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1. Introduction

Consider an uninformed trader who is very patient, and who has opportunities to
bargain with many informed trading partners. Intuitively this trader should be able to
make these partners compete with one another in their dealings with him, and one aspect
of such competition would be that they should reveal whatever information is relevant to
their transactions with him. Asher Wolinsky (1990) has shown that this intuition is not
necessarily correct, though. Wolinsky considers noncooperative equilibrium in a partial-
equilibrium model of trade in an indivisible good of random quality that is unobserved by
some of the traders. He shows that a fraction of these traders make uninformed trans-
actions, and that this fraction has a positive lower bound even as the parameters of the

market approach a “frictionless—bargainirig” limit.

Here I will consider this issue further. Specifically, this paper concerns how a patient
trader might elicit the knowledge of trading partners in an incentive-compatible way. This
possibility will be examined in the context of a model resembling that of Douglas Gale
(1986). This model is chosen for two reasons. First, in the complete-information case,
Gale has related the noncooperative equilibrium of this model very transparently to Walras
equilibrium. Since an important aspect of Wolinsky’s work is its bearing on an intuition
about perfect competition, this transparency is a virtue. Second, additional structure
suggested by the theory of financial markets can be imposed on the model. This additional

structure has immediate relevance to the question at hand.

The main result is that, under these assumptions having to do with asset structure
and spanning, incentive-compatible elicitation of trading partners’ knowledge is feasible.
Moreover there is a sense in which a trader need not be very sophisticated in order to in-
terpret trading partners’ responses to his elicitation efforts. Specifically, although learning
from experience in the market generally requires the application of Bayes’ Theorem, this

form of elicitation works in a more statistically straightforward way.

It seems plausible that strategies incorporating such elicitation could implement full-

information Walras equilibrium if small deviations from optimal behavior are tolerated.

1



2. The economy

Let there be £ divisible goods and a nonatomic measure space (I,A4,r) of traders,
and let each trader have a closed convex cone X € IR¢ having nonempty interior as his

consumption set. Assume that v is normalized to be a probability measure.
There is a measurable space (@, B) of states of the world.

There are T types of trader, with a positive measure of individual traders belonging to
each type. For each type ¢, let A € A be the set of traders of type t. Assume that v(A?) is
a rational number for each ¢. A trader’s type determines his endowment, utility function,
prior beliefs about the state of nature, and information partition on Q. All traders of type ¢
receive endowment e’ € int(X); they have the strictly concave, continuously differentiable
utility function U? : X x @ — [0,1]; they share prior beliefs about the state of nature .
represented by a probability measure m; : B — [0,1]; and the information that they
are able to observe directly about the state of nature is determined by a finite algebra
F: C B. Each trader of type ¢ initially maximizes theéxpectation of U* with respect to ;
conditioned on F;. Let F denote the smallest algebra that contains F; for every ¢. That
is, F is the algebra of events on which traders will condition their expectations if they fully
share their information with each other. F(w) will denote the atom of F that contains

state of nature w.

There is a finite algebra P C B of payoff-relevant events. That is, each utility function
U? is measurable with respect to the g-algebra £ x P, where £ is the Borel o-algebra on
X. For convenience, I will assume that this statement remains true for an extension of U?
to the Cartesian product with Q of an open set Y containing X, that this extension of U?
is continuously differentiable in consumption for each w, and that U*(z,w) = 0 if and only
if z is a boundary point of X. The gradient of U?(z,w) as a function of # (with w treated

as a parameter) will be denoted by VU¥(z,w).

Transactions take place in random pairwise meetings that occur in discrete time,
beginning at date 1. This random-meetings technology is specified by two functions: M :

IXINy xQ— Tand P:Ix Ny x — {0,1}. Each of these functions represents an i.i.d.
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family of random variables indexed by I X IN,. Each function is measurable separately in
I and in © for every combination of values of the other arguments. (Green (1988) shows

that the functions cannot be jointly measurable in I x §, given the i.i.d. assumption.)

These functions have the following intuitive interpretation. At each date n, trader 3
is randomly matched with another trader j = M (¢, n,w). It is assumed that ¢ and j have
never met before, and in fact that they are not even indirectly acquainted with one another.
(e.g. there is no trader k£ who has previously traded first with ¢ and subsequently with
J, and whose behavior towards j might therefore affect how j will currently be disposed
to deal with i.) The matched traders do not observe anything about one another’s past
history, either regarding type or beliefs. One of these two traders is required to propose a
net trade (which may be the zero net trade) to the other, and this trade must be feasible
for the proposer to execute. For every trader k, P(k,n,w) = 1 if and only if k is the
proposer at date n in state w. A transaction takes place if the trading partner accepts
this proposal. In any event, the two traders are separated after the partner replies to the

proposal.

In state w, each trader 7 successively holds an infinite sequence of commodity bundles
%0,%1,%2, ... . The bundle zq is €' if i is of type ¢, and the successive bundles are deter-
mined by the successive net trades that ¢ transacts. I will assume that the utility enjoyed
by ¢ in state w is liminf,, o, U*(z,). That is, commodity bundles may be interpreted
as yielding a flow of services, and traders may be viewed as maximizing the asymptotic
value of this flow. This specification differs from the one used in most of the literature on
“frictionless markets” where it is required that each trader must eventually consume the
commodity bundle that he holds, and must leave the market at that point. The present
specification is adopted because it is technically simpler than the usual one—for example,
it is not needed to assume that there is a constant flow of new traders into the market.
No essential feature of the results of this paper depends on this flow-of-services feature
of the model. However, the no-discounting specification is important. I will discuss its

importance after I have presented the analysis of the model.

The foregoing discussion will probably be sufficiently clear for most readers. For the
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record, though, here is a more formal description of the model. Relative to each T, the
following assumptions are satisfied by the random variables determined by M and P for
all values of 7 and n. These random variables are independent of one another and of all of
the algebras F; and P. For all i and n, m({w|P(¢,n,w) = 1}) = 1/2. For every %, n, &, u,
and w (almost surely with respect to every m;), i # M (i,n,w) and i = M(M (%, n,w), n,w)
(i.e. the matching relation is irreflexive and symmetric); P(i,n,w) = 1 — P(M(i,n,w))
(i-e. exactly one member of each matched pair is the proposer); m;({w| (3, n,w) € Ay}) =
v(Ay) (i.e. various types of trader are matched ex ante); v({i|i € 4, and M(i,n,w) €
Aw}) = v(Ay)v(Ay) (i.e. various types of trader are randomly matched ez post); and,
almost surely, traders who have previously met or have been related indirectly in the sense

explained above are not matched with one another again.

3. Strategies, histories and the evolution of traders’ beliefs

A strategy is a rule that prescribes, at each date and in each state of the world,
how a trader should behave as a function of what he has observed prior to choosing
his current action. If the trader must make a proposal, then what he has observed is
simply the history of his own prior trading. If the trader is responding to a proposal,
then the current proposal is also part of his observational basis for choice. Thus at each
date, two actions—the proposal and the response—occur in sequence. The definition of

noncooperative equilibrium will reflect this sequential structure.

At date n, a trader’s history of observations at prior dates can be described as a
sequence A" = (hg,...,Rn—1). If trader ¢ is of type ¢ and if h is i’s history prior to n in
state w, then hg will be the ordered pair (¢, F), where F is the atom of F; that contains
w. For m € {1,...,n — 1}, A, will be an ordered pair specifying the actions of ; and his
trading partner at m. (That is, the first element of the ordered pair will be i’s action, and
the second will be his partner’s action. One of these will always be a proposed trade, and

the other an acceptance or rejection.)

For each n € INy, let H} be the set of such histories prior to date n for a trader of

type t.



At date n, each trader observes either that he is a proposer or else that a net trade
z € IR* has been proposed for his response. If the trader is of type ¢, then the information on
which his decision at date n must be based is an element of the set 1}, = H} x [{propose}U
IRY). (Elements of H!, will be denoted by h = (hq,...,hn_1,2).) Let H! = Unen, Hi-
Then a strategy for a trader of type ¢ is a function ¢ : H! — IR U 2B that satisfies
ot(h,z) € IR* <= z = propose for all (h,z) € H!. That is, ot(h) specifies the offer that
will be made if the trader is required to propose, and it specifies the set of offers that the

trader would accept if his partner is the proposer.

I will be concerned only with equilibrium strategy profiles that are symmetric in each
type, so that a strategy profile can be represented as a vector o = (¢1, ..., O‘T) of strategies
for all types of trader. Equivalently, if H* = UtST U, e H?, then a symmetric strategy
profile can be represented by a function o : H* — IR x 2B°. Given such a symmetric
strategy profile, it is easy to see that only finitely many histories in each H} can be
generated by play according to the profile. Using this fact, it can routinely be shown that
no measurability difficulties arise in defining the stochastic process of transactions or in

making expected-utility calculations based on this stochastic process.

Lemma 1. Let H,(o) and H,(c) be the set of the histories in U,<p #} and U, H,
respectively that can occur with positive probability when o is played. (Note that H,(o)
is not defined for n = 0.) Then H,(o) and H,(c) are finite for every strategy profile o

and for every date n.

Proof: To begin, Ho(o) = {(t,F)|t £ T and F € F;}. Recursively, H,4+1(0) = {(A*,(z,
accept))|z = o1(A") and dh' € Hp(o)[z € o2(A)]} U {(A",(z,reject))|z = a1 (k™)

and k' € Hp(o)[z & oa(h')]} U {(h™,(accept, 2))|z € oa2(h™) and
"3k’ € Hp(o)[z = o1(R")]} U {(h",(zeject, 2))|2 & o2(h™) and 3Ih'€ Hp(o)[z = o1(R')]}-
By induction, each of these sets H,(o) is finite. The finiteness of H,(o) is proved by
observing that H,4+1(c) = Hp(o) x [{propose} U {o1(h)|h € H,(0)}]- Q.E.D.

How a trader should update his beliefs about the state of nature, based on his history,

is now considered. The ultimate objective of the trader is to infer from the history to a
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posterior probability measure over Q. To understand how this inference should correctly
be made, consider first the case of a trader ¢ who has never been the proposer prior to
date n. Let us make a “full-revelation” assumption that, for each m € IV, the history-
contingent trade proposals recommended by the strategies of ¢ map distinct elements
of Hy(o) to distinct elements of IRf. Theorem 1 will establish that in this case (with
analogous assumptions that ¢’s trading partners, their trading partners, and so forth have
never been proposers before the matchings that connect them with ¢), if trader i’s history
is consistent with o, then ¢ can determine the history in H* of his partner at each prior
date, of each of his past partners’ partners up to the date when they were matched, and

so forth. Denote this set of histories by 8(h", o), if h" is ¢’s history in H,(o).

Formally, define ©(h”, ) to be the smallest set among whose elements are all subsets
6 C H* that satisfy two conditions. First, A" € 6. Second, if A™*! = (hg,...,hn) € 8
and ™ = (ho,...,hm-1), then there is a history A’ = (hf,...,h},_;) € 6 such that A,
is the outcome of the proposal and response o(h™) and o(h'). [Note that the ordering
of proposal and response in Ay, determines which of the previous histories belongs to the
proposer at date m, and which to the responder.] Every element § € ©(h”,0) can be
regarded as a theoretical explanation of how A™ would be generated in the play of o. That
is, 8(h™,0) is a set of histories that provides a complete explanation of how A” came to be
observed in the context of the strategy profile o, and no proper subset of 8(A”, o) would

provide a complete explanation.

Theorem 1. If history b € Hy(o), if for each m < n the restriction of oy to Hp(0o) is
1-1 into IR%, if ™ specifies that i has been the responder at every date prior to n, and
if analogously ¢ ’s trading partners, their trading partners, and so forth have never been

proposers before the matchings that connect them with ¢, then @(h™, o) consists of a single

element (to be denoted by 8(h™,c)).

Proof: The proof is by induction. At date 1, ¢ knows his own his type and the element of
his observation algebra that he has observed (i.e. his history prior to date 1), and he has

had no previous trading partner. This knowledge is all that is asserted for n = 1. Now
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consider the induction hypothesis that each trader can infer from his history hA" everything
about his trading partners’ histories, their partners’ histories prior to the dates when ¢
traded with them, et cetera—i.e. that 6(h”, ) is uniquely defined. Then A"+ also reveals
this information regarding partners before date n + 1, since A" is the initial segment of
B™+1, By the full-revelation assumption, A? ! also determines uniquely the history A/ of i ’s
trading partner at date n. Applying the induction hypothesis to this trading partner, then,
we see that ¢ can infer the histories of his date-n trading partner’s previous trading partners,
their histories prior to the dates when ¢’s date-n trading partner traded with them, et
cetera—i.e. that 0(#’/, o) is uniquely defined. Then 6(A**1, ) = 6(A", o)UG(H, o)U{hpy1}-
This establishes the induction step, so the assertion holds for all dates. Q.E.D.

Each history in 8(h", o) belongs to i or to some other trader with whom % has been
directly or indirectly involved in the history of transactions. Now it is straightforward to
describe what ¢ should do. He knows that each history in 6(h™,0) begins with a direct
observation of an atom of one of the information algebras F;, and that these observations
constitute the whole of the direct evidence about the state of nature possessed by anyone
with whom he has ever been directly or indirectly associated. Therefore i (as a good
Bayesian) should condition his prior probability distribution on the intersection of these
atoms. Formally, let A : H* — 2% specify the direct observation that begins each history.
(That is if hg = (¢, F), then A(h) = F.) If trader ¢ is of type ¢, then his posterior
beliefs at the beginning of date n should be represented by 7; conditioned on the event
N{A(R)|k € 6(h",0)}. This beginning-of-date posterior probability measure represents
the beliefs of a trader at the time when he must make a proposal. However, if the trader
is a responder, then he conditions his beliefs both on his own history A" € Hyp(o) and on
the observation of the net trade z that is offered to him at date n. That is, in order to
cover the case of both a proposer and a responder, the trader’s posterior probability must
be defined in terms of histories in H,(o) rather than of histories in H, (o). If o1 is 1-1 on
Hy(0), then the responder will infer that the proposer’s history is ¢ !(z). Therefore the
beliefs of a responder of type ¢ with history (A”, z) should be represented by 7; conditioned
on the event N{A(R)|h € 8(A™, ) U 8(a71(2),0)}.
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In general, an element of ©(h",¢) will be called a theory of h®. Without the “full-
revelation” assumption (e.g. if 7 had been a proposer at some previous date, and if there
are several theories that would account (consistently with the strategy profile o) for the
partner’s response to the proposal), the probability-updating problem is mére complicated
than when the assumption holds. In this general case, there may be several alternative
theories § € ©(h",0). Each of these theories would be consistent with the history that
trader ¢ has observed. Based on his prior probability beliefs about the random-matchings
process, ¢ can assign relative likelihoods to these alternative theories. Then for each theory
he should compute a posterior probability measure by conditionalization as above, and he
should weight these conditional probabilitieé by the likelihoods of the respective theories.
(That is, he should apply Bayes’ Theorem.) The formal details of this likelihood-weighted
conditionalization will not be needed in this paper, even though a noncooperative Bayesian
equilibrium concept will be studied. The avoidance of appeal to Bayes’ Theorem may be
interpreted as showing that traders are able to act optimally according to a Bayesian
criterion—and to recognize that they are acting optimally—without having to solve the
fairly complex computational problem that Bayesian inference usually entails. This inter-
pretation is one of the most important aspects of this paper, linking it with the study of

“bounded rationality” in economic equilibrium.

The other complication that might arise would be that no theory with positive prior
probability would be consistent with equilibrium behavior that would generate a trader’s
history. In that case Bayesian revision of the prior probability measure is undefined, and
posterior probability must be defined in some alternative way. In the theory of finite-player,
extensive-form games, specifying a reasonable assignment of posterior probabilities is an
important, difficult, and somewhat controversial problem. What makes the problem so
deep is the potential for one player strategically to manipulate another player’s beliefs, in
order to profit from that manipulation later in the game. Since the transactions technology
of the present model provides no opportunity for such strategic manipulation, this issue
of conditioning on observations of aberrant behavior will not arise here. To complete the
specification of probability updating, assume that a trader who observes aberrant behavior

on the part of a trading partner will simply ignore it and retain his prior probability
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assessment. However, a trader who deviates from his own strategy in the profile ¢ will

revise his probability assessment on the basis of his trading partner’s action just as he

would ordinarily do.

In this section, the evolution of traders’ beliefs about the state of nature has been
specified. Formally, let M denote the set of probability measures defined on the measurable
space (Q2,B) and also define H* = U,<p M’ It has been shown that there is a function
II : #* x 0 — M such that II(k,0) is the posterior probability measure that represents
the beliefs of a trader whose history is A, if the trader is certain that all trading partners

are behaving as specified by o.

4. Trading, perfect Bayesian equilibrium, and full-information Walras equilib-

rium

Recall that, in state w, each trader i successively holds an infinite sequence of com-
modity bundles z¢,z1,%2,... . The bundle z¢ is &t -if ¢ is of type £, and the successive
bundles are determined by the successive net trades that ; transacts. Clearly a trader’s
successive commodity holdings can be described in terms of his history, that is, by a func-
tion X* : H* — X. If hg = (¢, F), then X*(A') = ¢'. Let z € IR If hy, = (2,accept),
then X*(A"+1) = X*(k") — 2. If h, = (accept,2), then X*(h"+1) = X*(h?) 4+ 2. If
hn = (z,reject) or h,, = (reject, z), then X*(A"+1) = X*(A").

Note that a trader’s history in any state of nature and at any date is determined by his
identity, the date, the state of nature, and the strategy profile that is being played. That is,
letting 35 denote the set of strategy profiles, there is a function n: I x Ny xQxX — H*
such that, if A" is ¢’s history at date n in state of nature w when o is played, then

® = n(i,n,w,0). Thus the function X : I x IN; x @ x & — X defined by X = X* o g
characterizes the random evolution of all traders’ commodity holdings as a function of the

strategy profile.

It is clear that each trader in this environment can be represented as solving a stochas-

tic dynamic programming problem, when the strategies of other traders are given. Fol-
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lowing Tirole (1988), I will refer to a strategy vector for which each trader’s strategy is an
optimal solution of that trader’s dynamic programming program as a perfect Bayesian equi-
librium. To state this equilibrium concept explicitly in the context of the present model,
let 7(h) denote the unique type (encoded in hy) of trader for whom A € H?. Define strategy
profile ¢’ to be a deviation after history A" from strategy profile o if (a) A" € H™®), and
(b) o/(A™) = o(W™) for all m < n, and (c) (k) = o(h) for all A ¢ H™(*)i, The strategy
profile ¢ is a perfect Bayesian equilibrium if, whenever h € H? and 7 € A? and ¢’ is a de-
viation after h from o, the expectation according to II(A) of iminf, ., U(X(:,n,w,0’))

does not exceed the corresponding expectation of liminf,_, o, UH(X(%,n,w,0)).

Note that, by what has been assumed about the stochastic process of random meetings,
the value of the expectation of iminf,_, ., U*(X(i,n,w,0)) according to- II(h) does not
depend on which representative i of type 7(h) is taken (except possibly for a set of ¢
having v-measure zero). Therefore this conditional expected utility can be denoted by
U(h,o). That is, U(h,0) = [yliminf,_ .o U"*(X(i,n,w,0)) dlI(h). Now the definition
of equilibrium can be restated: o is a perfect Bayesian equilibrium if, whenever h € Hx

and ¢’ is a deviation after A from o, U(h,0’) < U(h, o).

Define w : I x  — int(X) to be an interior full-information Walras allocation if two
conditions hold. First, there must be an F-measurable price function p : @ — R\{0}
such that, for a set of traders ¢ having v-measure 1, almost surely (with respect to each
of the measures m;), the commodity bundle w(%,w) maximizes on the budget set {z|z €
X and p(w) - z < p(w) - €} the expectation of U? with respect to m; conditioned on the
event F(w). (Here it is understood that ¢ € A*.) Second, the materials-balance condition
Jrw(iw)dv = o e'v(A:) must hold almost surely.

Denote traders’ asymptotic commodity holdings by x(%,w,o) = limp_, X(,n,w,0)
if this limit exists, and let x(¢,w,0) = 0 otherwise. If w is an interior full-information

Walras allocation and o is a perfect Bayesian equilibrium, then define ¢ to implement w

if ViVw w(i,w) = x(¢,w,0).

In general, optimality of a trader’s strategy will require the trader both to trade opti-

mally and to learn optimally about the true state of nature. However, if all traders have the
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same information algebra F, then there is nothing to be learned beyond what each trader
observes directly. In this degenerate case, the environment defined here is essentially iden-
tical to that studied by Douglas Gale (1986) and by McLennan and Sonnenschein (1989).
That is, in each state of nature w, the preferences of each trader of type t are specified
by the conditional expectation of U* with respect to 7, conditioned on F. The traders’
endowments and these preferences in w determine a nonempty set of Walras allocations in

w. Gale (1986) has proved a result that is tantamount to the following theorem.

Theorem 2. If all traders have the same information algebra (i.e. VtF; = F), then every
interior Walras allocation is implemented by a perfect Bayesian equilibrium. There is some
€ > 0 such that, with probability 1 on the equilibrium path, no trader’s commodity holding

X(i,n,w,0) is ever closer than ¢ to the boundary of the consumption set.

Proof: Gale’s proof concerns a model that is different from the present one in several
technical respects. The theorem can be proved for the present model by making use of
the trading sequence that Ostroy and Starr (1974) prove to exist. I will briefly outline
this proof here. Ostroy and Starr construct a sequence of net trades, all of which have
zero value at the Walras equilibrium price. After this trading has been completed, all
traders hold their Walras-allocation commodity bundles. Inspection of Ostroy and Starr’s
proof shows that it is possible to specify that the net trades in the sequence should be
distinct from one another. (This specification may require the sequence constructed by
Ostroy and Starr to be lengthened.) Furthermore there is some € > 0 such that no trader’s
commodity holding during trading sequence is ever closer than ¢ from the boundary of the

consumption set.

In the trading sequence, then, each trader ﬁakes a prescribed sequence of trades.
Although Ostroy and Starr consider a deterministic trading sequence in an economy with
finitely many traders, their argument can be adapted routinely to the present setting. (The
assumption that ¥(A4?) is a rational number for each ¢ facilitates this adaptation.) Here are
the essential features of a strategy profile ¢ that implements the interior Walras allocation.

At each trading date a trader proposes the first net trade in his prescribed sequence that
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he has not yet executed, and he accepts the negative of that net trade if it is offered by his
trading parter. (When a net trade proposed in accordance with o is accepted, the proposer
must be of the type specified by Ostroy and Starr since all of the net trades between dif-
ferent pairs of types are distinct from one another.) Eventually every trader is randomly
paired with all of the partners who are appropriate to complete his prescribed trading
sequence. The market clears, and every trader eventually holds his Walras-allocation com-
modity bundle. Because all of the net trades offered on the equilibrium path keep a trader
within his budget set and no offer that would move the proposer’s commodity holding out
of his budget set is ever accepted, and because the Walras-equilibrium commodity bundle
is each traders’ most preferred commodity bundle within his budget set, a trader has no
incentive to make out-of-equilibrium proposals or to make out-of-equilibrium responses to
proposals that occur with positive probability on the equilibrium path. As far as histories
that occur with positive probability on the equilibrium path, then, this strategy profile sat-
isfies the criterion for being a perfect Bayesian equilibrium. The specification of o(h) for

out-of-equilibrium histories can be made in such a way that o is indeed a perfect Bayesian

equilibrium. Q.E.D.

5. Special classes of perfect Bayesian equilibria

If 2 is a net trade and A € H* is a history, then define c*# to be the strategy profile
that is identical to o except that z € 02*(h) <= z & o2(h). If z is offered to a trader with
history h, then perfect Bayesian equilibrium requires that U{((h,z),0™*) < U((k, 2),0).
At this point, I will define several properties that a strategy profile might possess. I will
appeal to these properties later in the paper to establish the strict version of this inequality.
It is a plausible conjecture, although not a proven fact, that Theorem 2 could be proved

by construction of a strategy profile that possesses all of these properties.

A complication that I will assume not to occur is that o7 might specify an infeasible
net trade and thus not be an element of ¥. Specifically, it is possible that z ¢ Z* and that
X*(h) + z ¢ X. Then z cannot feasibly be accepted, so o™* ¢ 3. (It is also possible for
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changing the response to a proposal to z to affect the feasibility ¢ at subsequent histories.)
The following'propert‘y of a strategy profile rules out this possibility for sufficiently small
net trades. Define o to be robust at & if, for some € > 0, o** € T for every =z satisfying
2] < e. Also, define o to be uniformly interior if, for some ¢ > 0 and for every h € H*,
X*(h) has distance at least ¢ from the exterior of X.

Suppose that ¢ is uniformly interior and implements a full-information Walras al-
location. If a trader deviates from o by accepting an infinitesimal proposal z, then the
microeconomic theory of the consumer suggests that he can subsequently do no better
than to pretend that he had not deviated to and “carry along” the discrepancy of z in his
commodity holdings from what they would have been had he not deviated. Formally, let
$(h,z,0) = 1 if z € 0p(h) and ¢(h,2z,0) = —1 if 2 € o9(h), and define o to possess the
envelope property at A if it is robust and uniformly interior and, for almost all traders i of
type 7(h),

H{‘n el [[‘]'r(h)(h, 0') - ['j'r(h)(h’ O.h,ez)]

e\0
= ¢(h,2,0) /QVU "M x(i,w,0))(2) dI(h)(). Y
In the strategy profiles constructed in Gale (1986) and discussed in the proof of Theo-
rem 2, a trader could acquire his Walras-allocation consumption bundle almost surely even -
if he were to deviate by refusing to participate in trade for an arbitrarily long (but finite)
amount of time. In general, define a perfect Bayesian equilibrium o to display persistent
opportunities at A € H, if, for every m € IN and for every atom F € F;, there is a deviation

o after h from o such that U(h,o') = U(h,0) and Vm'<m Vhe H: ., o(h) = (0,0).

6. Definition of a test portfolio

The remainder of this paper will be concerned with the analysis of responses to de-
viations from a perfect Bayesian equilibrium o that implements a full-information Walras
allocation. The deviations in question will be proposals of net trades that are designed to

elicit the knowledge of trading partners regarding events in F.
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Suppose that a trader ¢ is paired with a trading partner j at some date n, and that
all traders’ decisions are in accord with a strategy profile o. Trader ¢ does not observe ; ’s
history A = 75(j,n,w,0) € Hp(o) directly. For some event B € F, suppose that 7 wants to
discover whether or not j assigns probability 1 to B. Is there some net trade that ¢ can
offer to j which j will accept if II(R)(B) = 1 but reject if I(A)(B) < 1? If so, ¢ could

propose it to learn what j knows.

Such a net trade will be called a test portfolio for B at n in o if such response deci-
sions are based on strict expected-utility comparisons. (If indifference were possible, then
it would be possible for a net trade—even the zero net trade—to be offered in order for ac-
ceptance or rejection to provide a purely conventional signal of the responder’s knowledge.)

That is, 2z is a test portfolio for B at n in o if

Vhe H"(0) [o™* € £ and T((h, 2),0"*) < U((k,2),7) and

(2)
[z € 02(h) <= T(h,z)(B) =1]].

With this definition, an existence theorem can be stated for test portfolios in an important

class of economies that I will now define.

7. Financial assets and spanning

At this point, I am going to modify the model introduced in Section 2 to apply specifi-
cally to trading in financial assets. I will call this model an asset-trading economy. Let the
traders of each type ¢ have a utility function V; : IRy — [0,1] for wealth. Assume that V;
is strictly increasing, strictly concave, and continuously differentiable. Let each good 4 be
an asset that is a state-contingent claim to wealth. Represent this state-contingent claim
by a P-measurable random variable a* : @ — IR. On this interpretation, a commodity
bundle is a portfolio of assets. If a trader holds portfolio z € IR¢, then his wealth in state
wis W(z,w) =2 2:1 zra”(w). The consumption set X is the cone of portfolios that yield
nonnegative wealth in every state of nature. The state-contingent utility functions U? of

Section 2 are to be interpreted as Ut(z,w) = Vi{W(z,w)).
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Define the assets al,...,a? to span P if, when W(z,-) is regarded as a function from
{2 to IR indexed by w, the set {W(x,-)|z € IR’} is the set of all P-measurable real-valued
functions on 2. Since P is finite, suppose that it has x atoms {Pj,..., P} which partition
Q. For each k < &, let w¥ € P;. Define 9(z) = (W(z,w'),...,W(z,w")). Then the

spanning assumption is equivalent to the assumption that 1) is onto IR*.

The assumption that the assets span P is a strong one. Another strong assumption will
also be used here: that 7 C P. To see exactly why this assumption is restrictive, imagine
that F were generated by some random variable that traders were able to observe. It might
be supposed that this random variable is informative about a financial asset because it is
closely statistically correlated with its returns, even though it might not be a financial
variable strictly speaking. For example, weather forecasts are useful for predicting the
prices of agricultural futures contracts at maturity. However, if 7 C P and the assets span
P, then the random variable in question must coincide precisely with the state-contingent
value of some portfolio. Thus the possibility that F reflects information such as weather
forecasts is virtually ruled out. That is, the formal assumption that F C P reflects the idea
that the informationvdispersed among the various types of trader is information regarding

asset returns per se.

8. Existence of a test portfolio

Now I show that, for perfect Bayesian equilibria possessing the envelopé property in
asset-trading economies with spanning, test portfolios exist for all events in F. The proof
requires a finite-dimensional, inner-product representation of the expected marginal utility
of a net trade. For each h € Hy(0), let :* be a trader of type 7(h). For each h € H,(0)
and k < «, define T} = [, VT’(h)(W(x(ih,w,a),w)) dII( h){(w).

Lemma 2. For every history h € Hyp(0o) and every portfolio z € R, TP - (2) =
fn —%V}(W(x(ih,w, o) + €2),w)|e=0 dII(h)(w) = fn VU x (i, w, 0))(2) dII(k)(w), which

is the marginal expected value to a trader of type 7(h), conditional on having observed
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history h, of adding a unit of portfolio z to the random portfolio that he will asymptotically

hold according to o.

Proof: The first equation is derived by applying the chain rule and expressing the re-
sult in terms of I'*. The second equation follows directly from the interpretation that
UH(#,w) = Vy(W(x,w)) in an asset-trading economy. The integral is seen to be a marginal
expected value by applying Leibniz’ Rule for commuting integration with partial differen-
tiation. Q.E.D. '

Lemma 2 expresses [, VUT*)(x(i*,w,o))(z) dII(h)(w), which the envelope property
associates with the marginal value to a trader with history A of accepting a “small” proposal
%, as a multiplicatively separable function of A and z. This separability condition is a
special feature of asset-trading economies which exchange economies in general do not
possess. Now I will show, making essential use of the separability condition, that the
incentive-compatibility condition (2) in the definition of a test portfolio can be satisfied in

an asset-trading economy where the spanning condition holds.

Theorem 3. Consider a perfect Bayesian equilibrium ¢ in an asset-trading economy where
the assets span P and where £ > 3. If o possesses the envelope property at every h €
Hy (o) x {propose} and B € F C P, and displays persistent opportunities at every history

at date n, then there is a portfolio z that satisfies condition (2).

Proof: Define Q = {T'*|h € H,(0)x{propose} and I(h)(B) = 1} and define R = {T*|h €
Hy,(0) x {propose} and II(A)(B) < 1}. The convex hulls of Q and R are disjoint on account
of two factors. First, ' C P. Second, every I'* € () satisfies I'? = 0 for every % such that
BN P = { while no I'* € R satisfies this condition. These two convex hulls are disjoint
polyhedral convex sets by Lemma 1, so a separation theorem guarantees that there is a

vector y € IR* such that

VI*eQ y-T* >0 and VI*eR y-T* <. (3)
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The spanning condition implies that there is a net trade z* such that ¥(z*) = y. Since
the set of y satisfying (3) is open and the set of net trades in o;(H,(0)) is finite (by Lemma,
1), #* can be chosen not to be a scalar multiple of any of these net trades since ¢ > 3.
If h = (#',2*), then II(k) = II(#',propose) by the assumption (at the end of Section 3)
regarding how deviations are ignored in probability updating. Making these substitutions

in (3) and applying Lemma 2 yields that

/ﬂVUT(h)(X(ih,w,cr))(z*),w) dII(h',propose)(w) >0 if T e Q

and

/ VU™ P (x(i*,w,0))(2*),w) dII(A' ,propose)(w) < 0 if T ¢ R.
0

These two inequalities together with (1) establish that z = e2* satisfies (2) if € > 0 is

taken to be sufficiently small.

In this proof, computations for history (h,propose) have been used in place of those
for the actual history (h,z). The assumption that o displays persistent opportunities,
along with the envelope property, can be used to justify this substitution for a net trade z

that is sufficiently small. Q.E.D.

9. Conclusion

Theorem 2 shows that, under assumptions having to do with asset structure and span-
ning, incentive-compatible elicitation of trading partners’ knowledge is feasible. Moreover
there is a sense in which a trader need not be very sophisticated in order to interpret
trading partners’ responses to his elicitation efforts. Specifically, although learning from
experience in the market generally requires the application of Bayes’ Theorem, this form

of elicitation works in a more statistically straightforward way.
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One might conjecture that there would be a perfect Bayesian equilibrium in which
each trader would propose test portfolios until he had become fully informed (i.e. until
some atom of 7 had posterior probability 1), after which he would trade as in Theorem 1to
acquire his Walras-equilibrium commodity bundle. To the extent that traders’ preferences
for net trades are close to being identical contingent on their beliefs, though, the following
problem exists. There is a sense in which it is disadvantageous for a trader to propose
a test portfolio. If the proposal is accepted, it must be because the responder knows
that it is desirable. When this acceptance is given, the offerer acquires the knowledge on
which it is based. Therefore the offerer will realize that the portfolio is desirable and will
regret having given away so much. Since the test portfolio constructed in the proof of
Theorem 2 can be halved to produce another test portfolio for the same event, offering
a nonzero test portfolio can never be optimal. The zero portfolio is not a test portiolio,
though, since the strict-inequality conditions (2) are not satisfied. A perfect Bayesian
equilibrium can be constructed in which uninformed traders propose the zero portfo]io
and in which the acceptance or rejection of that portfolio at each date depends on whether
or not the responder’s posterior proba.biiity of an atom of F assigned to that date is 1.
The responder, who will never meet the proposer again or even have any further indirect
connection with the proposer, has no incentive to “lie” about his knowledge. However, it
may seem arbitrary to suggest that traders tell the truth to one another because they are-

indifferent between truthful and false ref)orting.

Eric Maskin has pointed out to me that this last statement should not be interpreted
as meaning that there necessarily exist “sensible” perfect Bayesian equilibria in which
the zero portfolio is offered to obtain information, but in which “untruthful” responses are
sometimes received. Rather than offering the zero portfolio and receiving an untrustworthy
response, the proposer could offer a test portfolio of negligible size by Theorem 3. The
trader making this proposal would have only a trivial loss to regret if it were accepted, and
it seems intuitive that he would receive a response that would definitely be “truthful.” (If
this intuition were correct, then (2) would hold and the portfolio would be a test portfolio.)
Thus a trivial expected loss would be suffered for the sake of an appreciable expected

gain. Considering this trade-off, to propose the zero portfolio could not be consistent with
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equilibrium if a “truthful? response would not be received with certainty.

In combination with the conjecture that all traders must become fully informed in
every perfect Bayesian equilibrium, the results of Gale (1986) and especially of McLennan
and Sonnenschein (1989) would suggest that full-information Walras allocations are the
only implementable ones. To the extent that one considers the form of communication
in perfect Bayesian equilibrium that has just been discussed to be counterintuitive as a
description of information transmission in an anonymous trading environment (because
traders behave “too well” towards strangers from whom they will receive no reward), such

a characterization theorem constitutes a puzzle.

One solution of this puzzle would be to relax the concept of perfect Bayesian equi-
librium to tolerate small deviations from rationality. (A closely related solution, in which
traders use nonsequential search strategies rather than conducting optimal sequential
search for information, has been proposed by Gale (1987).) Because test portfolios can be
made arbitrarily small, such a relaxation would allow them to be proposed in equilibrium.
However, if the test portfolios are small, then “wrong” decisions about whether or not to
accept them may also be consistent with equilibrium. Thus the full-information Walras
allocations might well be a proper subset of the allocations that could be implemented

with respect to such an equilibrium concept.
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