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ABSTRACT

We consider a dynamic, stochastic equilibrium business cycle model which is augmented to
reflect seasonal shifts in preferences, technology, and government purchases. Our estimated
parameterization implies implausibly large seasonal variation in the state of technology:
rising at an annual rate of 24 % in the fourth quarter and falling at an annual rate of 28% in
the first quarter. Furthermore, our findings indicate that variation in the state of technology
of this magnitude is required if the model is to explain the main features of the seasonal
cycle.
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1. Introduction

Real business cycle models start from the assumption that variation in the
state of technology is the single most important source of economic fluctuations.
Kydland and Prescott (1991) conclude that variations in the rate of technological
change account for 70% of postwar cyclical variation. This literature demonstrates
that simple equilibrium models of optimizing agents can explain many of the business
cycle features of U.S. data. While this literature focuses primarily on agents’
responses to unanticipated and persistent technology shocks, perhaps the sharpest
prediction of models of optimizing agents arise when the source of the impulse is
anticipated.

Seasonal fluctuations provide valuable information about the response of the
economy to anticipated events. Barsky and Miron_(1989) find that over 90% of the
total variation in many quantity variables can be explained by seasonal dummies.
This evidence suggests that seasonal fluctuations contain a large anticipated com-
ponent. By conditioning on this fact important new insights can be gained about the
properties of models of optimizing agents.

In this paper we address two issues. First, we ask how large is the seasonal
variation in the state of technology? Following the practice in the real business cycle
literature, we assume that the aggregate production technology is correctly specified
and its arguments are correctly measured. Under these assumptions variation in
Solow’s residual represents variation in the state of technology. The answer to this
question is important because it is difficult to think of events that would lead the state
of technology to vary dramatically over the course of the calendar year. Thus, large

measured seasonal variation in Solow’s residual would be evidence that the aggregate



production technology is misspecified or that one of its inputs was incorrectly
measured. Such evidence would call into question Prescott’s (1986) identification of
technology shocks and his estimate of its variance. Alternatively, such evidence
could be viewed as support for arguments by Burnside, Eichenbaum, and Rebelo
(1993) and Rotemberg and Summers (1990) who suggest that labor hoarding is
important or arguments by Hall (1990) that technology exhibits increasing returns to
scale. Second, we ask how much seasonal variation in technology is required for a
simple real business cycle model to explain the stylized facts of the seasonal cycle?
The second question is also important because seasonal cycles may be driven
primarily by seasonal shifts in preferences like Christmas and government purchases
and thus it may be possible for an equilibrium business cycle model to explain the
seasonal cycle with only a small amount of seasonal variation in technology. On the
other hand, if large seasonal variation in technology is required this represents
additional evidence against the specification of the production technology commonly
assumed by RBC theorists.

We consider a dynamic, stochastic equilibrium business cycle model which
includes deterministic preference and technology shifters.! Our seasonal specifica-
tion is relatively parsimonious: we use a four-state technology shifter, a two-state
preference shifter, and a four-state government spending shifter to explain the
seasonal fluctuations in output, hours, consumption, investment, real rates, govern-
ment purchases, productivity, and the capital stock, A priori reasoning suggests that
the important shifters would include a Christmas preference shifter and a winter
weather shifter. Our econometric strategy uses the data to quantify the role of these

and other seasonal shifters. Preferences exhibit nontime-separabilities in consumption



goods and leisure, as in Braun (1989), Eichenbaum, Hansen, and Singleton (1988),
and Kydland and Prescott (1982). We compute a perfect foresight seasonal equilib-
rium path for this economy and a log-linear approximation to the stochastic equilib-
rium around this equilibrium path. As in the exact linear quadratic analyses of Todd
(1990), Hansen and Sargent (1990), and Ghysels (1990), the resulting decision rules
are state-dependent with means and autoregressive coefficients that vary with the
season. These periodic decision rules allow for the possibility that seasonal impulses
may affect the properties of the model at business cycle frequencies.

This first question we posed above is investigated by estimating the model’s
structural parameters on postwar U.S. data using a Generalized Method of Moments
(GMM) estimator. The parameter estimates indicate an important role for nontime-
separable preferences. The technology seasonal estimates indicate a strong seasonal
pattern, rising by an average of 24% in the fourth quarter and falling by 28% in the
first quarter (at annualized rates of growth). We argue that variation of this
magnitude is too large to represent true technological variation.

Does the model require this degree of technological variation to explain the
observed seasonal patterns? To address this question we condition on the parameter
estimates, and investigate the predicted seasonal patterns, and also the business cycle
properties, of the equilibrium model. The model replicates many of the business
cycle facts and seasonal patterns in output, consumption, capital, average labor
productivity, government purchases, and the real interest rate. The fact that these
successes arise in a parameterization with such dramatic variation in technology
provides indirect evidence that this variation is important. In order to provide more

direct evidence on the role of seasonal variation in technology we examine the



properties of the model for the special case where technology is assumed to be the
only seasonal shifter. This analysis suggests that the measured seasonal variation in
technology is crucial for explaining the seasonal variation in output, investment, and
labor productivity.

Finally, our research is related to work by Chatterjee and Ravikumar (1992),
but the methods differ. In a stationary equilibrium economy with seasonal perturba-
tions, they estimate a larger number of preference shifters in order to fit the seasonal
patterns of the aggregate quantity data almost exactly with time-separable preferences.
They calibrate their model using structural parameters from King, Plosser, and
Rebelo (1988). Finally, their solution procedure assumes an orthogonal, spectral

decomposition between seasonal and nonseasonal frequencies.

2. An equilibrium business cycle economy with seasonality

This section presents a one-sector, real business cycle economy which is
subject to seasonal variation in technology, preferences, and government purchases.
The basic model is similar to the models considered by Christiano and Eichenbaum
(1992) and Braun (1989). However, in contrast to these papers, preferences are
assumed to be nontime-separable. There is considerable empirical support for
nontime-separable preferences as in Eichenbaum and Hansen (1990), Braun (1989),

Eichenbaum, Hansen, and Singleton (1988), and Kydland and Prescott (1982).

2.1. The economy with growth and seasonality
Consider an economy composed of a large number of identical, infinitely-

lived households each of which secks to maximize
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where c* and I* represent consumption and leisure services, respectively. Consump-
tion services are related to private consumption (cp) and public consumption (g) as

follows:

¢; = cp, + vi&+ APy +v18-1), 0 =711 <L, Ja] <1 2

where 7, governs the substitutability of public goods for private consumption goods.
The parameter a governs the character and degree of nonseparability: if a is negative
(positive), consumption goods are complements (substitutes) across adjacent time
periods. The complementarity case can also be interpreted as habit-persistence in

preferences. The variable 7, is a deterministic preference seasonal which follows:
Ty = TlQlt + Tzta + 73Q3t + T4Q4t, T > 0 for allj (3)

and the variable th is a dummy variable taking on the value of one when period t
corresponds to season j, and zero otherwise; consequently, 7; is the preference
seasonal in season j.2 Leisure (1) is time not devoted to labor (n), leading to the
time allocation constraint that n, + I, = T, where T is the maximum number of hours

available per period. Preferences are defined over leisure services I;:
I, =1 +bl_;, [b] <L @

The parameter b governs the character and degree of nonseparability: if b is negative
(positive), then leisure choices are complements (sdbstitutes) across adjacent time
periods. Finally, the operator E, is the mathematical expectations operator condi-

tional on all information known at time t.



Each household has access to a production function of the form:

Ve = &HPznd'~? ®)

where y is output and k and n are the quantities of capital and labor input demanded
by the household. The household’s output can be consumed (privately or publicly)
or stored in the form of additional capital next period. Each period, the existing
capital stock depreciates at the geometric rate §. The variable z, is a labor-augment-

ing technology shock which includes deterministic seasonal components:

2z, = z;—18Xp(A) (6)

A= MQp + Qg+ A3Qs + A QT

where ¢, is a purely indeterministic, white noise random variable. Notice that log z,
is a random walk with seasonal drift: when the seasonal growth rates A; do not sum
to zero, this economy experiences growth.>

The economy possesses competitive markets in labor and capital services:
suppliers of labor services receive a wage w,, suppliers of capital services receive the
rental rate r,. Finally, the government taxes each household in a lump-sum fashion,

TL,. This leads to the household’s period budget constraint:

o + keyy = ¥ + (1-0k — wmi—n) — ri-k) — TL, )
where 1, and k, represent labor and capital supplied by the household.

The government chooses a stochastic process for g, which is uncontrollable
from the household’s perspective. The stochastic process adopted here resembles

specifications used by Christiano and Eichenbaum (1992) and Braun (1989).

Government purchases are assumed to contain a permanent and a transitory compo-



nent. The permanent component is related to the technology shock z,; the transitory
component is an autoregressive process of order one with a seasonal mean. The

stochastic process for g, is

g ~ 8- ~
log .E‘. —log § = p|log =2 — log §i_yq| + % 0<p<1(®

t Z_y

where §; is the seasonal mean of transitory government purchases when period t
corresponds to season j; and u, is an indeterministic, white noise random variable.
In this Ricardian environment, we assume without loss of generality that the
government’s budget constraint is g, = TL,. The economy-wide resource constraint

(in per capita terms) is

cp + keyp + 8 =¥ + (1-9)k,. ©)

As in King, Plosser, and Rebelo (1988), an empirical analysis of this
economy is facilitated by rescaling the economy in a way which induces a stationary
environment. For the posited unit root process governing technology, this transfor-
mation involves deflating capital, output, government purchases, investment,
consumption, real wages, and transfers by the current value of the technology shock.
Then, the competitive allocations can be calculated by solving the social planner’s
problem. These details are described in a technical appendix, which is available on

request.

2.2. Characterizing the seasonal equilibrium
In section 4 we describe a method for approximating the stochastic equilib-

rium of the transformed economy. The solution method involves taking a Taylor



approximation about a particular perfect foresight equilibrium path. In this subsec-
tion we characterize this perfect foresight path.

A perfect foresight path is a solution to the social planner’s problem with the
uncertainty removed. In general, different initial conditions will give rise to different
paths. We, however, restrict attention to a particular perfect foresight path. This
path has the characteristic that the value of a variable x in quarter j is always equal
to its realization four quarters ago. For our economy with (quarterly) seasonals, the
perfect foresight seasonal path for the transformed variables {cﬁj,ﬁj,nj; j=12,3,4}
can be deduced from the two Euler equations for consumption-labor and consump-
tion-savings decisions, the resource constraint, and the definitions of consumption and

leisure services. These seasonal restrictions (without uncertainty) are

2 408 2 = I a-ofnjte™ (10)
L her €
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ey + Ky + 5 = Kl %™ + (1-d)ke ™ (12)

where I and &; are defined for the transformed analogues of egs. (4) and (2) and the
seasonal index j runs from 1-4. We adopt a wrap-around dating convention that
when j = 5, this represents the first quarter (G = 1). This leads to the following

definition.

Definition. A sequence {cp,k.n; i = 1,2,3,4} which satisfies egs. (10)-(12) is a

perfect foresight seasonal equilibrium.



In practice, we calculate the perfect foresight seasonal equilibrium by sub-
stituting 1 and & into egs. (10)-(12) and then solve these 12 equations in 12
unknowns using the Gauss procedure “nlsys.” For all parameterizations of the model
which we consider below, we found no evidence of nonuniqueness: different starting
values always converged to the same seasonal equilibrium. Furthermore, in the
course of solving for the stochastic equilibrium (in section 4), we calculate roots for
the log-linear system which exhibit the proper characteristics to ensure local stability
of the perfect foresight seasonal equilibrium. That is, in the state space representa-
tion, the fundamental matrix had equal numbers of roots inside and outside the unit
circle.

Given the perfect foresight path for {cf;,k;,n;; i = 1,2,3,4} and the seasonals

&

T 855 j = 1,2,3,4}, seasonal paths for {ﬁjjj,v?j,rj} can be computed from the

production function, the law of motion for capital and the marginal products of labor
and capital. Before the model’s predictions can be compared with the Barsky-Miron
seasonal results, the following tasks must still be completed: the data must be
precisely defined, the model’s parameters must be estimated and the stochastic

equilibrium must be calculated.

3. Estimation of the structural parameters

In this section we describe the data and report the estimation results. The
data set employed in this study is the Barsky and Miron (1989) data: U.S. quarterly
data which has not been adjusted for seasonality. For the empirical analysis to
conform to the theoretical constructs of our model, however, we redefine some of the

variables as follows (and convert to per capita values). Output (y) is Gross National
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Product per capita. Private consumption (cp) is nondurables plus services consump-
tion expenditures per capita. Investment (i) is the sum of Business Fixed Investment
plus Durable consumption expenditures, per capita. Government (g) is Federal,
State, and Local government purchases, per capita. The capital stock is computed
using the flow investment expenditures, a quarterly depreciation rate of 2.5%, and
an initial capital stock value for 1950. Labor hours are computed as the product of
total nonagricultural employment times average hours per week of nonagricultural
production workers times 13 weeks per quarter (per capita). Average labor
productivity and the capital rental rate are constructed from the output, labor, and
capital data. The data is converted to per capita values by using the civilian
population, 16 years and older.

Given seasonally unadjusted time series data for the U.S economy, the Euler
equation methods of Hansen and Singleton (1982) can be used to estimate the model’s
structural parameters and test the overidentifying restrictions implied by the model

and choice of instruments. The parameter vector to be estimated is
‘I, = (0,a9b’)\1 ,XZs)\3’>\4971 ’T4’d1 ad2:d39d4 205 O'u,O'e)

where the d; seasonals are related to the log g; seasonals by the relationship d; = log
g — plog §;—;.

In estimating the model we restrict attention to preferences that vary only in
the fourth quarter in response to Christmas. Thus in quarters one through three 7
takes on the value 7; and in quarter four 7 takes on the value 74. This assumption,
is plausible on a priori grounds and resolves an identification problem. With four

preference shifters the nontime-separabilities in consumption interact with the
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preference shifters to produce two observationally equivalent ways of matching the
seasonal properties of consumption in the data. One parameterization implies
implausibly large seasonal variation in preferences while the other shows little
seasonal variation in quarters 1-3. Conditioning on a single fourth quarter shifter
resolves this issue in a fashion that lines up with our a priori beliefs: Christmas is
the most significant demand shift of the calendar year.

Notice next that ¥ does not exhaust the entire list of structural parameters.
Some of the structural parameters are formally not identified, while others are
difficult to identify in the data. Consequently, the parameters 8, 7;, ¥;, 6, and T are
set a priori, in accordance with previous studies. We follow Christiano and
Eichenbaum (1992) and Braun (1989) and set 8 to 1.037%2 and set , to 0.4 which
is the number reported by Aschauer (1985).> The depreciation rate & was chosen
to be 2.5% per quarter, as in King, Plosser, and Rebelo (1988) and Kydland and
Prescott (1982). The utility weight v, on leisure which is formally not identified was
normalized to be one. Finally, the total time endowment for the household is chosen
to be 1,369 hours per quarter.

The moment equations used in estimation consist of two stochastic Euler
equations, the production function, the transitory government spending autoregres-
sion, and two variance estimates. The two Euler equations arise from the house-

hold’s time t decision for k., ; and n, yield the conditions:

BE, [i‘+5a ‘*2] ey‘“+1—a]
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where ¢* and I* can be constructed from egs. (2) and (4) given values of vy, a, and
b. All of the equations are estimated simultaneously with the cross-equation
restrictions imposed.$

Table 1 presents two sets of parameter estimates of ¥. The sample period
covers 1964:1-1985:4. Column one contains the nontime-separable estimates (NTS).
At the bottom of the column we report a test of the overidentifying restrictions.”
This statistic is asymptotically distributed x* with 15 degrees of freedom. This
statistic uncovers little evidence against the overidentifying restrictions.® The NTS
estimates display habit-persistence (or adjacent complementarity) in preferences for
leisure hours and local durability (or adjacent substitutability) in preferences for
consumption goods: that is, b is estimated to be negative and a is estimated to be
positive. Furthermore, both a and b are significantly different from zero. Habit-
persistence in leisure is consistent with previous empirical analyses using these
preference specifications on seasonally adjusted aggregate data. [See, for example,
Braun (1989) and Eichenbaum, Hansen, and Singleton (1988).] A number of
researchers have estimated consumption preferences which are consistent witha > 0
[for example, Gallant and Tauchen (1989) and Eichenbaum, Hansen, and Singleton
(1988)]. On the other hand, using quarterly consumption data, Braun (1989) finds
evidence of habit-persistence and Constantinides (1990) shows that negative values

of a can help explain the equity premium puzzle.
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Turning to the rest of the parameterization the capital share parameter 6 is
estimated to be 0.28 with a small standard error. The seasonal patterns in transitory
government spending exhibit low fourth quarter spending and high first quarter
spending. The government spending autoregressive coefficient p is estimated to be
approximately 0.88. Finally, the estimated standard deviations of ¢ and u, are
respectively 0.0195 and 0.0191.

The NTS parameterization displays a large degree of seasonal variation in
technology. The fourth quarter growth in total factor productivity is estimated to be
6% (or 24% on an annualized basis). The first quarter experiences technical regress
(on average), growing at a rate of —7% in one quarter (—28% annualized). If the
technological specification (5) is correct, and the factor inputs and output are properly
measured, then these seasonals represent true seasonal variation in aggregate
technology. Does this seem reasonable? At first blush, the downturn in the first
quarter may seem plausible. For instance, Barro (1990) suggests that weather
conditions and seasonality in construction probably account for some of the seasonal
patterns in aggregate technological growth. But Evans (1989) has measured
aggregate seasonal Solow residuals making allowances for agriculture and construc-
tion, and the negative first quarter growth remains large. Also, Beaulieu and Miron
(1992) find that output falls in the first quarter in Argen'tina and Australia, again
casting doubt on the weather explanation since these countries are in the Southern
Hemisphere. Finally, the dramatic rise in the fourth quarter is difficult to rationalize
with explanations based on weather. Considering the rise in fourth quarter consump-
tion demand (f, > ), the estimated fourth quarter shift in technology could

plausibly be due to unobserved variations in labor effort or productive externalities.
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The hypothesis of exogenous shifts in technology of the magnitude estimated here,
however, seems implausible.

Finally, we report estimates in column two of table 1 for a time separable
parameterization; a and b are constrained to be zero. This estimation produced a
criterion value of 888 when using the converged weighting matrix from the NTS
estimation. Following Eichenbaum, Hansen, and Singleton (1988) the difference
between this criterion value and the criterion value from the nontime-separable
estimates is asymptotically distributed x> with two degrees of freedom. Thus, the
additional restrictions imposed by time-separable preferences are sharply rejected at
conventional significance levels. In other respects this parameterization bears many

resemblances to the NTS estimates.

4. Evaluation of the stochastic model
4.1. Solving the stochastic model

To solve the model, we linearize the equations which characterize the solution
of the stationary social planner’s problem about the perfect foresight seasonal
equilibrium path calculated in section 2. The linearized system can be reduced to 12
difference equations which are stochastic counterparts to egs. (10)-(12). In a
technical appendix (Braun and Evans 1993) we display the linearized system and
describe how these 12 difference equations are mapped into a state space representa-
tion which can be solved using methods described in King, Plosser, and Rebelo
(1990). The state space representation essentially has the same structure as Todd’s
(1990) time-invariant linear-quadratic representation or Hansen and Sargent’s (1990)

time-varying strictly periodic equilibrium. The model’s solution is a series of 12
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equations that describe the optimal decision rule for capital, hours, and private

consumption, one equation for each season:

Kis1 = AS, as)

where

— 1 4 a2 A3 ~andnl 3. 47¢
K= [kt+1k%+1k2+lkt+1cptcptcptcptntnt i

and

5. = [Kiglglmg NN’
where the superscripts denote the seasons.

Given these log-linear decision rules for capital, private consumption and
hours, it is straightforward to generate time series for the model economy. First, a
sequence of normal variables is drawn to mimic the empirical covariance structure
of the forcing processes ¢ and u,. Once ¢ and u, have been constructed it is
straightforward to calculate A, and g,. Then given an initial K, we can construct a
sequence of realizations for the capital stock, hours, and private consumption using
the following method. If this is the jth quarter then use the jth, j + 4th, and j + 8th
row of matrix A along with the current states: K, cpizi, niZ}, M, and g to
determine the current decisions for next period’s capital, and today’s consumption
and hours. Given the values of next period’s stock of capital, today’s consumption
and today’s work effort, it is straightforward to determine the current choices of
output, investment, real wages, and the real interest rate using the production
technology, investment identity, and marginal product pricing relations.’
With the simulated time series in hand, a variety of descriptive statistics are

easy to compute. While the equilibrium model developed in this paper imposes
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restrictions across the entire spectrum, researchers often decompose time series to
focus attention on a specific set of moments. Examples of such decompositions
include first differencing to remove low frequency moments and seasonal adjustment
to remove particular high frequency moments. Our objectives lead us to compute the
model’s predictions for first and second moments of the data. To facilitate compari-
sons with the literature, we adopt Barsky and Miron’s decomposition of the station-
ary, stochastic processes into “deterministic seasonal” and “indeterministic”
components. Specifically, after inducing stationarity by log-first differencing, we
regress each series on four seasonal dummies: the coefficient estimates for the
dummy variables define the seasonal patterns emphasized by Barsky and Miron
(1989). We also adopt the convention of referring to moments calculated using the
indeterministic residuals from these regressions as relating to cyclical or business
cycle phenomena emphasized by Prescott (1986). Obviously, the properties of the

“seasonal cycle” will vary depending on the particular decomposition used.

4.2. Cotharing the model’s seasonal predictions with the data

The first set of columns in table 2 present the seasonal patterns for the data
set using the log first-difference filter. The seasonal means are reported in terms of
percentage deviations from average growth rates for the sample period 1964:1 to
1985:IV. The real interest rate, which is measured by the rental rate on capital, is
reported in terms of annualized rates of return. The table also includes R-square
statistics for each variable which describe the percentage of the total variation in the

particular time series that is attributable to the deterministic seasonal. Finally, we
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report standard errors for each estimate that are based on the Newey and West (1987)
covariance estimator with 12 autocorrelations.

The second and third sets of columns in table 2 contain simulation results for
respectively the nontime-separable and time-separable preference specifications. For
each specification, columns 1-4 label the average seasonal means for 500 draws.

The fifth column contains the average R-square of the regressions.

Seasonal Predictions of the NTS Model

To facilitate comparison of the NTS results with the data, seasonal growth
rates are also presented graphically in fig. 1 as well as in table 2. Examination of
ﬁg. 1 reveals that the NTS specification mimics the overall seasonal patterns in
output, consumption, government purchases, average productivity, and capital. For
these variables the model reproduces the sequentiél pattern of seasonal movements
in the data and in most cases the magnitudes.!® The model is less successful with
respect to investment, the rental rate on capital, and hours. For the rental rate the
model consistently overstates the magnitudes, although the sequential pattern is
correct. In the case of investment, the model captures the sequential pattern of
seasons found in the data, but ﬁnderstates the second quarter rise and overstates the
fourth quarter rise in investment growth. The model’s predictions for hours are also
at odds with the data. The magnitudes are off in three out of four quarters and the
model predicts a counterfactual rise in fourth quarter employment. Nevertheless,
conditional on the technology seasonal estimates, the NTS parameterization captures

many of the seasonal patterns found in the data.
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Seasonal Predictions of the TS Model -

Consistent with the econometric evidence reported in section 3 comparisons
of the predictions of the TS model with the data in table 2 reveal several significant
shortcomings relative to the NTS model. The TS model sharply overstates the
seasonal means in output, hours, and investment. The second and fourth quarter
consumption means are also a poor match. The predicted R-squares for these
variables also exceeds the respective number in the data in each instance. Overall,
the TS specification does not capture the seasonal properties of the data as well as the

NTS specification.

4.3. The contribution of technology seasonals

To assess the role of the estimated technology seasonals for the model’s
predictions, we have considered versions of the NTS model which alternately possess
only one seasonal shifter at a time. This leads to the following three cases: (1) a
technology shock only case, (2) a consumption preference shock only case, and (3)
a government purchases shock only case.!!

The estimated seasonal variation in technology is crucial for the model to be
able to predict the seasonal patterns in output, labor hours, labor productivity, and
the rental rate on capital. In fig. 2 for output, labor hours, and labor productivity,
the predictions of the basic NTS model and the “technology shock only” parameteri-
zation are virtually identical. In this model, seasonal shifts in consumption prefer-
ences and government purchases do not lead to significant variations in output, labor,
productivity, or the capital rental rate. So not only are the estimated technology

seasonals implausibly large, they are implausibly important.



19

As a matter of economic theory, it is interesting to consider some of the
reasons for the seasonal patterns observed in these cases. In the technology shock
only case, private consumption purchases are essentially smooth. Since the technol-
ogy seasonal is an anticipated event, there is no wealth effect. So one source of
consumption variability, unanticipated wealth effects, is absent.!? In the preference
seasonal only case, consumption follows the same pattern as the shift in preferences.
Agents satisfy their transient increased desire to consume by drawing down their
savings, increasing consumption, and decreasing investment. Interestingly, since
investment is proseasonal in the data but driven in different directions by demand and
supply shifts, investment may offer useful identifying information about alternative
models. This is an interesting subject for future research.

In summary, without the implausibly large seasonal variation in technology
that we estimate from the data, our equilibrium model is unable to generate the

stylized facts of seasonal fluctuations in the postwar U.S.

4.4, Cyclical predictions of the stochastic model

Table 3 contains results relating to relative variability and cross-correlations
with output for both parameterizations and the data under two different filters. The
heading “one-quarter growth rate” corresponds to moments calculated using data that
has been log first-differenced and regressed on four seasonal dummies. The heading
“HP filter” corresponds to data that has been rendered stationary using the Hodrick
and Prescott (1980) filter and then regressed on four dummies. For each filter we
report moments for U.S data running from 1964:1-1985:1V in the first column. The

second column contains standard errors for the data’s moments reported in column
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one. The standard errors were calculated using a Newey-West covariance estimator ‘
with 12 lags. The third and fourth columns contain results from simulating the model
using the NTS and TS parameterizations. In each case the reported statistics are
sample averages based on 500 draws of length 33.

Consider the prﬁi&ions of the NTS and TS parameterizations. In many cases
both models’ predictions lie outside a two standard deviation band around the data.
The largest differences between the models occur under the one-quarter growth filter.
With respect to relative variabilities, the NTS specification fails to capture the relative
variabilities of average productivity, employment and government expenditures. The
TS specification fails to capture the relative variabilities of consumption, investment,
and average productivity. In addition, the TS specification overstates the variance
of output by 24%; the NTS specification overstates the output variance by only 9%.
Interestingly, the differences are much narrower under the HP-filter.

Turning next to cross-correlations we see that both specifications predict
positive comovements of consumption, investment, government purchases, labor
hours, and productivity with output after adjusting for deterministic seasonality.
Comparing these predicted correlations with the data’s correlations, however, reveals
significant failures of the NTS and TS specifications. For example, both specifica-
tions fail to capture the contemporaneous correlations of hours and the rental rate
with output. Thus, while the patterns of comovement are correctly predicted by both
specifications, the exact match is not completely satisfactory.

To shed further light on the model’s implications for second moments fig. 3
displays estimates of the spectra of output, consumption, and labor hours under the

two filters.’* Four observations are in order. First, most of the data’s spectra



21

resemble the output and hours spectra—that is, they fail to display significant power
at seasonal frequencies after filtering with seasonal dummies. Consumption, on the
other hand, is the one time series that does continue to exhibit a “hump” in the
spectrum around /2 under the log first-difference filter and the Hodrick-Prescott
filter. Neither the NTS nor the TS model captures this feature of the data. Including
a stochastic component in the preference shifter is worthy of future research.
Second, under the one-quarter growth rate filter, the data displays an increase in
spectral power moving from medium frequencies typically associated with business
cycles to higher frequencies. The NTS model captures this phenomenon but the TS
model does not. This difference can be attributed to the fact that consumption
preferences display local durability which acts to increase variability in consumption
between adjacent .periods. Third, under the one-quarter growth rate filter, data on
hours produces a spectrum which decreases in power from low to high frequencies.
The NTS specification captures this feature of the data while the TS specification
does not. This difference can be explained by the estimated habit persistence in
leisure preferences which places a penalty on large quarterly variations in leisure.
Fourth, under the Hodrick-Prescott filter the differences between the NTS and TS
spectra noted above vanish. 4

How do these cyclical results compare with the performance of standard
business cycle models that ignore seasonality? With regard to spillover effects, if
seasonal taste and technology shifters induce important spillover effects at business
cycle frequencies, then our cyclical results should be different from the nonseasonal
literature. First, as in the RBC literature, our model predicts that consumption is less

variable than output and output is less variable than investment. This is especially
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true under the Hodrick-Prescott filter, which has become a standard detrending
method in the literature. Second, hours are not as variable as in the data; again, this
is true in the literature and is highlighted by the Hodrick-Prescott filter more than the
one-quarter growth rate filter. Third, our model predicts patterns of positive
comovement between aggregate output and other aggregate quantity variables as
found in the data. Fourth, as in Christiano and Eichenbaum (1992) and Braun
(1989), our model overstates the variability of output, this is attributable to our
estimation of the parameterizations.!> Thus, the cyclical properties of our model
share many of the broad characteristics of the RBC literature’s models. There are
some differences; for example, the variability of consumption relative to output under
the one-quarter growth rate is a large 0.73 in the data and 0.77 under the NTS
parameterization. Nevertheless, the numerous similarities indicate that this model has
no critical spillover effects from the seasonal shifters to the cyclical frequencies under
our solution method.

Unlike the RBC literature, however, we find that nontime-separabilities in
consumption preferences improve the model’s ability to capture the first and second
moment properties of the data. The nontime-separable specification outperforms the
time-separable specification with regard to the Euler equafion estimation, the
predictions of the seasonal patterns, the relative variability of consumption growth
(where substitutability in preferences is most likely to be important), and the variance
of output growth. Furthermore, the spectra described above reveal that nontime-
separabilities do affect the spectral power at seasonal frequencies. Relative to the

time-separable case, the NTS specification displays more spectral power at high
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frequencies in the case of consumption and less power in the case of hours, in both

cases improving the model’s fit.

5. Conclusions

In this paper we have measured the seasonal pattern in the Solow residual and
found that it implies an implausibly large amount of variation in the state of
technology over the calendar year. In addition, we have found that real business
cycle models require this much seasonal variation in technology if they are to explain
the main features of the seasonal cycle. Without seasonal variation in technology in
the class of models considered here, seasonal shifts in consumption preferences and
government purchases produce negligible responses in output and a pattern of
investment that is opposite to what we observe in the data. Since most economists
agree that Christmas demand has a significant influence on fourth quarter output, the
theory’s inability to generate output shifts in response to a large fourth quarter
preference shift indicates misspecification. The theory’s reliance on large technology
seasonals also indicates misspecification. The evidence presented here offers
independent support to the contention that the production technology commonly used
in RBC analyses is either misspecified or subject to important sources of measure-
ment error. In other work Evans (1992) and Eichenbaum (1991) have arrived at

similar conclusions.
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Appendix: Seasonal Unit Roots

Recent research by Beaulieu and Miron (1993); Hylleberg, Engle, Granger,
and Yoo (1990), henceforth HEGY; and Hylleberg, Jorgensen, and Sorensen (1991)
has found evidence of unit roots at seasonal frequencies. Our specification of
preference and technology shifters rules out this possibility. In order to investigate
the plausibility of our assumptions we pretested the consumption and Solow residual
data for seasonal unit roots. These two data series provide the most information
about the seasonal processes preference and technology shifters are likely to follow.
Table 4 reports the results of the HEGY tests for these two data series. These results
are based upon the basic HEGY regression augmented by four lags of the dependent
variable and an intercept term.!® The null hypotheses of the tests are that seasonal
unit roots exist at certain seasonal frequencies. These tests find no evidence against
the null hypotheses of unit roots at the zero, semi-annual, and annual frequencies.
If the HEGY regressions are augmented to include seasonal dummies and a trend
term, or fewer lags in the autoregressive polynomial,' the results are very similar.

These results cast some doubt on our modeling assumptions. However, unit
root tests are known to have low power against particular stationary alternatives [see,
for example, Christiano and Eichenbaum (1990)]. With respect to seasonal unit
roots, Ghysels, Lee, and Noh (1993) and Hylleberg (1993) have investigated the
power properties of HEGY tests for a number of interesting data generating
processes. Their results suggest that the power of the HEGY fests is generally quite
high. Still, it is well known that the power of any test depends on the alternative

being considered.
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Given the low computational cost of monte carlo simulations we decided to
do a power calculation using an alternative that imposes restrictions from our model
and information from the data on consumption. Under the null of our model the log

first-difference of consumption is stationary with a deterministic seasonal component:
(1-L)c, = §'d, + B(L)e,

where B(L)"! = 1 — a(L), so an autoregressive representation is possible. To
parameterize the data generating mechanism, we assumed that a(L) is of order four
and estimated this process on our consumption data. We generated 10,000 samples
of length equal to our data’s sample length (144 observations). For each sample we
conducted a HEGY test using 5% critical values taken from HEGY (1990). The
estimated power of the HEGY test, the probability of rejecting the null hypothesis
conditional on the null hypothesis being false, is also reported in table 4. For this
data generating mechanism which is empirically close to our model specification, the
HEGY test has very little power to reject the false null hypothesis of seasonal unit
roots. We conclude from this example that pretesting our data does not provide
sufficient evidence to dissuade us from our preferred specification of preference and
technology shifters. For a more detailed discussion of these and other specification

tests for our data, a technical appendix is available on request.
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Footnotes

1An alternative view of seasonality is that it is best characterized as a nonsta-
tionary process with unit roots at some (or all) seasonal frequencies [see Hylleberg,
Engle, Granger, and Yoo (1990)]. We state our modeling assumptions in section 3
and defend them in the appendix.

2See Hansen and Sargent (1990) and Osborn (1988) for alternative specifica-
tions of seasonal preferences.

3Work by Beaulieu and Miron (1993); Ghysels, Lee, and Siklos (1992); and
Hylleberg, Engle, Granger, and Yoo (1990) suggests we may want to allow for
seasonal unit roots in either preferences or technology. This issue is investigated in
the appendix.

4Chatterjee and Ravikumar (1989) provide a more formal characterization of
existence and uniqueness in a simple seasonal model with inelastic labor supply and
100% depreciation of capital.

5Christiano and Eichenbaum (1992) and Braun (1989) report a range of values
for «y; and find that small values of <y, help explain the correlation between hours and
average productivity.

6The instruments for our moment conditions were selected as follows: for eq.
(13), four seasonal dummies, and the time t growth rates of private consumption,
leisure, output-capital ratio, and output-labor ratio; for eq. (14), four seasonal
dummies and the time t and t — 1 growth rates of private consumption, leisure,
output-capital ratio, and output-labor ratio; for the production function, four seasonal
dummies; for the transitory government spending autoregression, four seasonal

dummies and the logarithm of g,_;/z_;; and for the variance estimators, only unity.
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A total of 31 instruments are used to estimate the 18 parameters of the nontime-
separable specification, yielding 15 overidentifying restrictions. For a time-separable
specification in which the parameters a and b are set to zero a priori, only 16
parameters are estimated, yielding 17 overidentifying restrictions.

TThe moment conditions used to identify the technology and government
seasonals serve to just identity them. Consequently the test offers no information
about these restrictions.

81t could be argued that the degrees of freedom associated with this statistic
are inflated by the use of four seasonal dummies in the two Euler equations.

For more details, see the technical appendix.

104 cursory inspection of the graphs might suggest that the fit for capital is
not particularly good. Notice however, that the vertical axis is in tenths of a percent.

111 each case we set the remaining two séasonal shifters equal to the mean
of their estimated values. Notice that for the “technology only” case, government
purchases varies seasonally. This variation is inherited from the seasonal variation
in the permanent component of government purchases. Our specification for
government purchases embodies the assumption that g, and z, cointegrate. This
assumption is necessary for the economy’s perfect-foresight equilibrium path to
exhibit balanced growth.

12For this case, consumption is slightly counterseasonal due to the substitut-
ability of government purchases for private consumption (y; = 0.4). Ify; =0,

consumption is slightly proseasonal.

13The models’ spectra are estimated from a single long draw of the NTS and

TS simulations. The data’s spectra are estimated over the sample period 1964-85.
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14Cogley and Nason (1991) argue that this lack of discriminatory power under
the HP filter is not unusual for data-generating processes with unit roots.

15Reducing our estimate of the technology shock variance would reduce the
implied variability of output in the model. Assuming that the Solow residual series
is contaminated by measurement errors which are orthogonal to the true technology
shock would imply that our estimate is too large. Inaeed, Prescott (1986) uses this
assumption to reach a substantially lower variance estimate. However, the presence
of labor hoarding or external increasing returns would invalidate the orthogonality
assumption. We leave for future research an assessment of these issues (for example,
see Braun and Evans 1991).

16The sample period for our consumption data runs from 1950-85, while the
Solow residual data begins in 1964, which is the year our labor input time-series
starts. Tests for consumption based on the shorter 1964-85 sample produced

stronger evidence against the seasonal unit root hypothesis.
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Table 1:
GMM Estimates of the Structural Parameters

1964, QI - 1985, QIV

Nontime-Separable Time-Separable
Standard Standard

Estimate Error Estimate Error
0 .2803 .0195 2751 .0055

3402 .0184 — -
b —.4956 .0154 - -
A -.0724 .0031 -.0710 .0027
A .0385 .0026 .0375 .0022
A3 —-.0193 .0019 —-.0190 .0015
N .0600 .0024 .0596 .0019
71 .1863 .0011 .1819 .0013
T4 1929 0011 .1929 .0012
d; .6048 1521 6115 1747
d, 5712 1518 5807 1743
ds .6072 1523 6162 1747
dy 5382 .1520 5469 .1748
0 .8779 .0319 .8756 .0368
Oy .0195 .0385 .0198 .0013
o, .0191 .0193 .0194 .0014
J-statistics 20.7 888.2
P-value (.146) (-000)

X3(15) x¥(17)
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Figure 1

This figure plots -the seasonals presented in Table 2, for the data and

the nontime-separable specification.
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Figure 2

This figure reports seasonals for the nontime-separable model and three

special cases.

TECH only allows seasonal variation in technology, PREF

~only allows seasonal variation in preferences, and GOVT only allows
seasonal variation in government purchases.
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Figure 3

This figure reports spectral demsities for output, consumption (Cons.),

and labor hours (Labor) for the data, the nontime~separable specification

(NTS), and the time-separable specification (TS).
_for seasonally adjusted variables expressed in log-first differences
" (Differenced) or the Hodrick-Prescott filter (HP).
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Results are reported
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