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Introduction

This paper describes how recursive linear control and estimation theory
can be applied to estimate dynamic equilibriummodels. Recursive linear con-
trol theory can be used to compute equilibria of linear-quadratic economies
and linearly to approximate solutions of nonlinear economies. Equilibrium
conditions de�ne a mapping from a model's free parameters, describing pref-
erences, technologies, endowments, information, and government policies, to
equilibrium stochastic processes of observable variables. The estimation prob-
lem is roughly speaking to invert that mapping and to use time series of ob-
servations on some of the variables in the model to make inferences about
the model's free parameters in light of the mapping de�ning the equilibrium
stochastic process. Maximum likelihood and the method of moments are used
to extract parameter estimates from time series data. Recursive linear esti-
mation theory can be used to compute a Gaussian likelihood function.1 This
paper describes a collection of procedures for speedily calculating equilibria,
for computing an approximate likelihood function, and for maximizing that
likelihood function. The duality of linear control and �ltering theory imparts
a unity to these procedures.2

Among the conveniences a�orded by this framework is the ability analyt-
ically to di�erentiate the likelihood function with respect to the free parame-
ters of the economic model. Obtaining these derivatives involves, via a chain
rule, two di�erentiations of solutions of some Riccati equations with respect to
the parameters in their return (or covariance) and transition matrices. First,
we must di�erentiate the equilibrium with respect to its free parameters; and
second, we must di�erentiate the parameters of the \innovations representa-
tion" or \vector autoregression" with respect to parameters of measurement
error processes and the equilibrium stochastic process for the economic model.
It is the relative ease of accomplishing the second piece of the job that makes
linear-quadratic models especially convenient. We describe the nuts and bolts
of these calculations.

This paper is organized as follows. We display two types of economies and
how they are associated with social planning problems that can be formu-

1 Parts of this paper rely heavily on Anderson and Moore (1970, pp. 158{161). For

general background, see Kwakernaak and Sivan (1972) or Sargent (1980). The former

mostly treats continuous time systems, while the latter focuses on discrete time systems.
2 Duality refers to the applicability of identical mathematics to solve the classical control

and �ltering problems.
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lated as optimal linear regulator problems. We describe the optimal linear
regulator, then display two tricks of the trade, namely, a pair of transforma-
tions that remove both discounting and cross-products between states and
controls. Next we describe Vaughan's (1970) eigenvector method for solving
an optimal linear regulator problem without iterating on Bellman's equation.
Vaughan's method is typically much faster than Bellman's. We describe how
Vaughan's algorithm can be used to compute an equilibrium for a distorted
economy. As an alternative to Vaughan's method, we can use a closely re-
lated method called the doubling algorithm, which we explain next. We then
show how the calculations can be further accelerated by partitioning the state
vector to achieve a \controllability canonical form." We describe how to use
the Kalman �lter to obtain an innovations representation and how to use it
to compute a Gaussian likelihood function. Finally, we display formulas for
the gradient of the log of Gaussian likelihood function with respect to free
parameters of an economic model. These formulas are homely, but easy to
program and useful for accelerating the process of maximizing the likelihood
function.

Two Economies

General strategies

A class of asset pricing and real business cycle models uses the optimal

linear regulator problem as the workhorse for computing equilibria. After an
equilibrium has been computed, the Kalman �lter can be used to deduce the
vector autoregressive representation for variables that are linear functions of
the state. The autoregressive representation is used to interpret the data,
either informally or to form the Gaussian likelihood function recursively.

Two general types of models are used, which di�er with respect to the
point in the analysis at which linear-quadratic approximations are imposed or
how they are interpreted. In the �rst type of model, preferences are speci�ed
to be quadratic functions and transition laws are linear ones. The second
type of model uses a linear regulator problem to approximate a dynamic
programming problem that is not itself linear-quadratic.

Linear-quadratic economy

There is an exogenous information vector zt governed by

zt+1 = A22zt + C2wt+1; (1)

where wt+1 is a martingale di�erence sequence with Ewtw
0
t = I; and the

eigenvalues of A22 are bounded in modulus by 1=
p
� . The vector zt de-

termines a preference shock process bt and an endowment shock process dt
via

dt = Ud zt

bt = Ub zt:
(2)
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A representative household has preferences ordered by

E0

1X
t=0

�t(st � bt) � (st � bt); 0 < � < 1; (3)

where st is a vector of household services produced at time t via the household
technology

st = �ht�1 +�ct

ht = �hht�1 + �hct;
(4)

where ht is a vector of household durable goods at t; ct is a vector of rates
of consumption, and �; �; �h; �h are matrices with the eigenvalues of �h

bounded in modulus by 1=
p
� .

There is a constant returns to scale production technology

�cct +�iit = �kt�1 + dt

kt = �kkt�1 +�kit;
(5)

where kt is a vector of capital goods used in production, it is a vector of
investment goods, and �k is a matrix whose eigenvalues are bounded in
modulus by 1=

p
� .

The social planning problem in this economy is to maximize (3) over
choices of contingency plans for fct; it; kt; htg1t=0 subject to (1), (2), (4),
and (5) and subject to given initial conditions for (z0; h�1; k�1). The so-
cial planning problem �ts within the optimal linear regulator framework and
leads to a quadratic optimal value function V (x0) = x00Px0+ � where x0t =
[ht�1; kt�1; zt] . The law of motion for the economy is of the form

xt+1 = Aoxt + Cwt+1:

Hansen and Sargent (1994) describe a competitive equilibrium for this
economy. Scaled time 0 Arrow-Debreu prices of the consumption vector de-
noted p0t can be computed from the information in (P;Ao) and the household
technology parameters and turn out to be a linear function of the state:

p0t =Mcxt=�
w
0 ;

where Mc is a matrix and �0 is a positive scalar giving the numeraire or
marginal utility of wealth.

The price of a claim to a stream of consumption vectors �t = S�xt is
given by

a0 = E0

1X
t=0

�tp0t � �t

or

a0 = E

1X
t=0

�t x0tZaxt j I0; (6)
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where
Za = S0�Mc=�

w
0 : (7)

Hansen and Sargent show that a0 can be represented as

a0 = x00 �a x0 + �a; (8)

where

�a =
1X
�=0

�� (Ao0)� ZaA
o� (9)

�a =
�

1� �
trace Za

1X
�=0

�� (Ao)
� CC0(Ao0)� : (10)

According to (8), the asset price a0 turns out to be the sum of a constant �a;
which reects a \risk premium," and a quadratic form in the state vector xt .
To understand why �a reects a risk premium, notice that the parameters in
C that govern the covariance matrix of innovations to the state inuence �a
but do not inuence �a .

To implement (8) requires the application of numerical methods to cal-
culate the matrices �a and �a that satisfy Eqs. (9) and (10). An e�cient
doubling algorithm for calculating these matrices is described below.

A nonlinear economy

An alternative method for parameterizing linear-quadratic economies is
to generate them as approximations to non-linear-quadratic economies by
using quadratic approximations to preferences and linear approximations to
transition laws. These approximations make the parameters in the linear-
quadratic structure functions of deeper parameters in the underlying economy.

Here is a version of Kydland and Prescott's (1982) method for using
linear-quadratic control theory to compute approximate linear solutions to
economies that are not linear-quadratic. Consider a social planning problem
of the form

max
futg

E0

1X
t=0

�tr(zt; �)

subject to xt+1 = Axt + But +Cwt+1

zt = [x0t; u
0

t]
0;

where � is a vector of parameters and r is a function of the type used in the
literatures on stochastic growth and real business cycles and wt is a vector
white noise.3 Kydland and Prescott generate an approximate solution of this
problem by solving a related problem:

max
futg

E0

1X
t=0

�tz0tMzt

xt+1 = Axt + But +Cwt+1;

3 In most cases, r is the utility function after nonlinear constraints have been substituted

in.
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where

M = e(r(�z; �) � @r(�z; �)

@�z

0

�z +
1

2
�z0
@2r(�z; �)

@�z2

0

�z)e0 +
1

2
(e
@r(�z; �)

@�z

0

+
@r(�z; �)

@�z
e0 � e�z0

@2r(�z; �)

@�z2
� @2r(�z; �)

@�z2
ze0 +

@2r(�z; �)

@�z2
);

where e is a vector of zeros with 1 in the element corresponding to the con-
stant term in xt; and Sx = [In; 0n;k] and Su = [0k;n; Ik] are selector matrices
and imply zt = Sxxt +Suut; where n is the dimension of xt and k is the
dimension of ut . This approximating problem is an optimal linear regulator
problem.

Linear-Quadratic Models with Distortions

The computational procedures under study were originally applied to
economies for which a competitive equilibrium allocation solves a social plan-
ning problem in the form of an optimal linear regulator problem and for which
equilibrium prices (or approximations to them) can be deduced from the value
function for the social planner. Most of the methods can, with some adapta-
tions, also be used to study economies with particular types of externalities
and other distortions, like taxes. Such adaptations are described by Blan-
chard and Kahn (1980), Whiteman (1983), Dagli and Taylor (1984), King,
Plosser, and Rebelo (1988a,b), Hansen and Sargent (1994), and McGrattan
(1994).

In linear-quadratic economies, the approach is to formulate the choice
problem of a representative agent as a version of a linear regulator, while
keeping account of the distinction between objects chosen by that agent, and
economy-wide versions of those objects (the so-called \little k { big K " dis-
tinction, where the \little k" is chosen by the representative agent, taking
\big K " as given, though in equilibrium \little k" = \big K "). The repre-
sentative agent's problem is

max
f�utg

1X
t=0

�t
� � �yt

�zt

�0 � �Qy
�Qz

�Q0z �Q22

� �
�yt
�zt

�
+ �u0t �R�ut + 2

�
�yt
�zt

�0 � �Wy

�Wz

�
�ut
	

subject to

�yt+1 = �Ay�yt + �Az�zt + �By�ut;

where �ut is a vector of controls set by the agent; �yt is a vector of state vari-
ables consisting of two types of variables, �rst, state variables under the par-
tial control of the representative agent (the \little k" variables), and, second,
stochastic processes like technology or preference shocks that are exogenous
to the model; and �zt consists of a vector of state variables that are exogenous
to the representative agent (the \big K " variables), but not to the model.
The representative agent takes the sequence fztg as given when solving this
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problem, even though after equilibrium is imposed the individual's choices
determine the behavior of fztg .

In equilibrium (i.e., after the agent has optimized), the following equations
must be satis�ed:

�zt = ���yt + �	�ut:

Included in these equations would be the \big K = little k" conditions.
Despite the fact the equilibrium allocation for this economy does not solve

a social planning problem, it remains possible to compute an equilibrium by
using algorithms closely related to ones that solve linear regulator problems.
McGrattan (1994) gives details.

The Optimal Linear Regulator Problem

Consider the following version of the optimal linear regulator problem:
choose a contingency plan for futg1t=0 to maximize

E

1X
t=0

�t[x0tQxt + u0tRut + 2x0tWut]; 0 < � < 1 (11)

subject to
xt+1 = Axt +But +Cwt+1; t � 0; (12)

where x0 is given. In (11) { (12), xt is an n � 1 vector of state variables
and ut is a k � 1 vector of control variables. In (12), we assume that wt+1
is a martingale di�erence sequence with Ewtw

0
t = I and that C is a matrix

conformable as required to x and w .
We impose conditions on (Q;R;W ) and (A;B) that are su�cient to imply

that it is both feasible and desirable to set the controls in a way that implies
that

E

1X
t=0

�tx0txt j x0 <1: (13)

Dynamic programming

A standard way to solve this problem is by applying the method of dynamic
programming. Let V (x) be the optimal value associated with the program
starting from initial state vector x0 = x . Bellman's functional equation is

V (xt) = max
ut

n
x0tQxt + u0tRut + 2x0tWut + �EtV (xt+1)

o
; (14)

where the maximization is subject to (12). One way to solve this functional
equation is simply to iterate on a version of Eq. (14), thereby constructing a
sequence Vj(xt) of successively better approximations to V (xt). In particu-
lar, let

Vj+1(xt) = max
ut

n
x0tQxt + u0tRut + 2x0tWut + �EtVj(xt+1)

o
; (15)
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where again the maximization is subject to (12). Suppose that we initiate
the iterations from V0(x) = 0. Then direct calculations show that successive
iterations on Eq. (15) yield the quadratic form

Vj(xt) = x0tPjxt + �j ; (16)

where Pj and �j satisfy the equations

Pj+1 = Q+�A0PjA�(�A0PjB+W )(R+�B0PjB)
�1(�B0PjA+W

0) (17)

�j+1 = ��j+� trace PjCC
0: (18)

Equation (17) is known as the matrix Riccati di�erence equation. Notice
that it involves only fPjg and is independent of f�jg . Notice also that the
parameters in C; which multiplies the noises impinging on the system and so
determines the variances of innovations to information in the system, a�ect
the f�jg sequence but not the fPjg sequence. This fact can be summarized
by saying that fPjg is independent of the system's noise statistics.

Under some regularity conditions described by Kwakernaak and Sivan
(1972) and Sargent (1980), iterations on Eqs. (17) and (18) converge.4 Let
P and � be the limits of (17) and (18), respectively. Then the value function
V (xt) that satis�es Bellman's equation (14) is given by

V (xt) = x0tPxt + �;

where P and � are the limit points of iterations on (17) and (18) starting
from P0 = 0; �0 = 0.

The decision rule that attains the right side of (15) is given by

ut = �Fjxt;

where

Fj = (R+ �B0PjB)
�1(�B0PjA+W 0): (19)

The optimal decision rule for the original problem is given by ut = �Fxt;
where F = limj!1Fj; or

F = (R+ �B0PB)�1(�B0PA+W 0): (20)

According to Eq. (20), the optimum decision rule for ut is independent of the
parameters C and so also of the noise statistics.

The limit point P of iterations on (17) evidently satis�es

P = Q+ �A0PA� (�A0PB +W )

� (R+ �B0PB)�1(�B0PA+W 0):

4 See Sargent (1980) for a discussion of these conditions.
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This equation in P is called the algebraic matrix Riccati equation.
One standard way to solve an optimal linear regulator problem is simply

to iterate directly on Eqs. (17) and (18). However, faster algorithms are
available. These methods solve the algebraic matrix Riccati equation without
iterating directly on (17). Before we describe some faster algorithms, we shall
describe two useful transformations that permit simpli�cation of some of the
formulas presented above.

Two Useful Transformations

Removing cross-products between states and controls

It is often simpler to study problems without cross-products between states
and controls. A simple transformation eliminates such cross-products. Con-
sider a linear regulator problem with objective function

E

1X
t=0

�t
�
[x0t u

�0

t ]

�
Q� W
W 0 R

� �
xt
u�t

��
(21a)

that is to be maximized with respect to the transition law

xt+1 = A�xt +Bu�t + Cwt+1: (21b)

De�ne the transformed control ut by

ut = u�t + R�1W 0xt: (22)

Notice that

u0tRut = [x0t u
�0
t ]

�
WR�1W 0 W

W 0 R

� �
xt
u�t

�
:

It follows that

[x0t u
�0
t ]

�
Q� W
W 0 R

� �
xt
u�t

�
= x0tQxt + u0tRut;

where Q = Q� �WR�1W 0 . Further, notice that the transition law (12) can
be represented as

xt+1 = Axt +But + Cwt+1;

where A = A� � BR�1W 0 .
Collecting results, we �nd that the regulator problem (21) is equivalent to

the following regulator problem without cross-products between states and
controls: choose futg to maximize

E

1X
t=0

�t[x0tQxt + u0tRut] (23)
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subject to

xt+1 = Axt +But + Cwt+1; (24)

where
Q = Q� �WR�1W 0

A = A� � BR�1W 0:
(25)

It is often convenient to avail ourselves of the opportunity a�orded by this
transformation to focus on problems without cross-products between states
and controls.

Eliminating discounting

Consider the followingdiscounted optimal linear regulator problem: choose
a contingency plan for futg to maximize

E

1X
t=0

�tfx0tQxt + u0tRutg; 0 < � < 1 (26)

subject to

xt+1 = Axt + But + C�t+1; (27)

where f�t+1g is a martingale di�erence sequence with Ef�t�0tg = 
t . Con-
sider the transformed variables

~xt = �
t

2 xt

~ut = �
t

2 ut:
(28)

In terms of the transformed variables, Eqs. (26) and (27) can be rewritten as

E

1X
t=0

(~x0tQ~xt + ~u0tR~ut) (29)

~xt+1 = ~A~xt + ~B~ut + C�
t+1

2 �t+1; (30)

where
~A = �

1
2A

~B = �
1
2B

(31)

and E(�
t+1

2 �t+1)(�
t+1

2 �t+1)
0 = �t+1
t+1 . The transformed optimal linear

regulator problem is to choose a contingency plan for f~utg to maximize (29)
subject to (30). The optimal control law for ~ut is given by

~ut = � ~F ~xt;

where
~F = ( ~B0 ~P ~B +R)�1 ~B0 ~P ~A; (32)
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where ~P is the limit point of iterations on an appropriate version of the
matrix Riccati di�erence equation (17). The limit point ~P thus satis�es

~P = Q+ ~A0 ~P ~A � ~A0 ~P ~B(R+ ~B0 ~P ~B)�1 ~B0 ~P ~A: (33)

This is a version of the algebraic matrix Riccati equation. The optimal closed
loop system in terms of transformed variables is

~xt+1 = ( ~A � ~B ~F )~xt + �
t+1

2 C�t+1: (34)

Multiplying both sides of this equation by ��(
t+1

2
) gives

xt+1 = (A� B ~F )xt + C�t+1: (35)

Under standard assumptions on the undiscounted problem (29)-(30),5 the
eigenvalues of ( ~A � ~B ~F ) are less than unity in modulus. Since A � B ~F =

��
1
2 ( ~A � ~BF ); it follows that under these same assumptions about the

undiscounted problem, the eigenvalues of A � B ~F are less than 1=
p
� in

modulus.

Vaughan’s Eigenvector Method
for Solving the Algebraic Matrix Riccati Equation

Vaughan (1970) described a fast algorithm for computing the limit point of
the matrix Riccati equation (33). The multipliers in a Lagrangian formulation
of the linear regulator problem can be represented in terms of derivatives of
the value function. Vaughan's method works with the Lagrangian formulation
of the problem and proceeds by deriving the linear restrictions that stability
imposes across the multipliers and the state vector. Those restrictions can
be used to compute the matrix P that solves the algebraic matrix Riccati
equation.

Consider the following version of the optimal linear regulator problem:
choose futgt1�1t=t0 to maximize

t1�1X
t=t0

fx0tQxt + u0tRutg+ x0t1Pt1xt1 (36)

subject to
xt+1 = Axt + But: (37)

Let f�tgt1t=t0+1 be a sequence of matrices of Lagrange multipliers. Form the
Lagrangian

J =

t1�1X
t=t0

fx0tQxt + u0tRut + 2�0t+1[Axt + But � xt+1]g+ x0t1Pt1xt1: (38)

5 Again, see Sargent (1980).
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First-order necessary conditions for the maximization of J with respect to
futgt1�1t=t0 and fxtgt1�1t=t0 are

ut : 2Rut + 2B0�t+1 = 0; t = t0; : : : ; t1 � 1 (39)

xt : �t = Qxt +A0�t+1; t = t0 + 1; : : : ; t1 � 1 (40)

�t = Pt1xt; t = t1: (41)

Solve Eq. (39) for ut and substitute into Eq. (37) to obtain

xt+1 = Axt � BR�1B0�t+1: (42)

Stack Eqs. (39) and (40) to obtain�
xt+1
�t

�
=

�
A �BR�1B0
Q A0

� �
xt
�t+1

�
: (43)

For the �nite horizon problem, equation (43) is to be solved subject to the
two boundary conditions, xt0 given and �t1 = Pt1xt1 .

To solve the in�nite horizon problem that emerges when we set t1 = 1;

Vaughan proceeded as follows. Assume that A is nonsingular. Then represent
Eq. (43) as �

xt
�t

�
=

�
A�1 A�1BR�1B0

QA�1 QA�1BR�1B0 + A0

��
xt+1
�t+1

�
(44)

or �
xt
�t

�
=M

�
xt+1
�t+1

�
: (45)

The matrix M is symplectic, which implies that its eigenvalues come in re-
ciprocal pairs.6 Assume that the eigenvalues of M are distinct, so that M
has the representation

M = WDW�1; (46)

where D is a diagonal matrix of the eigenvalues of M; W is a matrix com-
posed of the corresponding eigenvectors of M; and where D can be repre-
sented as

D =

�
� 0
0 ��1

�
; (47)

where � is a diagonal matrix composed entirely of eigenvalues whose modulus
exceeds unity. Because the eigenvalues appear in reciprocal pairs, we know
that a representation of the form (46) { (47) exists for M:

Multiply both sides of (45) by M�1 to obtain�
xt+1
�t+1

�
=W

�
��1 0
0 �

� �
V11xt + V12�t
V21xt + V22�t

�
: (48)

6 See Anderson and Moore (1979, p. 160) for a treatment of the key properties of sym-

plectic matrices.
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where W�1 =

�
V11 V12
V21 V22

�
. Iterating on Eq. (48) j times gives

�
xt+j
�t+j

�
= W

�
��j 0
0 �j

� �
V11xt + V12�t
V21xt + V22�t

�
; (49)

where recall that the eigenvalues, the diagonal elements of � all exceed unity
in modulus.

We want to solve Eq. (49) under conditions that imply that it is optimal to
drive xt ! 0 as t!1; starting from any initial xt0 . Since each component
of � exceeds unity, the way to assure that xt! 0 as t!1 is to insist that
the components of the solution Eq. (49) multiplying �j be set to zero. This
is accomplished by setting the shadow prices �t to satisfy

V21xt + V22�t = 0

or �t = � V �122 V21xt: (50)

Equation (50) states that �t is a particular time invariant linear function of
xt ; call it �t = Pxt; where P = �V �122 V21 . Under restriction (50), (49)
becomes �

xt+j
�t+j

�
=

�
W11�

�j(V11xt + V12�t)
W21�

�j(V11xt + V12�t)

�
: (51)

However, we know that �t = Pxt . Therefore, Eq. (51) implies that

�
Pxt+j
�t+j

�
=

�
PW11�

�j (V11xt + V12�t)
W21�

�j (V11xt + V12�t)

�
;

which implies that PW11 = W21 or

P = W21W
�1
11 : (52)

Equation (52) is Vaughan's equation for the solution of the algebraic matrix
Riccati equation.

An Algorithm for Distorted Systems

Vaughan's method can be adapted to compute equilibria of models whose
allocations do not solve a dynamic programming problem. Consider the prob-
lem: choose futgt1�1t=t0 to

max
futg

t1�1X
t=t0

� �yt
zt

�0 �
Qy Qz

Q0z Q22

� �
yt
zt

�0
+ u0tRut

	
(53)

subject to
yt+1 = Ayyt +Azzt +Byut: (54)
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We have used the tricks described earlier to convert our original problem to
one without discounting or cross-products between states and controls. In
equilibrium, we assume that the following conditions must also be satis�ed:

zt = �yt +	ut: (55)

First-order necessary conditions with respect to futgt1�1t=t0 and fytgt1�1t=t0 in
this case are given by

ut : 2Rut + 2B0y�t+1 = 0; t = t0; : : : ; t1 � 1 (56)

yt : �t = Qyyt +Qzzt +A0y�t+1; t = t0 + 1; : : : ; t1 � 1 (57)

�t = Pt1 [y
0

t; z
0

t]; t = t1; (58)

where f�tg are Lagrange multipliers associated with the constraint in Eq. (54).
Solve Eq. (56) for ut and substitute it and Eq. (55) into Eqs. (54) and (57)
to obtain

yt+1 = (Ay +Az�)yt � (By +Az	)R
�1B0y�t+1; (59)

�t = (Qy +Qz�)yt + (A0y �Qz	R
�1B0y)�t+1: (60)

Note that this system is similar to that of (43) in the undistorted case. To
solve the in�nite horizon problem that emerges when we set t1 =1; proceed
as follows. Assume that the matrix Ay+Az� is nonsingular.7 Then represent
Eqs. (59) and (60) as

�
yt
�t

�
=

"
Â�1 Â�1B̂R�1B0y

Q̂Â�1 Q̂Â�1B̂R�1B0y + ~A0

# �
yt+1
�t+1

�
(61)

or �
yt
�t

�
=M

�
yt+1
�t+1

�
; (62)

where Â = Ay + Az�; Q̂ = Qy + Qz�; B̂ = By + Az	; and ~A = Ay �
ByR

�1	0Q0z . Notice that if we replace Â and ~A with A; B̂ and By with

B; and Q̂ with Q; then we have the same system as in (44). The di�erences
between the systems occur because of the side conditions in Eq. (55) that
must be satis�ed. Notice also that in the case with distortions, M is not
necessarily symplectic. We assume, however, that M has a representation

M = WDW�1; (63)

7 See McGrattan (1994) for details of the �nite horizon case and cases in which Â is

singular.
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where D is a diagonal matrix of the eigenvalues of M; W is a matrix com-
posed of the corresponding eigenvectors of M; and D can be represented
as

D =

�
�1 0
0 �2

�
; (64)

where �1 is a diagonal matrix composed entirely of eigenvalues whose mod-
ulus exceeds unity, �2 is a diagonal matrix composed entirely of eigenvalues
whose modulus is below unity, and the dimensions of �1 and �2 are equal.
We assume that �1 and �2 have equal numbers of eigenvalues, a condition
for there to exist a unique bounded solution. In practice, we would check this
condition during the calculations.

From this point on, we can follow the same procedure as in the previous
section. Partition W; i.e.,

W =

�
W11 W12

W21 W22

�
; (65)

into four subpartitions of equal dimension. Set �t = W21W
�1
11 yt so that

yt ! 0 as t!1 . Substitute this expression for �t into Eq. (59) to get �t+1
in terms of yt; i.e.,

�t+1 = (P�1 + B̂R�1B0y)
�1Âyt; (66)

where P = W21W
�1
11 . Therefore, the solution to the problem in Eq. (53) is

given by

ut = �R�1B0y(P�1 + B̂R�1B0y)
�1Âyt: (67)

Note that if � = 0 and 	 = 0; then Eq. (67) is identical to the optimal
decision rule for the social planner of an undistorted economy linear-quadratic
economy.

A Doubling Algorithm

To compute asset prices and to solve a Riccati equation using the parti-
tioning methods described below, we have cause to compute in�nite sums of
the form

V =

1X
j=0

G0jDHj ;

where the eigenvalues of G and H are bounded in modulus strictly below
unity. This sum can be evaluated by recognizing that it is the solution of
a discrete Lyapunov equation and using an algorithm to solve that kind of
equation. Alternatively, it could be computed by iterating to convergence on

Vj+1 = D + G0VjH:
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Instead of using one of these methods, we often use a simple doubling algo-
rithm, which we implement by computing the following objects recursively:

Gj = Gj�1Gj�1

Hj = Hj�1Hj�1

Vj = Vj�1 +G0j�1Vj�1Hj�1

(68)

where we set V0 = D; G0 = G; H0 = H . By repeated substitution it can be
shown that

Vj =

2j�1X
i=0

Gi0DHi: (69)

Each iteration doubles the number of terms in the sum.
The idea of accelerating convergence by skipping steps via doubling can

be used to solve a Riccati equation.

Another Doubling Algorithm

The algebraic matrix Riccati equation can be solved by using a doubling

algorithm.8 The algorithm is related to Vaughan's method in the prominent
role it assigns to the matrix M in Eq. (45).

We consider the same version of the optimal linear regulator focused on in
Vaughan's method, namely, an undiscounted, nonstochastic problem without
cross-products between states and controls. The problem is to choose a plan
for futgt1�1t=t0 to maximize

t1�1X
t=t0

fx0tQxt + u0tRutg+ x0t1Pt1xt1 (70)

subject to
xt+1 = Axt + But: (71)

Let the value function for the tail of the problem starting from initial condition
xt at time t be x0tPtxt; for t = t0; t0 + 1; : : : ; t1 � 1. The matrix Riccati
di�erence equation is

Pt = Q+ A0Pt+1A� A0Pt+1B(R +B0Pt+1B)
�1B0Pt+1A: (72)

The �rst step in deriving the doubling algorithm is to use some facts from
linear algebra to show that Eq. (72) implies the following di�erence equation
for Pt :

Pt = fQA�1 + [A0 + QA�1BR�1B0]Pt+1g
� fA�1 +A�1BR�1B0Pt+1g�1:

(73)

8 This section is based on Anderson and Moore (1979, pp. 158{160).
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Equation (73) is of the form

Pt = fC +DPt+1g � fE + FPt+1g�1; (74)

where
C = QA�1

D = A0 +QA�1BR�1B0

E = A�1

F = A�1BR�1B0:

(75)

We can represent the evolution of Eq. (75) via the equivalent system

�
Xt

Yt

�
=

�
E F
C D

� �
Xt+1

Yt+1

�
; (76)

where Pt+1 = Yt+1X
�1
t+1 and Pt = YtX

�1
t . Notice that

�
E F
C D

�
=

�
A�1 A�1BR�1B0

QA�1 A0 + QA�1BR�1B0

�
�M: (77)

The matrix on the right side of Eq. (77) is the matrix M on the right side of
Eq. (44) or (45). The solution of Eq. (76) can be computed rapidly by using
the fact that the matrix M on the right side is a symplectic matrix and by
exploiting the properties of symplectic matrices.

A symplectic matrix Z can be represented in the form

Z =

�
��1 ��1�
��1 �0 + ��1�

�
: (78)

Notice how the matrix in (77) is in such a form, where we set � = A;  = Q;

� = BR�1B0 .
Represent Eq. (76) in the form

�
Xt

Yt

�
=M

�
Xt+1

Yt+1

�
: (79)

Take the eigenvector decomposition of M given in (46), namely,

M = W

�
� 0
0 ��1

�
W�1;

where the � is a diagonal matrix consisting of the eigenvalues of M that
exceed unity in modulus. Represent M in the partitioned form

M =

�
W11 W12

W21 W22

� �
� 0
0 ��1

� �
V11 V12
V21 V22

�
;
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where [Vij] is the partition of W�1 . Iterating on the partitioned form of
Eq. (79) k times and noting that the elements of � exceed unity in modulus,
it follows that

lim
k!1

Pt�k+1 = lim
k!1

Yt�k+1X
�1
t�k+1 = W21W

�1
11 ; (80)

which is a version of Vaughan's (1969) formula (51) for computing the solution
of the algebraic matrix Riccati equation. In Eq. (80), we have established
that for any terminal matrices Xt+1; Yt+1 that satisfy Pt+1 = Yt+1X

�1
t+1; the

limit of Pt+1�k = Yt+1�kX
�1
t+1�k is the solution P; which determines the

value function for the in�nite horizon version of the optimal linear regulator
problem.

To compute limk!1 Pt�k+1 we can proceed by computing higher and
higher powers of M . Rather than computing the sequence M; M2; M3;

: : : ; the doubling algorithm proceeds by skipping steps and only computing
the sequence M;M2;M4;M8; : : :. De�ne �(1) = M and de�ne �(2) = M2

= �(1)2 . Then de�ne
�(2k) = �(2k�1)2 (81)

for k = 2; 3 : : :. Evidently, we have that

�(2k) =M2k ; k = 1; 2; 3; : : ::

Thus, we recursively compute the sequence M; M2; M4; M8; : : :, M2k ; : : :

by simply squaring the preceding element of the sequence. We represent the
solution of (79) in the form�

Xt�2k+1

Yt�2k+1

�
=M2k

�
Xt+1

Yt+1

�
: (82)

We can compute Pt�2k+1 = Yt�2k+1X
�1
t�2k+1

.
Equation (82) is the key to the doubling algorithm. The algorithm is

completed with the following two details. First, one computes the squares of

the matrices M2k by using the following algorithm for squaring symplectic
matrices:

�k+1 = �k(I + �kk)
�1�k

�k+1 = �k + �k(I + �kk)
�1�k�

0

k

k+1 = k + �0kk(I + �kk)
�1�k;

(83)

where we set �0 = A; 0 = Q; �0 = BR�1B0 . With this algorithm, we have
that

M2k =

�
��1k ��1k �k
k�

�1
k �0k + k�

�1
k �k

�
: (84)

Second, with M2k given by Eq. (84) in Eq. (82), and setting Xt+1 = I;

Yt+1 = 0; we obtain
Yt�2k+1X

�1
t�2k+1

= k: (85)
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Equality (85) implies that we can compute the solution P of the algebraic
matrix Riccati equation from

P = lim
k!1

k; (86)

where k is computed via Eq. (83).
Even though it was assumed that A�1 exists in deriving the doubling al-

gorithm, notice that in (83) there is no call to invert A . Indeed, the algorithm
seems to work well even when A�1 does not exist.

It is worth noting that while k converges as k !1; neither �k nor �k
converges. On the contrary, both �k and �k diverge at a rate determined

by the eigenvalue in � that is largest in absolute value. The matrix M2k

diverges as k!1 ; what converges is the \ratio" Yt�2kX
�1
t�2k

.
The doubling algorithm is much faster than iterating on the Riccati equa-

tion because it skips so many steps.

Adding Speed by Partitioning the State Vector

After application of the two transformations described above to remove
discounting and cross-products between states and controls, often our control
problem occurs in a controllability canonical form: choose futg to maximize

1X
t=0

f
�
x1t
x2t

�0 �
Q11 Q12

Q21 Q22

��
x1t
x2t

�
+ u0tRutg (87)

subject to �
x1t+1
x2t+1

�
=

�
A11 A12

0 A22

� �
x1t
x2t

�
+

�
B1

0

�
ut; (88)

with [x010; x
0
20]

0 given. The pattern of zeros in the partitioned versions of
A and B in Eq. (88) reect that x2t is an \uncontrollable process" from
the viewpoint of a social planner.9 Two things distinguish a controllability
canonical form: (1) the pattern of zeros in the pair (A;B) and (2) a require-
ment that (A11; B1) be a controllable pair, by which is meant that the matrix
[B1 A11B1 A

2
11B1 � � �An�111 B1] have rank equal to the dimension of A11 . A

controllability canonical form adopts a description of the state vector that
separates it into a part x2t that cannot be a�ected by the controls and a
part x1t that can be controlled in the sense that there exists a sequence of
controls futg that sends x1 to any arbitrarily speci�ed point within the space
in which x1 lives.

An advantage in working with a system in controllability canonical form
is that computing the optimal controls can be simpli�ed by organizing the
calculations in a recursive way, �rst focusing on the controllable point of the
system.

9 See Kwakernaak and Sivan (1972) or Sargent (1980).
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De�ne an operator T associated with Bellman's equation:

T (P ) = Q+A0PA�A0PB(R+ B0PB)�1B0PA: (89)

Partition P and T (P ) conformably with the partition

�
x1t
x2t

�
. The (1; 1)

and (1; 2) components of T (P ) satisfy

T11(P11) = Q11 +A011P11A11 �A011P11B1(R+B01P11B1)
�1B01P11A11 (90)

and
T12(P11;P12) = Q12 +A011P11A12

� A011P11B1(R+ B01P11B1)
�1B01P11A12

+ [A011 �A011P11B1(R+B01P11B1)
�1B01]P12A22:

(91)

Notice from Eq. (90) that T11 depends only on P11 and not on other elements
of the partition of P . From Eq. (91), T12 depends on P11 and P12; but not
on P22 . Because T maps symmetric matrices into symmetric matrices, the
(2; 1) block of T is just the transpose of the (1; 2) block. Finally, the (2; 2)
block of T depends on P11; P12; and P22 .

Partition the optimal control state feedback matrix F = [F1 F2]; where
the partition is conformable with that of xt . The optimal control is

ut = �[F1 F2]
�
x1t
x2t

�
:

Let P f
11 be the �xed point of Eq. (90), and let P f

12 be the �xed point of

T12(P
f
11; P12). Then F1 and F2 are given by

F1 = (R+ B01P
f
11B1)

�1B01P
f
11A11 (92)

F2 = (R+ B01P
f
11B1)

�1(B01P
f
11A12 +B01P

f
12A22): (93)

Equation (92) shows that F1 depends only on P f
11; while F2 depends on P

f
11

and P
f
12; but not on P

f
22; the �xed point of T22 .

We can compute the �xed points of T11 and T12 as follows. First, note
that the T11 operator identi�ed by (90) is formally equivalent with the T

operator of (89), except that (1; 1) subscripts appear on A and Q; and a
(1) subscript appears on B . Thus, the T11 operator is simply the operator
whose iterations de�ne the matrix Riccati di�erence equation for the small
optimal regulator problem determined by the matrixes (A11; B1; R; Q11).

We can compute P f
11 by using any of the algorithms described above for this

smaller problem.
Second, given a �xed point P f

11 of T11; we apply our simple doubling

algorithm to compute the �xed point of T12(P
f
11; �). From (68), this mapping

has the form
T12(P

f
11; P12) = D + G0P12H; (94)
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where

D = Q12 +A011P
f
11A12 �A011P f

11B1(R+B01P
f
11B1)

�1B01P
f
11A12

G = [A11 �B1(R+ B01P
f
11B1)

�1B01P
f
11A11]

H = A22:

Notice that G = A11 � B1F1; where F1 is computed from (92). When x2t
is set to zero for all t; the law of motion for x1t under the optimal control is
thus given by

x1t+1 = Gx1t:

We have assumed regularity conditions that are su�cient to imply that the
eigenvalues of G have absolute values strictly less than unity. The eigenvalues
of H also are strictly less than unity by assumption. That the eigenvalues of
G and H are both less than unity assures the existence of a limit point to
iterations on Eq. (94). The limit point of iterations on T12(P

f
11; P12) starting

from P12 = 0 can be represented as

P
f
12 =

1X
j=0

G0jDHj : (95)

We compute P f
12 by using the doubling algorithm described above.

Innovations Representations

Constructing an innovations representation is a key step in deducing the
implications of a model for vector autoregressions and for evaluating a Gaus-
sian likelihood function.10 An innovations representation is a state-space
representation in which the vector white noise driving the system is of the
correct dimension (equal to that of the vector of observables) and lives in the
proper space (the space spanned by current and lagged values of the observ-
ables).

Suppose that our theorizing and data collection lead us to a system of the
form

xt+1 = Aoxt +Cwt+1

zt = Gxt + vt

vt = Dvt�1 + �t;

(96)

where D is a matrix whose eigenvalues are bounded in modulus by unity and
�t is a martingale di�erence sequence that satis�es

E�t�
0

t = R

Ewt+1�
0

s = 0 for all t and s:

10 The calculations in this section are versions of ones described by Anderson and Moore

(1979).
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In Eq. (96), vt is a serially correlated measurement error process that is
orthogonal to the xt process.

We de�ne the quasi-di�erenced process as

�zt � zt+1 �Dzt: (97)

From Eq. (96) and the de�nition (97) it follows that

�zt = (GAo �DG)xt +GCwt+1 + �t+1:

Then (xt; �zt) is governed by the state-space system

xt+1 = Aoxt + Cwt+1

�zt = �Gxt + GCwt+1 + �t+1;
(98)

where �G = GAo�DG . This system has nonzero covariance between the state
noise Cwt+1 and the \measurement noise" (GCwt+1+ �t+1). Let [Kt;�t]
be the Kalman gain and state covariance matrix associated with the Kalman
�lter, namely,

Kt = (CC0G0 +Ao�t �G
0)
�1t (99)


t = �G�t �G
0 +R+ GCC0G0 (100)

�t+1 = Ao�tAo
0+CC0�(CC0G0+Ao�t �G0)
�1t ( �G�tAo

0+GCC0): (101)

Then an innovations representation for system (98) is

x̂t+1 = Aox̂t +Ktut

�zt = �Gx̂t + ut;
(102)

where
x̂t = Ê[xt j �zt�1; �zt�2; : : : ; �z0; x̂0]
ut = �zt � Ê[�zt j �zt�1; : : : ; �z0; x̂0]

t � Eutu

0

t = �G�t �G
0 +R +GCC0G0:

Initial conditions for the system are x̂0 and �0 . From de�nition (97), it
follows that [zt+1; zt; : : : ; z0; x̂0] and [�zt; �zt�1; : : : ; �z0; x̂0] span the same space,
so that

x̂t = Ê[xt j zt; zt�1; : : : ; z0; x̂0]
ut = zt+1 � Ê[zt+1 j zt; : : : ; z0; x̂0]:

So ut is said to be an innovation in zt+1 .
Equation (101) is a matrix Riccati di�erence equation. The Kalman �lter

has a steady-state solution if there exists a time-invariant matrix � which
satis�es Eq. (101), i.e., one that satis�es the algebraic matrix Riccati equation.
In this case, the same computational procedures used for the optimal linear
regulator problem apply. This is a bene�t of the duality of �ltering and control
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referred to earlier. The steady-state Kalman gain, K; is given by Eq. (99)
with �t = � and 
t = �G� �G0 + R+ GCC0G0 .

The innovations representation is equivalent with a Wold representation

or vector autoregression. Estimates of these representations are recovered
in empirical work using the vector autoregressive techniques promoted by
Sims (1980) and Doan, Litterman, and Sims (1984). It is convenient to have
a quick way of deducing the vector autoregression implied by a particular
theoretical structure. To get a Wold representation for zt; substitute Eq. (97)
into Eq. (102) to obtain

x̂t+1 = Aox̂t +Kut

zt+1 �Dzt = �Gx̂t + ut:
(103)

A Wold representation for zt is

zt+1 = [I �DL]�1[I + �G(I �AoL)�1KL]ut; (104)

where again L is the lag operator. From Eq. (103) a recursive whitening �lter
for obtaining futg from fztg is given by

ut = zt+1 �Dzt � �Gx̂t

x̂t+1 = Aox̂t +Kut:
(105)

Vector autoregressive representation

Hansen and Sargent (1994) show that an autoregressive representation for
zt is

zt+1 = fD + (I �DL) �G[I � (Ao �K �G)L]�1KLg zt + ut: (106)

or

zt+1 =[D + �GK]zt +

1X
j=1

[ �G(Ao �K �G)jK

�D �G(Ao �K �G)j�1K]zt�j + ut:

(107)

This equation expresses zt+1 as the sum of the one-step-ahead linear least
squares forecast and the one-step prediction error.

The Likelihood Function

We start with a \raw" time series fytg that determines an adjusted series
zt according to

zt = f(yt;�);

where � is the vector containing the free parameters of the model, including
parameters determining particular detrending procedures. For example, if
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our raw series has a geometric growth trend equal to �t which is to be re-
moved before estimation, then the adjusted series is zt = yt=�

t . We assume
that the state-space model of the form (98) and the associated innovations
representation (102) pertains to the adjusted data fztg . We can use the in-
novations representation (102) recursively to compute the innovation series,
then calculate the log-likelihood function

L(�) =

T�1X
t=0

�
log j
tj+ trace(
�1t utu

0

t) � log
��@f(yt;�)

@yt

��	 (108)

and �nd estimates, �̂ = argmin�L(�); where 
t = Eutu
0
t is the covariance

matrix of the innovations. To �nd the minimizer �̂; we can use a standard
optimization program. In practice, it is best if we can calculate both the log-
likelihood function and its derivatives analytically. First, the computational
burden is much lower with analytical derivatives. Consider, for example, the
model of McGrattan, Rogerson, and Wright (1993), which has 84 elements
in �. For each step of a quasi-Newton optimization routine, L and @L

@�
are

computed. To obtain @L
@�

numerically for the McGrattan, Rogerson, Wright
(1993) example, the log-likelihood function must be evaluated 168 times if
central di�erences are used in computing an approximation for @L

@�
; e.g.,

@L

@�
� L(� + �e) � L(� � �e)

2�
; (109)

where e is a vector of zeros except for a 1 in the element corresponding to
� and � is some positive number. Usually, the costs of computing L a large
number of times far outweigh the costs of computing @L

@�
once. If L and @L

@�

are to be computed many times, which is typically the case, then the costs
of computing numerical derivatives can be quite large. A second advantage
to analytical derivatives is numerical accuracy. If the log-likelihood function
is not very smooth for the entire parameter space, there may be problems
with the accuracy of approximations such as Eq. (109). With inaccurate
derivatives, it is di�cult to determine the curvature of the function and,
hence, to �nd a minimum.

For L(�) in Eq. (108), the derivatives @L(�)=@� are easy to derive. We
derive them in Appendix A and distinguish formulas that are steps in the
derivation from those that would be put into a computer code. Note that
although the �nal expression for @L

@�
derived in Appendix A is complicated,

we can use numerical approximations such as Eq. (109) to uncover coding
errors.

Once we have the log-likelihood function and its derivatives, we can apply
standard optimizationmethods to the problem of �nding the maximumlikeli-
hood estimates. In practice, we will have a constrained optimization problem
since the equilibrium is not typically computable for all possible parameter-
izations. For example, we may have simple constraints such as ` < � < u;

where ` and u are the lower and upper bounds for the parameter vector.
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In this case, we use either a constrained optimization package or penalty
functions (see Fletcher 1987).

After computing the maximum likelihood estimates, we need to compute
their standard errors,

Se(�) = diag

�s�X
t

@Lt

@�

@Lt

@�

0��1�
; (110)

where Lt(�) is the logarithm of the density function of the date t innovation,
i.e.,

Lt(�) = log j
tj+ u0t

�1
t ut � log

��@f(yt;�)
@yt

��: (111)

The formula for @Lt
@�

is also given in Appendix A.

An Example

In this section, we present estimates of some of the parameters of Rosen,
Murphy, and Scheinkman's (1994) model of \Cattle Cycles." Let pt be the
price of freshly slaughtered beef, mt the feeding cost of preparing an animal
for slaughter, ht the one-period holding cost for a mature animal, 1ht the
one-period holding cost for a yearling, and 0ht the one-period holding cost
for a calf. The costs fht;mtg1t=0 are exogenous stochastic processes, while
the stochastic process fptg1t=0 is determined by a rational expectations equi-
librium. Let xt be the breeding stock and yt be the total stock of animals.
Each animal that is reserved for breeding gives birth to g calves. Calves that
survive become part of the adult stock after 2 years. Therefore, if we assume
that t indexes a year, the law of motion for stocks is

xt = (1 � �)xt�1 + gxt�3 � ct; (112)

where ct is a rate of slaughtering and � is the exponential death rate. The
total head count of cattle is

yt = xt + gxt�1 + gxt�2; (113)

which is the sum of adults, yearlings, and calves, respectively.
A representative farmer maximizes

E0

1X
t=0

�tfptct�htxt � (0ht)(gxt�1)� (1ht)(gxt�2)�mtct

� 	(xt; xt�1; xt�2; ct)g;
(114)

where

	 =
 1

2
x2t +

 2

2
x2t�1 +

 3

2
x2t�2 +

 4

2
c2t : (115)
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The maximization is subject to the law of motion (112), taking as given
the stochastic laws of motion for the exogenous random processes and the
equilibrium price process and the initial state [x�1; x�2; x�3] . Here ( j ; j =
1; 2; 3) are small positive parameters, which model quadratic costs of carrying
stocks, and  4 is a small positive parameter measuring quadratic costs of
slaughtering.11

Demand is governed by

ct = �0 � �1pt + dt; (116)

where �0 > 0; �1 > 0; and fdtg1t=0 is a stochastic process with mean zero
representing a demand shifter. The stochastic processes fdt; bt; mtg are
univariate autoregressions with orthogonal innovations.

We can map this model into the framework of Hansen and Sargent (1994)
by appropriately choosing the matrices �; �; �h; �h; �k; �k; �c; �g; �i;
�; A22; C2; Ud; and Ub to capture the preceding version of Rosen, Murphy,
and Scheinkman's (1994) model. Hansen and Sargent (1994) describe the
correspondence between partial equilibrium models like Rosen, Murphy, and
Scheinkman's and Hansen and Sargent's general equilibrium framework. This
involves specifying preferences so that household's �rst-order conditions can
be interpreted as a partial equilibrium demand curve.

Preferences

Set � = 0; �h = 0; �h = 0; � = ��11 ; and bt = �dt + ��0 . With
these settings, Hansen and Sargent's marginal condition for the household's
problem becomes

ct = ��1bt � ��1pt;

or
ct = �0 � �1pt + dt;

thus delivering the appropriate demand curve (i.e., Eq. (116)).

Technology

The law of motion for capital is

"
xt
xt�1
xt�2

#
=

"
(1� �) 0 g

1 0 0
0 1 0

#"
xt�1
xt�2
xt�3

#
+

"
1
0
0

#
it;

or
kt = �kkt�1 + �hit:

11 The costs in Eq. (115) are all absent in the work of Rosen, Murphy, and Scheinkman

(1994), though such costs are implicitly taken into account by them in motivating their

decision to \solve stable roots backwards and unstable roots forwards." To capture Rosen,

Murphy, and Scheinkman's solution, we can set each of the  j 's to a positive but very

small number.
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Here it = �ct .
We use adjustment costs to capture the holding and slaughtering costs.

We set

g1t = f1xt + f2ht;

or
g1t = f1[(1� �)xt�1 + gxt�3 � ct] + f2ht:

We set
g2t = f3xt�1 + f4ht

g3t = f5xt�1 + f6ht:

Notice that
g21t = f21x

2
t + f2h

2
t + 2f1f2xtht

g22t = f23x
2
t�1 + f2h

2
t + 2f3f4xt�1ht

g23t = f25x
2
t�2 + f6h

2
t + 2f5f6xt�2tht:

Thus, we set

f21 =
 1

2
f22 =

 2

2
f23 =

 3

2
2f1f2 = 1 2f3f4 = 1g 2f5f6 = 0g:

To capture the feeding costs we set

g4t = f7ct + f8mt

and set

f27 =
 4

2
2f7f8 = 1:

Thus, we set

2
6664

1
f1
0
0
�f7

3
7775 ct +

2
6664
1
0
0
0
0

3
7775 it +

2
6664
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3
7775
2
64
g1t
g2t
g3t
g4t

3
75

=

2
6664

0 0 0
f1(1� �) 0 gf1

f3 0 0
0 f5 0
0 0 0

3
7775
"
xt�1
xt�2
xt�3

#
+

2
64

0
f2ht

f4htf6ht
mt

3
75 :

We also set dt = Udzt; where

Ud =

2
6664

0
f2Uh
f4Uh
f6Uh
f8Um

3
7775 ;
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Table 1. Parameter estimates for \Cattle Cycle" example.

Parameters Estimates Standard Errors

�0 146 33.4
�1 1.27 0.323
0 0.647 11.5
1 1.77 12.0
g 0.938 0.0222
�h 0.888 0.115
�m 0.699 0.0417
�h 6.82 10.6
�m 4.04 1.05
�y 0.273 0.0383
�c 4.82 0.531

where [Uh; Um] are selector vectors that pick o� ht and mt from the exoge-
nous state vector zt . The vector zt is assumed to be a vector autoregressive
process. We assume that the processes for dt; ht; and mt are given by

dt+1 = �ddt + �d;t;

ht+1 = (1 � �h)�h + �hht + �h;t;

mt+1 = (1 � �m)�m + �mmt + �m;t;

where E�2d;t = �2d , E�
2
h;t = �2h; and E�2m;t = �2m . The disturbances �d;t; �h;t;

and �m;t are white noise processes that are uncorrelated at all lags.
To compute parameter estimates, we use the same data set as Rosen,

Murphy, and Scheinkman (1994) which includes annual observations for yt;
ct; and pt for the United States during the period 1900-1990.12 We assume
that there is error in measuring the total stock of cattle, yt; and the slaughter
rate, ct . In particular, we assume that the (1,1) element of R; the variance-
covariance matrix of the measurement errors, is equal to �2y , and we assume
that the (2,2) element of R is equal to �2c . All other elements of R are set
equal to zero.

We are now equipped to estimate the parameters of this economy by ap-
plying the formulas of the previous sections. We start with some a priori
restrictions. Assume that � = 0:96; � = 0; fj = 0:0001; j = 1; 3; 5; 7;
�d = 0; �d = 0; �h = 37; and �m = 63. The remaining parameters are ele-
ments of �; i.e., � = [�0; �1; 0; 1 , �h; �m; �h; �m; �y; �c ]. In Table
1, we report estimates of these parameters and standard errors for the esti-
mates. Note that from the values for �0 and �1 we can get an estimate of the
demand elasticity. For this model, the elasticity is given by -0.61.13 The val-

12 The sources of this data are United States, Bureau of the Census (1975) and (1989).

y is the total stock of cattle excluding milk cows, c is the cattle slaughtered, and p is the

price of slaughtered cattle.
13 This estimate is �1 � p0=c0 (-1.27�0.48).
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ues of 0 and 1 give us information about the holding costs. The estimates
indicate that the costs are higher for calves than for yearlings. However, the
standard errors on 0 and 1 indicate that these parameters are not precisely
estimated. The value of g implies that 0.94xt�1 calves are born at date t;
where xt�1 is the breeding stock at t�1. This estimate is higher than Rosen,
Murphy, and Scheinkman's (1994) estimate of 0.85. The estimates of �h and
�m imply that there is persistence in the processes for holding and feeding
costs. Finally, the estimates of �y and �c indicate that the measurement
error is higher for the slaughter rate than for the total stock.

In Figures 1 through 3, we plot the predicted and actual time series for the
stock of cattle, the slaughter rate, and the price. The predicted series are the
one-step-ahead forecasts, e.g., �Gx̂t . These plots support the claim of Rosen,
Murphy, and Scheinkman (1994) that the model does well in capturing the
cyclical uctuations in the cattle market.

Conclusion

We have consigned perhaps the most useful parts of this paper to the
appendixes, which contain formulas for computing @Lt

@�
. Resort to these for-

mulas can be avoided by using numerical derivatives, as was done for example
by _Imrohoro�glu (1993). However, for problems with sizable numbers of pa-
rameters, these formulas are very valuable. In terms of consequence for speed
of the computations, the decision whether or not to use these formulas as
against numerical derivatives will dwarf the choice of a particular equilibrium
computation algorithm.

Appendix A: Computing @L
@�

and @Lt
@�

for a state-space model

Di�erentiating the log-likelihood function with respect to the free param-
eters of the economic model can be broken into two steps: �rst, di�erenti-
ating the log-likelihood function with respect to matrices appearing in the
state-space model (102); and second, di�erentiating the parameters of the
state-space model (98) with respect to the free parameters of the underlying
economic model. In this appendix, we derive @L

@�
in terms of the derivatives

of Ao; C; G; D; R; x̂0; �0; and fzt; t = 0; : : :Tg . We ignore the Jacobian
in Eq. (108) since it di�ers for each problem. In Appendix B, we show how
to compute derivatives of Ao and C for the linear-quadratic and nonlinear
economies with and without distortions.

The formula for @L
@�

For the �rst step, we take as given Ao; C; G; D; R; x̂0; �0; and
fzt; t = 0; : : :Tg; and their derivatives with respect to the deeper economic
parameters. We shall show that the derivative of the log-likelihood function
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is

@L

@�
=
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�
2 tracef@Ao
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�t �G

0MtG� x̂tu
0

t

�1
t Gg+ 2 tracef@C

@�
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+ tracef@R
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where
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@x̂t+1

@�
= �Ao

@x̂t

@�
+ (

@Ao

@�
� @Kt

@�
�G�Kt

@ �G

@�
)x̂t +

@Kt

@�
�zt

+Kt(
@zt+1

@�
�D@zt

@�
): (119)

The expressions in (118) and (119) follow from the de�nitions of �t in
Eq. (101) and x̂t in Eq. (102). The initial conditions, x̂0 and �0; and their
derivatives are assumed to be given.

If �0 is given by the steady-state solution of the Riccati equation, then
the computation can be simpli�ed. The formula for the derivative of the
log-likelihood function is given by

@L

@�
= 2T tracef@Ao

@�
(� �G0MG� �x̂u


�1G� �x̂�(I �KG)

� � �G0
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+ � �A0o�(I �KG))g
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where � is the asymptotic state covariance matrix found by iterating on
Eq. (101) and �G; K; 
; ut and x̂t are de�ned in Eqs. (98), (99), (100), and
(102), and

�t = (Ao �K �G)0�t+1 + �G0
�1ut; t = 0; : : : ; T � 2
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M = 
�1 �
�1�uu
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0

u�

�1 �G:

In the remainder of this appendix, we derive the formulas in Eq. (117) and
Eq. (120). Readers who are not interested in this derivation can skip the rest
of this appendix.

Derivation of the formulas

The derivative of the log-likelihood function with respect to any element
� of the parameter vector is given by
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term in the expression for the derivative of the log-likelihood function, S1 .
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The second equality follows from the de�nition of �G . If we post-multiply the
derivative of 
t by Mt and take the trace of the result, we have the �rst term
of the derivative of the log-likelihood function in Eq. (124):
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Note that the formula for S1 depends on derivatives @Ao
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; which are known, and @�t

@�
; which is yet to be derived.

We now turn to the second term of the log-likelihood function derivative,
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If we post-multiply this derivative by 
�1t ; take the trace of the resulting
matrix, and sum over t; then we have the second term of the derivative of
the log-likelihood function, i.e.,

S2 =�
T�1X
t=0

�
2 tracef@Ao

@�
x̂tu

0

t

�1
t Gg+ 2 tracef@G

@�
(Aox̂tu

0

t

�1
t � x̂tu

0

t

�1
t D)g

+ 2 tracef@D
@�

(ztu
0

t �Gx̂tu0t)
�1t g � 2 tracef
T�1X
t=0

@zt+1

@�
u0t


�1
t g

+ 2 tracef
T�1X
t=0

@zt

@�
u0t


�1
t Dg+ 2 tracef

T�1X
t=0

@x̂t

@�
u0t


�1
t

�Gg�: (128)

Sum the expressions in Eqs. (126) and (128) to get the expression for the
derivative of the log-likelihood function in (117).

For the time-invariant case, several more steps are needed. First, we derive
the last term in Eq. (128) in terms of the derivatives that are taken as inputs.
To simplify notation, we �rst de�ne the sequences fdtg and f�tg as follows:
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Notice that the time subscripts have been dropped from K and 
 since the
time-invariant case assumes that �t = � for all t . Let �Ao = Ao � K �G .
Notice that since x̂t+1 = �Aox̂t +K�zt; its derivative is given by
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Write out the last term in Eq. (128) and substitute in x̂t = �Ato +
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where �u�; �x̂�; and �z� are the sums de�ned in Eqs. (121) through Eq. (123)

and ��z� =
PT�1
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0
t=T . The second equality follows from the de�nitions

of dt�1 and �G and some algebraic manipulation. The last term in Eq. (131)
uses the fact that ut = �zt� �Gx̂t . With the exception of @K
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@�

0

D0

�

�1
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� (CC0G0 + Ao� �G0)
�1
�
@G

@�
Ao� �G0 + G

@Ao

@�
� �G0 � @D

@�
G� �G0

�D
@G

@�
� �G0 + �G

@�

@�
�G0 + �G�A0o

@G

@�

0

+ �G�
@Ao

@�

0

G0

� �G�G0
@D

@�

0

� �G�
@G

@�

0

D0 +
@R

@�
+
@G

@�
CC0G0

+ G
@C

@�
C0G0 + GC

@C

@�

0

G0 +GCC0
@G

@�

0
�

�1: (132)

Note that we have written @ �G
@�

in terms of @G
@�
; @Ao

@�
; and @D

@�
. Substituting

@K
@�

into the expression in Eq. (131) and rearranging terms, we have

� 2

T
trace(

T�1X
t=0

@x̂t

@�
u0t


�1 �G) =

� 2 tracef@Ao
@�

(�x̂�(I �KG) + � �G0
�1�u�(I �KG)

+ � �A0o�
0

u�

�1Gg

� 2 tracef@C
@�

C0(G0
�1�u�(I �KG) + (I � G0K0)�0u�

�1G)g

+ 2 tracef@G
@�

(Ao�x̂�K � �x̂�KD � CC0(I �G0K0)�0u�

�1

+CC0G0
�1�u�K �Ao� �A0o�
0

u�

�1 +� �A0o�

0

u�

�1D

+Ao� �G0
�1�u�K �� �G0
�1�u�KD)g

� 2 tracef@D
@�

(G�x̂�K � �z�K � G� �A0o�
0

u�

�1 +G� �G0
�1�u�K)g

+ 2 tracef@R
@�


�1�u�Kg

� 2

T
tracefK

T�1X
t=1

@zt

@�
�0t �KD

T�1X
t=1

@zt�1

@�
�0tg

� 2

T
tracef@x̂0

@�
�00g � 2 tracef@�

@�
( �G0
�1�u� �Ao)g: (133)

Therefore, the expression for the second term of the log-likelihood function
derivative, S2; is given by

S2 = � 2 tracef@Ao
@�

(�x̂u

�1G+ �x̂�(I �KG) + � �G0
�1�u�(I �KG)

+ � �A0o�
0

u�

�1Gg
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� 2 tracef@C
@�

C0(G0
�1�u�(I �KG) + (I � G0K0)�0u�

�1G)g

� 2 tracef@G
@�

(Ao�x̂u

�1 � �x̂u


�1D �Ao�x̂�K + �x̂�KD

+CC0(I � G0K0)�0u�

�1 � CC0G0
�1�u�K

+Ao� �A0o�
0

u�

�1 �� �A0o�

0

u�

�1D

�Ao� �G0
�1�u�K +� �G0
�1�u�KD)g

� 2 tracef@D
@�

((�zu �G�x̂u)
�1 + G�x̂�K � �z�K � G� �A0o�
0

u�

�1

+G� �G0
�1�u�K)g

+ 2 tracef@R
@�


�1�u�Kg

+
2

T
tracef

T�1X
t=0

@zt+1

@�
u0t


�1g � 2

T
tracef

T�1X
t=0

@zt

@�
u0t


�1Dg

� 2

T
tracefK

T�1X
t=1

@zt

@�
�0t �KD

T�1X
t=1

@zt�1

@�
�0tg

� 2

T
tracef@x̂0

@�
�00g

� 2 tracef@�
@�

�G0
�1�u� �Aog: (134)

Our expressions for S1 in Eq. (126) and S2 in Eq. (134) depend on @Ao

@�
;

@C
@�
; @G

@�
; @D

@�
; @R

@�
; which are known, and @�

@�
; which we will now derive.

Using the expression in Eq. (118) with �t+1 = �t = �; we get

@�

@�
= �Ao

@�

@�
�A0o +W +W 0; (135)

where

W =
@Ao

@�
�A0o +

@C

@�
C0 � @C

@�
C0G0K0 �C @C

@�

0

G0K0 �CC0@G
@�

0

K0

� @Ao

@�
� �G0K0 �Ao�A0o

@G

@�

0

K0 � Ao�
@Ao

@�

0

G0K0

+Ao�G
0
@D

@�

0

K0 +Ao�
@G

@�

0

D0K0 +
1

2
K
@R

@�
K0

+K
@G

@�
Ao� �G0K0 +KG

@Ao

@�
� �G0K0 �K

@D

@�
G� �G0K0

�KD@G
@�

� �G0K0 +K
@G

@�
CC0G0K0 +KG

@C

@�
C0G0K0: (136)
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The terms W and W 0 in Eq. (135) include all derivatives but @�
@�

. To get

the expression in Eq. (136), we substituted the expressions for @

@�

and @G
@�

into Eq. (135). Let � be a symmetric matrix that satis�es

� = �A0o�
�Ao +

1

2
(H +H0); (137)

where

H = �G0M �G� 2 �G0
�1�u� �Ao: (138)

Then,

trace(
@�

@�
H) = tracef@�

@�

1

2
(H +H0)g

= tracef@�
@�

(�� �A0o� �Ao)g

= tracef@�
@�

�g � tracef �Ao @�
@�

�A0o�g

= tracef(@�
@�

� �Ao
@�

@�
�A0o)�g

= tracef(W +W 0)�g
= 2 tracefW�g: (139)

If we post-multiply W by � and take 2 times the trace, then we have an
expression for trace(@�

@�
H) in terms of known derivatives, i.e.,

trace(
@�

@�
H) = 2 tracef@Ao

@�
� �A0o�(I �KG)g

+ 2 tracef@C
@�

C0(I �G0K0)�(I �KG)g

� 2 tracef@G
@�

(Ao� �A0o�K � � �A0o�KD +CC0(I �G0K0)�Kg

+ 2 tracef@D
@�

G� �A0o�Kg+ tracef@R
@�

K0�Kg: (140)

Sum S1; which appears in Eq. (126) with �t = � and 
t = 
; and
S2 in (134). Substitute in the expression for trace(@�

@�
H) from Eq. (140).

The result is the derivative of the log-likelihood function which is given in
Eq. (120).

Standard errors

After we have computed parameter estimates, we want to compute their
standard errors as given in Eq. (110). For this, we need to compute the
derivative of

Lt(�) = log j
tj+ u0t

�1
t ut
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with respect to any element � of the parameter vector.14 This derivative is
given by

@Lt

@�
= trace(
�1t

@
t
@�

) +
@ut

@�

0


�1t ut + u0t

�1
t

@ut

@�
� u0t
�1t

@
t
@�


�1t ut

= tracef(
�1t �
�1t utu
0

t

�1
t )

@
t
@�

g+ tracef@ut
@�

0


�1t ut + u0t

�1
t

@ut

@�
g

= tracef@
t
@�

Mtg+ tracef
�1t
@(utu

0
t)

@�
g; (141)

where Mt = 
�1t � 
�1t utu
0
t


�1
t . Above, we calculated @
t

@�
and

@(utu
0

t
)

@�
.

These expressions are given in Eq. (125) and Eq. (127).

Appendix B: Differentiating the state-space model
with respect to economic parameters

In this appendix, we describe how to compute derivatives of Ao and C

with respect to the free parameters of an economic model. We do this for four
economies: a linear-quadratic economy without distortions; a nonlinear econ-
omy without distortions; a linear-quadratic economy with distortions; and a
nonlinear economy with distortions. Because we use linear approximations
for the nonlinear economies, most of the work is in deriving the formulas for
the linear-quadratic economies.

A linear-quadratic economy without distortions

The optimization problem is

max
futg

1X
t=0

�t(x0tQxt + u0tRut + 2x0tWut) (142)

subject to xt+1 = Axt + But +C�t+1;

where each element of �t is a random variable that is normally distributed
with mean 0 and variance equal to 1. We assume that the matrices Q; R; W;
A; B; and C depend on a vector of parameters, �. Typically, the number of
elements in � is small relative to the combined number of elements in these
matrices. We also assume that the derivatives of the matrices in Eq. (142)
with respect to the elements of � are known.

The optimal decision function is given by ut = �Fxt; where

F = (R+ �B0PB)�1(�B0PA+W 0) (143)

for P satisfying

P = Q+ �A0PA� (W + �A0PB)(R+ �B0PB)�1(�B0PA+W 0): (144)

14 Note that we are again ignoring the Jacobian since the relationship between z and y

di�ers for each problem.
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The law of motion for x in equilibrium is

xt+1 = Aoxt +C�t+1; Ao = A� BF: (145)

Therefore, the derivative of Ao with respect to an element of � is

@Ao

@�
=
@A

@�
� @B

@�
F �B @F

@�
: (146)

The derivatives @A
@�

and @B
@�

depend on the speci�cation of the problem in
Eq. (142) and are assumed to be known. The derivative of F is

@F

@�
= �(R+�B0PB)�1�@R

@�
+�

@B

@�

0

PB+�B0
@P

@�
B+�B0P

@B

@�

�
F

+ (R+�B0PB)�1
�
�
@B

@�

0

PA+�B0
@P

@�
A+�B0P

@A

@�
+
@W

@�

0�
:(147)

Notice that this formula depends on the derivative of P; with the remaining
derivatives provided by the modeler. The derivative @P

@�
satis�es the following

equation:

@P

@�
=
@Q

@�
+ �

@A

@�

0

PA+ �A0
@P

@�
A+ �A0P

@A

@�
� (

@W

@�
+ �

@A

@�

0

PB

+ �A0
@P

@�
B + �A0P

@B

@�
)F + F 0(

@R

@�
+ �

@B

@�

0

PB + �B0
@P

@�
B

+ �B0P
@B

@�
)F � F 0(�

@B

@�

0

PA+ �B0
@P

@�
A + �B0P

@A

@�
+
@W

@�

0

)

= �A0o
@P

@�
Ao +

@Q

@�
+ �

h@A
@�

0

� F 0
@B

@�

0i
PAo + �A0oP

h@A
@�

� @B

@�
F
i

� @W

@�
F � F 0

@W

@�

0

+ F 0
@R

@�
F: (148)

Although this formula determines only an implicit function for @P
@�
; the gradi-

ent of P can be represented explicitly in terms of things we know. De�ne the
gradient operator as follows: for any matrix A that depends on the parameter
�; r�A = vec(@A

@�
). Then,

r�P = (I � �A0o 
 A0o)
�1
�r�Q+ �(A0oP 
 I)r�A0 + �(I 
 A0oP )r�A

� �(A0oP 
 F 0)r�B0 � �(F 0 
A0oP )r�B � (F 0 
 I)r�W

� (I 
 F 0)r�W 0 + (F 0 
 F 0)r�R
	
; (149)
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which is a function of the gradients of A; B; Q; R; and W . The gradient
of P can then be substituted into the following formula for r�F

r�F = �(I 
RB0P )r�A� �(F 0 
RB0P )r�B + �(A0oP 
R)r�B0

� (F 0 
R)r�R+ (I 
R)r�W 0 + �(A0o 
RB0)r�P; (150)

where R = (R + �B0PB)�1 . Finally, we substitute this expression for r�F
into

r�Ao = r�A� (F 0 
 I)r�B � (I 
 B)r�F: (151)

Since C is chosen by the modeler, we assume that its derivative with respect
to � is known.

A nonlinear economy without distortions

The optimization problem that we start with is

max
futg

E0

1X
t=0

�tr(zt; �) (152)

subject to xt+1 = Axt + But +Cwt+1

zt = [x0t; u
0

t]
0:

We solve a related problem, namely,

max
futg

E0

1X
t=0

�tz0tMzt (153)

xt+1 = Axt + But +Cwt+1;

where

M = e(r(�z; �)� @r(�z; �)

@�z

0

�z +
1

2
�z0
@2r(�z; �)

@�z2
�z)e0 +

1

2
(e
@r(�z; �)

@�z

0

+
@r(�z; �)

@�z
e0 � e�z0

@2r(�z; �)

@�z2
� @2r(�z; �)

@�z2
�ze0 +

@2r(�z; �)

@�z2
); (154)

and where e is a vector of zeros except for a 1 in the element corresponding
to the constant term in xt; �z and �w are the steady-state values of zt and
wt; and Sx = [In; 0n;k] and Su = [0k;n; Ik] are selector matrices and imply
zt = Sxxt +Suut; where n is the dimension The latter problem yields the
same decision function as that of Eq. (142) (where Q = S0xMSx; R = S0uMSu;

and W = S0xMSu ).
In the nonlinear case, however, the derivatives are slightly more com-

plicated. To derive @Ao

@�
; we need to calculate derivatives of the coe�cient
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matrices of the objective function. For this, we need the derivative of M with
respect to � :

@M

@�
= e

�@r(�z; �)
@�

� @2r(�z; �)

@�z@�

0

�z +
1

2
�z0
�
r�z @

2r(�z; �)

@�z2
@�z

@�

�
(:) �z

+
1

2
�z0
@3r(�z; �)

@�z2@�
�z
�
e0 +

1

2

�
e
@2r(�z; �)

@�z@�

0

+
@2r(�z; �)

@�z@�
e0

� e�z0
�
r�z @

2r(�z; �)

@�z2
@�z

@�

�
(:)�

�
r�z @

2r(�z; �)

@�z2
@�z

@�

�
(:) �ze0

� e�z0
@3r(�z; �)

@�z2@�
� @3r(�z; �)

@�z2@�
�ze0 +

@3r(�z; �)

@�z2@�

+
�
r�z @

2r(�z; �)

@�z2
@�z

@�

�
(:)
�
; (155)

where rzA(z) = [ @
@z1

A(z); @
@z2

A(z); : : : ; @
@zn

A(z)] for A(z) which is n � n

and b(:) is an n � n matrix created from a vector of length n2 by stacking
the �rst n elements of b into column 1, the next n elements of b into column
2, etc. As this formula indicates, the modeler must provide �rst-, second-,
and third-order derivatives of the return function. The derivatives of Q; R;
and W follow immediately from @M

@�
, e.g., @Q

@�
= S0x

@M
@�
Sx . The remaining

derivations are the same as in the linear-quadratic case.

A linear-quadratic economy with distortions

The optimization problem that we start with is given by

max
f�utg

1X
t=0

�t
� � �yt

�zt

�0 � �Qy
�Qz

�Q0z
�Q22

� �
�yt
�zt

�
+ �u0t

�R�ut + 2

�
�yt
�zt

�0 � �Wy

�Wz

�
�ut
	

(156)

subject to
�yt+1 = �Ay�yt + �Az�zt + �By�ut +C��t+1:

To ease notation, we convert the problem to one without cross-products or
discounting. Let

yt = �t=2�yt

zt = �t=2�zt

ut = �t=2�ut

�t = �t=2��t

R = �R

Qy = �Qy � �Wy
�R�1 �W 0

y

Qz = �Qz � �Wy
�R�1 �W 0

z
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Q22 = �Q22 � �Wz
�R�1 �W 0

z

Ay =
p
�( �Ay � �By �R

�1 �W 0

y)

Az =
p
�( �Az � �By �R

�1 �W 0

z)

By =
p
� �By

� = (I + �	 �R�1 �W 0

z)
�1( �� � �	 �R�1 �W 0

y)

	 = (I + �	 �R�1 �W 0

z)
�1 �	: (157)

With these de�nitions, we can restate the optimization problem as follows

max
futg

1X
t=0

� � yt
zt

�0 �
Qy Qz

Q0z Q22

� �
yt
zt

�0
+ u0tRut

	
(158)

subject to
yt+1 = Ayyt + Azzt + Byut +C�t+1:

Let Â = Ay + Az�; Q̂ = Qy + Qz�; B̂ = By + Az	, and ~A = Ay �
ByR

�1	0Q0z . The decision function in this case is given by

F =
�
R+ B0yPB̂

��1
B0yPÂ; (159)

where P satis�es

P = Q̂+ ~A0PÂ� ~A0PB̂(R+B0yPB̂)
�1B0yPÂ: (160)

The decision function for the original problem is given by

�F = ( �R+ �W 0

z
�	)�1( �RF + �W 0

y +
�W 0

z
��); (161)

and the equilibrium law of motion for �yt is

�yt+1 = Ao�yt +C��t+1; Ao = �Ay + �Az �� � �Az �	 �F � �By �F = ��
1
2 (Â � B̂F ):

(162)
Therefore, the derivative of Ao with respect to a parameter � is given by

@Ao

@�
= ��

1
2 (
@Â

@�
� @B̂

@�
F � B̂

@F

@�
): (163)

To calculate @Ao

@�
requires several steps. First, we need the derivatives of Â;

B̂; and F with respect to � :

@Â

@�
=
@Ay

@�
+
@Az

@�
�+ Az

@�

@�
(164)

@B̂

@�
=
@By

@�
+
@Az

@�
	 +Az

@	

@�
(165)
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@F

@�
= ��R+B0yPBy +B0yPAz	

��1�@R
@�

+
@By

@�

0

PBy

+B0y
@P

@�
By +B0yP

@By

@�
+
@By

@�

0

PAz	

+B0y
@P

@�
Az	+ B0yP

@Az

@�
	+ B0yPAz

@	

@�

�
F

+
�
R+ B0yPBy + B0yPAz	

��1�@By
@�

0

PAy +B0y
@P

@�
Ay +B0yP

@Ay

@�

+
@By

@�

0

PAz� +B0y
@P

@�
Az�+ B0yP

@Az

@�
� +B0yPAz

@�

@�

�

=
�
R+ B0yPB̂

��1��@R
@�

F +
@By

@�

0

P (Â� B̂F )

+B0y
@P

@�
(Â � B̂F ) +B0yP (

@Ay

@�
� @By

@�
F )

+B0yP
@Az

@�
(�� 	F ) +B0yPAz(

@�

@�
� @	

@�
F )
�
: (166)

Note that these derivatives are functions of of @R
@�
;
@By

@�
;
@Ay

@�
; @Az

@�
; @�

@�
; @	

@�
;

and @P
@�

. The derivative of R is given since R = �R . The derivatives for By;
Ay; Az; � and 	 follow from their de�nitions above, e.g.,

@By

@�
=
p
�
@ �By
@�

; (167)

@Ay

@�
=
p
�(
@ �Ay
@�

� @ �By
@�

�R�1 �W 0

y + �By �R
�1 @

�R

@�
�R�1 �W 0

y

� �By �R
�1@

�Wy

@�

0

); (168)

@Az

@�
=
p
�(
@ �Az
@�

� @ �By
@�

�R�1 �W 0

z +
�By �R

�1@
�R

@�
�R�1 �W 0

z

� �By �R
�1@

�Wz

@�

0

); (169)

@�

@�
= �(I + �	 �R�1 �W 0

z)
�1
�@ �	
@�

�R�1 �W 0

z� � �	 �R�1
@ �R

@�
�R�1 �W 0

z�

+ �	 �R�1
@ �Wz

@�

0

� � @ ��

@�
+
@ �	

@�
�R�1 �W 0

z � �	 �R�1
@ �R

@�
�R�1 �W 0

z

+ �	 �R�1
@ �Wz

@�

0�
; (170)

@	

@�
= �(I + �	 �R�1 �W 0

z)
�1
�@ �	
@�

�R�1 �W 0

z	 � �	 �R�1
@ �R

@�
�R�1 �W 0

z	

+ �	 �R�1
@ �Wz

@�

0

	 � @ �	

@�

�
: (171)
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The derivative for P is given by

@P

@�
=
p
� ~A0o

@P

@�
Ao +

@Q̂

@�
+
p
�
�@ ~A

@�

0

� ~F 0
@By

@�

�
PAo

+ ~A0oP
�@Â
@�

� @B̂

@�
F
�
+ ~F 0

@R

@�
F; (172)

where ~F = (R+ B0yPB̂)
�1B̂P 0 ~A; ~Ao = ~A �By ~F; and

@Q̂

@�
=
@Qy

@�
+
@Qz

@�
� + Qz

@�

@�
(173)

@ ~A

@�
=
@Ay

@�
� @By

@�
R�1	0Q0z +ByR

�1@R

@�
R�1	0Q0z

�ByR�1@	
@�

0

Q0z �ByR�1	0
@Qz

@�

0

: (174)

The last two derivatives needed are
@Qy

@�
and @Qz

@�
:

@Qy

@�
=
@ �Qy

@�
� @ �Wy

@�
�R�1 �W 0

y +
�Wy

�R�1
@ �R

@�
�R�1 �W 0

y � �Wy
�R�1

@ �Wy

@�

0

;(175)

@Qz

@�
=
@ �Qz

@�
� @ �Wy

@�
�R�1 �W 0

z +
�Wy

�R�1
@ �R

@�
�R�1 �W 0

z � �Wy
�R�1

@ �Wz

@�

0

:(176)

We now have everything that we need to compute the derivatives of the
matrices in the decision rule and the law of motion for the state vector. To
avoid iterating on Eq. (172) for @P

@�
; we instead take the gradient, e.g.,

r�P = (I �
p
�A0o 
 ~A0o)

�1
�r�Q̂+ (I 
 ~A0oP

0)r�Â

+
p
�(A0oP

0 
 I)r� ~A0 � (F 0 
 ~A0oP
0)r�B̂

�
p
�(A0oP

0 
 ~F 0)r�B0y + (F 0 
 ~F 0)r�R: (177)

Thus, the gradient of F is given by

r�F = (I 
RB0yP )r�Ay +
�
(� �	F 0)
RB0yP

�r�Az
� (F 0 
RB0yP )r�By +

p
�(A0oP

0 
R)r�B0y

+
p
�(A0o 
RB0y)r�P � (F 0 
R0)r�R

+ (I 
RB0yPAz)r��� (F 0 
RB0yPAz)r�	; (178)

where R = (R + B0yPB̂)
�1 . In terms of the computer code, we start with

Eqs. (167)-(171) and Eqs. (175)-(176), which relate the derivatives of the
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original problem to those of the problem without discounting or cross-product
terms. To compute the gradients of these objects in terms of our inputs, we
use the fact that vec(ABC) = (C0 
 A)vec(B) for any matrices A; B; and
C with the appropriate dimensions such that ABC exists. We next compute
the derivatives for Â; B̂; Q̂; and ~A which appear in Eqs. (164), (165), (173),
and (174). Finally, we compute r�P in Eq. (177), r�F in Eq. (178), and

r�Ao = ��
1
2 (r�Â� (F 0 
 I)r�B̂ � (I 
 B̂)r�F ):

A nonlinear economy with distortions

The optimization problem that we start with is given by

max
futg

E0

1X
t=0

�tr(Zt; �)

subject to �yt+1 = �Ay�yt + �Az�zt + �By�ut + C��t+1

Zt = [�y0t; �z
0

t; �u
0

t]
0:

As in the case of the economy without distortions, we solve a related problem
that has the same form as the problem of Eq. (156). The approximation
method is the same as in the model without distortions; thus, all of the
required derivatives have already been computed.
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