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Abstract
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As an important extension of the asset pricing model of Sharpe (1964) and
Lintner (1965), Ross (1976, 1977) derived the arbitrage pricing theory (APT) which
addresses a fundamental problem in finance: to characterize the expected return
on a security. The APT implies that the expected return is approximately a linear
function of the risk premiums on systematic factors in the economy. Subsequently,
there have been both a large theoretical literature extending the APT and a large

empirical literature testing its implications.!

There are mainly two testing approaches that have been applied to the empirical
study of the APT. Traditional factor analysis is the first approach. Burmeister
and McElroy (1991), among others, tested nonlinear restrictions of the APT in
the factor model. In most studies, a likelihood ratio test is used. In order to
obtain it, one has to estimate the parameters under nonlinear restrictions, which is
difficult to accomplish in practice. As a result, it is difficult to obtain the asymptotic
distribution of the likelihood ratio test.? Given that the test has an asymptotic x?
distribution, it remains unclear whether or not the asymptotic inference is reliable in
the sample size commonly used. The second approach is a two-pass procedure. Roll
and Ross (1980), Chen (1983), Connor and Korajczyk (1988), Lehmann and Modest
(1988) and many others developed this procedure. In the first pass, either the factor
loadings or the factors are estimated. Then, in the second pass, the regression of the
returns on the estimated loadings or the factors is estimated. Treating the estimates
as the true variables, the APT restrictions become linear constraints (implying zero-
intercepts) on the regression coefficients in a multivariate regression and hence can
be tested by using standard methods. However, this procedure suffers an errors-
in-variables problem, because the estimated rather than the actual factor loadings
or factors are used in the second pass tests. As known in the errors-in-variables
literature, ignoring the uncertainty of the estimates can potentially lead to incorrect

inference.

1 Connor and Korajczyk (1992) provide an excellent survey of the literature.

2 As shown by Anderson and Amemiya (1988), asymptotic distributions of the
parameter estimates are very complex in the factor model, and the constrained
estimates are even more complex, making it difficult to analyze the likelihood ratio
test and related asymptotic tests.



This paper provides an exact statistical framework for analyzing the APT.
There are at least two interesting aspects of our approach. First, our approach is
a one-step procedure that is consistent with the return generating process. Given
the fact that there are unobservable factors in the return generating process, our
procedure implicitly incorporates this uncertainty into inference. As a result, there
is no need to estimate separately either the factors or the factor loadings to infer the
validity of the APT. Second, our approach makes it possible to examine virtually
any function of the parameters that possesses important economic interpretations.
In particular, it provides the exact posterior density for a proposed measure of the
APT pricing errors, which indicates how far the data deviate from the APT pricing
equations. Exact inference is an important advantage of our approach over the
existing approaches because the latter often do not have asymptotic distributions
for functions of interest, and the asymptotic distributions may not be reliable in

finite sample even if they become available.

Our approach is Bayesian. With the problem in hand, it is very difficult
to apply classical statistical analysis, and Bayésian inference becomes a natural
choice. McCulloch and Rossi (1990, 1991) developed a Bayesian analysis of the
APT, whereas Shanken (1987b) and Harvey and Zhou (1990) proposed Bayesian
tests for efficiency of a given portfolio. However, McCulloch and Rossi’s approach
remains a two-pass procedure in which the factors are extracted, before the Bayesian
analysis starts, by using Connor and Korajczyk’s (1988) asymptotic principal com-
ponents (APC) approach. In contrast, our approach is a one-step procedure and
is based on the Gibbs sampler. The Gibbs sampler permits us to obtain the exact
posterior distributions for functions of interest in the factor model. In particular,
this method makes it possible to provide exact posterior distributions for both the
measure of the APT pricing errors and measures of the systematic and idiosyncratic

risks.

The paper is organized as follows. In the first section, the exact Bayesian
framework is proposed. In the second section, the proposed approach is applied to
portfolio returns grouped by both industry and size. The empirical results show

that a one-factor model has a modest APT pricing error and there is little improve-



ment in reducing the pricing errors by including more factors beyond the first one.

Concluding remarks are offered in the final section.

1. Methodology

In this section, we first examine the APT restrictions and propose a measure
quantifying the pricing deviations. Then we show how to obtain the exact posterior
moments for this measure of pricing errors and other functions of interest. Next,
we show how to identify the factor model and infer other functions of interest which
are dependent on the identification conditions imposed on the factor model. Then,
we discuss how prior information may be incorporated into the posterior analysis.

Finally, we compare the proposed approach with the usual two-pass procedure.

1.1 The APT restrictions

The basic APT model assumes that the returns on a vector of N assets are

related to K pervasive and unknown factors by a K-factor model:
7’it=ai‘l‘ﬂilflt‘*‘“"i‘ﬂinKt+€it7 i=1""7N7 t=19-'°7Ta (1)

where
74 = the return on asset 7 at time %,
a; = E[r;), the expected return on asset 1,
frt = the k-th pervasive factor at time ¢,
€;; = the idiosyncratic factor of asset 7 at time ¢,
Bir = the beta or factor loading of the k-th factor for asset z,
N = the number of assets, and
T = the number of periods.
In what follows, it will be convenient for us to work with the vector form of the

model:

Ty =a+ﬁft+€t’ (2)
where r; is an NV x 1 vector of returns and a, N x 1, 3, N X K, f; and €; are defined
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accordingly. The standard assumptions on the factor model are
Elf] =0, E[ff]=1 Ele|fi]=0, Eleelfi]=23, (3)

where 2 = diag(o2,...,0%;). In this paper, as in most studies, we make the stan-
dard assumptions that €; and f; are independent and both follow multivariate nor-

mal distributions.

Ross (1976, 1977) and many subsequent authors (e.g, Chamberlain and Roth-
schild (1983)) have shown that the absence of riskless arbitrage opportunities implies
an approximate linear relationship between the expected asset returns and their risk

CXPOSU.I'CS:
o; & Ag + BiAdi + -+ BikAg, t=1,...,N, (4)

as the number of assets satisfying (1) tends toward to infinity where A¢ is the
intercept of the pricing relationship (zero-beta rate) and Ay is the risk premium on
the k-th factor (k =1,..., K). Since unknown parameters 3;; and A enter into the
constraints (4) by multiplication with one another, the constraints are nonlinear.
Equation (4) is the implication of no asymptotic arbitrage, and similar approximate
pricing relations can be obtained under much weaker conditions (Shanken, 1992). In
contrast, with the much stronger assumption of competitive equilibrium, Connor’s

(1984) equilibrium version APT replaces the approximation with an equality.

In the classical framework, it is awkward to test the restriction (4) based on the
traditional likelihood ratio test. As a result, existing studies based on the classical
statistical approach test only Connor’s (1984) equilibrium APT for which (4) is valid
exactly. In their Bayesian framework, McCulloch and Rossi (1990, 1991) also test
such a version of the APT. Without imposing the equality, our framework measures

the closeness of the approximation in (4) directly.

Consider a measure of the pricing errors:

N
Q* = % Z(ai —Xo = Bah — - — Bix k). (5)
=1

This is an average of the squared pricing errors across the assets. For the equilibrium

version APT, (4) is valid exactly, implying @ is zero. For the asymptotic APT, Q
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converges to zero as the number of assets approaches infinity. However, for a given
N, @ will not necessarily be small (Shanken, 1982). Nevertheless, there are at least
two theoretical reasons to examine the pricing errors in this case. First, conditional
on an assumption about the multiple correlation between the factors (proxies) and
an equilibrium benchmark portfolio, Shanken (1987a) derived testable restrictions
on the pricing deviation for each individual asset, implying that Q should be small
if the correlation is close to one (see also Dybvig (1983) and Grinblatt and Titman
(1983)). Second, @ provides information about the slope of the efficient frontier

(Shanken, 1992). Conditional on « and 8, the minimized average pricing error is
1
Qz — Na'[IN _ ﬁ*(ﬁ*'ﬂ*)_lﬁ*']a, (6)

where 8* = (1n,8) and 1y is an N X 1 vector of ones.® The sampling distribution
of @ or @? is difficult to determine, whereas its exact posterior distribution can be

easily constructed by using our proposed approach.t

1.2 Bayestan inference

To simplify the presentation, we ignore for the time being identification condi-
tions for the factor model, but will incorporate them into the analysis in the next
subsection. In a Bayesian framework, the parameters are treated as random vari-
ables. In particular, the pricing error @ is a random variable. To characterize it,
it is sufficient to find its posterior distribution. This distribution is analytically in-

tractable, but the approach taken here allows one to determine the exact posterior

3 Interestingly, @, a measure of pricing deviations, is very similar in mathematical
form to the noncentrality parameter of the Gibbons, Ross and Shanken (1989) test.
The term [In — B*(8* 8*)~18*] plays the role of their 31,

¢ The approach also applies to the case where a riskless asset exists. In this case,
Ag must be equal to the (observable) riskless rate of return, and the minimized
average pricing error is

Q? = %(a = Aoln)[In — beta(ﬁ'ﬁ)_lﬁ'](a — Aoln),

where 1 is an N-vector of ones.



distribution of @ numerically. It is then straightforward to assess the economic im-
portance of the pricing errors. For example, if Q is found to have its posterior mass
concentrated at 5% for monthly data, this implies the average pricing error is likely
to be about 5% for monthly returns. Because, on the average, the asset returns
are only about 1% for monthly data, we would regard the 5% average pricing error
as too high, and so we would reject the APT restrictions. But if Q is found to
have a concentration at 0.001%, for example, the pricing errors would be regarded
as negligible from an economic perspective. As a result, we would then regard the

APT as an adequate pricing model for the assets.

Bayesian analysis transforms our prior belief into a posterior belief in light
of the data. For simplicity, we consider a standard diffuse prior first and defer
discussion of informative priors to Section 1.4. The standard diffuse prior has the
following form:

Po(a,8,) o |B[7/* = (01 ++- o) 7, (7)

where | - | represents the determinant of the variance-covariance matrix 3. Let o?
be the i-th diagonal element of 3; then [®| = 02 ... 02%,.

Let R be a T' x N matrix of asset returns observed over the T' periods. Based
on Bayes’ rule, the joint posterior density function of the parameters, o, 8 and X,
is
Pla,B,%) < |27 f(R |, 8,3), (8)
where f(R|a,B,3) is the density of the data conditional on the parameters, or
the likelihood function for the factor model (1).

Denote all the parameters by 6, and let g(8) be a function of interest. The
general task of Bayesian inference is to obtain the expected value of g(0) under the

posterior density,
Elg(0)} = [ o(6)P(6)as, (9)

where © is the domain of . This poses at least two difficulties to this problem.
First, an analytical evaluation of (9) is intractable if not impossible. Second, al-
though Kloek and van Dijk (1978) show that the standard Monte Carlo approach

can be a solution to such a high dimensional integration problem, it is not an easy
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matter to implement it because the posterior density function is of unknown form,
and hence it is difficult to draw samples from this density. Monte Carlo integration
with importance sampling [Geweke (1989)] may be an alternative if an adequate
importance density (a density function that approximates the posterior density
well) can be found. However, it is not clear how the importance density may be
constructed given the complexity of the posterior density in the factor model. For-
tunately the Gibbs sampling-data augmentation approach can be used to sample

from the posterior distribution.

To explain the Gibbs sampling-data augmentation approach (Appendix A pro-

vides another explanation in a simpler model), we observe first that

f(R]a,8,%) = / (R, £ |, B, ) df, (10)

where f denotes all the factors, and f*(R,f | a,3,X) is the joint probability density

of R and f conditional on the parameters &, 8 and 3. We wish to approximate

I 11 f (e, B, )=~ 5(R, £ | 0, B, ) df dax dB dS
JIJ[1Z 2R, f |, 8,8)df dadBdS

E[g(a,ﬁ,z)] = (11)

Suppose that we are able to draw samples from the conditional posterior density

function for «,

P(a|B,3,£,R) = F*(R, |, 8, %) / [ F(R, £, 8, ) dav,

and similarly from the other three conditional posterior density functions,
PBla,B,f,R) and P(3|a,B,f,R), as well as from the conditional density
P(fla,3,%,R). It turns out that it is in fact easy to do this, as will soon be
shown. Now suppose further that we were given a single drawing from the full

posterior density:

=2 f*(R,f|a,B,3)
ST [1B22<(R,f|a,B,5)df da dB dE’

Pla,B,3,f) =

If we replace the value of o in this draw with a new value drawn from

P(c|B,%,f,R), the new (a,8,3,f) must still be a draw from the full posterior
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distribution. If the value of B is then replaced with a draw from P(8Bla,%,f,R),
the new draw still comes from the full posterior distribution. Similarly replacing
and f in succession with draws from their conditional posterior distributions, we are
left with a value for (o, 3, X, f) that is completely different from the original draw-
ing, but still comes from the full posterior distribution. The process may then be
repeated, starting with o and proceeding through f. At the end of each repetition,
the process yields a new drawing from the full posterior distribution.

This algorithm is unrealistic in assuming an initial drawing of (e, 3, %, f) from
the full posterior distribution. Under fairly general conditions (Geman and Geman,
1984; Gelfand and Smith, 1990) the initial draw may be replaced with any legitimate
value for (o, 3, X, f), and the sequence of drawings just described will then converge
in distribution to the posterior distribution (Tierney, 1991; Roberts and Smith,
1992). One such condition is that it be possible to move from any point in the
support of (a, 3, X, f) to any other point in exactly one full iteration of the Gibbs
sampling-data augmentation algorithm just described. That condition is satisfied
here, and so the sequence of drawings will conv;arge to the posterior distribution.

The numerical accuracy can be assessed based on Geweke (1991a).

Thus we need only consider how to draw from the conditional distributions.
The parameter vector b;, formed by the i-th row of B = (a, 8), has a multivariate

normal distribution conditional on o;:
1 N .
f(b; |£,0:) < ezp (_'Z—U_g(bi —b;)'F'F(b; — bi)) ) (12)

where F = (17,f) is a T x (K + 1) matrix formed by a vector of ones and the
factors, and b; is the classical OLS estimator of the regression coefficients. Each

diagonal element of ¥ has an inverted gamma distribution conditional on b;:

1 z/sf
f(as |£,b;) o 0_;,.;.1 €zp (—' 20_3) ) (13)
where
1< |
sz? = T ;(rit — Ftbi)l(rit - Ftbi)7 (14)
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and v = T is the degrees of freedom. Equivalently, vsZ/o? ~ x%(T).

Consider now how to draw f conditional on «, 3, ¥ and the data. To do so,
the probability distribution of f has to be specified. Consistent with (2) and (3), f;

and r; are jointly normally distributed:®

(2) ~7[(a) (5 aess)]: (15)

Hence, the conditional samples of f at time ¢ can be drawn from a multivariate

normal distribution with mean

E(fi|c,B,%,r) = B'(BB' + 2) 7 (1. — ), (16)
and covariance matrix

cov(f; |, B,2,1:) =1-B'(BB' + 2)™'B. 1n

Because N is often far greater than K, it is computationally simpler to obtain the
inversion of the N x N matrix 88' + ¥ by using Woodbury’s identity (see, e.g.,
Seber, 1984, p. 520):

(,6,3' + 2)—1 — E-—l _ E_Iﬁ(I—i-,B'E_lﬂ)_lﬂ'z—l. (18)

Since ¥ is diagonal, its inversion is trivial to compute. So, only the inversion of
I+ 3’2718, a K x K matrix, is needed to invert the N x N matrix 88" + X.

1.3 Identification

For pedagogical reasons, we have so far ignored the well-known identification
problem in the factor model. There are in fact two indeterminacies of the param-
eters. First, the information is not enough to determine all of the parameters if

the number of factors is greater than or equal to half the number of assets (Seber,

5 Inthe classical framework where «, 3 and ¥ are treated as constant parameters,
(15) is the standard assumption necessary to facilitate the maximum likelihood
estimation. This assumption is also used in applying the EM algorithm to factor
analysis (see, e.g., Lehmann and Modest (1988)).
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1984, p. 214) This is because the observable returns can determine only its mean

and covariance matrix V which are related to the parameters 8 and ¥ by
V=p88'+3. (19)

There are only N(N +1)/2 distinct elements of V, but there are NK 4+ N elements
on the right-hand side. To determine those parameters, we must have N(N +1)/2 >
NK + N,or N > 2K + 1. For example, if there are N = 10 assets, and if no other
restrictions are imposed on the parameters, we can only estimate a factor model up

to 4 factors.

Second, there is an indeterminacy of the factor rotation. For any K X K

orthogonal matrix P, there is an equivalent factor model:
r; = o+ B + €, (20)

in which the new factors ff = Pf, is a rotation of the old factors f;. The same
moment conditions valid for the old factors are also valid for the new factors; i.e.,
E[f] = 0, and E[ff] = I. Moreover, the factor loadings are also rotated. The
new loadings are linked to the old ones through 8* = BP'. Because these new factor
loadings and factors give rise to the same distribution for the returns, they cannot

be identified from the observed returns unless further restrictions are imposed.

Because 3 has rank K, we assume, without loss of generality, that the first K
rows of B3 are independent. Let B% be the K x K matrix composed by the first K
rows; then 8% is nonsingular. By a theorem in matrix theory (see, e.g, Muirhead
1982, Theorem A9.8, p. 592), there exists a unique orthogonal matrix P such that
BEP! is a lower-triangular matrix with positive diagonal elements.® Therefore, to

identify the factor model, we assume in what follows that B¥ is of the form

' Bua 0 --- 0
B21 B2 -:- 0

B = : (21)

Br1 Brz2 -+ Prk
¢ The orthogonal matrix P can be explicitly constructed as P = L~1BX, where

L is the L matrix in the LU decomposition of the positive definite matrix 8% ﬁ'K
(L is the lower-triangular matrix such that LL' = g¥g' K)
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where 8;; > 0,7 = 1,..., K. This condition uniquely identifies the loadings and the
associated factors. For example, we cannot identify the betas and factors by the

returns data alone in a one-factor model, because both

rit = a; + Bi1 fie + €

and
rit = a; + (P )(—fit) + €

imply the same data-generating process, but they have different betas and factors.
However, by restricting 117 > 0 in this one-factor model, we uniquely identify the

betas and the associated factors.

Under the identification condition, all parameters, except for B%X and
®1,...,aK, have exactly the same posterior distributions as before. To draw 8%
and ai,...,ax from their new posterior distributions, let b} = (e, Bi1,--+,8:i)',
¢ =1,...,K. Simple algebra shows that bj,...,b}% are independently multivariate
normally distributed: .

1
20?2

F(b¥|f,0;) < exp (— (b} — B’:)'F:F,(b’; - f)’:)) , t=1,..., K, (22)

where F; is a T X i matrix consisting of the first ¢ columns of F, and b¥ is the
OLS estimator of the regression of r; on (1, f1,---, f;). Because of the identification
condition, draws from (22) should be rejected” if they violate §;; > 0. Combining
these conditional distributions with those in Section 1.2, it is straightforward to

evaluate the posterior means of functions of interest.

1.4 Informative priors

Only the diffuse prior has been used thus far in our Bayesian analysis. This
prior represents no prior information or “ignorance” on parameters «, 3 and X.

As a function of these parameters, the pricing error ¢ will also have a diffuse prior

" Qur applications show that the fraction of samples being rejected is often less

than 30%. A more effective, but more complex, approach is provided in Appendix
B.
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density. To induce an informative prior on @, informative priors on &, 3 and ¥

have to be utilized. Consider the following class of informative priors:

ailﬂi ~ N(a0i7"70i)9 1= 17- .- aNs (23)

B; ~ N(BOi,COiI)a Bi >0, i=1,...,K, (24)
B: ~ N(Boi,t0:il), i=(K+1),...,N, (25)
vois;/o? ~ x*(ve:), i=1,...,N, (26)

where all variables with subscripts 0 (except ag;) are constants, chosen to reflect
our prior degrees of belief on the distributions of the parameters. For example, Bos
represents our prior mean value for 3;, and (o; measures how close the mass of 3; is
to its mean. In (23), ay; is defined by ao; = Ao +E£{=1 BikAr , where Agy A1,. .., AK
are chosen constants. This says that the prior distribution of o; is dependent on
B;. In other words, the prior distribution of a; and 3; is specified jointly as a
product of the marginal distribution of 8; and the distribution of a; conditional on
B;. Given the above priors on the model parameters, the prior distribution of @ is
readily computed. By varying the constants such as 79;, we obtain different prior
distributions of Q which in turn reflect our varying degrees of prior beliefs on Q.
The posterior distribution of @ will show how our priors are changed in light of the
data. Clearly, this posterior distribution is straightforward to obtain if samples of

o, B and X can be drawn from their posterior distributions.

To draw o, B and X, we use again the Gibbs sampler by drawing them from
their conditional distributions. Based on our earlier analysis (Section 1.3), it is seen

that the alphas can be drawn from a normal distribution:
a;|B; ~ N(a&imi), t=1,...,N, (27)

where &; = (nico; +n0:8:)/ (1 +10:)> i = Mim0i/ (N +701)s 65 = Doy (Pie —Bir Fre —

- — Bix fK,g) /T and 7; = 0'? /T. The remain parameters can be drawn as follows:

,Bi ~ N(Bia var(ﬁi))a ,Bn > 07 1= 17 ) 7K) (28)
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Bi ~ N(B:,var(B:)), i=(K+1),...,N, (29)
Vlisii/a? ~ Xz(yl'i), i=1,...,N, (30)

where for i = 1,..., K, var(8;) = (I/¢o; + F¥ F/o?)72, B;i = var(B:)(Boi/Coi +
FY' F:B:/0?), F* is the F; matrix without the first column, and B is the OLS
estimator of the regression of (r; — a;) on (f1,-- -, fi—1); and for i = (K +1),..., N,
var(B;) = (I/éoi + F¥F*/0?)™2, B = var(B:)(Bos/bo: + F*F*Bt/0?), F* is the
F matrix without the first column, and B:‘ is the OLS estimator of the regression
of (r; — a;) on (f1,+++,fx). Finally, for i = 1,...,N, v1; = vp; + T and 3; =

(vois?; + vs?)/vi;.

1.5 A comparison with the two-pass procedure

The two-pass procedure (reviewed briefly in the introduction) usually works as
follows. In the first pass, either the factor loadings or the factors are estimated from
the factor model (2). Then, in the second pass, a multivariate regression is run of
the returns on the estimated loadings or the factors. The equilibrium version APT
implies zero-intercepts of the multivariate regression, and this implication is often

tested by using Gibbons, Ross and Shanken’s (GRS) test (1989).

The most flexible two-pass procedure is the one developed by Connor and
Korajczyk (1986, 1988), which is a cross-sectional approach that can be applied
to a large number of assets to extract the factors. In contrast, our approach is
a time series one that can only be applied to a relatively small number of assets.
Specifically, N can be any large number in Connor and Korajczyk’s framework, but
it has to be less than or equal to T' — K in our setting in order to estimate the
(nonsingular) covariance matrix of the returns. However, most multivariate tests
of the APT are carried out in the second step of the two-pass procedure, and it
is also necessary to estimate the covariance matrix of the returns. As a result,
most of the tests are eventually applied to a small number of assets (about ten).
The errors-in-variables problem is usually ignored, but this can potentially yield

incorrect inference as known in the errors-in-variables literature.

In analyzing a small number of assets, our approach suggests that it is possi-
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ble to obtain exact inference that automatically recognizes the measurement error
problem. Furthermore, with as many as 100 assets, our simulations show that
the proposed approach is still feasible, and capable of providing reliable inference.?
Therefore, the proposed ‘approach should be a useful complement to Connor and
Korajczyk’s (1986, 1988) in the case where a relatively small number of assets
(portfolios) are used to test the APT.

2. Empirical results

In this section, we first provide the summary statistics of the data and then
apply our methodology to obtain the pricing error of the APT in the US equity
market. To get additional insight, measures of the systematic and idiosyncratic
risks are also provided. As a diagnostic for model fitting, we compare the regression
of the returns on the market index with that on the factor extracted from the one-
factor model, and we find that there is a gain in R? by using the extracted factor.
However, the diagnostic alone does not mean that the pricing error is small. Tt
simply says that the extracted factor fits the returns data better than the market
index. Because the pricing error is of primary interest, we examine it further by

showing how its exact posterior density may vary under a class of informative priors.

2.1 The data and summary statistics

There are two sets of data. The first is the returns on the industry port-
folios grouped by following Sharpe (1964), Black (1972), Breeden, Gibbons and
Litzenberger (1989), Gibbons, Ross and Shanken (1989) and Ferson and Harvey
(1991) with raw data available from the Center for Research in Security Prices
(CRSP) at the University of Chicago. There are twelve industries: petroleum, fi-
nance/real estate, consumer durables, basic industries, food/tobacco, construction,
capital goods, transportation, utilities, textiles/trade, services and leisure. The re-

turns are monthly from February 1926 to December 1986, a total of sixty-one years

® With N = 100, T = 731 and K = 2, the simulation took about three days’
CPU on a SUN SPARGCstation 10.
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data (T = 731). For a comparison of results, we also use decile portfolios from the
CRSP. This is our second data set, which is the monthly returns on market-value-
sorted New York Stock Exchange (NYSE) portfolio deciles varying from size 1 to

size 10.

Means, standard deviations and autocorrelations of the data are presented
in Table 1. The means range from 0.849% per month for the utilities industry
(industry 9) to 1.118% per month for the consumer durables industry (industry 3).
The lowest standard deviation, a measure of the total industry risk, is found in
the utilities industry, and the highest is found in the consumer durables industry.
Although for both of these industries the high or low average returns are associated
with their total industry risks, the petroleum industry (industry 1) has lower risk
and higher return than the capital goods industry (industry 7). However, this is
not in contradiction with financial theories. For example, the equilibrium version
of the APT asserts only that the high returns should be associated with their high
systematic risks, and the systematic risks are determined by the asset’s exposure to
the factors. Asshownin Table 1, there is some eﬁdence of first order autocorrelation
in the returns. In the factor model, both the residuals and factors are assumed to
be serially independent, and so are the returns. Nevertheless, the autocorrelation
does not seem to be severe. Therefore, as is the case for most empirical studies,
we adopt the working assumptions that the returns are independent and identically

distributed, and the K-factor model is well specified.

For the decile portfolios, there is the well-known pattern that lower deciles tend
to have large mean returns which are accompanied by large standard deviations.
Generally speaking, small firms tend to have higher returns and, at the same time,
be subject to more economic risks. In contrast to the industry returns, there are
greater first order autocorrelations which are concentrated largely in the low deciles.
Nevertheless, this pattern does not seem to be severe. Similar to the industry

returns, higher order autocorrelations die out very fast.

To understand more about the data, Table 2 provides both the eigenvalues and
sample covariance matrix from principal components analysis. The largest eigen-

value dominates other eigenvalues and the difference between the largest eigenvalue,
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0.0431, and the second largest one, 0.0022, is substantial. Moreover, the first eigen-
value explains 81.81% of the total variation of returns, and the first four eigenvalues
explain about 91.96%. Based on the asymptotic principal components analysis of
Connor and Korajczyk (1986, 1993), the eigenvalues can be interpreted (asymp-
totically) as explaining the portions of the systematic risk in the factor model. If
the number of factors is K, the eigenvalues excluding the K largest ones should be
equal. However, it is difficult to determine whether a subset of the sample eigen-
values are significantly different from one another. As a result, we examine values
of K from 1 to 4 in our Bayesian factor analysis of the APT restriction. This may
be a reasonable choice given that the first four sample eigenvalues explains about

92% of the systematic risk.

The decile portfolio returns have in general greater correlations than the in-
dustry returns. In addition, the first eigenvalue explains more than 92.84% of the
variations, and the first four 98.95%. There is relatively stronger evidence that a

factor model with K varying from 1 to 4 should describe the returns.

2.2 The APT pricing error

Under the standard diffuse prior on all the parameters in the factor model,
the posterior distribution of any function of interest is readily evaluated by using
the methods discussed in Section 1.3. The posterior mean of the pricing error is
provided in Table 3. Panel A reports the results for the whole sample period, from
February 1926 to December 1986, whereas panels B and C report the results for
the subperiods, from February 1926 to June 1956 and from July 1956 to December
1986.

Consider first the results for the whole sample period. For purposes of com-
parison, we examine the APT constraints starting from the case where there are no
factors. In this case, K = 0 and the minimum pricing error Q is the average of the
squared pricing errors across assets, where the pricing error for each individual asset
is the deviation of its expected return from the average of all the expected returns.

Recall that @ is a random variable in a Bayesian framework. Both the posterior
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mean and standard deviation of @ are of interest, and they are, as reported in
panel A of Table 3, 0.2408% and 0.0536%, respectively. The mean seems small as
compared with the magnitude of the expected returns, a fact also reflected from the
summary statistics in Table 1. To further assess the pricing error, we provide also
the 90% Bayesian confidence interval, [0.1564%,0.3323%)], which states that there
is 90% probability that the pricing error is in the interval. As there is not much
difference between the mean and the values in the confidence interval, the posterior
density of the average pricing error is concentrated heavily near its mean. This may

be interpreted as evidence of the informativeness of the data on the pricing errors.

In a one-factor model, the mean pricing error is 0.1184%, the standard deviation
is 0.0286%, and the 90% Bayesian confidence interval is [0.0746%,0.1679%)]. The
mean pricing error is much smaller than the average sample mean returns of the
assets, 0.9666%. This indicates that the deviation of the expected returns from
the risk premiums multiplied by the factor loadings (including the constant) is
just about 10% of the magnitude of the expected returns. In comparison with the
previous Q = 0.2408% in a zero-factor model, a value of 0.1184% reduces the pricing
error by about 50%. To examine the sensitivity of the pricing error to the number
of factors, we allow K to vary from 1 to 4. The mean pricing error goes down to
0.1169%, 0.1070% and 0.0982% in two-, three- and four-factor models, respectively.
This suggests that there are no substantial reductions in the pricing errors when

more factors are allowed beyond the first one.

The empirical results are more striking for the decile returns. First, there
is relatively large variation in the expected returns of the assets. When K = 0,
the mean pricing error is @ = 0.3520%, about 46% larger than the mean pricing
error for the industry returns. This larger value reflects greater variation in the
cross-sectional expected returns. This is perhaps more evident in the summary
statistics, where the maximum difference of the sample mean returns between the
decile portfolios is 0.8490%, as compared to only 0.2686% for the industry returns.
Second, there is relatively large reduction in the zero-factor pricing error when at
least one factor is included. Without factors, the mean pricing error is 0.3520%,

but that reduces to 0.0845% in a one-factor model. This is a far greater reduction
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than that for the industry portfolios. In the case of multiple factors, although there
are additional reductions in the pricing error, the percentage of the reduction is
small compared to the one-factor case. For example, one additional factor in a
three-factor model barely reduces the pricing error, but a one-factor model shrinks

the pricing error of a zero-factor pricing model by 76%.

Consider now the results for the subperiods reported in panels B and C of Table
3. The sample size becomes half as large as before. As a result, the uncertainty in
the estimation goes up. For example, in the zero-factor case for the industry returns,
the standard error of the mean pricing error increases to 0.0941% in panel B and
0.6212% in panel C from 0.0536%. Similar increases also occur for the decile returns
in the first subperiod. Because of the increased uncertainty, the mean pricing errors
are less accurately estimated, and they are in general larger than before. However,
the uncertainty in the estimation for the decile returns in the second subperiod
are about the same as before, which is due to the behavior of the data, as seen
from the zero-factor model where both the cross-sectional mean differences and the
standard deviations are almost the same as for the whole period. This explains the
relatively unchanged mean pricing errors in the one- to four-factor models. Overall,
in combination with the subperiod results, we still find that there are no substantial

reductions in the pricing errors when more factors are allowed beyond the first one.

2.3 Risk measures in the APT model

It is of interest to examine the expected returns, the systematic risks, and the
unsystematic or idiosyncratic risks in the factor model. The results are provided
in Table 4. In the Bayesian framework, the point estimate of the expected asset
returns are the posterior means of the alphas. In comparison with the sample means
of the asset returns as reported in Table 1, there are virtually no differences. So,
as far as the expected asset returns are concerned, the classical and the Bayesian
approaches yield similar results. However, the advantage of the Bayesian approach
is that it can yield small sample results about the idiosyncratic risks and other

functions of interest.
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The Bayesian idiosyncratic risks are the posterior means of the sigmas. In
the case of K = 0, the idiosyncratic risks are point estimates of the unconditional
standard deviations, matching those sampling estimates in Table 1. In the case
of K = 1, the idiosyncratic risks across the industry assets are only about half of
those in a zero-factor model. The reduction for the decile returns is much more
substantial. For example, the idiosyncratic risk of the sixth decile asset is 0.912%,
much smaller than the 7.341% level in a zero-factor model. For both the industry
and decile returns, the idiosyncratic risks generally decrease as K varies from 1 to
4. This is expected because some of the variations in the returns can be explained
by the variations in the factors. However, the decrease is much less substantial
than from a zero-factor model to a one-factor one. When the idiosyncratic risks are
compared with the pricing errors, it is interesting that the Q)’s are much within the

variations of the idiosyncratic risk of each asset.

The systematic risks are not reported. Instead, we report the proportions of
the idiosyncratic risks to the total risk. The proportions measure the importance
of the idiosyncratic risks. The higher the proportions, the greater the idiosyncratic
risks relative to the systematic risks. The proportions are computed as the ratios of
the diagonal elements of X to those of (8'3 + X), from which the systematic risks
can be backed out (as the ratios of the idiosyncratic risks multiplied by one minus
the proportions, to the proportions). As shown in Table 4, the average proportions
are below 50% in a one-factor model and become smaller as K increases. However,
the idiosyncratic risks remain a major proportion of the total risk even with up
to 4 factors. Interestingly, the idiosyncratic risks are more dispersed for the decile
returns, and the largest one is found for the first decile (the smallest capitalization).
In contrast, the idiosyncratic risks are fairly even across assets for the industry

returns.

2.4 A comparison of the market indez with the APT factor

In applications of the ome-factor APT model, the factor is frequently pre-
specified as a market index, say, the CRSP value-weighted index. Table 5 provides
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the results of regressing the industry returns on the index and the APT factor, where
the APT factor is extracted from the one-factor model using our exact Bayesian
procedure (the extracted factor is the posterior mean of the factor draws). The
index is seen to have substantial explanatory power. The adjusted R? is at least
58.33% and as high as 93.34%. But the average (across over the industry portfolios)
is 74.88%. In contrast, the APT factor has a minimum R? of 60.25%, a maximum

of 93.31%, and an average of 81.28%.

It should be noted that, while there is a time-series B? gain from using the
extracted APT factor, this does not mean the factor will necessarily yield smaller
pricing deviations. Indeed, the regressions are only a diagnostic for model fitting,
showing only that the extracted factor fits the returns data better than the market
index. The reverse side is perhaps more interesting. Although the market index
is pre-specified (computed from a simple value-weighting scheme), its performance
is comparable with the extracted factor which is estimated to best explain the
variations across the industry returns, a conclusion similar to Brown’s (1989). In
addition, as shown in Table 5, it is remarkable that there is more than 99% corre-
lation between the extracted APT factor and the pre-specified market index. To
further assess the performance of the CAPM versus the one-factor APT model, Ta-
ble 5 also reports the largest absolute value and the average of the absolute values
of the regression intercepts. For the APT factor, the largest absolute value and the
average are 0.1294% and 0.0518%, respectively. They are smaller than those for the
index, 0.1980% and 0.0756%. Because the intercepts measure pricing deviations of
each of the model, the additional diagnostic confirms the R? analysis which suggests
that the one-factor APT model fits the returns better than the single index model.

Table 6 provides the results of regressing the decile returns on the index and
on the factor extracted from the decile returns. In the regression on the index,
the lowest R? is 49.31%, the maximum 97.05%, and the average is 85.37%. The
explanatory power increases monotonically as the decile portfolio increases its size.
This is expected because the index is value-weighted, giving more weight to large
companies and hence better fitting large decile portfolios. In contrast, the APT

factor explains the decile returns fairly even across portfolio size, but does the worst
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for both the smallest and the largest deciles. The average R? is 92.65%, higher than
the index’s performance. Interestingly, the correlation between the index and the

extracted factor is still as high as 95.65%.

2.5 The APT pricing error under informative priors

The use of the class of informative priors proposed in Section 1.4 requires
specifying the constants that determine the prior densities. To aid this task, we
use the principal factor analysis approach (Seber, 1984, pp. 219-221} to get a rough
estimate of the loadings based on the first ten yea..rs of data and use the estimates as
the prior means for the entire sample. In addition, we use the associated standard
errors as a benchmark for the standard errors of the prior demsities. To reflect
various degrees of belief about @, we provide two specifications, priors A and B, for
the prior standard errors. Prior 4 is “large” in which the prior standard errors are
five times the benchmark, and prior B “small” in which the prior standard errors are
one fifth of the benchmark. Given either prior 4 or B, the prior density of the pricing
error () is straightforward to compute. Table 7 reports the prior means, standard
deviations, and the 90% Bayesian confidence intervals for Q. Panels A and B are
obtained by using priors A and B, respectively. Under prior 4, @ has a prior mean of
1.7340%, and its 90% Bayesian confidence interval is [1.1127%, 2.4012%)] in the K =
1 case. This prior is rather large relative to the cross-sectional difference between
the expected returns of the industries. In contrast, the prior mean under prior B is

only 0.0693%, relatively small as compared with the cross-sectional difference.

Table 7 also reports for () the posterior means, standard deviations, and the
90% Ba.yesian confidence intervals. The results are in the second row next to a given
number of K. Under prior A and K = 1, the posterior mean for the industries is
0.1214%, a sharp reduction from the prior mean level of 1.7340%. Interestingly, the
posterior mean is also very close to 0.1184%, the posterior mean under the diffuse
prior. In fact, similar conclusions follow for multiple factor models and for the decile
returns. However, the posterior means under prior B are in general smaller than

those obtained under the diffuse prior. For example, the posterior mean for the
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industries in the K = 1 case is 0.0357%, smaller than 0.1184%. It appears that
prior B, which implies smaller prior means for @, also gives rise to smaller posterior
means for §. Overall, under any of the informative or diffuse priors, there is little
progress in reducing the pricing error by including more factors beyond the first

one.

3. Conclusions

In this paper we propose an exact Bayesian framework for examining the APT
pricing restrictions. First, our approach is a one-step approach. In contrast to
existing studies, no pre-estimates of either the factors or the factor loadings are
required. Second, we propose a simple measure of pricing errors and obtain its exact
posterior distribution. Unlike the likelihood ratio test in the classical framework,
our measure indicates the extent to which the APT restrictions deviate from the
data. As an application of our approach, we study the APT pricing restrictions
by using monthly portfolio returns grouped by iﬁdustry and market capitalization.
We find that there is little improvement in reducing the pricing errors by including
more factors beyond the first one. Furthermore, our approach can also be applied to
study a variety of other asset pricing models, and similar measures of pricing errors
can be proposed. Although it is difficult to obtain the exact sampling distributions
of these measures in many applications, it is easy to evaluate the exact posterior

distributions in the Bayesian framework.
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Appendix A An introduction to the Gibbs sampler

The Gibbs sampler is a path-breaking technique for generating random samples from
a multivariate distribution by using its conditional distributions without having to
compute the full joint density. In many problems, such as the ARCH, GARCH,
regime-switching and latent variables models, the full joint density is extremely
difficult to calculate, but the conditional distributions are easy to evaluate. and the
Gibbs sampler can be used to make difficult Bayesian analysis tractable. In addition,
the Gibbs sampler is also useful in classical statistics such as in the evaluation of
likelihood functions (see Casella and George (1992) and references therein).

The idea of the Gibbs sampling technique is simple. To get a sample from a
complex density function f(61,86), it starts from an arbitrary initial value (6;,6;) =
(6,63) in the support of f(6,0;) and obtains a new value (62,6) with 81 drawn
from f(6, |69) and 6] from (6, | 61). Iterating this process gives rise to.a sequence
{(67,83)}. Under fairly general conditions, (7,4%) approximates well a random
sample from the joint density f(6y,62).

To illustrate an application of the Gibbs sampler, consider an AR(1) model:
T =pTi—1 + €, T= 1,.2, e ,T, (Al)

where [p| <1, and ¢; is i.i.d. and normally distributed with E(e;) = 0 and var(e;) =
o?. Let I, be an indicator function, I, = 1 if [p| < 1 and 0 otherwise. Then
po(p,0?%) -i—I o is a diffuse prior imposing only the stationarity condition. The
posterior density is

P(Paaz) OCPO(Paaz)L(Paaz)a (Az)

where L(p,o?) is the (exact) likelihood function, which is very complex (Amemiya,
1985, p. 162), and hence it is not easy to draw samples from it. Treating z¢ as a
parameter, the joint posterior density of p, 02 and =g is

P(P7 02,730) OCPO(P,O'z)L(P’UzawO)7 (A?’)
where L(p,0?,z0) is the likelihood function conditional on z and is trivially ob-
tained as

T
L(p,0% ) = (2m) 720 Teap[~ 3 (o1 — pooo)?/20%). (A4

t=1

Clearly, the density p(p,0?) in (A.2) is given by p(p,0?,20) after integrating zo
out, implying that p(p,0?,z¢) should provide all information about p(p,o?). For
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example, the posterior mean of p will be given by [ [ pp(p,d?,z0) do? dzy. Hence,
we need only be concerned about drawing samples from p(p,0?,z¢).

By the Gibbs sampler, the samples are obtained from the conditional distribu-
tions: p and o? are drawn from a normal (truncated at |p| < 1) and a chi-squared
distribution conditional on z¢, and z¢ is drawn, conditional on p and ¢, from a
normal distribution, z¢ ~ N(pz1,02). This procedure generates a sequence of
(p™,0™,z) which can then be used to approximate the expected value of a func-
tion of interest, E[g(p, )], by Monte Carlo integration:

_ 1 &
Elg(p, o)l = > 9(pm ™) (4.5)

For example, if g(p,0) = p, (A.5) delivers a numerical approximation to the poste-
rior mean of p. The accuracy increases as N goes up.

Based on the draws (p™,0™, 27 ), the Gibbs approximation to the likelihood
function L{p,0?) is

N
= 1
Lp,0®) = % Y L(p,0%,27)- (4.6)
. n=1 ’

This is useful in applications where the exact likelihood function is difficult to
compute, whereas the conditional likelihood function is easy to obtain.

Appendix B An alternative Gibbs sampling method for B

The key for drawing B lies in drawing its first K rows with positive §;;
(¢ = 1,...,K). Let b} = a1, b} = (a8, ++,0is-1))'» ¢ = 2,...,K. Then,
¥,..., bk are mutually independent and multivariate normally distributed:

03 £,05,8) o exp (—5o5(bF = BV Fi(b1 =BD)), <K, (B)

where F} is a T' x ¢ matrix consisting of the first : columns of F, and 13’: is the
OLS estimator of the regression of (r; — B8 f;) on (1, f1,---, fi—1). The conditional
distributions of f11,...,8kK are also mutually independent, and each is truncated
normal:

Biilf, b ~ N(Bi, ki), B >0, i=1,...,K, (B.2)
where fi; = Y (rit — @; — Bir fiz — +++ — Bigi—1) fi—1)t) fir/ 3 f2 and k; = 02/ T f2.

There is also an efficient method for implementing (B.2). To draw z > ¢ from
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z ~ N(a,b), a normal random variate truncated above ¢, let z = a + v/y; then
y ~ N(0,1) and y > d = (¢ — a)/vb. Following Geweke (1991b), y is drawn
efficiently by using (a) a simple normal rejection method if ¢ < 0.5; and (b) an
exponential rejection method if a > 0.5 (the exponential rejection works in two
steps: draw z and u independently from the uniform distribution over [0, 1], compute
both y = @ — 2logz and h = e‘(yz“y"“z"'“); if B < u, reject and re-do; otherwise
accept y as the sample.).
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Means, Standard Deviations and Autocorrelations of Asset Returns

Table 1

Based on monthly data from February 1926 to December 1986 (731 observations)

Variable

Industry 1
Industry 2
Industry 3
Industry 4
Industry 5
Industry 6
Industry 7
Industry 8
Industry 9
Industry 10
Industry 11
Industry 12

Decile 1
Decile 2
Decile 3
Decile 4
Decile 5
Decile 6
Decile 7
Decile 8
Decile 9
Decile 10

Mean
(percent)
1.040
0.976
1.118
0.993
0.939
0.892
1.031
0.868
0.849
0.931
0.968
0.994

1.720
1.489
1.289
1.281
1.207
1.200
1.185
1.008
1.044
0.871

Industry Portfolio Returns®

Std. dev.

(percent) P1 P2
6.300 0.009 -0.020
6.078 0.107 -0.049
7.610 0.145 0.000
6.430 0.111 0.010
4.869 0.086 -0.027
7.117 0.161 0.045
6.550 0.117 0.001
7.785 0.144 -0.005
4.837 0.149 -0.036
6.178 0.132 -0.005
7.441 0.013 0.041
7.556 0.200 0.034

Decile Portfolio Returns?
11.440 0.158 -0.012
9.786 0.156 0.003
8.752 0.195 -0.003
8.068 0.176 0.014
7.590 0.146 0.005
7.331 0.163 0.002
6.977 0.137 0.026
6.516 0.123 0.011
6.234 0.098 -0.002
5.364 0.085 -0.015

Autocorrelation
P3 P4
-0.054 0.091
-0.140 0.014
-0.114 0.010
-0.125 0.037
-0.088 0.011
-0.097 -0.019
-0.101 0.015
-0.158 -0.014
-0.134 0.000
-0.071 0.008
~-0.003 0.055
-0.075 -0.047
-0.079 -0.062
-0.090 -0.102
-0.097 -0.085
-0.106 -0.058
-0.104 -0.049
-0.121 -0.032
-0.106 -0.008
-0.112 0.006
~0.133 0.021
-0.121 0.041

P12
0.017

0.053
-0.019
-0.018

0.025
-0.022

0.001

0.000
-0.013
-0.006

0.047

0.026

0.082
0.049
0.012
0.016
0.008
0.000
-0.023
-0.004
0.007
0.008

P24
-0.010

0.028
-0.014
0.031
-0.023
-0.002
0.014
0.023
0.032
-0.016
-0.030
-0.030

0.080
0.029
0.024
-0.014
0.008
0.011
-0.009
-0.004
0.005
0.028

@ The industry groups are: 1=petroleum, 2=finance/real estate, 3=consumer durables, 4=basic industries,
5=food/tobacco, 6=construction, 7=capital goods, 8=transportation, 9=utilities, 10=textiles/trade, 11=ser-
vices and 12=leisure.

® These are returns on market-value-sorted New York Stock Exchange (NYSE) monthly portfolio deciles
compiled by the Center for Research in Security Prices (CRSP) at the University of Chicago.



Table 2

Principal Components Analysis of the Data

The table provides the eigenvalues (multiplied by 100) of the sample covariance matrix for
the monthly industry and decile returns.

Industry Portfolio Returns

Eigenvalues
4.312 0.217 0.177 0.141 0.098 0.083 0.064 0.057 0.043 0.031 0.026 0.023
Correlation Matrix
1.000 0.810 0.732 0.781 0.695 0.719 0.754 0.696 0.671 0.630 0.603 0.670
0.810 1.000 0.880 0.895 0.883 0.865 0.879 0.835 0.859 0.830 0.740 0.848
0.732 0.880 1.000 0.923 0.845 0.883 0.920 0.833 0.789 0.853 0.706 0.850
0.781 0.895 0.923 1.000 0.869 0.894 0.934 0.839 0.795 0.832 0.713 0.840
0.695 0.883 0.845 0.869 1.600 0.833 0.860 0.766 0.813 0.875 0.713 0.853
0.719 0.865 0.883 0.894 0.833 1.000 0.893 0.806 0.761 0.824 0.724 0.846
0.754 0.879 0.920 0.934 0.860 0.893 1.000 0.836 0.781 0.838 0.731 0.860
0.696 0.835 0.833 0.839 0.766 0.806 0.836 1.000 0.731 0.740 0.699 0.809
0.671 0.859 0.789 0.795 0.813 0.761 0.781 0.731 1.000 0.753 0.695 0.763
0.630 0.830 0.853 0.832 0.875 0.824 0.838 0.740 0.753 1.000 0.674 0.850
0.603 0.740 0.706 0.713 0.713 0.724 0.731 0.699 0.695 0.674 1.000 0.741
0.670 0.848 0.850 0.840 0.853 0.846 0.860 0.809 0.763 0.850 0.741 1.000
Decile Portfolio Returns
Eigenvalues
5.919 0.313 0.052 0.025 0.021 0.013 0.011 0.009 0.008 0.006
Correlation Matrix

1.000 0.956 0.931 0.908 0.888 0.870 0.846 0.811 0.796 0.716

0.956 1.000 0.970 0.960 0.948 0.934 0.913 0.886 0.870 0.801

0.931 0.970 1.000 0.973 0.962 0.950 0.935 0.910 0.890 0.828

0.908 0.960 0.973 1.000 0.979 0.972 0.964 0.946 0.925 0.867

0.888 0.948 0.962 0.979 1.000 0.982 0.974 0.961 0.948 0.894

0.870 0.934 0.950 0.972 0.982 1.000 0.980 0.973 0.963 0.912

0.846 0.913 0.935 0.964 0.974 0.980 1.000 0.981 0.969 0.927

0.811 0.886 0.910 0.946 0.961 0.973 0.981 1.000 0.981 0.945

0.796 0.870 0.890 0.925 0.948 0.963 0.969 0.981 1.000 0.960

0.716 0.801 0.828 0.867 0.894 0.912 0.927 0.945 0.960 1.000




Table 3

Average Pricing Errors

Let 7;; be the return on asset ¢ at time ¢. Assume the K-factor model for the returns:
rie =i+ Binfie+ -+ Bigfre + e, i=1,...,N, t=1,...,T,

where a; = E[r;] is the expected return on asset 4, fi; the k-th pervasive factor at time %, €;;
the idiosyncratic factor of asset i at time ¢, Bz the beta or factor loading of the k-th factor
for asset ¢. The pricing error from the arbitrage pricing theory (APT) is measured by Q > 0,
where Q% = YV (; — Ao — figdy ~— -+ — BixAk)? = %Iy — B*(BY6*)B]a, o
is the intercept of the APT pricing relationship, ) is the risk premium on the k-th factor
(k =1,...,K), B* = (1n,B), B is an N x K matrix of the factor loadings, and 1y is an
N x 1 vector of ones. The data are monthly industry and decile returns from February 1926
to December 1986. With alternative assumptions on the number of factors, the table provides
the posterior means, standard deviations, and the 90% Bayesian confidence intervals for Q (the
results are multiplied by 100) over the whole sample period and its subperiods.

Industry Returns (N=12) Decile Returns (N=10)

K Q std error 90% interval - Q std error 90% interval

Panel A: Feb. 1926 to Dec. 1986 (whole period)

0 0.2408 0.0536 [0.1564, 0.3323] 0.3520 0.0859 [6.2184, 0.5009]
1 0.1184 0.0286 [0.0746, 0.1679) 0.0845 0.0292 [0.0448, 0.1388]
2 0.1169 0.0299 [0.0710, 0.1690] 0.0649 0.0228 [0.0347, 0.1077)
3 0.1070 0.0283 {0.0624, 0.1558] 0.0437 0.0127 [0.0244, 0.0660]
4 0.0982 0.0273 [0.0557, 0.1458)] 0.0422 0.0130 [0.0234, 0.0658]
Panel B: Feb. 1926 to Jun. 1956 (subperiod)
0 0.4237 0.0941 [0.2750, 0.5836] 0.5499 0.1443 [0.3336, 0.8072]
1 0.2083 0.0485 [0.1311, 0.2916) 0.1647 0.0573 [0.0865, 0.2715]
2 0.1767 0.0443 [0.1100, 0.2540] 0.1350 0.0387 [0.0769, 0.2040]
3 0.1681 0.0426 [0.1019, 0.2421] 0.1095 0.0283 [0.0672, 0.1594]
4 0.1504 0.0445 [0.0812, 0.2275] 0.0854 0.0241 [0.0391, 0.1436]
Panel C: Jul. 1956 to Dec. 1986 (subperiod)
0 0.2807 0.6212 [0.1836, 0.3871] 0.3268 0.0731 [0.2122, 0.4528)
1 0.1693 0.0317 [0.1185, 0.2226) 0.0854 0.0236 [0.0498, 0.1275)
2 0.1524 0.0334 [0.0910, 0.2086) 0.0601 0.0183 [0.0325, 0.1004]
3 0.1302 0.0294 [0.0831, 0.1793] 0.0467 0.0145 [0.0257, 0.0824]
4 0.1273 0.0480 [0.0751, 0.2051] 0.0416 0.0159 [0.0214, 0.0811]
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Ordinary-Least-Squares Regression of Industry Returns on the Market Index and APT Factor

Table 5

Let r, be the return on the CRSP value-weighted index in excess of the one-month Treasury-bill
rate, ; be the excess return on the ith industry sorted portfolio. In the case of the APT factor, ry is
the factor estimates plus the associated risk preminm and r; is the return in excess of the zero-beta
rate. The regression is

Tit = Oy + ,Bvi'rvt + €54,

t=1,...,7, ¢:=1,...,N,

where v = m or f. The data are monthly returns from February 1926 to December 1986 (731
observations), and there are N = 12 industries.

®Ums ,Bm-i Rzm Qfi B i R‘?,
Variable (% per month) (% per month)
Industry 1 0.1506 0.9334 0.7033 0.0966 0.8468 0.6310
(0.1279) (0.0223) (0.1414) (0.0239)
Industry 2 0.0303 1.0204 0.9043 0.0104 0.9750 0.8992
(0.0700) (0.0122) (0.0713) (0.0121)
Industry 3 0.0072 1.2750 "0.8997 0.1080 1.2300 0.9132
(0.0898) (0.0156) (o0.0828) (0.0140)
Industry 4 -0.0022 1.0976 0.9334 0.0149 1.0505 0.9331
(0.0618) (0.0108) (0.0615) (0.0104)
Industry 5 0.1496 0.7804 0.8261 0.0118 0.7585 0.8481
(0.0755) (0.0131) (0.0701) (0.0119)
Industry 6 -0.1353 1.1465 0.8313 -0.0993 1.1238 0.8713
(0.1089) (0.0190) (0.0943) (0.0160)
Industry 7 0.0305 1.1052 0.9111 0.0497 1.0663 0.9264
(0.0728) (0.0127) (0.0656) (0.0111)
Industry 8 -0.1980 1.2059 0.7700 -0.1294 1.1582 0.7733
(0.1390) (0.0242) (0.1370) (0.0232)
Industry 9 0.0852 0.7405 0.7541 -0.0679 0.6975 0.7266
(0.0892) (0.0155) (0.0934) (0.0158)
Industry 10 0.0278 0.9559 0.7681 -0.0269 0.9349 0.8002
(0.1108) (0.0193) (0.1020) (0.0173)
Industry 11 0.0345 1.0028 0.5833 0.0028 0.9774 0.6025
' (0.1787) (0.0311) (0.1734) (0.0293)
Industry 12 -0.0557 1.1815 0.7857 -0.0040 1.1638 0.8291
(0.1301) (0.0227) (0.1154) (0.0195)
Market Index APT Factor
205" Jeul 0.0756 0.0518
100 x max |ay| 0.1980 0.1294
x> R? 0.8059 0.8128
ol 0.9922

% p is the correlation between 7, and 7§, the merket index and the APT factor.



Table 6

Ordinary-Least-Squares Regression of Decile Returns on the Market Index and APT Factor

Let r,, be the return on the CRSP value-weighted index in excess of the one-month Treasury-bill
rate, 7; be the excess return on the ith decile portfolio. In the case of the APT factor, r; is the
factor estimates plus the associated risk premium and r; is the return in excess of the zero-beta rate.
The regression is

it == Qlyi + GoiTor + €2, t=1,...,7, i=1,...,N,

where v = m of f. The data are monthly returns from from February 1926 to December 1986 (731
observations), and there are N = 10 industries.

Clni Brmi ani Cfi Jé] 3 Rzz-
Variable (% per month) (% per month)
Decile 1 0.5577 1.2863 0.4931 0.0568 1.6122 0.7412
(0.2303) (0.0552) (0.1671) (0.0395)
Decile 2 0.3722 1.2299 0.6669 -0.6089 1.4639 0.9041
(0.1536) (0.0368) (0.0837) (0.0198)
Decile 3 0.3074 1.2014 0.7265 -0.0249 1.3999 0.9446
(0.1303) {0.0312) . (0.0595) (0.0141)
Decile 4 0.2628 1.1630 0.7884 -0.0080 1.3176 0.9693
(0.1065) (0.0255) (0.0411) (0.0097)
Decile 5 0.1733 1.1359 0.8242 -0.0593 1.2643 0.9790
(0.0928) (0.0222) {0.0325) (0.0077)
Decile 6 0.1738 1.1269 0.8542 -0.0347 1.2359 0.9852
(0.0823) (0.0197) (0.0266) (0.0063)
Decile 7 0.1392 1.1161 0.8994 -0.0203 1.1828 0.9719
(0.0659) (0.0158) (0.0353) (0.0083)
Decile 8 0.0634 1.0836 0.9239 -0.0542 1.1231 0.9520
(0.0550) (0.0132) (0.0443) (0.0105)
Decile 9 0.0813 1.0470 0.9458 0.0217 1.0452 0.9071
(0.0443) (0.0106) (0.0587) (0.0139)
Decile 10 -0.0466 0.9470 0.9705 0.0432 0.8407 0.7384
(0.0292) (0.0070) (0.0878) (0.0207)
Market Index APT Factor
105 el 0.1402 0.0410
100 X max |e;] 0.4253 0.0896
+ 2 R? 0.8537 0.9265
o 0.9565

% p is the correlation between 7', and 7’7, the market index and the APT factor.



Table 7

Average Pricing Errors Under Informative Priors

Let r;; be the return on asset i at time ¢. Assume the K-factor model for the returns:
T =+ Giafuet++ Bikfre+ear, i=1,...,N, t=1,...,T,

where a; = F[r;] is the expected return on asset i, fi; the k-th pervasive factor at time ¢, €;;
the idiosyncratic factor of asset i at time ¢, Bir. the beta or factor loading of the k-th factor
for asset ¢. The pricing error from the arbitrage pricing theory (APT) is measured by Q > 0,
where Q2 = o/[Iy — B*(8¥8*)~18*a/N, B* = (1x,8), B is an N x K matrix of the factor
loadings, and 1y is an N x 1 vector of ones. The data are monthly industry and decile returns
from February 1926 to December 1986 (T = 731). The priors in panel A have larger pricing
errors than those in panel B. In the table, the first row next to a given number of X summarizes
the prior distribution of @, and the second reports the posterior means, standard deviations,
and the 90% Bayesian confidence intervals (the results are multiplied by 100).

Industry Returns (N=12) Decile Returns (N=10)

K Q std error 90% interval Q std error 90% interval

Panel A: A large prior error

1 1.7340 0.3919 [1.1127, 2.4012] 0.3129 0.0791 [0.1879, 0.4469]
0.1214 0.0282 [0.0777, 0.1694] 0.0983 0.0343 [0.0534, 0.1633]
2 1.6231 0.3877 [1.0113, 2.2866] 0.1463 0.0397 [0.0849, 0.2151]
0.1169 0.0277 [0.0734, 0.1642] 0.0596 0.0204 [0.0327, 0.0979)
3 2.1268 0.5373 [1.2856, 3.0608] 0.1492 0.0442 [0.0805, 0.2253]
0.1079 0.0298 [0.0260, 0.0673] 0.0456 0.0125 [0.0260, 0.0673]
4 2.1276 0.5852 f1.2122, 3.1403) 0.1468 0.0477 [0.0734, 0.2292]
0.0913 0.0262 [0.0521, 0.1376] 0.0394 0.0113 [0.0214, 0.0586]

Panel B: A small prior error

1 0.0693 0.0156 [0.0564, 0.1342] 0.0313 0.0079 [0.0188, 0.0447]
0.0357 0.0060 [0.0258, 0.0458] 0.0295 0.0075 [0.0177, 0.0424]
2 0.0649 0.0155 [0.0405, 0.0215] 0.0146 0.0040 [0.0085, 0.0215]
0.0591 0.0136 [0.0377, 0.0822] 0.0145 0.0039 [0.0084, 0.0214]
3 0.0854 0.0215 [0.0520, 0.1224] 0.0149 0.0044 [0.0080, 0.0225]
0.0692 0.0168 [0.0428, 0.0981] 0.0146 0.0043 [0.0079, 0.0220]
4 0.0846 0.0232 [0.0488, 0.1247] 0.0146 0.0048 [0.0073, 0.0280]

0.0675 0.0175 [0.0398, 0.0976) 0.0145 0.0046 [0.0074, 0.0227]




