange under such a mechanism leads to extremely inefficient outcomes. This approach
generalizes Example 1 to a larger class of models of strategic interaction.

We consider a more general environment than in the examples. The commodity space

is R®*1 The last commodity is interpreted as a numeraire consumption good. The remaining

commodities, i = 1, ..., n, are interpreted as consumption of smoke rights. There are n consumers

with consumption sets X; = R_‘,EH. The preferences of consumer i are given by
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Vi®) = X541 + uixp.

Notice that consumers care only about consumption of their own smoke rights, that is,
smoke produced over their own location. Let x; denote the consumption of good j by consumer i.

The endowment vector of consumer i, denoted by wi, is given by

W=7 >0 Wpi1 =1 >0

for all i and

W =0
fori # j,j = 1, ..., n. The technology set for this economy is given by

Y, = {y € Rn+1| Vi= Y= . TV = =YY - Ya =0, Y541 =0, R(Q = yn+1}.

Note that the endowments (which are the property rights) convey to each agent monopoly
power over smoke produced at the agent’s location. The complementarities inherent in public goods
are captured in the description of the technology. To relate this economy to the demand functions
specified in the examples, we can set R(q) = qD‘l(q).

An allocation is feasible if

n n
E X1 - y = E wl
i=1 i=1
and
y €Y,

From this description, it is easy to construct an economy with externalities as in the

examples of the previous section. The two economies are equivalent in the sense that the
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nonwasteful allocations of the private goods economy are in one-to-one correspondence with the

feasible allocations of the externalities economy. This equivalence is implicit in what follows.
We now describe an allocation mechanism for the private goods economy. We consider

a general description of the workings of a marketplace. Fix the number of players at n. Each player

chooses an action a; from an action set A;, i = 1, ..., n. Let a denote the vector of actions. A

mechanism for our economy is a collection of action sets and outcome functions x(a) and y(a) which

map the vector of actions into the space of feasible allocations. We assume there is a class of
allowable payoffs U;. Letu = (uy, ..., u;) € U= (U; X ... X Up). Let N(u) denote the Nash

equilibrium correspondence given a mechanism.

We will find it convenient to consider an alternative mechanism with action sets for each
player given by U. The interpretation here is that each player reports the utility functions of all
players in the economy. Lett; € U (the #ype of player i) denote the vector of utility functions
reported by player i so that t; € Uj denotes i’s report of j’s utility function. Let t denote the vector
of types reported by all players. A revelation mechanism is a collection of type sets and allocation
functions x™(t) and y"(t) which map reported types into the space of feasible allocations.

We now show that the equilibrium outcomes of any mechanism can be implemented as
equilibrium outcomes of a revelation mechanism. Let ¢ denote a selection from the Nash
equilibrium correspondence, N(u), of an arbitrary mechanism. Define the outcome function x*(t) in

the revelation mechanism by x*(t) = x(¥;(t;), ¥»(ty, ..., ¥a(t)), and define y'(t) similarly. Note

that in this formulation, the action chosen for player i is the equilibrium action for the environment
in which he or she claims to be playing. Because the vector of actions implied by y constitutes an
equilibrium for the original mechanism, it follows that truth-telling is also an equilibrium of the

revelation mechanism and yields the same outcomes. We have proved the following theorem.
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Theorem 1 (Revelation principle): Suppose the Nash correspondence for some mechanism
is nonempty for all u € U. Then there is a revelation mechanism for which truth-telling is an

equilibrium yielding the same outcomes.

We therefore restrict attention to revelation mechanisms. Exactly the same logic applies
even with private information. In this case, a revelation mechanism yields the same outcomes as the
Bayesian Nash correspondence of an arbitrary mechanism.

Note that the revelation principle contains two conclusions. First, it follows that one only
need consider games in which the strategy space is given by vectors of reported utility functions.
Second, it allows attention to be restricted to the truth-telling equilibria of the revelation mechanism.
In some of the results that follow, we will only use the first of these two properties. So, in some
cases at least, it is not necessary to construct the revelation game to check whether our axioms for
decentralized mechanisms are satisfied.

The space of possible utility functions we consider in the revelation mechanism is U; =

{utility functions over smoke rights on [0, Q] which are nondecreasing, with u;(0) = 0}. Associated

with a revelation mechanism for our economy are outcome functions x(t) and y(t) that satisfy
feasibility. For convenience let m; denote the consumption of the numeraire consumption good by

consumer i and let q denote the amount of stnoke produced. Then the outcome functions must satisfy
G.1) Y myt) = Y m; + R(q(®)
i i

and
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for allt € U, where rﬁl and ij denote the endowments of the consumption good and smoke rights,

respectively.

The payoffs in the revelation mechanism are then given by
Vi) = my®) + u©)

for all t € U2, For notational convenience, let g = xi.

We can define a sequence of mechanisms as the population size n changes. Note, of
course, that the underlying commodity space and the spaces over which the outcome functions are
defined also change. As we change the population size, we also allow the utility functions to change.
We denote the utility function of consumer i by u;(g;; n). We now prove that under a set of axioms,
the equilibrium output of the revelation mechanisms converges to zero. Suppose, therefore, that the

sequence of mechanisms satisfies these axioms:

Axiom Al (Voluntary trade): For alln, forallt € U™, and foralli =1, ..., n,

my(t,n) + t;(q;(t,n); n) = T;li + tﬁ(c-lﬁ n).

Axiom A2 (Continuity): For all § > 0, there exists ¢ > 0 such that for all n, for all i

=1,..nforallt € UL

lg,n) — qt_; t, m)| < &
if
600 — ;)] < e

forallx € [0,Q], forallj =1, ..., n.
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Axiom Al is one way to represent the idea that every consumer has a right not to be
affected by smoke unless he or she consents. This condition is stronger than the standard voluntary
participation or individual rationality constraint familiar from the mechanism design literature. We
require the outcome of a mechanism to make each individual at least as well off, when welfare is
calculated with the reported utility function, as he or she would be without any trade at all. This
axiom reduces to the standard individual rationality constraint in dominant strategy mechanisms.

Axiom A2 requires that no mechanism punish small deviations from truth-telling too
severely. For example, mechanisms that simply impose efficient allocations if all reports agree and
prescribe severe penalties for deviation are disallowed. One such mechanism gives each consumer
his or her endowment if there is any disagreement among consumers about reported utility functions.
If all consumers agree in their reports, the mechanism computes the Lindahl equilibrium for such
an economy and gives each consumer the associated allocations. Clearly, truth-telling is a Nash
equilibrium for such a mechanism. Although this mechanism is extremely discontinuous, it is
possible to construct similar mechanisms that are continuous, but which punish deviations severely
enough. A key feature of Axiom A2 is that it requires mechanisms to be uniformly continuous
across the sequence of economies. Thus, the power of any individual to affect aggregate outcomes
by small deviations is limited uniformly across the sequence of economies.

An alternative (and stronger) condition would require a small change in any consumer’s
report to have a correspondingly small effect on the allocations received by every other consumer.
This condition might be more suitable for environments where the notion of an aggregate outcome
is more difficult to define.

Mechanisms satisfying Axioms Al and A2 seem to us to capture two key features of
market mechanisms. Hence, we say that a sequence of mechanisms satisfying Al and A2 is

decentralized.
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Theorem 2 (Decentralized truth-telling mechanisms yield zero output in the limit):

Consider a sequence of wutility functions u((1); uy(2), uy(2); u1(3), ur(3), u3(3); .... Suppose the

revenue function R(q) is bounded above by K < oo. Suppose truth-telling is an equilibrium. Denote

the equilibrium output level by q™ = q(u(n), n). If Al and A2 are satisfied, then lim_,o,q" = 0.

Proof: The argument is by contradiction. Suppose that lim_,.q" # 0. Choose

subsequences if necessary so that limy ., q"c = d > 0. In what follows, we drop the subscript k
k>0 q

for notational convenience. Since R(q) is bounded, using (3.1) we have that

@3.3) Y mun) < ¥ m; + K

From equation (3.2), using q(u, n) = 0 we get that q;(u, n) < ‘_li for all i. Hence, from
Axiom Al we have that m;(u, n) = ﬁ‘ll for all n and for all i. With (3.3), this implies that there is

some sequence i, iy, ... such that

(3.4) lim [min(u,n) - ﬁin] = 0.

n—>oo

Without loss of generality, we assume that i, = 1 for alln. Using Axiom Al and (3.4),

we have

3.5) lim [uy(qs(u, m); m) - uy(@; M) = 0.

>0

Consider an alternative strategy for agent 1, denoted by t;, of reporting the same utility

functions of the other players as under strategy u and

3.6  ty&m = ux; ) + &%

where ¢ is a small positive number determined below.
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The payoffs for agent 1 are then given by
G7  Viu_pt;n) = m@_y, t;, n) + uy(q@_y, t, 0); ).
From Axiom Al we have that
3.8)  my(u_g, tp, n) + ty(q (g, tf, ;) = my + t;@y)-
Using (3.8), we get the utility difference between the alternative strategy and the equilibrium
strategy:
3.9) A, = Vi_y; fl; n - Vit; n) = [ul(ql(f, n); n) - f11(‘116‘:, n); n)]

+ [By + B1@p) - [mg® + uy(ayu, m; W],

where ql(f:, n) = q;t_g, {1, n).

Adding and subtracting 111(‘-11) to and from the right side of (3.9), after rearranging we

get

o1y = i@, w5 » - 0@ v - fu@E », D - i@ )]

+ [Iil + uy(qp) - my(t) - uy(q;(u, n); n)].

From (3.4) and (3.5) we have that the last term (in brackets) goes to zero. Consider the

remaining terms. These are given from the definition of '211 in (3.6) by

% [C_ll - ql(f" n)]

Feasibility requires that ‘_11 - ql(i, n = q(E, n). Recall that lim _,q(u, n) = d.

Choose 6 sothat d - 6 > 0. From Axiom A2 we have that there exists € > 0 such that
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[qC,n) — qu_j, t, M| < &
if [%1 - tll < e.

Therefore, given 6, the deviation %1 can be chosen so that q(E, n) > qt, n) - 4. Since

q(u, n) converges to a positive constant d, we have that

1imAn2_5_(d-a)>o.

n—»oo

Hence, the difference in utilities is strictly positive for large enough n.[]

The result that q(n) - 0 does not necessarily imply that the outcome is inefficient. In
fact, it is easy to construct sequences of economies where this is the only efficient outcome. A
simple example is the case where u;(n) is the same (and nonzero) for all i and n.

Thus, the importance of the theorem lies in the fact that the result holds for a large class
of economies in which the efficient outcomes are bounded away from zero. The examples of Section
2 belong to this class. Another example is given by u(n) = (1/nm)u;(1). This gives rise to a
sequence of economies in which the Lindahl equilibrium is independent of n (and positive in cases
of interest). Other examples of this type give rise to sequences of economies in which the Lindahl
equilibrium quantity is bounded away from zero, though dependent on n. The theorem shows that
with decentralized mechanisms the equilibrium level of output converges to zero even in this class
of economies.

Theorem 2 shows that the truth-telling equilibria of decentralized mechanisms yield
extremely inefficient outcomes for a large class of economies. In many cases of interest, however,

our axioms are often difficult to verify for games where truth-telling is not an equilibrium. We now
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show that, in such cases, if the mechanisms satisfy a monotonicity axiom, all equilibria yield zero

output in the limit.

Axiom A3 (Monotonicity): For all n, for all t € UR, foralli = 1, ..., n, forall t; €

U such that gﬁ(x) = t;(x) for all x € [0,Ql, g;t_;, £i’ n) = qt, n).

The monotonicity axiom requires that if any person claims to value his or her smoke

rights more, the mechanism should give that person more smoke rights.

Theorem 3 (Decentralized, monotone mechanisms yield zero output in the limit):
Consider a sequence of wility functions u;(1); uy(2), wy(2); u(3), uy(3), u3(3); .... Suppose the
revenue function R(q) is bounded by K < B. Let t(n) denote a sequence of equilibria for a sequence

of revelation mechanisms, and denote the equilibrium output level by q* = q(t(n), n). If Al, A2,

and A3 are satisfied, then lim__, ,q" = 0.

Proof: The argument is by contradiction. Dropping subscripts on subsequences, we have

that there is some d > 0 such that lim__, ,,q® = d. Using the boundedness of the revenue function,

we have that there is some sequence of individuals iy, iy, i3, ... such that

@.11) lim [min(t(n), n) - Elin] = 0.

n-*>co

Without loss of generality, let i, = 1 for all n. Consider an alternative strategy for person 1,

denoted by ’21, of reporting the same utility functions of the other players as under t;(n) and

(3.12) E11(71; n) = t11(x; n) + %x,
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where e is a number determined below. The difference in payoffs between the alternative strategy

and the equilibrium strategy is given by

A, = Vit @), t_;(); 1) — V(t@); n)
(3.13)

= myG@, n) + u{y @@, 0; 0} - [mEw, 1) + e Em, n; o),
where E(n) = (El(n), t_q(m)). Using monotonicity and the fact that u; is nondecreasing, we have

that

(3.14) A, = my(tm), n) — my(tm), n).
Using Axiom Al and (3.12), we have that

@15 mE@m, n) - my = t3(@Qg; M) - t13(q;E@), n); ) + % {?11 - qE@), n)}.

From (3.14) and (3.15), using the fact that t;; is nondecreasing, we have that

316 A, = % {a - wtw, o} - myew, n) + m.

The last two terms in (3.16) converge to zero from (3.11). Using Axiom A2 and
choosing 6 so that d - 6 > 0, we get that the difference in utilities is strictly positive for large

enough n. We have the desired contradiction. ]

One objection to Theorems 2 and 3 is that our proof strategy requires deviations which
may be large relative to an individual’s true utility function. In cases of interest, u;(n) converges to
zero as n — oo, but the deviations we use do not converge to zero. In other words, the space of
utility functions from which individuals make their reports is large relative to the space of utility

functions for which efficient outcomes have output bounded away from zero. To address this
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objection, we restrict the domain of the revelation mechanisms. Let Ug be the set of utility functions
over smoke rights on [0, Q] which are nondecreasing, with u;(0) = 0 and which satisfy the condition
that, for all x, x € [0,Ql, |u(x) — u(x)| < B/n |x — x|.

The voluntary trade axiom is unchanged. We strengthen the continuity axiom by
imposing a Lipschitz condition on how the allocation of smoke rights changes with a change in a

person’s reported type.

Axiom A2’ (Lipschitz continuity): For alln, foralli = 1, ..., n, and for all t,'z € UB,

there exists A > 0 such that

lgtn) — gt_p. 4 0] < Al — g,

where [ « | is the sup-norm.

We have imposed the Lipschitz continuity requirement directly on each person’s allocation
of smoke rights. This condition is clearly equivalent to a requirement that output be Lipschitz-
continuous in the reported type combined with a nonwastefulness condition. We now show that if

a sequence of mechanisms satisfies Axioms Al and A2', then in the limit R(q) = Bq.

Theorem 4 (Decentralized mechanisms yield inefficient outcomes): Consider a sequence
of wtility functions uy(1); u12), uy(2); .... Suppose the domain of the revelation mechanism is Ug.

Let t(n) denote an equilibrium of the revelation mechanism. Suppose R(q) is bounded. Then

im sup {Fla), n) - Batem), mlf = o.

Remark: To understand this result, suppose there is some number K such that R(q) <

Kq. (That is, in terms of Examples 1 and 2, suppose there is a finite reservation price for the
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demand curve.) Suppose now that B > K. Then q converges to zero. An alternative way of stating
this result is that if, for some profile of utility functions in UR, efficiency requires zero output, then
no matter what the actual preference profile is, output under decentralized mechanisms converges

to zero.

Proof: The argument is by contradiction. Let ny denote a subsequence satisfying

G1D - lim [Rigt), m) - Ba, )] = 24 <0

Without loss of generality, we define the subsequence so that the term in the brackets in (3.17) is
less than or equal to d for all k. For notational convenience, we drop the subscript on the

subsequence i, in what follows. Choose i, so that
m; (t0), 1) - m; () = minfm(t(n), n) - m;m)]-
1
With (3.1) it is easy to show that (3.17) implies that

(3.18) n[min(t(n), n) - I'ﬁin(n)] < Bq(t(n), n) + d

for all n.
Without loss of generality, let i, = 1 for all n. Consider the following deviation denoted

by El for person 1. Let the report of the utility function of the other players be unchanged, and let
3.19) tyem =B g
n
Using Al, we then have that

G20 m@ = H® = G® - 4o}

where ﬁ‘ll(n) = ml(fl(n), t_1(n), n) and Ell(n) is similarly defined.
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From (3.18), (3.20), and the fact that q;(t(n), n) =< Ell(n) - q;(t(n), n), the difference in

utilities between the alternative strategy and the equilibrium strategy satisfies
(3.21) nA, = B(q;(m) — q;(n)) — d + nuy(qy(n); n) — nuy(g(n); n),

where q;(n) = q;(t(n), n). Now, if fll(n) < ¢;(n) for some n, then ul(dl(n); n) —u(q;(); n) =
—B/n(q;(m) — q;(n)) and, since d < 0, we have a contradiction. If q;(n) > q;(n), we can use

Axiom A2’ and the fact that u; is nondecreasing in (3.21) to get

-AB2Q _
n

d.

322  nA, =

Recall that d < 0. Therefore, n can be chosen sufficiently large so that the right side

of (3.22) is strictly positive, and we have a contradiction. ]

Monopoly Power and the Free-Rider Problem

We have transformed our environment into a private ownership economy and shown that
decentralized mechanisms lead, in general, to extremely inefficient outcomes with a large enough
population. In this formulation, monopoly power in the ownership of smoke rights plays a central
role in generating inefficient outcomes. Alternatively, we could have set up a mechanism design
problem in an environment with externalities. In this case, the preferences of the agents over smoke

are given by

m; — vyi(9,

where q is the amount of smoke produced in the town and v; is a nondecreasing function on [0, QI.
A revelation mechanism in this economy is defined analogously to the setup in the privatized

economy as a collection of type sets for agents and outcome functions m(t), q(t) which specify
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consumption vectors of the numeraire good and production of smoke, respectively. Feasibility
requires that a mechanism satisfy (3.1). Consider a sequence of mechanisms as the population size,

n, changes. Suppose that the sequence of mechanisms satisfies these two axioms:

Axiom Al’' (Veto power): For all n and for all t € UT,

my(t, n) — t(qt, n); n) = m; — t,(0; n).

Axiom A2" (Continuity): For all 6 > 0, there exists e > 0 such that for all n, for all

i=1,..,nand forallt € UL,

latt, m) = q_g t, W)| < &
if )
[t — )| <€

forallx € [0, Q] and forallj = 1, ..., n.

The monotonicity and Lipschitz continuity axioms are defined analogously. The veto
power or individual rationality condition, Axiom Al’, makes more explicit that the voluntary trade
axiom, Al, is a description of the legal environment underlying the privatized economy. The
obvious question of alternative legal environments is addressed in Section 5.

It is easy to prove, along the lines of Theorems 2 and 3, that if the revenue function is
bounded, then the equilibrium output of smoke converges to zero. It is also easy to prove, along
the lines of Theorem 4, that, with Lipschitz continuity, outcomes are generally inefficient and, under
plausible conditions, equilibrium output converges to zero. This formulation of the problem shows

that our result of extreme inefficiency does not depend on the particular way that we have privatized
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the public goods economy. In fact, the privatized public goods economy formulation is in some
ways more general than the public goods formulation.

To see this, consider the following privatized economy. Let the endowment of smoke
rights for each agent be the same, say, q. We restrict attention to mechanisms that allocate positive
consumption rights at location i only to consumer i. That is, let x; = Qifi # j. Define ui(x}) =
~vi(q — x)). Clearly, the theorems continue to apply.

In the public goods formulation, the extreme inefficiency of outcomes results from the
free-rider problem. In the privatized economy, complementarities create monopoly power and the
resulting allocations are inefficient. In this sense, the free-rider problem is a problem of monopoly

power.

Comments, Examples, and Extensions

(vi) It is clear from the proofs of Theorems 2 and 3 that Axiom A2 can be weakened
considerably. In particular, all that is used in the proofs is that if q(t(x)) is bounded away from zero,
then q(t(x) + ax) is also bounded away from zero for all sufficiently smail c. This suggests the

following alternative for Axiom A2:

Axiom A4 (Limited responsiveness): For all 8 > 0, there exist e; > 0 and ¢) > 0 such
that for all n, if q(t, n) > 8, then for all t such that [t - t] < €, q(t, n) > €, where | - | is the

sup-norm.

Clearly, Axiom A2 implies Axiom A4. It is easy to see that Theorems 2 and 3 still hold

with this weaker axiom.

(vii) Recall that Theorems 3 and 4 do not require the assumption of truth-telling. Because

truth-telling is not required, it is possible to directly verify the axioms in some specific applications
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without first calculating the equilibrium correspondence and then constructing the resulting revelation

mechanism. We will use this fact repeatedly in what follows.

(viii) As an example of the types of games covered by Theorems 3 and 4, suppose that
each individual has the same allocation of rights and that, for a sequence of mechanisms, output is

given by a continuous function of the sum of the reported utilities of the agents: q =

g(Xi= 1tﬁ(c-1 — @)), where g: U — R is monotone-decreasing and uniformly continuous (with respect
to the sup-norm topology) on U. Then Axioms A2 and A3 are automatically satisfied. It follows
that Theorem 3 applies as long as Axiom Al is satisfied. Alternatively, suppose that g satisfies a
Lipschitz condition. Then Theorem 4 applies.

A specific example illustrates the usefulness of this formulation. Consider a mechanism
in which each agent announces a vector of utility functions, t;. Output is determined by equating
R(g) to E‘-’L:ltﬁ(c—l — q), and each individual receives a pa;yment equal to t;; at the q given above.

Under this mechanism, Axioms A2 and A3 are clearly satisfied for a large class of
revenue functions R, and Axiom A2’ is satisfied for another class. Clearly, since Axiom Al is
satisfied, Theorems 3 and 4 hold.

Alternatively, this construction can be interpreted as a nonlinear pricing game in which
each agent chooses a payment schedule p;(q) as a function of the level of pollution. Let g(t) be
chosen by equating R(q)/qto ¥ =1p;(¢). Competitive firms produce output and make the required
payments to individuals as in the examples of Section 2. As long as R(q)/q is continuous, both
Axioms Al and A2 are satisfied. Moreover, as long as R(q)/q is continuous in a neighborhood of

q = 0, both Axioms Al and A4 are satisfied (even if R(q) is not continuous everywhere).
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(ix) Consider a slight variation on this pricing game. Each individual announces a vector
of utilities t;;(q) which are differentiable. Let q(t) be given by setting R(@)/q = Li= 1t;i(q).
Suppose R is such that the resulting value of q is monotone-decreasing in t; Payments are given
by t;i(q)q. Note that, as written, this mechanism satisfies neither Axiom A2 nor Axiom A4 in
general, since small changes in the reported utilities can be associated with large changes in the
associated marginal utilities. It follows that small changes in the reported utilities can be associated
with both large changes in q (so that Axiom A2 is not satisfied) and large changes in q which result
in output levels arbitrarily close to zero (so that Axiom A2" is not satisfied). Nevertheless, the proof
of Theorem 3 holds for this example without any change whatever.

Thus Axiom A2 can be relaxed even further than in Axiom A4. In particular, the proof

requires only that Axiom A2 hold for deviations of the form z(x) = t(x) + ax. Therefore, although

either Axiom A2 or Axiom A4 is sufficient for the result, neither is necessary.

(x) Another way to extend Theorem 3 is to relax the requirement that the mechanism be
defined for all increasing utility functions. An obvious and relevant alternative is to restrict U to be
the class of all increasing and concave utility functions on [0, Q]. Indeed, the proof of Theorem 3
still holds for any class U with the property that if t € U, then t(x) + ox € U provided Axioms
Al, A2 (or A4), and A3 hold in U. It follows that the example presented in (ix) satisfies this
alternative formulation of the result as long as attention is restricted to increasing, differentiable, and
concave utility functions.

Another example in this vein is the pricing game discussed in Section 2, which
corresponds to a special case of the games discussed in (viii) and (ix) with U given by the class of

linear utilities.
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(xi) The conclusions of the theorems do not hold for some mechanisms. We discussed
one such example before the statement of the theorems. As another example, consider an extension
of the bargaining game to our environment. Nature moves first, choosing a dictator. The dictator’s
strategy is to select an allocation for each agent in the economy. The strategies of the other players
are limited to either agreeing or disagreeing. All players move simultaneously. If all players other
than the dictator agree, the outcome is the allocation named by the dictator. If any player disagrees,
the outcome is for each player to consume his or her endowment. This game clearly has one
equilibrium that is efficient (among the players of the game). It follows that for some sequences of
utility profiles, the quantity of output in this equilibrium is uniformly bounded away from zero.
(This game has other equilibria as well. In particular, zero output is always an equilibrium of the
game as formulated.) It can be verified that Axiom Al is not satisfied for this example.

This example suggests other possibilities that could be explored. In particular, extending
the formulation to sequential move games (more in the spirit of Rubinstein (1982)) provides other

examples where the conclusion of Theorem 2 does not hold.

(xii) We turn now to the particular normalization of demand we have chosen. We have
kept demand for the final good unaffected as the population size n changes. Suppose instead that
demand for the final good grows at rate n. We show that the ratio of equilibrium oufput to the
efficient level of output goes to zero as n gets sufficiently large. Thus, although output itself need
not go to zero, it is arbitrarily far from the efficient level.

Suppose, therefore, that R, (q) = nR(q), where R(q) is bounded. Suppose as before that
the revelation mechanism has an equilibrium. Consider the following transformed game. (We use

a caret (") to denote the transformed game.) The strategy spaces are unaltered. The outcome

functions for the transformed game are defined by
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m,(t, n)

my(t, n) =
and

qt, n) = 96
n

Payoffs are defined by {fi(rh, @ =m + (U/n)yng. If (m%,.q" is an equilibrium
outcome of the original game, then (mZ, ff‘) is an equilibrium outcome of the transformed game.
From Theorem 2, it follows that for the transformed game, the equilibrium output level q converges
to zero. Now, in general, the efficient level of output is uniformly bounded away from zero in the
transformed environment. Hence, in general, the ratio of equilibrium output to the efficient level

of output converges to zero in the original environment. Similar arguments apply for Theorem 4.

4. The General Approach With Private Information

The voluntary trade assumption of Section 3 is a very strong notion of property rights
given our assumption of public information. Our goal in this section is to show that this assumption
can be considerably weakened in environments with private information. We prove two results for
the private information case that are analogues of Theorem 2. We show that with either
independently drawn utilities and a ‘standard’ individual rationality assumption or with a constant
support assumption and ex post individual rationality, the equilibrium level of output converges to
zero. Although we do not explore this here, presumably analogues of Theorems 3 and 4 also hold
in these settings.

We will need some additional notation to develop the environment with private
information. To simplify the presentation, we will make stronger probabilistic assumptions than are

necessary. See the comments at the end of this section for more details on this. Let U be the set

of nondecreasing, continuous functions on [0, Q] with u(0) = 0. Equip U with the sup-norm
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topology. The utility functions of the players of the game are random variables on U™, Let B™ be
the Borel sigma algebra on U™ generated by the sup-norm topology. Let p™ denote a sequence of
probability measures on (U™, B"). Let u} denote the marginal probability measure for u®. For
expositional reasons, we will assume that supp p® = X7_; supp p}. As will become clear, this
assumption can be relaxed to some extent.

An allocation mechanism for our private goods economy can be defined analogously to
that in Section 3. As in that section, it is straightforward to establish the revelation principle. We
will therefore restrict attention to revelation mechanisms. To simplify notation, we will suppress
consumption of smoke rights at location j for individual i when j > i. A revelation mechanism for
an economy with n agents is denoted by I'* and is a collection of (2n + 1) measurable outcome
functions given by m;: U >R, q;: U >R, q: U — R, where m; denotes consumption of the
numeraire good by agent i, q; denotes consumption of smoke rights by agent i, and q denotes output.

We require that these outcome functions satisfy feasibility:

4.1) Emi(u) < Eﬁi + R(q(w))

4.2) @ < g -qw, i=1,..,n,

4.3) mu =2m;, i=1,..n,

for all u in the support of u®, where 1'}11 denotes agent i’s endowment of the numeraire good.

For notational convenience, let @ = (Ul x U2 x ..), & = B! xB2x..),andP =
(yl X /1,2 X ...) define the underlying probability space.

A Bayesian Nash equilibrium of I'" is a strategy profile consisting of n measurable
functions denoted by s;, each mapping U to U such that, for all i, for any measurable function, §i:

U-1,
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E[mi(s(u)) + u;(q;(s(u))) |“i]
(4.4)

= Hm(&(0), s50) + 5g@&a), s@))y) as.
Note that since Q is a complete, separable metric space, (2, &, p) is a regular probability
space and the conditional expectations in (4.4) are well defined. (See Breiman (1968).)
Truth-telling is an equilibrium of the revelation mechanism if s;(u) = u for all i is a
Bayesian Nash equilibrium.
We now turn to the axioms that define decentralized mechanisms. We will start with the

analogue of our voluntary trade axiom for mechanisms with no private information:

Axiom Bl (Interim voluntary trade): For all n, for all i, the revelation mechanism

satisfies
Emi@) + u(q;)|u;] = m; + uy(qy) for all w; € supp T

This axiom is the standard individual rationality condition in the mechanism design
literature. It says that if agent i believes that all other players are telling the truth, the agent can by
telling the truth guarantee him- or herself a conditional expected utility at least as large as the utility
of the agent’s endowment. The axiom captures the idea that after an agent sees his or her draw of
the utility function, the agent can leave with the endowment intact.

The analogue of the continuity axiom is

Axiom B2 (Continuity): For all € > 0, there exists § > 0, such that for all n, for all

u_; € * L, forally, u; € U,

lqCu;, u_y) — q(ﬁi, u_y)| <e
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if
o —wll <&

foralli =1, ..., n, where | - | is the sup-norm.

As in Section 3, note that Axiom B2 requires uniform continuity of the outcome
functions.

While our continuity axiom is essentially the same with and without private information,
note that our individual rationality axiom is substantially weaker with private information. To see
this, suppose the utility functions of all the players are perfectly correlated random variables. Then
the utility function of any player is known if all the other players tell the truth about their utility
functions. One can devise mechanisms in this case which ignore reports by a player of his or her
own utility function and thus limit the monopoly power Qf any given player. Such mechanisms
satisfy Axiom B1, but clearly will not satisfy the voluntary trade axiom, Al. Furthermore, recall
that in the proofs of our earlier theorems, we constructed deviations that were possibly large relative
to an individual’s true utility function. In the private information case, any deviation must be
credible; that is, it must be in the support of the domain of utility functions. Thus, we need to
ensure that the support of the domain of utility functions does not shrink too rapidly with the number

of players. In particular, we require that the revelation mechanism satisfies this axiom:

Axiom B3 (Support): For all §;, 6, > 0, there exist €;, ¢, > 0 such that for all n, for

alli =1, ..., n, for all y;, € supp u¥ such that

® ui@) = ui(El ~ 8;) < €0,

there exists u; € supp u? such that
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(ii) Iy =l <8

(iif) 5(Q — 59 = (@ —uQ) + €@ — @ forall g € [q — 8;,q]
(iv) u(q — &) — 0@ = (g — &) — ui(g) forall g € [0, q — &].

This axiom basically requires that if the utility function over smoke rights is flat near the
smoke rights endowment, there is a small credible deviation which makes the utility function steeper.
We verify in Example 5 below that the set of economies satisfying this assumption is nonempty.

For technical reasons, we assume that the utility functions are uniformly bounded.

Axiom B4 (Boundedness): For all n, for all i, there exists M > 0 such that ui(di) =M,
for all w.

We also require this:

Axiom BS (Independence or substitutes): For each n, uy, ..., u, are independent random
variables.

Consider a sequence of mechanisms I'". We have

Theorem J5: Assume truth-telling is an equilibrium of the revelation mechanism. Let ¢*
= q(Uuy, ..., Uy). Suppose also that R(-) is bounded by a constant K. If a sequence of mechanisms

satisfies Axioms B1-B5, then q converges in probability to zero with respect to the probability

measure P.

Proof: Suppose not. Then (dropping the subscripts on subsequences) there are numbers
71 and 7y > 0 such that P(q"(u) > ;) > v, for all n.

From the assumption that R(-) is bounded we have
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Y (miw - mH) < K as.
i
Therefore,

Y E(miw - m) =< K.
i
Let Tim) = min, E(mi(u) — i). We then have
nrl(n) = K.
Thus, 1) > 0, which implies that
4.5  Eyg@ — mgg) =0,

where i(n) denotes an agent with minimum monetary payoff. Without loss of generality, let i(n) =
1 for all n. From (4.5) we have
(46) E{E[ml(u) - I—fll |u1]} - 0.

An implication of (4.6) is that the random variable in braces converges to zero in
probability. (See Breiman (1968) pp. 33-34.) Thus, we have

(47) E[ml(u) - Elllul] '-I')" 0.

Taking subsequences if necessary, we have

a.s.

(4.8) E(my(u) - my|ug) —= 0.

Recall that the utility functions are nondecreasing in smoke rights. Thus, u;(q;(u)) <

u;(q;) and we have
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@9  Ew@ - w(q@)u) =0 as.

From Axiom B1 we have

(4.10) E(m; () - myuy) = By @) - uy(q)[uy) = 0 as.

Using (4.8) and (4.10), we have

a.s

(411) E(ul(-(_-h) - ul(ql(u))lul) —s (.

Next, using the uniform boundedness axiom, B5, we have
E{B[u (@) - v @]y} = Buy(q;@) - w@)] - 0

which implies that
p
“4.12) ui(q;(@) - uy(q)) — O.

Thus, we have established that, under the contradiction hypothesis, the utility function
of some sequence of agents must be getting flat from the equilibrium allocation to the endowment
of smoke rights. We now use the continuity axiom to choose § > 0 so that Ju — u] < & implies

that

71

lq @) - qi(@, u_p)| < -

forallu_; € U“_l, where, recall, 7y, is defined by the contradiction hypothesis.
In the support axiom, let &; = v, and 6, = §, where § is given by the continuity axiom.

Then choose €7, €5 > 0 according to the support axiom.
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Next we show that the set of events w € {2, such that output is larger than +y; and the

utility function for agent 1 is flat, has positive measure. Let A; = {w|q%(@) > v;}, and let B, =
{
{w|uy(@ —uy(@ — 1) < €71} Weclaim that P(A, - B,) - 0. To prove this claim, suppose not.

Then, taking subsequences if necessary,
Plolw;@ - w@ - 1) > &7y and ¢* > 71)

is bounded away from zero. On this set of events, since ¢* > +; and u is nondecreasing, using

feasibility we have that
“.13)  wy@ — uyge®) = u@ — u(g — ¢°W)
= u(@ ~ uy(q — 79 > eq-

Thus, P(wlul(a) ~ uy(q; (@) > €qyy) is bounded away from zero, which contradicts (4.12). We
have established that P(A;, — B,) - 0.

Next we construct a deviation for agent 1. For the set of evenfs w, such that ul(c—l) -
ul(c_l — v1) = €7y, choose a measurable selection K(u) from the nonempty set of deviations u

defined in the support statement. (The measurable selection theorem in Hildenbrand (1974, p. 22)
guarantees that such a selection is possible.) For all other events, let K(u) = u. Note that K(u) is
measurable with respect to the sigma algebra generated by agent 1’s information.

Now calculate the expected utility for agent 1 from this deviating strategy relative to agent

1’s endowment. This expected utility is given by

vV = E[y + u(qp) - (m; + u1@1))]
@.19) |

= Effy +uy@) - @ + uy@)|uy,

where my, q; denote outcomes when agent 1 deviates.



44

By construction the deviating strategy is in the support of u}. Using individual

rationality, we have

4.15)  EEa; + ;@) - @y + 8,@)|t} = 0.
Using (4.15) and the independence axiom, B5, we have that
4.16)  EEGhy)|uy) = EEMm + 4,@) - 4;@)luy)

Substituting (4.16) into (4.14), we have, after some simplification, that

@17 vy = @) - 0,0 + u@p) - u@p)

Denote the expression in brackets by W(ﬁ, u). Then we have

@.18 Vv, = fW(ﬁ, wdp® + fW(ﬁ, u)du®.
B, c

B

B

By construction of ﬁ, W(ﬁ, u) = 0 on the set BS. Therefore, we have

419 Vv, = f W, u)dp® + f W(u, u)dp™
Bandy B,nAJ

Now, by construction of u, W(u, u) = 0. Thus, the second expression on the right in
(4.19) is nonnegative. Consider the first expression. Now, by construction of u, we have
W@, v) = ey ifq < g ~

> e(v;/2) ifq > q; — vy
Thus, we have

4
4200 v, > 6271 PB, N A).
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Recall that P(B, N A,) is bounded away from zero. Thus, we have

@21) vV, = A,

where A is bounded away from zero. But from (4.8) and (4.11) we have that

(4.22)  Emg + w(qy) - @ + w@p) - 0.
Thus, for sufficiently large n,
“23)  E{Emy + u@ly) > EfEmm + e uy)

Clearly, (4.23) contradicts the requirement that in a Bayesian Nash equilibrium there be no profitable

deviations. [

While this proof is fairly tedious, the intuition is straightforward. Because R(-) is
bounded, some agent must be getting paid nothing eventually for giving up smoke rights. If such
an agent can credibly claim to value smoke rights—that is, if the support statement is satisfied—then
individual rationality requires positive payments to this agent. Thus, to prevent such deviations, the
mechanism asymptotically requires no agent to sell smoke rights, and output converges to zero.

The independence assumption plays a more innocuous role than does the support
assumption and can be relaxed. As should be clear from the proof (especially (4.15) and (4.16)),

what we really use is that, for all u, for all u, in the support of uf,

*24)  Emy@ + 0(q;W)[ug} = m; + t(q;w).

This condition follows from independence and individual rationality. Alternatively,

consider replacing (Al) by the requirement of ex-post voluntary trade
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Axiom B1’ (Ex-post voluntary trade): For all n, for all i, the revelation mechanism

satisfies

my(w) + y(q(w) = m; + y(g) forallu € supp p2

Suppose a sequence of mechanisms satisfies B1’ and B2 through B4, but not necessarily
the independence Axiom BS. Then, the proof of Theorem 5 is essentially unchanged, except that

(4.15) implies (4.16) in the proof from B1’. We have proved the following theorem.

Theorem 6. Assume truth-telling is an equilibrium of the revelation mechanism. Let
q" = q(uy, ..., ). Suppose also that R(-) is bounded by a constant k. If a sequence of

mechanisms satisfies B1’, and B2 through B4, then ¢ converges in probability to zero.

Alternatively, we would directly impose (4.24) as an axiom on the mechanisms.

Comments and Examples

(xiii) With no private information, there are clearly many environments for which
efficient outcomes are bounded away from zero. With private information, however, interim
efficient mechanisms (defined as in Holmstrom and Myerson (1983)) cannot punish individuals too
severely for small deviations from truth-telling. Hence, it is possible that all interim efficient
mechanisms yield zero output in the limit. (See Rob (1989) for a result of this kind.) We construct
an example to show that interim efficient mechanisms need not yield zero output in the limit. The

example also demonstrates the role of uniform continuity in Theorem 5.

Example 4: Suppose the utility functions are given by

Uim,q =m — 04,
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where §; is identically, independently distributed across i. The random variable 6; is distributed

uniformly over [0, 1/n] with density p, and uniformly over [1/n, 1] with density r,, given by

_ (@ -py/m
ad-1im

n

Note that we have written the utility function directly as a function of output rather than as a function
of smoke rights,

The inverse demand function is given by

D (g =4 - q.

Our aim is not to characterize incentive-efficient mechanisms. Rather, we construct a
particular mechanism for which the sum of the expected utilities over all individuals is bounded away
from zero with positive probability. Thus, we restrict attention to efficient mechanisms which
maximize the sum of the expected utilities of the agents. If such efficient mechanisms yield zero
output in the limit, they yield zero utility. Then we have a contradiction and, therefore, the desired
result.

Consider, therefore, the following mechanism. If all agents report 6; € [0, 1/n], then

q = 1; otherwise, ¢ = 0. Each agent receives an equal share of the revenues.

It is clear that for any consumer i, if 6; < 1/n, then a (weakly) dominant strategy is to

report the true value of 8. Hence, in this case, payoffs must satisfy
E[V{'|6; = 1/n] = (p/m)* 13 - 6).

The sum of the expected utilities then satisfies

T EVIE; < 1m) = (@ /mt " 13 - £6) = 2, /m)" L.

1
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Clearly, many sequences p,, yield welfare levels bounded away from zero. For example,
suppose p, = nxl™ where 0 < # < 1. Then

n
lim Y EV = 27

Furthermore, the probability that §; < 1/n for all i converges to a positive number .
Efficient mechanisms must yield at least as high a utility level. Hence, the output of smoke cannot
converge to zero. Efficient mechanisms in this example violate Axiom B2. The particular

mechanism we consider is discontinuous at 6, = 1/n. However, it is straightforward to prove that

for fixed n, the efficient mechanism yields output levels which are continuous in €. But this

sequence of mechanisms does not yield output levels uniformly continuous in 6.

(xiv) We now show that the space of utility functions satisfying the support assumption

is nonempty. Consider the following example.

Example 5: Suppose the utility functions over smoke rights are given by
y;(m, g) = m + 6;q;,

where 6; is a random variable identically, independently distributed across i. The distribution
function from which 6; is drawn is described by a strictly positive density p, on [0,d]. Note that the

support of the sequence of distributions is the same for all n though the distribution itself is permitted

to vary with n. To see that this example satisfies our support assumption, let e; = d/2 and let ¢,
= min (d/4, 8,/2). Thenuy(q) — ui(q — &;) < ¢;5; implies that 6, < d/2. Clearly, the deviation

6; = 0; + €, is in support of the distribution function and satisfies the slope conditions, (iii) and (iv)
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of the support axiom. This example demonstrates that in proving Theorem 5 we do not need to
construct deviations for all draws of the utility function; rather, we need to construct deviations only
for sufficiently flat utility functions.

(xv) Our assumptions that certain properties of mechanisms hold everywhere in the
support are stronger than necessary. In particular, they can be replaced with (more cumbersome)
probabilistic statements. For example, rather than requiring that the Interim Voluntary Trade axiom
hold everywhere in the support, we could require that this axiom hold almost surely. We would then
replace the support condition by requiring roughly that conditional on part (i) of the support axiom
holding the set of events such that parts (ii), (iii), and (iv) of the support axiom hold has positive
probability. More formally, we would require the following:

P(e| (i) holds and P(w’| (ii), (iii), (iv) hold) > 0)

= P(w|(i) holds).

Similarly, our condition that supp p™ = X supp p? can be relaxed.

5. Alternative Property Rights

Our results emphasize the role of monopoly power in producing inefficient outcomes.
However, the economy considered in Section 3 has two sources of monopoly power. First, the
distribution of endowments, or property rights, gives each consumer monopoly power over smoke
produced at his or her location. Second, each person cares only about smoke produced over his or
her location. Thus, there is a source of monopoly power arising from preferences. We wish to
disentangle the effects of these two sources. A natural approach (suggested by Coase’s paper) is to
examine the provision of public goods under alternative property rights distributions. In particular,
since we wish to understand the problem caused by monopoly power arising from preferences, it is

convenient to endow individuals outside the town with smoke rights and have them behave
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competitively. This way of setting up the environment eliminates the monopoly power arising from
ownership. This is also what we did in Example 2 and we want to generalize the results in that
example. We can think of the individuals who own the smoke rights as caring about neither the
smoke nor the final good. Alternatively, we can think of the government auctioning off the smoke
rights.

We show that if the town has many residents, each of whom cares very little about smoke
(although the aggregate loss may be significant), the residents don’t buy any of the smoke rights.
As before, we consider only revelation games. The strategy space for each player i is given by Ug,

which consists of nondecreasing functions on [0, Q] such that for all x, x € [0, Ql, |yx) — ui(;()[
=< B/n|x — x|. These functions are interpreted as utility from smoke rights. Let UB =uUg x ..

X Ug, where n is the number of residents in the town. We define a mechanism slightly differently
here than we did earlier.

We first describe the outcome functions that constitute a mechanism. The same quantity
of smoke rights is issued for each location and is denoted by q. The amount of smoke produced is
denoted by q(t). Denote the consumption of smoke rights at location j by consumer i by x}(t).
Smoke rights not purchased by consumers are retained by the government or the demand sector of
the economy and are used to produce smoke. Consumers in the town pay p;(t) per unit of smoke

rights at location i. A mechanism is then defined as a set of outcome functions p(t), x(t), and q(t)

satisfying

GD  Yx® =q-q0 G=1...m
i=1

and

(5.2) zl pi<t>§:1 xJ(®) + R@®) = X p0.
i= i= i=1



51

For convenience, let q; = x%.

Equation (5.2) deserves some comment. Implicit in this feasibility condition is the
assumption that the government or the demand sector values the initial distribution of smoke rights
at the prices of smoke rights at each location. Thus, in effect, the mechanism does not permit price
discrimination between the residents of the town and the owners of the smoke rights. Then, the term
on the right side of (5.2) is revenues from the sale of smoke rights and the first term on the left is
total expenditures by town residents on smoke rights. Because production of a unit of output
requires one unit of smoke rights at each location, and because smoke rights are the only input to
production, the revenues from production are used entirely to purchase smoke rights. Equation (5.2)

then follows.

Suppose that the sequence of mechanisms satisfies these axioms:

Axiom C1 (Voluntary trade): For alln, foralli = 1, ..., n, and for all t € Ug,

t;(q;t, n); n) - Z:pj(t, n)xji(t, n) = 0.
i

Axiom C2 (Lipschitz continuity): For all n, and for alli = 1, 2, ..., n, there exists

A > 0 such that for all t, t € UR, |lqit, n) — qi(zi, t_;, | < Al - 21", where || « || is the

sup-norm.

We now prove that decentralized mechanisms lead to inefficient outcomes. Theorem 7
(Decentralized mechanisms in public goods environments yield inefficient outcomes): Consider a
Sequence of utility functions for consumers in Ug. Assume that the domain of the revelation

mechanism is UR for each n. Denote the equilibrium amounts of smoke rights at location j bought
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by consumer i by x(i, j, n) and the price per smoke right by p(j, n). If a sequence of mechanisms

satisfies Axioms Cl and C2, then

lim Ep(is n)zx(l’ j’ n) = 0.

nsco “;j i

Proof: We first show that

(5.3) lim n I:maxz pG, mxQ, j, n)] = (.

n—»co 1 A}

The theorem then follows immediately. Suppose, therefore, that (5.3) does not hold. Again, choose
subsequences if necessary and drop the subscript on the subsequence. There is some sequence of

consumers i, whose expenditures are maximal over all consumers such that

lim nEPG’ n)x(ijp j: n) =d>0.

n-»>oe j
Without loss of generality, let i, = 1 for all n.

Consider the following deviation for consumer 1. Let Ell = 0. From Axiom C1 we
have that total expenditures by consumer 1 are zero for all n. Hence, the difference in utilities

between this deviation and truth-telling is

G4 A =ViEn - Vi D = w@sn - u@gsn + Y p6, nxd, j, ns
J

where 31’11 = qqt_q, il, n) and qf is defined similarly. If 51’11 > qf, then (5.4) is positive and q}
cannot be an equilibrium outcome. Therefore, qf < qf. Since the utility functions lie in Us,
nA, = B@; - q7) + n),pG, mx(, j, n).
J

From Axiom C2 we have that lffll — q}| = (AB/m)Q. Therefore, n can be chosen large

enough so that nA;, > 0. We have a contradiction. (I
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We have shown that total expenditures on smoke rights converge to zero. This implies
(given our assumption of finite reservation price) that either the sum of the prices converges to zero
or purchases of smoke rights converge to zero. If the sum of the prices converges to zero, it follows
from (5.2) that production of smoke converges to zero, which is clearly inefficient in general. If
purchases of smoke rights converge to zero, then outcomes are inefficient unless the government
happens to auction off exactly the efficient quantity of smoke rights. We consider the case where
the amount of smoke rights auctioned off depends upon the reported types below.

While we do not explore this here, analogues of Theorems 5 and 6 presumably also hold

in this environment with private information.

The Free-Rider Problem Revisited
As the discussion following Theorem 4 in Section 3 indicates, our setting up the public
goods problem in a privatized economy does not fundamerﬁally affect our results. The preferences

of consumers in this public goods economy are given by

m; — vi(Q).

The individual rationality condition associated with Axiom C1 for this public goods

economy is now

Axiom C1' (Individual rationality): For alln, foralli = 1, ...,n, forallt € U,

my(t, n) - vi(qt, n); n) = m; - vi(g; n).
In effect, in this public goods economy, reducing the quantity of smoke requires
unanimous consent. The relationship between the public goods and the private goods economies can

be seen by simply defining

ui(xii -9 = —Vv©@.
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Again, the public goods formulation makes the free-rider problem clearer. The private
goods formulation emphasizes the role of monopoly power. Because the results are the same, the

two problems are equivalent.

Endogenous Property Rights Distributions

Thus far we have assumed that the initial distribution of smoke rights is fixed. We now
ask whether decentralized mechanisms can solve the public goods problem when the initial
distribution is endogenously determined. To answer this question, we consider mechanisms in which
the quantity of smoke rights issued depends upon the vector of reported utility functions. We denote
the smoke rights issue function by q(u). We assume that this function is uniformly bounded by C-z
The preferences of consumer i are given by m; + w(q; — c]), where m; denotes money, g; denotes
consumption of smoke rights at location i, and q denotes the amount of smoke rights issued.

Suppose that the sequence of mechanisms satisfies these axioms:

Axiom C1” (Voluntary trade): For alln, foralli = 1, ..., n, and for allt € UZ,
t(@® - 9®; n) - X, W 1) = t;(-g@); o).
J
Axiom C2' (Lipschitz continuity): For all n and for all i, for all t, E € UR, there exists
A > 0 such that

IYi(t-i, ti’ n) - Yi(t-i9 fi’ n)l = A" ti - i-'\1" ’

where
Yi(” n) = qi(" n) - ai(" n)

and | -

| is the sup-norm.
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It is easy to see that Theorem 7 holds with no change at all. Therefore, residents do not
buy any smoke rights. The only issue still to be addressed is under what conditions q(t, n) will be
chosen to yield efficient outcomes.

To explore this question, we consider mechanisms in which q;(t, n) = 0 for all t and for
all n. That is, since we know that in the limit, residents do not buy any smoke rights, we assume
from the outset that they need not purchase any. We show that if q(t, n) is sensitive to individuals’

reports of their true types for such mechanisms, then the outcomes will be inefficient. Let q(t, n) =

g(Xt;), where g is a continuous, nonincreasing function. Then, clearly, each individual has an
incentive to announce that his or her type is (B/n)x regardless of the truth, and outcomes will, in

general, be inefficient.

6. Concluding Comments

(xvi) The appeal of the results in Sections 3—5 is that they show that a large class of
theories of the workings of markets give rise to the same prediction: In large economies with
decentralized systems, problems caused by externalities lead to outcomes far from the efficient level.
Two assumptions play a key role in our analysis. First, we require a strong voluntary trade axiom.
Second, we require that the mechanisms be uniformly continuous in the actions of consumers. We
call a sequence of mechanisms which satisfy these assumptions a theory of decentralized markets.
Examples 1 through 3 and comments (viii) through (x) suggest the sense in which market-like
arrangements satisfy our axioms. Comment (xi) provides examples of mechanisms which yield good
outcomes and provides an indication of the sense in which such mechanisms are centralized.
Therefore, we think that our axioms are a reasonable way to capture decentralized market
interactions. Our results imply that mechanisms that yield good outcomes in economies with

externalities must necessarily contain rules restricting the actions of private agents. Our results also
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suggest that the search for such mechanisms is exceedingly important precisely because unfettered
markets are likely to function very badly in providing pure public goods. - Although decentralized
theories lead to inefficient outcomes with global externalities, Example 3 suggests that if externalities
are local it may be possible to construct decentralized theories which yield efficient outcomes. (See

also Chari and Jones (1989).)

(xvii) The results in Section 4 reemphasize the role of monopoly power in generating our
results. When tastes are private information, even fairly weak notions- of property rights grant
substantial monopoly power to individuals. For example, when preferences are independent random
variables, a person who demands a high price for his or her rights may well have a high valuation
for the rights and a mechanism which respects the privacy of that valuation must necessarily grant
substantial monopoly power. Of course, as Example 4 indicates, this monopoly power by itself need
not lead to inefficient outcomes. The uniform continuity réquirement plays an important role in our
results by limiting the extent to which an individual can affect the allocations received by other

individuals.

(xviii) The problems raised here are clearly present in the context of pure public goods
as well. As should be clear, one difference between the externalities case and the public goods case
is that, with public goods, the associated private goods economy contains perfectly complementary
outputs rather than inputs.

In fact, the results in Section 5 can be easily reinterpreted as applying to the case of pure
public goods. (Indeed, this is the interpretation Roberts (1976) gives in his work.) Simply set initial
endowments at zero (as in Section 5) and reinterpret R(q) as a cost function rather than a revenue
function. This reinterpretation demonstrates one difference between public goods and externalities,

namely, that in a public goods economy there is no need to assign initial endowments.
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Consequently, the market power which leads to inefficiencies arises solely from the uniqueness of

preferences.

(xix) Our interpretation of Coase is but one of many (rivaling that of Keynes, we’re
sure). Of course, nothing as explicit as our analysis appears in Coase’s paper. Certainly, Coase
never mentions adding markets as the solution to the externalities problem. The notion that the
problem is essentially one of missing markets appears explicitly as a definition in Heller and Starrett
(1976) and is often attributed to Arrow (1970) but can probably be traced farther back, at least in
some form. Something very close to this notion appears in Meade (1952) and is one interpretation
of Lindahl (1919).

Of course, the contention that the whole problem with externalities is one of missing
markets is not the view we have adopted in this paper. Quite the contrary, the question we have
considered is, once property rights are fully distributed (wﬁich we do not deny is difficult to do), is
the outcome likely to be efficient? That is, do economies with public goods or externalities (or both)
present a significantly more severe problem for decentralization through Self-interested voluntary
exchange than economies with only private goods? The results of Sections 3-5 suggest that the
answer to this question is that they do. However, Example 3 suggests that these problems may not
be universal.

Another interpretation of Coase is that the distribution of legal rights does not have any
effect on allocations. Clearly, this is true in many of his examples, but it cannot be considered
seriously because it will not hold except in very special circumstances (e.g., when the income
distribution does not affect equilibrium allocations). That is, the only reasonable interpretation is
that all equilibria are efficient, but that different distributions of irﬁtial property rights may give rise

to alternative efficient allocations.
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Green (1982) gives a very interesting interpretation of Coase in terms of the efficiency
of equilibria of legal structures. He gives conditions under which all-efficient outcomes are
equilibria of the legal system. In this framework, the Coase Theorem would state that all equilibria
of the legal system are efficient. This is an interesting approach to the problem, but we know of no

attempt to prove the Coase Theorem as stated above.

(xx) The problem set forth in the examples of Section 2 has another analogue in
economics, namely, the problem of eminent domain (that being the commonly used solution).
Suppose that a city decides to build a new civic center (or highway). To do this, it must displace
all residents in the area of the proposed site. If current owners are compensated by paying them
what they announce is the value of their lots, they have a strong incentive to overstate the value of
their property to try to extract all the surplus from the arrangement. Again, because the lots are
perfectly complementary given the site, the same monopoly problem arises. Example 3 also has a
natural interpretation in this context: if there are many equally opportune sites, competition among

them should give rise to efficient outcomes.

(xxi) Our approach to the problems we have considered has been to sacrifice complexity
in the environments in favor of generality in the class of theories allowed. In doing so, we have
made many special assumptions concerning preferences, technologies, etc. The importance of these
restrictions naturally comes into question. In particular, it would be interesting to know whether our
results generalize in a number of directions, including dropping the special structure of preferences
to allow income effects, etc; allowing for more goods, both private and public; and allowing for
pollution technologies in which partial exclusion is possible. In our view, the most important

generalizations of the results obtained to this point would involve extensions along the lines of
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Example 3. Ideally, one would like a set of conditions under which most theories give rise to
efficient outcomes in economies with local public goods and many potential locations.

This reasoning leads one naturally to consider alternative formulations of Tiebout’s (1956)
hypothesis. Note that the result given in Example 3 differs from the explanation offered by Tiebout
in at least one important way: Mobility is extremely limited. That is, we do not allow agents to
move at all (although output of the final good is allowed to move freely). This lack of mobility
leaves open the possibility that the residents of a given town may be able to exploit monopoly power
relative to one another. This feature can give rise to inefficiencies even with local public goods.
(See Chari and Jones (1989).) These considerations lead one naturally to consider (as Tiebout does)
models in which town formation itself is endogenous. In this regard, the recent work by Scotchmer

(1985), Wooders (1986), and Scotchmer and Wooders (1986) contains useful insights.
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