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Abstract

We integrate search theory into an equilibrium framework in a
new way, and argue that the result is a simple but powerful tool for
understanding many issues related to bilateral matching. We assume
for much of what we do that utility is less than perfectly transferable.
This turns out to generate multiple equilibria that do not arise in the
standard model, with transferable utility, unless one adds increasing
returns. We also provide simple conditions for uniqueness that apply
to models with or without transferable utility or increasing returns.
Examples, applications, and extensions are discussed.

1 Introduction

The objectives of this paper are: to integrate the standard one-sided search
problem from decision theory into an equilibrium framework in a new way;
and to argue that the result is a simple but potentially powerful tool for
understanding many issues related to markets with bilateral matching, in-
cluding the labor market, the marriage market, and so on. Of course, there
already exist equilibrium search models that have been applied successfully
in a host of applications.! Qur setup is different from existing models, and

1A small but representative sample includes: Diamond (1981, 1982a) and Mortensen
and Pissarides (1993a, 1993b), who focus on the labor market; Mortensen (1988), who looks
at the marriage market; Kiyotaki and Wright (1991, 1993) and Trejos and Wright (1994),
who study the money market; Diamond (1982b), Pissarides (1990), Howitt and McAfee
(1987), and Howitt (1988), who look at a range of macroeconomic issues; and Rubinstein
and Wolinsky (1985), who use the model as a foundation for Walrasian equilibrium. A
related literature is concerned with generating a nondegenerate distribution of prices or
wages endogenously; examples include Diamond (1971), Butters (1977), Burdett and Judd
(1983), Albrecht and Axell (1984), and Burdett and Mortensen (1992).
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generates some very different results. The best way to describe how things
differ is to provide a brief overview of the environment and the results.

Consider a labor market where workers and employers are either un-
matched or matched (in pairs). When unmatched, workers and employers
search for partners. Upon contact each observes an expected payoff he will
receive if they consummate the match and form a relationship. The payoffs
differ across pairs, and include not only wages for the worker and profits for
the employer, but utility generated by any number of other match-specific
characteristics. If both are agreeable, an employment relationship ensues; if
at least one of them decides not to enter into the relationship, they separate
to look for other partners.

For much of what we do, it is assumed that utility is less than perfectly
transferable between the parties. For instance, if a worker is enthusiastic
about an employer but not vice-versa, there is a limit as to what he can
do to convince the employer to hire him. If he offers to work for a reduced
wage, say, we might want to restrict his offer to be a wage above some lower
bound (such as a union-negotiated wage, a legislated minimum wage, or a
zero wage). At what wage could typical economics professors get jobs as
professional football players? Certainly negative, and probably more than
they could afford even if they tapped their teaching and other income.

The point is that no matter how much a worker may want a certain
job, there are limits on what he can do to convince the employer to hire him.
Similarly, no matter how much an employer may want a certain worker, there
are limits on how much he can pay.?

Once one accepts the notion that utility is not perfectly transferable, there
is little loss in generality to focusing on an extreme version of the setup where
utility is not transferable at all, and the terms of relationships are simply not
subject to negotiation — that is, what you see is what you get. In this case it
is clear that relationships cannot form unless both parties derive utility that

2The same observations are at least as valid for the marriage market. Suppose that if a
particular male and female enter into a relationship, and equally divide household duties,
the male obtains a payoff of 10 utils over and above the expected return to remaining
single, while the female obtains -2 and therefore prefers to remain single. An apparent
solution is for the male to perform more household duties in an attempt to transfer at
least 2 utils to the female. But suppose the "exchange rate” is such that even if the male
did enough additional housework to exhaust his 10 utils of surplus, the female’s surplus
was only -1. Then they simply will not match. »



exceeds the reservation value of continued search for new partners. This is
quite different from the situation in the standard model used in macro or
labor economics, for example, in which relationships always form if there is
a positive total surplus, and bargaining determines how this total surplus is
split. Casual empiricism suggests that there are plenty of cases in the labor
market, the marriage market, and other markets where our assumption of
less than perfectly transferable utility seems more reasonable.3

In terms of results, the model with less than perfectly transferable utility
can generate multiple equilibria, where the standard model predicts a unique
outcome without auxiliary assumptions like increasing returns to scale in the
meeting technology. This multiplicity results because of the following intu-
itively plausible considerations. If employers are very selective as to who they
hire, workers will not get very many offers; in these circumstances workers
cannot afford to reject many offers, which makes it easy for employers to hire
and thereby rationalizes their selectivity. On the other hand, if employers
are not very selective, workers will get more offers; in these circumstances
workers are willing to only accept jobs they especially like, which makes it
hard for employers to hire, and so on.

In the model with perfectly transferable utility, this type of multiplicity
cannot arise. It can arise in our model even if workers and employers are
completely symmetric, an observation that may be particularly relevant for
marriage or mating markets. For instance, in many species females are very
selective as to choice of mates, while males are not. But in other species
it is the opposite, and in still others the two sexes behave similarly in this
dimension. Does this mean males and females are fundamentally different,
in ways that differ across species? Not necessarily, according to the model
developed here. It could be the case that different species have, perhaps
by some evolutionary process or perhaps by other means, simply settled on
different equilibria.

The rest of the paper can be summarized as follows. In Section 2, we
lay out the environment and the decision problems of individuals on both

3A model of the labor market with nontransferable utility is similar in this regard to
search models of the role of money, in the sense that exchange requires a double coincidence
of wants. An important difference, however, is that the labor market usually involves
long-term relationships. Roth (forthcoming) provides an interesting description of several
markets in the real world where matching is relevant, and the extent to which bargaining
occurs.



sides of the market. In Section 3, we analyze steady state equilibria, in
which several variables that are taken as given by individuals are determined
by the market. We prove existence and discuss the possibility of multiple
equilibria. However, we also provide some simple sufficient conditions — one
version is that the distribution of payoffs across matches has a log-concavity
property — that are sufficient to guarantee uniqueness.

It is important to point out that the model generates outcomes for any
fixed wage, including wages set by unions or legislatures, for example. This
is quite different from the standard market model, which only makes sense
if the wage is set so that supply equals demand, unless one introduces some
ad hoc rationing rule. Hence, the model can be used to discuss a variety of
issues related to wage formation, some of which are mentioned in Section 4.
In Section 5, we work through some examples.

In Section 6 we present some extensions, analyze dynamic equilibria, and
consider versions of the model that allow either partially or completely trans-
ferable utility. We argue that the model with partially but not completely
transferable utility yields results that are qualitatively similar to the model
with nontransferable utility. The model with completely transferable util-
ity, however, always has a unique nondegenerate equilibrium. Introducing
increasing returns to scale in the meeting technology can generate multiple
equilibria with completely transferable utility, as is well-known. However, we
show that the same simple conditions which that rule out multiplicity in the
nontransferable utility model also rule out multiplicity in the transferable
utility model, even with increasing returns.

2 The Basic Model

Consider an infinite horizon, stationary economy with two types of agents
labelled j = w, e. We typically refer to these as workers and employers, since
most of the discussion will be in terms of the labor market; but the model
also applies to the marriage market, where the types are men and women,
and to a variety of other markets, where the types are any sort of buyers and
sellers. For simplicity, we assume that each worker wants to match with one
employer and each employer wants to match with one worker.

All individuals are ez ante identical: there is no such thing as objectively
better workers or employers. However, individuals have preferences over



partners that are idiosyncratic, in the sense that a worker may prefer one
employer to another, or vice-versa. To make this concrete, let the flow utility,
or payoff, to a worker in a relationship with a particular employer be z,. For
example, we could have z, = z,(w,&,), where w is the wage, and &, is a
vector of nonwage job characteristics comprised of everything from location
of the job to the personality of the employer. Symmetrically, the payoff to
an employer in a relationship with a particular worker is given by z.. For
example, we could have z. = z.(p — w, €.), where p is the productivity of the
match, and &, is a vector of other considerations the employer finds relevant.
In this section, all we need to know are z, and z., and it does not really
matter what underlying model of preferences one has in mind.

Agents meet each other randomly over time, in a way that will be specified
in more detail below. For type j agents, a random match yields payoff
z;, where z; has cumulative distribution function Fj. Although not at all
essential for the results, to simplify the notation we assume in much of what
follows that Fj; is differentiable and has its support contained in some interval
[2,7]-

We assume for now that what you see is what you get, in the sense that
utility is completely nontransferable. In this extreme version of the model,
nothing can be done to change an agent’s evaluation of a potential partner.
Various interpretations of this in terms of fixed wages are explored below.
However, as we argue in Section 6, the results are qualitatively similar if
utility can be transferred via bilateral bargaining, but the wage is constrained
to some set (say, it cannot be negative or greater than the total revenue
generated by the relationship). What is important here is that it is the pair
(e, 2w) that is relevant to the match, and not simply the sum 2. + zy.

We begin by describing the decision problem of a typical worker, which
is the textbook one-sided search problem (Mortensen 1985). On entering the
market, the worker begins searching for an employer. Offers to form employ-
ment relationships arrive according to a Poisson process with parameter ay;
the worker takes o, as given, although we will ultimately need to determine
its value endogenously as part of equilibrium. Each offer is characterized
by an independent draw from F,,. While searching the worker also receives
utility b, per unit time, which could measure a variety of things, includ-
ing unemployment compensation. Assume F,(b,) < 1, in order to rule out
trivial situations where no relationships ever form.

Assume for now that no new offers arrive while a worker is employed, and
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that 2, never changes after an offer is accepted (but see Section 6). In this
case, a worker will never voluntarily leave a job he previously accepted. There
is, however, the possibility that he is forced back on the market because a
job ends, an event we think of as a permanent layoff. He expects layofis
to occur according to a Poisson process with parameter \A,. Furthermore,
according to an independent Poisson process with parameter 6,, the worker
simply leaves the market for good — for example, he dies.

Let U, denote the expected discounted lifetime utility of an unattached
worker, and let V,,(z) denote his expected discounted lifetime utility in a
relationship characterized by utility flow z (the value functions). For now we
consider only a stationary version of the model where nothing changes over
time (dynamics are studied in Section 6). Then the value functions satisfy
the following dynamic programming equations:

(r + 6w)Uw = by + gy /:ma.x[Vw(z) — Uy, 0)dF,,(2) (1)

(r + 6u)Va(2) = 2 + Ao [Uw — Vau(2)], (@)

where r is the subjective rate of time preference.? For future reference, note
that (2) implies that
z+ AUy

T+ v+ 6y

Therefore V,,(2) is differentiable, and V/(z) = 1/(r + Ay + 6u)-
Equations (1) and (2) describe the value functions in terms of flow utili-

ties, b, and z, plus expected capital gains, appropriately discounted by r+6,,.

The capital gain in the case of an unattached worker is the arrival rate of

offers times the value of the option to either accept or reject; the capital gain

(loss, really) for an employed worker is the arrival rate of layoffs times the

value of going back on the market and leaving the current relationship.

Vu(z) = 3)

4Consider an unemployed worker. In discrete time where the length of a period is given
by A, Bellman’s equation is

1-6,A

T rA {bwA + au AEmax[Vy (2), Up] + (1 — a A)Uy + 0(A)},

Uy =
where o(A) captures the payoff in the event of more than one Poisson arrival in a period,
and therefore satisfies o(A)/A — 0 as A — 0. Manipulation of this expression yields (1).
The derivation of (2) is similar.



The strategy that maximizes the value functions is to accept any offer
above the reservation utility level R, defined by V,,(Ry) = Uy. By virtue
of (3), Ry, = (r + 64)U,. Combining this with (1), we have

Ro=bs = au . Vals) = Vu(Ru)ldFul(2)

= a, /R [t - Fu(2)| Vi (Ru)dz,

where the second equality results from integration by parts. Inserting V.
into this expression yields

oy
R, — b, = mﬂw(Rw)7 (4)
where p,, is called the surplus function, defined by
w = ’ — Ly dz.
po(B) = [[1 = Ful2)ldz (5)
For future reference, note that u/,(R) = —[1 — F,,(R)] < 0, and g/ (R) =

F!(R) > 0.
Employers in this model face a problem completely symmetric to that of
workers. A similar analysis yields the employer reservation utility level, R.,
e

as the solution to
= mﬂe(Re), (6)

where b, is his utility flow while he is unattached, a. his arrival rate of offers
(or employment applications), A. the rate at which workers leave and force
him back onto the market, §. his death rate, and p. his surplus function.
Equations (4) and (6) completely characterize the strategies that maximize
the value functions, given the parameters. Of course, what is a parameter
for one individual may depend, in equilibrium, on the behavior of others.

R, — b,

3 Equilibrium

In this section we put the two sides of the market together. Suppose there are
constant and equal populations of each type, with measures normalized to
unity. This happens if every type j agent who dies is replaced by a new type
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j agent, who starts his life unattached.® Also, we assume for simplicity that
the payoffs z, and 2, are drawn independently when a pair makes contact.

Suppose further that unattached workers and employers make contact
according to a meeting technology that determines the total number of con-
tacts per unit time, M, as a function of the number of unmatched workers
Uy and the number of unmatched employers u.. Since every relationship
involves one worker and one employer, in this simple setup, u. = u, = u and
M = M(u,u). For now, we assume constant returns to scale in the meeting
technology (but see Section 6). This implies M = fu, where § = M(1,1).
The contact rate for a type j individual equals the total number of contacts
divided by the number of unattached agents of type j, which equals the
constant B for both types.

However, every contact does not result in an offer. The offer arrival rate
for an unattached employer is the contact rate times the probability that a
worker finds him acceptable, whereas the offer arrival rate for an unattached
worker is the contact rate times the probability that an employer finds him
acceptable. Using the identity 1 — Fj(R) = —u}(R), we therefore have

a. = —Bpy,(Ru) and ow = —Bu(Re). (7)

Also, since no one ever terminates a relationship voluntarily, the only time
an agent is forced back onto the market is when his partner dies (but see
Section 6). Hence,

de =8, and Ay =6, (8)
Inserting (7) and (8) into (4) and (6), we arrive at
R, — b, ,
= ~7,,(Rw), 9
B — il () ©)
R‘w - b‘w ’
———— = —7p.(R.), 10
e b = (R (10)

where 7 = 3/(r+6,+6.). Equation (9) defines the employer reaction function
(or best response function), R. = p.(R.), which expresses his reservation

5Potentially interesting extensions beyond the scope of the present study are to allow
different numbers of each type, and to endogenize the number of one or both types via
entry (see Pissarides 1990, e.g., for a search model with entry by employers).



utility as a function of the reservation utility of workers. Similarly, (10)
defines the worker reaction function, Ry, = py(R.)-

A steady state equilibrium is a pair (R:, R},) that satisfies R}, = p,,(R})
and R: = p.(R;). The first result is that a steady state equilibrium always
exists.®

Proposition 1 There always exists a steady state equilibrium (R}, RY,), with
R} strictly less than the upper bound of the support of F; for both types.

Proof: First, we claim that for all R, such that Fy,(R,) = 0 we have
pe(Ry) = R., where R, < Zz. To see this, note that p.(R.) is constant at
some value R, for any such R, since then marginal changes in R,, do not
affect the arrival rate o.. Suppose R, > Z. Then an employer rejects offers
with probability 1, which yields lifetime utility b./(r + 6.). But F,(b.) <1 by
assumption, and therefore an employer can increase his utility by accepting
some offers. Next we claim that for all R, such that F,(R,) = 1 we have
pe(R.) = b.. This follows directly from (9). Finally, p. is continuous by our
assumptions on F;. Symmetric properties hold for p,,. Hence, the reaction
functions look like those shown in Figure 1, from which the result is clear. O

Differentiation of (9) and (10) implies p; < 0 for both j, and hence
the reaction functions could potentially cross more than once. Indeed, the
following scenario seems plausible. Suppose employers are selective, in the
sense that they choose a high value of R.; then workers receive infrequent
offers, and their best response is to be easy, in the sense that they choose a
low value of R,. But this means employers receive lots of job applications,
thereby rationalizing their high value of R.. Now suppose employers are
easy; then workers receive lots of job offers, and their best response is to
be selective. But this means employers receive few job applications, thereby
rationalizing their low value of R,.

We provide explicit examples with multiple equilibria in Section 5. Nev-
ertheless, it is desirable in some contexts to have conditions that deliver a
unique equilibrium. To this end, define a function ¢ to be log-concave, ab-
breviated LC, if log(y) is concave. If ¢ is twice differentiable, then it is LC

8The proof uses the assumption that Fj is continuous, but this is not really necessary.
More generally, equilibria will always exist if we allow agents to use mixed strategies,
whereby they choose a probability of accepting any offer.
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if and only if
pe” — (¢)? < 0. (11)

Moreover, one can show that if the density function F' is LC, then so is the
distribution function F' and the survivor function 1 — F', and if the survivor
function is LC, then so is the surplus function p.”

Proposition 2 Suppose the surplus function y; is LC (which is guaranteed
if the survivor function is LC, which is guaranteed if the density function is
LC), for both j; then there is exactly one steady state equilibrium.

Proof: No more than one equilibrium can exist if p,, is always steeper
than p. when they intersect. Calculating the slopes of the reaction functions
from (9) and (10), we find that this is the case if and only if

1+ 2mpulprl, + w2 [(h, 1) — il prepps] > O.
Therefore, a sufficient condition for uniqueness is that the term in square
brackets be nonnegative. This is true if g; is LC for both 7, by (11). O

In any equilibrium, one can calculate the implied path of unemployment,
u (which is the same as the path of vacancies, given equal numbers of both
types). The flow into unemployment is given by (1 — u)(é. + 6,), while the
flow out is given by uH, where

H = Bpe(Re)py(Rw)

is the hazard rate. Then & = (1 — u)(é. + 6w) — uH, and for any initial
condition, u — u*, where

. bt éy
b+ b+ H

7This follows from a theorem of Prekopa (1973) that says LC is preserved under in-
tegration; see Dharmadhikari and Joag-dev (1988) for an exposition. Note that LC is a
common condition and has found applications in search theory dating back to Burdett
(1981). Many well-known probability distributions are LC, although some are not. Prop-
erties of LC distributions include these: all moments exist, they are unimodal, and they
have a nondecreasing hazard.

U
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The reservation utilities ; do not depend on u, because with a constant
returns meeting technology the contact rate does not depend on wu.

Since there can be multiple equilibria in (R,,, R.) space, there can be mul-
tiple equilibrium unemployment rates. This is true despite the fact that we
did not assume increasing returns in the meeting technology, which has been
the usual way to generate multiplicity in equilibrium search models since
Diamond (1982b). Moreover, in the standard model with perfectly trans-
ferable utility, multiple nondegenerate equilibria cannot arise with constant
returns (see below). It is therefore clear that the multiplicity here is different
from the standard result and depends on utility being less than perfectly
transferable.

It is also worth noting that there can be equilibria where R; < z for
one type. For example, if R}, < z, then the reaction functions cross where
pe(R:) is horizontal. In this case, workers are especially easy, in the sense
that they accept all offers.® In such an equilibrium, a change in an exogenous
parameter like b,,, induced by a change in unemployment compensation, say,
will have no observable effects: it shifts p,,, but as long as R = p,(R}) is
still less than the lower bound of the support of F,,, this will not affect R,
H, or u.

In order to study the effects of parameter changes further, assume for
the rest of this section that there is a unique equilibrium where R} is in
the interior of the support of F; for both types. At the unique equilibrium,
pw is steeper than p., as in Figure 1.° Then an increase in b, shifts p, to
the right, leading to an increase in R}, and a reduction in R}. Indeed, the
increase in R, is greater than what one would predict from a single-sided -
search model where o, does not change. Here the initial increase in workers’
reservation utility makes it harder for employers to hire, and so they become
less selective, which means workers get more offers, which further increases
R

One can also ask how unemployment depends on b,,. Since u is decreasing

8This observation may alleviate the misperception that search theories of unemploy-
ment require that workers reject job offers, something that does not happen a lot in the
data.

9When multiple equilibria exist, in any equilibrium where py, is flatter than p,,, changes
in parameters will have completely counterintuitive effects; see the example in Section 5.
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in H, we need only check

OH OR,
= B lutps, + po,pepl] ,

ab,,

where p, is the slope of the employer reaction function. If p! = 0, H unam-
biguously falls with b,,. If g, < 0, H falls by less, and could actually rise —
e.g., more generous unemployment insurance benefits could actually reduce
unemployment. Inserting p. and simplifying, we have

_aﬂ — ! ! 2 t n aRw
abw - I{ [/‘tc + ﬂ-iu‘w(ﬂc #c'ue)] ab ’

where K > 0. This is ambiguous, in general, even if we restrict attention
to the case of a unique equilibrium. If g, is LC, however, then the term in
parentheses is positive, which implies that H/db, < 0 and du/3db,, > 0.

At this point we consider a symmetric version of the model, where b; = b
and Fj(z) = F(z), which implies that u;(R) = u(R), for both j. Then the
reaction functions are the same, p; = p, and it is natural to look for symmetric
equilibria, where RX = R’ = R*. Such an equilibrium is characterized by
the intersection of p with the 45° line in (R,,, R.) space. It is straightforward
to verify that there always exists a symmetric equilibrium, that there cannot
be more than one symmetric equilibrium.®

In the symmetric equilibrium, an increase in b (that is, an increase in
b; for both types) unambiguously increases R* and u. An increase in the
contact rate B also increases R*, but has an ambiguous effect on u, because
the increase in f raises H directly and then lowers it through the indirect
effect on R*. However, one can show that if g is LC then the net effect of
an increase in B is an increase in H and a decrease in u. Intuitively, LC
guarantees that an increase in the offer arrival rate does not increase the
reservation utility value too much, which guarantees that the net effect on
H is positive.

We summarize the effects of these parameter changes as follows.

19Even if b; and Fj are symmetric, there can still exist nonsymmetric equilibria (see
below). What we are claiming here is that there is a unique symmetric equilibrium. Of
course, by Proposition 2, if u is LC then there exists a unique equilibrium and it is the
symmetric one.
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Proposition 3 Assume there is a unique steady state equilibrium. Then an
increase in by, increases R;, and decreases R}, and increases u if p. is LC.
The change in R, is greater than predicted by a one-sided search model, while
the change in u is less. In the symmetric equilibrium of the symmetric model,
an increase in b increases R* and u, while an increase in B always increases
R* and reduces u if p is LC.

4 'Wage Determination

So far it has been argued that, when an unemployed worker and employer
meet, two random variables are realized, z, = z,(w,&y) and z. = 2.(p —
w, &), where p is the revenue flow if a relationship ensues, w is the wage
rate for the type of labor services to be supplied, and ¢,, and &, are the two
idiosyncratic utility flows unique to the match. In Section 6 we consider
bilateral bargaining between the parties when they are deciding whether or
not to form a relationship, after they have met. Here we assume that the
wage is not negotiable after the parties meet; nonetheless, we can still discuss
how the wage is determined ez ante.

Given that an individual cannot transfer utility to the other party, by
varying w or otherwise, Proposition 1 shows that there exists at least one
steady state equilibrium for any w. This differs from the standard compet-
itive model of the labor market, where the theory only makes sense when
the wage is set so that supply equals demand, unless we impose some ad hoc
rationing rule. Here, rationing is done by the search and matching process,
which rather than being an afterthought is the very heart of the model.

Of course, when w changes, the equilibrium changes. For example, sup-
pose the labor market under consideration is fully unionized. Before the
search process begins, or perhaps during the process, representatives of the
workers and employers meet to negotiate the wage to be paid to all employ-
ees. The results presented so far specify the possible equilibria as a function
of w. Therefore, the negotiators can calculate the consequences in terms of
steady state unemployment; steady state utility for an employed worker, an
unemployed worker, or an average worker; and so on, for any suggested wage.
In this case, the above results describe the menu over which the representa-
tives negotiate. Further discussion is contained in the context of an example

in Section 5.

13



Another approach is to regard the fixed wage w as the symmetric equi-
librium of a wage-posting game between firms. Thus, each employer chooses
his own wage, to which he commits, taking as given the wages posted by
all other employers. The advantage of a low wage is that profits are higher
once a relationship begins; the disadvantage is that workers are less likely to
accept the job, and so hiring takes longer. One can show that there exists a
unique symmetric Nash equilibrium in wages under the LC assumption; see
Masters (in progress).

On any of these interpretations, the bottom line is a two-sided search
problem in which it is the pair (2., z.,) that matters. Later, we also consider
versions of the model where the wage is negotiable ez post. Then, in the
extreme case where there are no constraints on bargaining whatsoever, it is
only the sum z = z. + z, that matters.

5 Examples

In this section we study some examples with particular distribution functions.

5.1 The Uniform Case

Consider the case where a worker’s utility flow from a randomly selected
employer is given by z,, = w+€,,, where w indicates a (fixed) wage rate offered
by all employers and ¢,, is uniformly distributed on [0,1]. Also, an employer’s
utility flow from a randomly selected worker is given by 2z, = p—w+¢€., where
p is a (fixed) revenue flow and e, is uniformly distributed on [0,1]. Assume
that b, <w+1and b <p—w+1.

It is useful in this case to translate variables by defining

ky,=R,—w and k.= R.—p+w.

Thus, k; is the reservation utility level in terms of nonmonetary consider-
ations, and agent j accepts any offer such that €; > k;. Then equilibrium
conditions (9) and (10) can be written as

2(ke +p—w — &)
(1 - ke)2

= 7(1 — ku) (12)
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2(ky + w — by)
1= Fo)? =m(1l — k). (13)

It is easy to check that there is a unique solution to (12) and (13) (which is
not surprising, given that the uniform distribution is LC).

Because these equations are so simple, we can say a lot about certain
issues. For instance, consider the model where representatives of a trade
union and an industry meet to negotiate a wage that must be paid to any
worker who is employed. Let (k., k,,) be the equilibrium reservation utilities,
given w, and assume k; € (0,1). Associated with this are the hazard H =
B(1 — ky)(1 — k) and the implied unemployment rate u.

It is straightforward to show that if we increase w then workers become
less selective and employers become more selective; in fact, —0k, /0w =
Ok./0w > 0. The induced change in unemployment can be determined from
the change in the hazard,

H k k k
o = - k) 52— (1~ k)P = i, — 1) P
Notice that dH/0w > 0 if and only if k., > k.. However, from (12) and (13)
it can be seen that ky > k. if and only if w < & = L(p + b, — b.). We
conclude that H is increasing and u decreasing in w if and only if w < %.
What is interesting is that higher union-negotiated wages lead to greater
unemployment only after w exceeds the threshold @. For low wages, in-
creasing w reduces unemployment, because workers become less selective in
terms of nonwage job considerations. At the same time, increasing w means
employers become more selective, but the worker effect dominates as long
as w < w. Note that this result depends on the assumption that utility is
not perfectly transferable; in the standard model, with perfectly transferable
utility, changes in w can simply be undone by bilateral bargaining.?

5.2 The Pareto Case

Now suppose that both workers and employers face a Pareto distribution,
which is worth considering because its density is not LC. The Pareto distri-
bution with parameters z > 0 and 4 > 1 is given by F((z) = 1 — (z/z)" for

11A similar analysis could be used to argue that, up to some threshold, increases in the
minimum wage reduce unemployment in a model without perfectly transferable utility.
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any z > z, and F(z) =0 for any z < z. Its surplus function is

TR

-1

#(R) =

for R 2 .

Let F. be Pareto with parameters z. and ., and let F,, be Pareto with
parameters z,, and 7,, (the fact that the supports are unbounded gives us no
trouble). After simplification, the employer reaction function can be written
implicitly as:

(zeZ=) R if Ry > @

R, — b, Te=1
1—ve =
ke (z=2) if Ry < Tu.

A symmetric expression describes the worker reaction function. Also, assume
for the moment that b, = 0 < b,,.

Then there are several possible outcomes, depending on parameter values.
One possibility is that there is a unique equilibrium with R, < =z, and
R. > z., where workers accept every offer but employers are selective. This
is depicted in Figure 2. Another possibility is the reverse situation — a
unique equilibrium with R, > z,, and R, < z., where workers are selective
and employers easy. The final possibility is that there exist exactly three
equilibria, the two described above plus an equilibrium where R; > z; for
both j. This is depicted in Figure 3.

Notice that whenever the interior equilibrium exists (i.e., the one with
R; > z; for both j), so do the other two equilibria. Also, notice that the in-
terior equilibrium has some weird comparative static properties; for example,
if we increase b,, then p,, shifts out, but the net effect in equilibrium is that
R falls. Finally, consider the symmetric case, where 97 = v and z; = z for
both j. If we also relax the assumption b,, > 0, and set b,, = b. = 0, then the
two reaction functions are coincident as long as R; > z for both j. Hence,
there is a continuum of equilibria. In this strange case, over some region, any
time employers become more selective workers respond by becoming easier
by exactly enough to rationalize the employers’ increase in selectivity.
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5.3 A Discrete Example

Suppose that z = (21, 2;) with probability (1 — 8,8) for both types, where
0 < z1 < z, < 1. Also, assume for simplicity that b; = 0, and set 8 = 1.
Then routine algebra implies that (6), which gives the reservation utility level
for an employer as a function of a., can be reduced to

2el02+(1-0)n] it < §

T4+det+bwtae

R. = (14)

——eln___ ifo >@

r4+8e+bwtbae €=
where @ = (r+0.+6y)21/0(22—21). A symmetric condition holds for workers.
We claim that for some parameter values there exist an equilibrium with
selective employers who only accept 2; and easy workers who accept either
21 OT 29, and another equilibrium with selective workers and easy employers.
To verify this, choose z; and z; so that § < @ < 1 (this can always be done).
If R, € (0,2) then workers accept all offers, a. = 1 > &, and from (14) one
can check that R. € (z1,2;). On the other hand, if R,, € (21, 2z3) then workers
are selective, a. = 0 < @, and from (14) one can check that R, € (0, z). The

situation is depicted in Figure 4.

6 Extensions

6.1 Voluntary Separations

Up to now, no individual ever terminates a relationship voluntarily. Several
generalizations of the model change this result, including on-the-job search,
as in Burdett (1978), or learning about the match, as in Jovanovic (1979).
For the sake of illustration, we consider an alternative in which individuals
sometimes change their minds. That is, according to a Poisson process with
parameter ;, an attached type j agent reevaluates the relationship by draw-
ing a new z, at which point he may either stay in the relationship or go back
on the market. To simplify matters, assume the new z is independent of the
current value.!?

127t would not be difficult to recast this as a model with learning, where agents upon
contact see only a signal of the true 2;.
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Then (1) still holds, but (2) must be amended to
(r+8;)Vi(2) = z+ A;[U; — Vi(2)] + v E max[V;(2') - V;(2), U; — Vj(2)].

A strategy that maximizes the value functions is to accept or stay in any
relationship with z > R; and reject or leave any relationship with z < R;,
where the reservation utility level satisfies the following generalization of (4):

o R ]
Rj —b; = T8+ +,yjl‘J(RJ)'
Notice that the same reservation value is used for new and incumbent part-
ners (this would not be true if we changed the model, by introducing a fixed
cost of separations, say).
Equilibrium requires the same conditions on offer arrival rates (7); but
now (8) must be generalized to

Af: - 6w + 7wa(Rw) and A1.u = 6: + ’Ych(Rc),

since individuals are forced back on the market not only when their part-
ners die, but also when their partners change their minds and terminate the
relationships. Hence, the employer reaction function satisfies the following
generalization of (9):

Re — be _ ﬁ/‘t:l}(Ru') + e
pre(Re) r+ 8 + 6y 4 7Y + Yo Fu(Ru)

A similar equation holds for workers.

Consider the symmetric case, in which a symmetric equilibrium R* occurs
at an intersection of the common reaction function p with the 45° line in
(Ruw, R.) space. Notice that R* > bif and only if v < —Fu'(b) = B[1 — F(b)].
One can also show that p’ < 0 as long as v < B[1 — F(b)]. Therefore, given
this condition there exists a unique symmetric equilibrium with B* > b.

Agents in this generalized model undergo several different types of tran-
sitions. For example, a worker can lose his job by exiting the market, by
quitting voluntarily to go back on the market, or by getting laid off either
because his employer leaves the market or because his employer reevaluates
the relationship. The model does not yet generate job-to-job transitions, but
we could introduce these with on-the-job search.
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6.2 Dynamics

The reaction functions were derived above under the assumption that R; did
not change over time. If agents are myopic, we can trace out the dynamics,
starting from any R,(0), say, by setting R.(¢) = p.[R.(t)] and Ry(t +1) =
pulR(t)]. In the case of a unique equilibrium, it will be stable under these
dynamics, in the sense that [Ry(t), R.(t)] — (R, R:). In the case of multiple
equilibria, they alternate between stable and unstable, with the one with the
lowest value of R,, stable.

If agents are forward-looking, on the other hand, then (1) and (2) must
be generalized to take the dynamics into account. This implies

(r + 6;)U; = b; + a; E max[V;(z) — U;,0] + I.J,- (15)
(r+8;)V;(2) = 2+ \[U; — Vi(2)] + V3, (16)

where a "dot” denotes a time derivative.'® A strategy that maximizes the
value functions is to accept z > R;, where V;(R;) = Uj, at each point in
time. The reason that R; may vary over time is that the offer arrival rate
may vary over time, and the arrival rates vary if the reservation values vary.

Differentiation of the identity V;(R;) = U; with respect to time implies
that ) ) )

Vi(B)R; = U; — Vi(R;).

It can be shown that V;(z) actually does not depend on z; intuitively, the
only reason Vj(z) changes is that attached agents face changing arrival rates
when they are forced back on the market after their partner dies, in which
case the previous value of 7 is irrelevant. Hence, (16) implies that V}(z) =
1/(r + 6; + A;). Now if we subtract (15) and (16) and evaluate the result at
z = R;, we have

0 = Bi—b—a [ [Vi(e) ~ UjdFy(z) [0 - V(&)

= By—b— o [ 1= Bz~ V(R

13These equations are derived assuming that agents cannot leave a relationship into
which they voluntarily entered — a sort of no divorce restriction.
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Inserting V/(2) and rearranging yields
Rj = (r+ & + X)(R; — b)) — api(R;)- (17)

By virtue of the equilibrium conditions (7) and (8), the model reduces to
the following dynamical system:

R, (r + 8. + 6u)(Ruw — bw) + Bitw(Ruw) . (R:)
= . (18)

Rc (7' + 8. + 6“w)(Rc - be) - :B/‘e(Rc)/*‘:u(Rw)

A rational expectations equilibrium is any bounded solution to (18). Bound-
edness is a necessary condition, in addition to (17), for a path R; to maximize
the value functions. There are no initial conditions, because R; is free to take
on any value at ¢ = 0.

The locus of points such that Rj = 0 is simply the reaction function of
agent j from the stationary model analyzed above. Thus, the steady states
of (18) are the equilibria of the stationary model studied above, and a unique
steady state always exists under LC. When the steady state is unique, it is
a source, and the only bounded solution to (18) is the orbit that starts at
(R:, R:) and stays there. Hence, this is the unique rational expectations
equilibrium.

When there are multiple steady states, as shown in Figure 5, the dynamics
are more interesting. The steady states alternate between sources and saddle
points, with the one with the lowest R, a source. Let B, and R, denote
steady state values of R, in two sources on either side of a saddle point.
Then for any initial B, € (Buw, Rw), if we choose R, on the saddle path the
implied orbit constitutes a dynamic rational expectations equilibrium. In
this equilibrium, R; changes over time in anticipation of changes in arrival
rates, and anticipations of changes in arrival rates are rationalized by the
changes in the reservation values.!4

14This suggests the possibility of equilibria in which extrinsic uncertainty (sunspots or
animal spirits) could matter, where we randomly jump between a state in which workers
are selective and employers are easy and a state in which the opposite is true. See Howitt
and McAfee (1992) and Wright (forthcoming) for analyses of extrinsic uncertainty in search
models. It seems feasible (although not necessarily trivial) to apply similar methods here.
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6.3 General Matching Technologies

Even though offer rates are endogenous, the underlying contact rate 8 has so
far been assumed to be constant, corresponding to the assumption of constant
returns to scale in the meeting technology. Some authors have suggested
that this technology should display increasing returns, although the empirical
evidence is mixed; see Diamond and Blanchard (1990) and Coles and Smith
(1992). Increasing returns implies § = B(u), where B(0) = 0 and B’(u) > 0.
It has been well-known since Diamond (1982b) that increasing returns can
generate multiple nondegenerate equilibria in search models.

For any candidate unemployment rate ug, set 8 = B(uo) and find the
implied equilibrium (R,, R,,). Assume that this is unique, in order to focus on
the multiplicity generated by increasing returns rather than the multiplicity
analyzed earlier. This generates the hazard rate H = Bu.(R.)pw(Rw) and the
actual steady state unemployment rate u; = T'(uo). An equilibrium is a fixed
point, v = T'(u). To illustrate the essentials, consider the symmetric version
of the model in which F; = F and b; = b. In any symmetric equilibrium,
the reservation utility level used by both types is R, and the hazard is H =
Bu(R)®.

In general, it is certainly possible to have multiple nonzero solutions to
u = T'(u). But the following result says this cannot happen under LC.

Proposition 4 If p is LC, then there is a unique symmetric equilibrium
even with B’ > 0.

Proof: If p is LC, we know from Proposition 3 that an increase in 3
increases R by less than the amount required to increase u. This implies that
T(u) is a decreasing function. Hence, there cannot exist multiple nonzero
solutions to u = T'(u). O

6.4 Transferable Utility

We now drop the assumption that utility is not transferable and assume it is
perfectly transferable. The total payoff available in a match is z = z,, + z.,
a random draw from the distribution function G induced by the underlying
distributions Fj. Let Z be the upper bound of G. Let Z,(z) and Z.(z) =
z— Z,(z) denote the outcome of bargaining over how to split this total utility
between the agents; we will be more explicit about this in a moment. The key
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point for now is that V;[Z;(2)] > Uj; is necessary for j to enter a relationship
rather than stay on the market.
The usual techniques imply that

(r + 6;)U; = b; + o; E max([Vj(Z;) — U;, 0]

(r+ 6;)V;(Z;) = Z; + X;[U; — Vi(Z;)).

A strategy that maximizes the value functions is to enter into a relationship
with total payoff z if and only if Z;(z) > R;, where V;(R;) = U;, or R; =
(r + 6;)U;. To progress further, we need to say more about bargaining.
Consider the Nash solution,®

Zy = argmax [V,(Zy) — Uy][Ve(z — Zy) — Ue]
= argmax [Zy, — Rullz — Z, — R.].

This implies that
1 1
Zw=§(z+Rw——R,) and Zc=§(z+R¢—Rw).

Note that Z,, > R, if and only if Z, > R, if and only if z > R = R,,+ R..
Hence, relationships will be consummated by mutual consent if and only if
the total available utility exceeds R. Since R. = (r + 6.)U., the equilibrium
conditions allow us to express R, as

R.=b.48 /R ?[V,(Zc) — U.]dG(2).

We also know that

Ze — R, z—R

V2o U = 6, T I a A d)

Hence, we have

15This corresponds to the equilibrium of a Rubinstein (1982) sequential bargaining game,
under the assumption that agents continue to meet potential trading partners during the
period of delay after an offer is rejected, in the limit as this period of delay becomes small.
See Binmore et al. (1986) for an extended discussion.
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R.—b=7 /R (z — R)dG(2).

A similar condition holds for worker reservation utility. Adding these condi-
tions yields

R—b.—b,=n /R (s — R)IG(2). (19)

At this stage, we can either look for values of R* satisfying (19) and
then solve for R}, and R}, or define the reaction functions R, = p.(R,)
and R, = p.(R.) and look for (R, R}) directly. It is not difficult to show
that there exist unique equilibrium values for (R}, R}), R*, the hazard H =
B[l — G(R*)], and unemployment u. The significance of this result is that
it implies the multiplicity found earlier can be definitely attributed to the
assumption of less than perfectly transferable utility.

Proposition 5 In the model with perfectly transferable utility there is a
unique equilibrium.

Proof: Simply note that there is a unique R* that satisfies (19). O

Now consider introducing an increasing returns to scale meeting technol-
ogy into the model with transferable utility, so that 8 = B(u) with B’ > 0. It
is generally understood that a model like this can generate multiple equilibria.
However, the following result indicates that LC is sufficient for uniqueness in
this model, just as it is in the model with nontransferable utility.

Proposition 6 In the model with perfectly transferable utility and increasing
returns, there always exists an equilibrium; there may ezist multiple equilib-
ria, but not if u is LC.

Proof: The steady state and reservation utility conditions can be written
S(u, R) = T(u, R) = 0, where

S(u,B) = (b +6u)(1 —u) —uB(u)[l — G(R)]

T(u,R) = R—b— b, — Bl / (z — R)dG(z).
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It is easy to show that the S = 0 and T = 0 curves intersect at least once
in (u, R) space. Moreover, they intersect no more than once if the former is
steeper than the latter at their intersection. A little algebra implies that this
is the case if and only if

(6 + 6w — B'W)(r + & + u) ~ (6. + 6,) B’ + BB'[(W')* — pp] > 0.

Once again, this is true if g is LC. O

6.5 Partially Transferable Utility

In this last extension, we consider the case where the agents can transfer
part of the utility generated by the match, by changing the wage, say; but
they may not be able to transfer utility perfectly, because the wage cannot
be adjusted beyond some level. For example, suppose we allow w to take
on any value in some interval [w,w]. To fix ideas, let w = 0 and W = p,
so that employers cannot pay negative wages and cannot pay more than
total revenue; but other assumptions or interpretations entail the same basic
message. »

When a worker and employer make contact, (€4, €.) is revealed, and then
the pair bargain over the wage w. The payoffs are z, = ¢, + w and z, =
€. + p — w, the threat points are R, and R., and the constraint is 0 <
w < p. We can be agnostic about the bargaining solution and simply write
w = w(€yw, €c, Ru, Re,p), since we are only interested here in showing that
sometimes there will be no agreement that satisfies the constraints and is
acceptable to both parties, even though €, +¢. + p > Ry + R..

Figure 6 shows a case where €,, > R, and e. < R.. If utility is perfectly
transferable, with no constraints, then the bargaining frontier is the 45° line,
and the segment of this line that satisfies z,, > R, and 2z, > R, is the set
of acceptable agreements on the frontier. As shown in the figure, this set is
nonempty, and so the worker could get the job if he were allowed to transfer
enough utility to the employer. But, as shown, this would imply a negative
wage. If we constrain w > 0, then the most the employer could get from the
relationship is €, + p < R., which is not enough to hire this worker.

Clearly, as long as there is some degree beyond which utility cannot be
transferred, situations like this can arise, and the model will be qualitatively
similar to the version analyzed above where utility is completely nontransfer-
able. The distribution of z; will change to take into account the bargaining
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over w that occurs whenever there is a nonempty intersection of the set of
acceptable offers and the constraint set, but all of our results survive if we
reinterpret F} as the new distribution induced by the constrained bargaining
solution.

7 Conclusion

The paper has presented an equilibrium search model with less than per-
fectly transferable utility. This framework seems a natural extension of the
typical decision-theoretic model, in the sense that every agent solves a text-
book one-sided search problem. However, in equilibrium, offer arrival rates
for agents on one side of the market are endogenously determined by the
reservation utilities of agents on the other side, and layoff rates for one side
are endogenously determined by the rates at which agents on the other side
leave the market, as well as the rates at which they revise their beliefs or
change their minds about partners.

We demonstrated that there always exists a steady state equilibrium, and
we showed that there could exist multiple steady state equilibria. This multi-
plicity is different from that discussed in the previous literature; rather than
increasing returns in the meeting technology, it depends on positive feedback
in search strategies. There can also exist multiple dynamic equilibria. These
results depend on there being less than perfectly transferable utility — with
perfectly transferable utility, multiple nondegenerate equilibria cannot arise
without increasing returns.

Additionally, we showed that the simple condition known as log-concavity
rules out multiplicity, whether or not one allows transferable utility or in-
creasing returns. We also worked through some examples, and discussed
several applications and extensions. Much more can be done. The goals here
were to present the basic model, provide some key results and techniques,
and suggest topics for future research.
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Figure 5: Dynamic Equlilibria
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Figure 6: Bargaining with Partially Transferable Utility



