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1. Introduction

Optimization problems in dynamic, stochastic environments are an increas ingly
important part of economic theory and applied economics. Inspired by th e potential returns
to richer and more realistic models of avariety of policy problemsand the promise of ever-
growing computational power, economists have turned more and more to mod els that can be
simulated but not solved in closed form. Simulation methods can provide solutions for two
related integration problems. One integration problem arisesin model s olution, for agents
whose expected utilities cannot be expressed as a closed function of state and decision
variables. The other occurs when the investigator combines sources of u ncertainty about
modelsto draw conclusions about policy.

This chapter concentrates on simulation methods that are both important and useful in
the solution of these integration problems. In mathematics thereis al ong-standing use of
simulation in the solution of integration problems, notably partial diff erential equations,
where the form of the simulation is often suggested by the problem itsel f. The history of
simulation methods to solve integration problems in economics is shorter , but these
methods are appealing there for the same reason: integration generally i nvolves probability
distributions in the integrand, which thereby suggests the simulation me thods to be
employed.

This pervasive use of simulation methods in science persists despite the well-known
asymptotic advantages of deterministic approaches to integration. This continued use of
simulation methods occurs in part because astronomical computing timeis often required to
realize the promise of deterministic methods. A more important fact is that simulation
methods are generally straightforward for the investigator to implement, relying on an
understanding of afew principles of simulation and the structure of the problem at hand.
By contrast, deterministic methods typically require much larger problem -specific
investments in numerical methods. Simulation methods economize the use of that most
valuable resource, the investigator’ stime.

The objective of this chapter is to convey an understanding of principle s for the
practical application of simulation in economics, with a specific focus on integration
problems. It beginswith adiscussion of circumstancesin which determi nistic methods are
preferred to simulation, in Section 2. The next section takes up general procedures for
simulation from univariate and multivariate distributions, including acc eptance and adaptive
methods. The construction and use of independent, identically distribut ed random vectors
to solve the multidimensional integration problems that typically arise in economic models
is taken up in Section 4, with special attention to combination of diffe rent approaches and



assessment of the accuracy of numerical approximations to the integral. Section 5
discusses some modifications of these methods to produce identically but not independently
distributed random vectors, that often greatly reduce approximation erro r in applicationsin
economics. Recently developed Markov chain Monte Carlo methods, which m ake use of
samples that are neither independently nor identically distributed, have greatly expanded the
scope of integration problems with convenient practical solutions. Thes e procedures are
taken up in Section 6. The chapter concludes with some examples of rece nt applications of
simulation to integration problems in economics.



2. Deterministic methods of integration

The evaluation of theintegral | :Jj‘(x)dx is aproblem as old as the calculusitself and is

equivalent to solution of the differential equation dy/dx = f(x) subject to the boundary

condition y(a)=0. In well-catalogued instances, analytical solutions are available.

(Gradshteyn and Ryzhik, 1965, is a useful standard reference.) Theli terature on numerical
approaches to each problem is huge, areview of any small part of which could occupy this
entire volume. This section focuses on those procedures that provide th e most useful tools
in economics and are readily available in commercial software. This means neglecting the
classical but dated approaches using equally spaced abscissas, like Newt on-Cotes; a useful
overview of these methods is provided by Press et al. (1986, Chapter 4), and a more

extended discussion may be found in Davis and Rabinowitz (1984, Chapter 2).

2.1 Unidimensional quadrature

The principle underlying most state-of-the-art deterministic evaluations of | = J.bf(x)dx
is Gaussian quadrature. If f(x)= p(x)w(x), where p(x) is any polynomial of degree
2n—1 or lower and w(x) isachosen basis function, then there exist points x €[a,b] anda
weight o, associated with each point such that

b b n
Lf(x)dx = L pPO)W(x)dx =" @, p(X)-
The points and weights depend only on a, b, and the function w(x), and if they are known

for a=0and b=1, then it is straightforward to determine their values for any other ¢ hoices
of aand b. If r(x)="f(x)/w(x) isnotapolynomia of degree 2n—1 or lower, then

Zin:lwi r(xl)
may be taken as an approximation to | = ﬁ(x)dx. If r(x) is smooth relative to a

polynomial of degree 2n—1, then the approximation should be good. More precisely, one
may show that if r(x) is 2n-times differentiable, then

J:f(x)dx =3 wr(x)=c,r*"(&)
for some & e[ab], where {c,} is a sequence of constants with lim,_,_c,=0. For
example, if w(x)=1,a=-1b=+1, then ¢, = 22”+1(n!)4/{(2n + 1)![2n!]3} (Judd, 1991, pp.
6-7, 6-8).

This approach can be applied to any subinterval of [a,b] aswell. Aslong as r(x) is

2n-times differentiable, one may satisfy prespecified convergence or error criteriathrough
successive bisection. Error criteria are usually specified as the absol ute or relative



difference in the computed approximation to | = ﬁ(x)dx using n-point and m-point

quadrature (Golub and Welsch, 1969).
Infinite and semi-infinite intervals can be treated through appropriate transformation of

variable to afinite interval (Piessens et al., 1983). Existence and boundedness of r?"
depend in part on the choice of basisfunction w(x). Some of the most useful are indicated

inthe following table.

W(X) Interval Name

1 (-1,1) Legendre
1/V1-x? (-1,1) Chebyshev first kind
V1-x? (-1,1) Chebyshev second kind
exp(—xz) (—o0,400) Hermite
1+ x)“(1-x) (-1,1) Jacobi
exp(—x)x* (0,00) Generalized Laguerre
1/cosh(x) (—o0,400) Hyperbolic cosine

For many purposes Gauss-L egendre rules are adequate, and there is a substantial stock of
commercially supplied software to evaluate one-dimensional integrals up to specified
tolerances. These methods have been adapted to include functions having singularities at
identified pointsin theinterval of integration (Piessens, et al., 1983).

2.2 Multidimensional quadrature

Some multidimensional integration problemsin fact reduce to an integrat ioninasingle
variable that must be carried out numerically. For example, all but one dimension may be
integrable analytically, or the multidimensional integral may in fact be aproduct of integrals
each in a single variable, perhaps after a suitable change of variable. In such cases
guadrature for one-dimensional integrals usually provides a neat solutio n. Such cases are
rare in economics and econometrics. If the dimension of the domain of i ntegration is not
too high and the integrand is sufficiently smooth, then one-dimensional methods may be
extended with practical results. These cases cover asmall subset of in tegration problemsin
economics, but when they arise they deserve attention because quadrature -based methods
are then often efficient and easy to use.

The straightforward extension of quadrature methods to higher dimensions shows both
its strengths and weaknesses. Following Davis and Rabinowitz (1984, pp . 354-359),
supposethat Risan m-point rule of integration over B < R', leading to the approximation

R(f)=2." o f(x)= Lf(x)dx, X, € B,



and that Sisan n-point ruleover G c R°, leading to the approximation
S(f)= ZL Vi f(y) = ij(y)dy, y, €G.
The product rule of R and Sisthe mn-point rule applicableto Bx G,

Rx S(f) 2 Zkl Vief(X;y,) = f [f(xy)dxdy, x, € B,y, €G.

If h(x,y)= Z. R ), and if Rintegrates f,(x) exactly over B and Sintegrates g, (y)
exactly over G (i —l,K ,k), then Rx S will integrate h(x,y) exactly over BxG. The

obvious extensions to the product of three or more rules can be made. T hese extensions
can be expected to work well when (a) quadrature is adequate in the lo wer dimensional
marginals of the function at hand, (b) h(x,y) = f(x)g(y), and (c) the product mn is small
enough that computation time is reasonable. Condition (c) and perhaps (a) are violated
when the support of h is concentrated on a set small relative to the Car tesian boundaries for
that support, as illustrated in Figure 1(a). A more common occurrence in economics
involvesviolations of (b) and (c): BxG = R' x R®, but the function is concentrated on a
small subset of its support that cannot be expressed as a Cartesian prod uct, asillustrated in
Figure 1(b). Whether these difficulties are present or not, the number of function
evaluations and products required in any product rule increases geometri cally with the
number of arguments of the function, a phenomenon sometimes dubbed “t he curse of
dimensionality.”

These constitute the dominant problems for quadrature methods in economi cs. To a
point, one may extend quadrature to higher dimensions using extensions m ore sophisticated
than product rules. These extensions are usually specific to functions of a certain type, and
for this reason the literature is large, but reliable software for a pro blem at hand may be hard
to come by. For example, there has been considerable attention to monom ials (polynomials
for which the highest degree in any one product is bounded), e.g., McNa mee and Stenger
(1967), Genz and Malik (1983), Davis and Rabinowitz (1984, Section 5.7). Compound, or
subregion, methods provide the most widely applied extensions of quadrat ure to higher
dimensions. In these procedures, a finer and finer subdivision of the o riginal integration
region is dynamically constructed, with smaller subregions concentrated where the integrand
ismost irregular. Within each subregion, alocal rule with a moderate n umber of pointsis
used to approximate the integral. If, at a given step, a prespecified g lobal convergence
criterion is not satisfied, those regions for which the convergence crit erion is farthest from
being satisfied are subdivided, and the local rule is applied to the new subdivisions (van
Dooren and de Ridder, 1976; Genz and Malik, 1980; Genz, 1991). For th ese proceduresto
work successfully, it is important to have a scheme for construction of subregions well
suited to the problem at hand, as reconsideration of Figure 1(b) will make clear. For



example, Genz (1993) provides an agorithm that copes well with theis olated peaksin high-
dimensional spaces often found in Bayesian multiparameter problems.

These extensions of quadrature are routinely successful for integrals th rough
dimension four or five. Beyond four or five, success depends on whether the problem at
hand is of a type for which existing subregion methods are well suited. Whereas the
application of quadrature to a function of a single variable can be succ essful as a “black
box” procedure, problems of dimensions three and four are more likely to require
transformations or other analytical work before quadrature can be applie d. There are very
few applications of quadrature-based methods to integrals of more than f ive dimensionsin
the literature.

2.3 Low discrepancy methods
A low discrepancy method defines a deterministic sequence of points {x j }Tzl and a
corresponding m-point integration rule m‘lz?llf(x j) ~ JBf(x)dx. Gaussian quadrature

organizes the choice of points to evaluate interactions of polynomialsw ith basis functions
exactly. Low discrepancy methods choose the sequence to minimize the di fference between
the number of pointsin aset and its measure. (The discussion here ¢l osely follows parts of
Niederreiter, 1992, Chapters 2 and 3.)

The canonical problem sets B = ¢, the d-dimensiona hypercube. (Thisstipulationis
less restrictive than it might seem, and we shall return to this point i n an example in Section
4.4) For arbitrary Sc B define

A(S{Xi}jﬂ) - ijlxs(xj)’
where y<(X) is the characteristic function of Sy (x)=1if xe Sand y((X)=0if x ¢ S.
Thus A(S;{xj};nzl) is the counting function that indicates the number of j with 1< j<m
for which x; € S. If Sisa nonempty family of Lebesgue measurable subsets of %, then

the discrepancy of the point set {x }L is

0.8} = . (s ) /m - 2uts]
where 1,(-) denotes d-dimensional Lebesgue measure. Let S be the family of all

subintervals of T° of theform J",[0,u]. Then the star discrepancy of {xj};nzl is

O3 7] =0u( S0 )



The star discrepancy of {x J. };n:l may be used to bound the error of approximation of
de f(x)dx by m‘lszlf(xj ). Todo so, first define the variation of fon T° in the sense of
Vitali,

————|dxK d
Laxdxl X4

@y (bl 9
v (f) JOL joaxi

for functions f for which the individual partial derivatives are continu ous onT®. Next, let
®(f;i,,K ,i,) be the variation in the sense of Vitali of the restriction of f to the k-

dimensional face {(le X )eT®:x =1forj#i,K ,ik}. The variation of f on T in the

sense of Hardy and Krause is

Vf):zz=1 > VO(Fi K i)

1<i; <K <i <d
(See Niederreiter, 1992, Section 2.2, for an extension of this definiti on to functionsf that are
not d times continuoudly differentiable.) For any sequence {x J. },x | € T,

MY £(x) = [F0dX < V(F) D (XK X,),

the Koksma-Hlawka inequality (Hlawka, 1961; Niederreiter, 1992, Theorem 2.11). The
bound is strict (Niederreiter, 1992, Theorem 2.12).

Low discrepancy methods choose sequences {x; } so as to minimize D:n({xj};nzl).

Intuitively, the star discrepancy can be kept small by spacing the point sx; evenly. A naive
grid on T¢ will achieve this, but requires an impractically large number of points ford >5
in the same way as quadrature does. Low discrepancy methods substantial ly extend the
range of practical d before succumbing to the curse of dimensionality. To describe two
such sequences, begin with the unique base-b expansion of any integer n,
n= Zloaj (n)b’

where b is an integer exceeding 1 and 0< a,(n) <b. Theradical-inverse function ¢, in
base b isdefined by

By(M) =" & (M.
This function maps the integers LK ,m into m distinct points in the unit interval,
maintaining a regular spacing between the points: if m=b* -1, kinteger, then there are m
evenly spaced points beginning with b™ and ending with 1-b™*. Let {b} be a sequence
of relatively prime integers all exceeding 1. (For example, b, =2,b,=3,b,=5K .) The
Halton sequence in bases b,k ,b, is

’

o

{Xj}j:ll X; :[Q)bl(j),K '¢bd(j)]



(Halton, 1960). The m-element Hammersley sequence in bases bl,K b, is

{Xj}j:l! X = [J/m ¢bl ) K, 1( )]
(Hammerdey, 1960). (Aneven earlier, closaly related sequenceisth at of Richtmeyer, 1952,
1958, described in Hammersley and Handscomb, 1964.)

It may be shown (Niederreiter, 1992, Theorem 3.6) that for a Halton se quence in the
pairwise relatively prime bases bl K ,b,,

(2.3.1)
d b'_ _ d _ d-1
< —2L_ Im™*(logm)” + 0lm™(logm)™ " |.
[nj_lzlogbj] (fogm)* + m(logm)**
For the corresponding Hammersey sequence, there is the somewhat better bound
* m b +1
Dm({xj}jzl)<— —1_[J 1(2Iogb logm-+— 5 J
(2.3.2)

d-1 b'_ _ d-1 _ d-2
< [Hj_lﬁglb]m Ylogm)* ™ + O[m *(logm) ]

]
The second inequalitiesin (2.3.1) and (2.3.2) imply that the optimal bases are the primes
themsalves, b =2,b, =3, b,=5K .

If the upper boundsin (2.3.1)-(2.3.2) are used to govern accuracy, then the number of
function evaluations increases faster than geometrically with dimension, d, because of the
presence of the term H.d b —1)/2logh or H b —1)/2logh. Table 1 provides the

number of evaluations required to assure that ‘ijl X;)- _[Tdf(x)dx‘ <c (c=107 or10°®)

for afunction for which the Hardy-Krause total variationis d. It aso provides the actual
number of evaluations required to guarantee an approximation error of ¢ or less for the
function f(x 2 X; . While the upper bound on the number of evaluations required

increases faster than exponentialy in the dimension d, the actual number required increases
not much faster than linearly and is much smaller. 1n general, however, one will not know
the value of the actual error of approximation. The difficulty of assessing this error is a
major disadvantage of low discrepancy and other deterministic algorithms for integration.

2.4 Other deterministic methods

In specialized settings integration in high dimensions can be made more tractable. The
obvious limiting case is the one in which the entire problem may be solv ed analytically. But
there are also classes of problems that cannot be solved anaytically, w ith common features



that suggest specific approximations. An example is provided by Tierney and Kadane
(1986) for aclass of problems arising in Bayesian statistics and econ ometrics:

_ Ja@)exp[xe)]z(6)de [ exp[nL’()]de
- j@exp[l(@)]n:(@)d@ B _[GeXp[nL(G)]da ,
where 1(6) isalog-likelihood function; 7(6) isaprior density kernel; g(0) is a strictly

n

positive function of interest; n is the number of observations entering the log-likelihood
function; L(8) =[logz(6)+ 1(6)]/n; and L' (6) =[logg(6) + log (6) + 1(6)]/n.

Let O denotethemodeof L, and let = = 92 L(é)/&@&@’. Laplace’ s approximation is

L)exp[n L(6)]d6 = J@ exp[n L(é) —%n(e — é),z(e - é) do = (27)<*|x[** exp[n L(é)].

Similaly, if 6" isthemodeof L and ¥’ = 9° L*(é*)/aeae’,then

j@ exp[nL’()]d6 ~ (27)**[="[* exp|n L*(e* )]
The error of approximation in each caseis O(n’”), but in the corresponding gpproximation
E.(g)= (|Z |/|2|)y2 exp{n[L*(é*) - L(é)]}
the leading terms in the numerator and denominator cancel, and the resul ting error of
approximation for E, (g) is O(n™) (Tierney and Kadane, 1986).

The approximate solution provided by this method is a substantial improv ement on
previous approximations of this kind, which worked with a single expans on about 0. The
method exhibits two attractions shared by most specialized approximation sto integration in
higher dimensions. First, it avoids the need for specific adaptive subr egion analysis
required for quadrature, if indeed quadrature can be made to work at all . Second, once
function-specific code has been written, the computations involve standa rd ascent algorithms
to find @ and 6* and are usually extremely fast. This example also shares some
limitations of this approach. First, reduction of approximation error t hrough higher order
approximation is tedious at best, whereas in quadrature one can increase the number of
points or subregions used and in Monte Carlo one can increase the number of iterations.
Second, thereis no way to evaluate the error of approximation; again, q uadrature and Monte
Carlo will provide error estimates. Third, there is possibly time inten sive analytical work
required for each problem in forming derivatives for different g aswell asdifferentl. And
finally, the requirement that g be strictly positiveisrestrictive. Th e method may be extended
to more general functions at the cost of some increase in complexity (T ierney, Kass, and
Kadane, 1989).



3. Pseudorandom number generation

The analytical properties of virtualy all Monte Carlo methods for numer ical integration,
and more generally for simulation, are rooted in the assumption that it is possible to observe
sequences of independent random variables, each distributed uniformly on the unit interval.
Given this assumption, various methods, described in Section 3.2, may b e used to construct
random variables and vectors with more complex distributions. Specific transformations
from the uniform distribution on the unit interval to virtualy all of t he classical distributions
of mathematical statistics have been constructed using these methods. S ome examples are
reviewed in Sections 3.3 and 3.4. Thesedistributions, in turn, congtit ute building blocks for
the solutions of integration and ssmulation problems described subsequen tly in this chapter.

The assumption that it is possible to observe sequences of independent r andom
variables, distributed uniformly or otherwise, constitutes a model or id ealization of what
actually occurs. Inthisregard it plays the same role here with respec t to what follows as
does the assumption of randomness in much of economic theory with respec t to the derived
implications for optimizing behavior or does the assumption of randomnes s with respect to
the development of methods of statistical inference in econometrics. In current methods for
pseudorandom number generation, the observed sequences of numbers for which the
assumption of an i.i.d. uniform distribution on the unit interval is the model, are in fact
deterministic. Since the algorithms that produce these observed sequenc es are known, the
properties of the sequences may be studied analytically in away that ev entsin the real world
corresponding to assumptions of randomness in economic models may not. Thus, the
adequacy or inadequacy of stochastic independence as amodel for these s equencesison a
surer footing than is this assumption as a model in economic or economet ric theory. We
begin this section with an overview of current methods of generating seq uences for which
the independent uniform assumption should be an adequate mode.

3.1 Uniform pseudorandom number generation
Virtually all pseudorandom number generators employed in practice are li near

congruential generators and their elaborations. In the linear congruent ial generator a
sequence of integers {J;} is determined by the recursion

J =(aJ_,+c)modm. (3.11)
The parameters a, ¢, and m determine the qualities of the generator. If ¢ =0, the resulting
generator is a pure multiplicative congruential generator. For example, the multiplicative
generator with m= 2% —1= 2147483647 (a prime) and a= 16807, a= 397204094, or
a= 950706376 is used in the IMSL scientific library (IMSL, 1994), and th e user may

10



choose between different values of ¢ as well as set the seed J,. The sequence {J} is
mapped into the pseudorandom uniform segquence {Ui} by the transformation

U =J/m. (31.2)
If misprime, the sequence will cycle after producing exactly m distinct values; clearly one
can do no better than m= 2* —1 for a sequence of positive integers with 32-bit arithmetic.
There are many criteriafor evaluating thei.i.d. uniform distribution o n the unit interval asa
model for the resulting sequences {Ui}. Informal but useful discussions are provided by
Press et al. (1986, pp. 192-194) and Bratley, Fox and Schrage (1987, pp. 216-220) . More
technical and detailed evaluations, including discussion of the choice of ¢, may be found in
Coveyou and McPherson (1967), Marsaglia (1972), Knuth (1981), and Fishman and
Moore (1982, 1986).

There are many elaborations on pseudorandom number generation that build on the
primitive of the linear or multiplicative congruential generator. Inth e shuffled generator, a
tableisinitidized with g seeds. The generator is then used in the obvious way to select a
table entry pseudorandomly, and J, and U, are generated as described in the preceding
paragraph. Then anew entry is selected pseudorandomly, U, is generated from that entry,
and so on. If the congruential generator produced i.i.d. uniform random variables, so would
the shuffled generator, and shuffled generators extend the upper bound o n cycle length to
mqg; this option is provided conveniently in IMSL. A shuffled generator de scribed by
L’ Ecuyer (1986) has cycle length over 10”. However, the analytical properties of the

shuffled generator are harder to evaluate. In another elaboration on th e basic approach, one
may combine two pseudorandom sequences {J,} and {K;} from the congruential generator

to produce a third sequence {L, } that is then mapped into U;, U, = L;/m, in one of two
ways: (a) Let L, =(J, + K, )modm, or (b) use {K;} to randomly shuffle {J.} and then set
{L,} to the shuffled sequence. Both of these generators extend cycle length , but subtle
issues arise in the combination of sequences. For a discussion of these issues and
comparison of properties, consult Wichmann and Hill (1982) or L’ Ecu yer (1986) for (a),
Marsaglia and Bray (1968) or Knuth (1981, p. 32) for (b).

The add with carry generator (Marsagliaand Zaman, 1991) hasabase b, lags r and s
(r>s), and aseed vector j’=(j,,K ,j,,c) with integer elements j;:0<j <b(i=1K ,r)
and carry bit c=0 or 1. The generated sequenceis j, f(j), f[f(j)] k. with

f(jpK ,jr,c)={

With appropriately chosen base b, lags r and s, and seed vector |, the generated sequence

(l2K e dras i +€0)ifj o+ +C<b

(j2’K 7jr’jr+1—s + j]_ +C— bal) If jr+173 + jl + C2 b'
has period b" + b® —2. Marsaglia and Zaman (1991) discuss appropriate choices of these

11



values. One example is b=2% —5,r = 43 s= 22,and seed vector consisting of any 43
integers in [0, 2% —6]. The sequence of vectors has a cycle exceeding 10", and all

possible sequences of 43 integers appear within acycle. (The add with carry generator is
one of afamily of closely related generators. Marsaglia and Zaman, 199 1, discuss the
family.)

Since pseudorandom numbers are in fact deterministic, some consideration must be
given to systematic differences between the two. One important quality isthe cycle length.
Most simulations on personal computers or workstations are unlikely to e xceed the cycle
length of 2% of typical good linear congruential generators. But a study carried ou t with
vector or parallel processors could well exceed thislength, and in such cases the shuffled or
add with carry generator should be considered. Another quality is absen ce of serial
correlation. Thisiseasily tested but generally is not a problem. Gre enberger (1961) shows
that the first order serial correlation coefficient of any linear congru ential generator is
bounded above by a‘l[l—(6c/m)+6(c/m)2]+(a+ 6)/m, and Knuth, 1981, p. 84, points

out that for nearly all m the serial correlation coefficient islessthan 1/+/m.

Evidence of pseudorandomnessis usually exhibited in high dimensional sp aces. If one
plots successive overlapping sequences of n pseduorandom numbers, then the sequences
typically liein afew hyperplanes of dimension n—1 each. For example, in the case of
linear congruential generators the number of hyperplanes is no more than (n!/m)""
(Marsaglia, 1968): e.g., if m= 2% —1, then sequences of length 6 lie on at most 108 distinct
hyperplanes. In the add with carry generator, successive overlapping se quences of more
than r values lie on hyperplanes with a separating distance is at least 1/+/3 (Tezukaet al.,
1993). One can determine the existence of such hyperplanes using the s pectral test first
proposed in Coveyou and MacPherson (1967). Accessible descriptions of this test are
provided in Knuth (1981) and Bratley, Fox, and Schrage (1987). Most simulation methods
employ highly nonlinear transformations of {U,}, as we shall see subsequently, so the
distribution of sequences on hyperplanes does not carry over. (However , new problems can
arise: see the discussion below of the Box and Muller transformation to construct normally
distributed random variables.)

A few practical stepswill avoid most problems. First, use only uniform pseudorandom
number generators that are completely documented with references to the academic
literature. Second, questions of execution time, often discussed in the academic literature,
areirrelevant in computational economics. subsequent computations using pseudorandom
uniform random sequences take much longer than the most elaborate varian ts on linear
congruential generators, so that even if execution time for these generators could be driven

12



to zero, there would be no significant improvement in overall execution time. Third, one
should ensure that cycle length is substantially greater than the length of the pseudorandom
sequence to be generated. Finally, any publicly reported result based i n part on a sequence
of pseudorandom numbers should be checked for sensitivity to the choice of generator.
This does not imply numerical analysis that takes the investigator far f rom the problem of
interest. A key advantage of Monte Carlo methods, to be discussed in Se ction 4, is that
measures of accuracy are produced as a by-product based on the assumptio n that successive
pseudorandom numbers are independently and identically distributed. Res ults obtained
using variants of methods for producing these sequences should agree wit hin these
measures of accuracy. For example, computations can be executed with di fferent seeds,
with different values of ¢ in (3.1.1), with or without shuffling, or using an add with carry or

related generator. This requires only minor changesin code for most so ftware.

3.2 General methods for nonuniform distributions

Throughout this section, x will denote arandom variable with cumulative distribution
function (c.d.f.) F and support C, and u will denote a random variable with uniform
distribution on the unit interval. If x is continuous, its probability density function (p.d.f.)
will be denoted by f. We turn first to several general methods for mapp ingu into x.

Inverse c.d.f. Suppose x iscontinuous, and consegquently the inverse c.d.f.
F*(p)={cP(x<c)=p}
exists. Then x and F*(u) have the same distribution: P[F™*(u) < d] = Pu< F(d)] = F(d).
Hence pseudorandom drawings {x }L of x may be constructed as F*(u, ), where {u }itl is
a sequence of pseudorandom uniform numbers.

A simple example is provided by the exponential distribution with probab ility density
f(x) = A exp(—Ax), x = 0. Correspondingly, F(x)=1—exp(-Ax), F*(p)=—log(1- p)/A,
and consequently, x =—log(u)/A .

The inverse c.d.f. method is very easy to apply if an explicit, closed f orm expression
for the inverse c.d.f. is available. Since most inverse c.d.f.’s req uire the evaluation of
transcendental functions, the method may be inefficient relative to others. (That isthe case
in the foregoing example; see von Neumann, 1951, or Forsythe, 1972, for amore efficient
aternative.) In some cases, evauation of the c.d.f. issuperficialy closed form to the user of
amathematical software library but in fact involves nontrivial numerical integration of the
kind discussed in Section 2. A leading example is provided by the stand ard normal
distribution, for which specialized methods can be applied to the comput ation of F* (Hart
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et al., 1968; Strecok, 1968), but for which acceptance and composition method s (discussed
below) are more efficient.

Discrete distributions. Suppose that the random variable X takes on afinite number
of values, without loss of generality the integers Lk ,nand P(X=i)=p. The preferred
methods will depend (among other things) on the number of draws to be made from the
distribution. If only afew draws are to be made (as may be the case w ith the Markov chain
Monte Carlo methods discussed in Section 6), then the obvious inverse m apping from the
unit interval to the integers 1,K ,n can be constructed and subsequently used to search for
the appropriate integer corresponding to the drawn u. The disadvantage of this method is
that the search time can be substantial. If many draws are to be made, then the aias method
due to Walker (1974) and refined by Walker (1977) and Kronmal and Pe terson (1979) is
more efficient. The basic ideaisto draw an integer i from an equiprobable distribution on
the first n integers, and choose i with probability r,and its alias a with probability 1—r,.
If thevaluesof a and r, are chosen correctly, then the resulting choice probabilitiesare p
fori (i=1K ,n). Setting up thetable of r, and a reguires O(n) time (see Bratley, Fox,
and Schrage, 1987, pp. 158-160, for an accessible discussion); whether this overhead is
worthwhile depends on the value of n and the number of draws to be made from the
discrete distribution. The aliasing algorithm isimplemented in many mathematical software
libraries.

Acceptance methods. Suppose that x is continuous with p.d.f. f(x) and support C.
Let g bethe p.d.f. of adifferent continuous random variable z with p.d.f. g(z) which has a
distribution from which it is possible to draw i.i.d. random variables and for which
sup,..[f(X)/9(x)] = a< ee.
The function g is known as an envelope or majorizing density of f, and the distribution with
p.d.f. gisknown asthe source distribution. To generate X,
() Generate u;
(b) Generate z;
() If u>f(2)/[ag(z)], goto (a);
(d x =z
The unconditional probability of proceeding from step () to step (d) inany passis
[ {f2/[ag@]}g(2)dz=a",
and the unconditional probability of reaching step (d) with valueat m ostc in any passis

[ {f@)/[ag(2)]}o(z)dz=a"F(c).
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Hence the probability that x;, isat most ¢ at step (d) is F(c).

The principle of acceptance sampling isillustrated in Figure 2. The tw o essentials
of applying this procedure are the ability to generate z and the finite upper bound on
f(x)/9(x). Theefficiency of the method depends on the efficiency of generating z and the
unconditional probability of acceptance, which isjust the inverse of th e upper bound on
f(x)/g(x). (Inthisrespect, acceptance sampling is closely related to importan ce sampling
discussed in Section 4.3.) The great advantage of acceptance sampling isits ability to cope
with arbitrary probability density functions as long as the two essential conditions are met
and efficiency is acceptable for the purposes at hand. Notice that the method will work in
exactly the sameway if f(x) ismerely the kernel of the p.d.f. of x (i.e., proportional to the
p.df.) aslong as a=sup,..[f(x)/g(x)] (although in this case a™ no longer provides the
unconditional acceptance probability). This property can be exploited to advantage to avoid
numerical approximation of unknown constants of integration.

Specific examples providing insight into the method may be found in the family of

truncated univariate normal distributions. As afirst example, consider the standard normal
probability distribution truncated to theinterval (0,.5):

f(x) =(.19146)"(27) " exp(—x*/2) = 2.0837exp(—x°/2), 0 < X <.5.
The standard normal distribution itself is a legitimate source distribut ion, but since
SUP,. .« 5| F(X)/9(x)] = (.19146) ", the efficiency of this method is low. However, for a
source distribution uniform on (0, .5], sup,.,.[f(X)/9(x)]=2.0837/2.0=10418: the
unconditional probability of acceptance is (1.0418) " =.95985. As a second example,
consider the same distribution truncated to the interval (5, 8]:
f(x)=(2.8665x107) "(27) ™ exp(~x?/2) = (13917 x 10°) exp(—x*/2), 5< x < 8.
The standard normal fails as a source distribution since the acceptance probability is
2.8665x107". A uniform source density yields an acceptance probability of only .064 271.
An exponential distribution translated to the truncation point is for many purposes an
excellent approximation to a severely truncated normal distribution (Marsaglia, 1964;
Geweke, 1986), and for the exponential source density, setting the para meter equal to the
truncation point is an optimal or near optimal choice (Geweke, 1991). One can readily
verify that the acceptance probability for the source density
g(x) = 5exp[-5(x - 5)], 5< x<8,

iS.96406.

Optimizing acceptance sampling. Acceptance methods may readily be extended to
multivariate distributions. Thistopic istaken up in detail in Section 4.2. We turn now to

15



the question of finding an optimal source distribution for a specified p roblem and develop
results for the general case of univariate or multivariate distributions.

In general, suppose that it is desired to draw i.i.d. variables from a d istribution with
target density kernel f(x;6),0 € ©, having support C(0) < R™; the parameter vector 6
indexes afamily of density kernels f(-). Suppose that afamily of source distributions with
densities g(x; @), € A < RP, having support D(cx), has been identified, with the property
that for all 6 € ©, there exists at least one o for which sup, ., f(x;0)/g(x;a) <. To
accomplish the goal of i.i.d. sampling from f(x;0), draws from g(x; &) are retained with
probability g(e,0)f(x;60)/9(x; ), where

a(e.8) = [sup,.,, F(x:0)/a(X;1)]
Suppose the family of source densities g(-;-) has been fixed, but not the value of ¢, and
that the objective is to maximize the unconditional probability of accep ting the draw from
the source distribution. Just asin the foregoing examples, this uncond itiona probability is
[, [a(@.0)(x;0)/g(x: o) gx; ) = (e, 6).
Hence the problem isto determine the saddle point
minaeA{maxXGC(e)[logf(x; 6)—logg(x; oe)]}.
Given the usual regularity conditions, a necessary condition isthat o be part of a solution
of the (m+ p)-equation system
d[logf(x;0) —logg(x;c)]/ox =0
dlogg(x;a)/da = 0.
As an example, consder the target density kernel
(T, m) = (x/2)"*[T(x/2)] " exp(-nx),
which arises as a conditional posterior density kernel for the degrees-o f-freedom parameter

in a Student-t distribution (Geweke, 1992b, Appendix B). For the exponential family of
source densities g(x; o) = axexp(—ax) , the regular necessary conditions are that

(T/2)[log(%/2) +1- w(x/2)]+ (e — 1) =0,
at-x=0,
where y(-)=T"(-)/T(-) isthe digammafunction. Thedesired value of « is the solution
of
(T/2)[-log(2ex) +1- w(1/2a)] +(er— 1) =0,
which may be found using standard root-finding algorithms. Acceptancer ates of about .15
are reported in Geweke (1992b).
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Adaptive methods. It may be possible to improve upon a source distribution, using
information about the target distribution acquired in the sampling proce ssitself. A very
useful application of this idea has been made to the problem of sampling from distributions
with log-concave probability density functions. It isespecidly attrac tivewhen it is costly to
evaluate the target density kernel at a point or when known source dens ties are inefficient or
nonexistent. The exposition here closely follows Gilks and Wild (1992) , who build on
some earlier work by Devroye (1986); see Wild and Gilks (1993) for a published
algorithm. An application of thisagorithm isdiscussed in Section 7.1 .

Let h(x)=logf(x). The support D of f(x) isconnected, and h(x) is differentiable
and weakly concave everywherein D;i.e, h’(x) ismonotonicaly nonincreasing in x on D.

Supposethat h(x) and h’(x) have been evaluated & kpointsin D, x, <K <X, k> 2.
We assume that if D is unbounded below, then h’(x,) >0 and that if D is unbounded
above, then h’(x, ) < 0. Let the piecewise linear upper hull u(x) of h(x) be formed from
the tangentsto h(-) at the x;, as shown in Figure 3. For j=1K ,k—1 thetangentsat x,
and x., intersect at

j+1

W, = h(x;.2) = h(x )= X W(%.0) + % H(%)
j h’(xi ) - h'(XHl)

Further let w, denote the lower bound of D (possibly —e) and w, the upper bound of D

(possibly +<). Then
u(x) = h(xj)+(x— xj)h’(xj), X€ (WH,WJ.].
Similarly the piecewise linear lower hull 1(x) of h(x) isformed from the chords between
the x;,
(%02 = x)0x;) + (x= %) h(x;..)
X \q — X:

1(x) = -

For subsequent purposesit is useful to extend the definition to include
1(X)=—o0, X< X OF X>X,.
At the start of an acceptance/rejection iteration, the function exp[u(x)] forms a source
density kernel, and exp[1(X)] is a squeezing density kernel. The iteration begins by
drawing avalue z from the distribution with kernel density function exp[u(x)]. This may

cXE (X

be donein two steps:
(@ Compute p; =P(w;_, <x<w)=1,/1(j =1K k), where

exp[h(xj)— x; h(x, )]exp[h’(xj J(w, —wj_l)]/h’(xj) if h(x)#0
h(x; J(w; —w,_,) ifh(x ) =0
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and | = ij:ll ;- Choose an interval (Wj_l,Wj] from this discrete distribution as

described above.

(b) Conditional on the choice of interval the source distribution is exponen tial. Draw
z from this distribution as previously discussed.

Thedraw z is accepted or rejected by means of the acceptance sampling algorithm

described above, but using the following shortcut. Having drawn u, we know that z will be
accepted if u<exp[1(z) - u(z)], and in this case no further computations are required. If

u>exp[1(z)-u(z)], then evaluate h(z) and h'(z) and accept z if and only if
u<exp[h(z)-u(z)]. Inthelatter caseadd z to the set of points (x,,K ,x,), reordering the
x;'s, and update u(-) and 1(-), unless z is accepted and no more draws from the target

distribution are needed. This completes the acceptance iteration.

Notice that this algorithm is more likely to update the source and squee zing densities
the more discordant are these functions at a point. As the algorithm pr oceeds, the
probability of acceptance of any draw increases toward 1, and the probab ility that an
evaluation of h will be required for any draw fallsto O.

Composition algorithms. Formally, composition arises from a p.d.f. representation
f()=] g,(x)adH(y).

A random variable Y from distribution H is generated, followed by arandom variable X
with p.d.f. g,. This method goes back at least to Marsaglia (1961), who used it to generate

normal random variables. It isalso the natural method to use for mixtu re distributions. For
example, supposethat x is drawn from a N(0,.1%) distribution with probability .95 and a
N(0,10?) diistribution with probability .05. The probability density
.95(27r) **(.1) " exp(—x*/.02)+.05(27) **(10) " exp(—x*/200)
isstrongly leptokurtic and not well suited to acceptance sampling. But the construction of
the random variable in fact corresponds to a composition with
P(Y =0)=.95, P(Y =1)=.05,
Ov_o(X) = (2m) (1) " exp(—x*/.02), g,_,(x)=.05(27)™"*(10) " exp(—x*/200).

3.3 Selected univariate distributions

In most cases there is associated with each of the classical univariate distributions a
substantial literature on the generation of corresponding pseudorandom v ariables. Good
mathematical and statistical software libraries have drawn on thisliter ature and are widely
available. In many cases the most efficient and accurate routines are n ot simply
implementations of the constructions that appear in the mathematical statistics literature, and
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the user is well-advised to take advantage of the capital embodied in go od libraries. The
discussion here is limited to illustrating how the techniques discussed in Section 3.2 are
used in specific cases. More thorough surveys in the literature are p rovided by Bratley,
Fox, and Schrage (1987, pp.164-189) and Devroye (1986). All of the methods discussed
here are implemented in good software libraries, which should always be used. This
discussion is not intended to form the basis of reliable code.

Binomial distribution. The binomial distribution indicates the probability of k
successesin n independent trialsif p isthe probability of successin any giventrial:

p(k) = ()P (- p)"".
The definition provides a direct method for generating the random variab lek, but is
acceptably rapid only if n issmall. For small values of np, the inverse c.d.f. method is
practical since p(k) will typically require evaluation for only afew valuesof k. In all other

cases, however, composition algorithms with acceptance methods are more efficient.
Examples are given by Ahrens and Dieter (1980) and Kachitvichyanukul ( 1982).

Univariate normal distributions. Inverse c.d.f methods for the standard normal have
already been mentioned. Acceptance sampling methods are not hard to design, especialy if
one exploits the exponential source distribution asfirst noted by Marsaglia (1964). Related
and succeeding work by Marsaglia and Bray (1964); Marsaglia, MacLaren, and Bray
(1964); and Kinderman and Ramage (1976) combining acceptance samplin g and
composition form the basis for the generation of standard normal variabl esin most software
libraries.

Box and Muller (1958) showed that if U, and U, are mutually independent standard
uniform random variables, then

X = cog(2nU,),/-2logV,, Y =sin(27U,),/-2logu,
are independent standard normal random variables. (The key to the demo nstration liesin a
transformation to polar coordinates.) The combination of this method w ith the linear
congruentia random number generator produces a pathology, however. If U, and U, , are
successive redlizations of (3.1.1)-(3.1.2), then
U.., =[(amU, + c)modm]/m=
cos(27U

and hence
X, = cog2zn(au, +c/m)|-2logV;, Y, =sin[2z(aU, +c/m)|,/-2logU, .

) = cod27(aU, +¢/m)], sin(27U,,,) = sin[27(ay, + c/m)]

i+1
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All possible values of (X,Y;) fall on a spiral. As an approximation to a pair of
independent variables the distribution of (X,Y;) could hardly be worse. However, if one
discards ;, the sequence { X} suffers from no known problems of thiskind. Thisisone

of the reasons that acceptance sampling and composition rather than the Box-Muller
transformation is used in statistical libraries. It illustrates the risksinvolved in seemingly
straightforward combinations of distribution theory with pseudorandom un iform variables.

Given a sequence of standard normal random variables {z} a sequence from the
genera univariate normal distribution N(/,L,GZ) can be generated through the familiar
transformation x, = i + o0z,

Gamma distributions. The gamma distribution is important in its own right, for
included special cases like the chi-squared, and as a building block for other distributions
like the beta. The gamma distribution with scale parameter A and shape parameter a has
probability density

f(x) = A exp(—Ax)(Ax)* " /T(a), x> 0.
In general, random variables from this distribution may be generated eff iciently using
composition algorithms and acceptance methods. Fast and accurate method s are
complicated but readily available in statistical software libraries. Fo r example, IMSL uses
the composition-acceptance methods of Ahrens and Dieter (1974) and Sch meiser and Lal
(1980). A few specia cases are worth note.
(@ If a=1, then the distribution is exponential with parameter A and the inverse
c.d.f. method discussed above is much more efficient.
(b) If a=0.5,then x=2"/2,z~N(0,2%).
() If A=0.5,then x~x*(v),v=2a. If aisaninteger, then x is the sum of a
independent exponentially distributed random variables each with paramet er
A=0.5. If v isanodd integer, then x is the sum of [v/2] independent
exponentially distributed random variables plus the square of an indepen dent
standard normal. For integers up to v =17, these representations provide the
basis for more efficient generation from the chi-squared distribution, b ut for larger
integers it is more efficient to use the more general composition-accept ance
methods.

3.4 Selected multivariate distributions

Generation of random vectors typically builds upon the ability to generate univariate
random variables. Just how this should be done is not always obvious, h owever, and
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sometimes the obvious method is not the most efficient. The examples th at follow are
intended only to illustrate this fact. Statistical software libraries s hould be consulted for
implementation of these methods.

Multinomial distribution. The multinomial distribution indicates the probability of k;
redizations of outcome |, from m possible outcomes, in n independent trials. If p;isthe

probability of outcome | in any given tria, then
( ) H Hjlp]’ kizoandezlkJ:n'
j=1 i

The decomposition of this distribution into its full conditionals, p(k,), p(k,k ).k
p(kj‘kl,K ,kj_l),K Dk kK K, ), may be used to generate the k. We have

These distributions are all binomial.

Multivariate normal distribution. The generation of a multivariate normal random
vector x from the distribution N(,X) isbased on the familiar decomposition

z~N(O,1,), x=u+AzwithAA’=%.

While any factorization A of X will suffice, it is most efficient to make A upper or lower
triangular so that m(m+1)/2 rather than m* products are required in the transformation

from z to x. The Cholesky decomposition, in which the diagonal elements of the upp er or
lower triangular A are positive, istypicaly used.

. . . IID — -—
Wishart distribution. If x, ~ N(0,), the distribution of A = > (% —x)(x, -X)
is Wishart, with p.d.f.
A exp(—3tr='A) _
%(n—l)m m(m— % n- m 1]
2 A" T (n=1)]

for brevity, A ~W(Z,n-1). (For obvious reasons this distribution arises frequently in

f(A)=

simulations. It isalso important in Bayesian inference, where the post erior distribution of
the inverse of the variance matrix for a normal population often has thi s form.) Direct
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construction of A through generation of {x,}" | becomesimpractical for large n. A more

efficient indirect method follows Anderson (1984). Let X have lower triangular Choleski
decomposition £=LL’", and suppose Q~W(l ,n—1). Then LQL’~W(Z,n-1)
(Anderson, 1984, pp. 254-255). Furthermore Q has representation

Q=UU" uy =0(i<j<m)

u; ~N(0,1) U ~x*(n—i)
(i=1x ,m), withthe u, mutualy independent for i > j (Anderson, 1984, p. 247). Evenif

n is quite small, this indirect construction is much more efficient than the direct
construction.
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4. Independence Monte Carlo

Building on the ability to produce sequences of vectorsthat are well de scribed asi.i.d.
random variables, we return to the integration problem with particular attention to high
dimensions. There are two distinct but closely related problemsthat ar ise in economics and
€conometrics.

Problem| isto evaluate

| = .[Df(x)dx.
Problem E isto evaluate
E = E[g(x)],
where x is a random vector with c.d.f. P(x). To simplify notation, assume that P is
absolutely continuous and that x has a probability density function p(x). Itisimplicitin
Problem E that JD g(x) p(x)dx isabsolutely convergent initsdomain D. Detailed examples

of Problems E and | are provided in Section 7.
If arandom vector z has p.d.f. p(z), then any function r(z)=a-p(z),a> 0, issaid to

be a kernel density function for z. In order to express some key moments compactly, let
E.[09(z)] denote the expectation of g(z) if z has kernel density function r(z); similarly

var,[g(z)] for variance.

Many of the procedures discussed in this section are straightforward app lications of
two results in basic mathematical statistics. Let {y,} be an i.i.d. sequence from a

population, and let y, = %Z:ilyi and & = %Zil(yi ~y,)’. If the population has finite
first moment, then E(?N) = E(y) and the strong law of large numbers states that

yN a.s. E(y),
i.e, P[lim,__¥, =E(y)|=1 If the same population also has afinite variance ¢, then the
central limit theorem establishes that

YN[y - E(y)|——>N(0,067);

ie., IimN%P{x/N[yN - E(y)]< co} = ®(c), where ®(-) is the c.d.f. of the N(0,2)
distribution. In this case E(s) = ¢, and from the strong law of large numbers,

Si a.s. 0.2.

4.1 Simple Monte Carlo
In the case of Problem I, suppose that
f(x)=g(x)p(x),
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with p(x) > 0 and jD p(x)dx = p’, where p is aknown positive constant. Then p(x) is a
kernel density function. Suppose further that it is possible to draw ps eudorandom vectors
{x,} from the distribution with probability density function p(x)/p", as described in
Section 3. Since
= [ fO)dx= [ p g(x)[p(x)/pJdx = E [ p 9(x)],
it follows that
ly=N*p* Y g(x)—22-1. (4.1.1)
The requirement that p is known may be weakened by replacing p with a sequence
py—>-p in the last expression. (Some practical methods of producing p, at
essentially no incremental cost are taken up in Section 4.2.) If p’ isknown, then E(1) =1,
butif p° must be replaced by a consistent estimator, then in general E(IN) #1 but (4.1.1)is
gtill true.
If in addition J'D g’ (x) p(x)dx is absolutely convergent, this result can be extended to
provide a measure of the accuracy of | . Let
o =var,[p g09)]=p*[ [0 9(x) 1] p(x)dx.
Then
IN(Iy = 1)—25N(0,6%), NS [pg(x)-1,] —22> 0.
(The result may be extended to include casesin which p’ is approximated by a sequence of

Py, but some changes are required; see Section 4.2.) Thisresult makes e xact the intuitive
notion that p(-) should be chosen to mimic the shape of f(-).

The solution of Problem E by simple Monte Carlo is even simpler, aslong asit is
possible to construct an i.i.d. sequence from the probability distributi on of x in E[g(x)],

for then E, = %Zilg(xi)LE and E(E,)=EVN. Itis not necessary to know the
integrating constant of the kernel probability density for x. If ¢ = var[g(x)| exists, then
VN(E, - E)—>N(0,67) aswell.

Asan example, consider the problem
= [, 100ck = [, g0 PO = [ g0x)expl 4 (x- 0) Hix—10) i

where H ispositive definite. Since p(x) isamultivariate normal kernel density function,
11D

e =r) " HENY " g(x), x ~N(,H™).
Because p(x)=0Vxe R, I, —2>-1 regardless of the form of f(x). However,

convergence will beimpracticaly dow if g(x) isill conditioned or (equivalently) 4 and H
are chosen so that p(-) poorly mimics f(-). If var [g(x)] exists, then
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o* = (2m)H|var,[g(x)]
provides the pertinent measure of the adequacy of 1, as an approximation of |. Only this
expression -- not the dimensionality k -- matters.

4.2 Acceptance methods
Acceptance methods may be used to evaluate integrals in much the same way as they
are used to produce pseudorandom numbers. In Problem I, supposethat 0< g(X) < a<eo

Vx e D. Suppose further that p is known or equivaently that p(x) is a probability
density function and not merely a kernel. Let {x;} be an i.i.d. sequence drawn from a

distribution function with p.d.f. p(x), and let u be a corresponding Bernoulli random
vaigble,
u=0orl Pu=1)=a'g(x).
Then
I, = N‘lazitlui —2>5aE (u)= aJ'D a’tg(x)p(x)dx =1,

E(ly)=1VYN, VN(I,-1)—>N(0,6%),
o’=al-1?, al,-I12—2%5¢2 (4.2.1)

This method may be extended to g(x) for which —eoc <1< g(X)<u<eo, by defining
g (x) =sup[0,9(x)], g~ (x)=—inf[0,g(x)], and approximating jD g*(x)dx and JD g (x)dx
separately. Observe that o is an increasing function of a and the unconditional
probability of acceptance P(u =1)=a'l is adecreasing function of a. If p(x)e<g(x),
then P(u)=1 and o®=0, but this is tantamount to being able to integrate f(x)
analytically. In general one seeksto minimize a. If a istoo large, then very few u, will be
accepted, and the method will beimpractical.

In Problem E, acceptance methods may be applied to draw from the distrib ution with
probability density p(x). If h(x) is a source density as described in Section 3.2,
0< p(x)/h(x)<a<«Vxe D, then a sequence of i.i.d. draws from the distribution with
p.d.f. p(x) may be constructed. If wetake {x; }iN:1 to be the accepted draws, then

E,=N?Y" g(x)—2>E, E(E,)=EVN, “N(E,-E)—“>N(0,6?),
o® =var [o(X)], s = Zil[g(xi)— EN]Z/NLGZ. (4.2.2)
If we take {z,}" to be draws from the source density, and u =1 if z is accepted and
u =0 if not, then
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E, INllg )/ Y u—2sE, \W(E ~ E)—>N(0,06%),

=11
o’ = a_[D ) EJ* p(2)dz, az /z u—2>50°. (4.2.3)
(In this case one again seeks to choose h(x) so asto minimize a.) Which expression is
more relevant depends on the particulars of the problem. We shall retur n to thistopic in
Section 4.4.
The acceptance method just described assumes that the probability densit y is known,
including its constant of integration -- i.e., j x)dx =1. Thisassumption may be strongin

practice. In Problem I, one may recognize p(x) as a probability density kernel, not

knowing the constant of integration. Acceptance or adaptive methods mig ht be applied to
draw from the distribution with kernel density p(x); these methods do not require that one

know the constant of integration for p(x). If p(x) isthe kernel and p = j x)dx, it is

then the case for acceptance methodsin Problem | that
W=Nap Yy 2

Whether or not consistent evaluation of p’ is possible depends on the method used to
draw variables from the distribution with kernel p(x). If the method is acceptance sampling
or avariant on acceptance sampling (e.g., the adaptive method for log- concave densities
described in Section 3.2), one can approximate p using the methods just described as long
asthe actual probability density (not just the kernel) of the source distribution for the target
kernel p(x) is known. This produces a sequence p with the property
Py = N‘lzitl p—2>-p". Inthiscaseclearly

ly=N7ap, " u—2251, VN(I, - 1)—=>N(0,6?),
but o? is affected by the substitution of p, for p'.

One may work out expressions for ¢ and a corresponding consistent (in N)
approximation of ¢, as has been done already in several cases. Such expressions are quite
useful in the analytical comparison of approximation methods. But if th e goal issimply to
assess approximation error, straightforward asymptotic expansion is much simpler. To
illustrate the method, return to the case of simple Monte Carlo integrat ion with p° unknown,

(4.1.1). Let M be the number of i.i.d. draws from source density h(z) for target density
p(z), define a=sup,[p(z)/h(z)], and let

=p(z,)/Nn(z)
. {1with probability p(z)/ah(z),
" |0 otherwise

w =y gz)
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Defining y,, = M‘lzzlyi, g, =M™ Zlqu_VM = M‘lzzlvvi,
Ly = YuW, /Oy —=—1.

Aslong as J'Dgz(x) p(x)dx is absolutely convergent, \V'M(1,, — I)—2>N(0,0?), and

a.s. 2

o".

yl\zll Wl\2/1 Ul\?l YM WM VM ljM WM UM
(This expression may be derived by the delta method, i.e., by linearizi ngl,, in y,,, G,, and
W,,. Theterms var(y,), cov(y,,w,), etc., are computed in the usual way from {y,w,,u}" )

IfA[Vér(y‘) . var(w,) N var(u) . 2cov(y;, W)  200v(y,,u) 2cov(w,u)

4.3 Importance sampling

The method of importance sampling may be used to solve Problem | or Prob lem E,
under similar circumstances. one has available a probability distributio n with p.d.f.
somewhat similar to the integrand f(x) in Problem | or the probability density function
p(x) in Problem E and wishes to use an independent, identically distributed sample from
this distribution to approximate | or E. Rather than use acceptance to generate an i.i.d.
sample from the distribution with p.d.f. p(x), importance sampling uses al of the draws
from the source probability distribution but weights that sample to obtain a convergent
approximation. In this method the probability density function of the s ource distribution is
called the importance sampling density, aterm due to Hammersly and Hand scomb (1964),
who were among thefirst to proposed the method. 1t appears to have bee n introduced to the
economics literature by Kloek and van Dijk (1978). We shall denote th e importance
sampling density j(x).

Suppose that for Problem | one can draw an i.i.d. sequence of random ve ctors{xi}
from the importance distribution and that the support of this distributi on includesD. Then

E,[f(x)/i(x;)]= jD[f(x)/j(x)]j(x)dx = JDf(x)dx =1.
Since f(x;)/j(x;) isalsoani.i.d sequence,
|, = N*lZiN:l[f(xi)/j(xi)]L)l

by the strong law of large numbers. Furthermore, E(IN) =1VN. Thisresult isremarkable
for its weakness: no upper bound on f(x)/j(x) is required as is the case for f(x)/h(x) in
acceptance sampling. The requirement that the support of j(x) include D is necessary and
usudly trivia to verify.

In Problem E importance sampling may be attractive if there is no simple method of
constructing pseudorandom numbers drawn from the distribution P(-) underlying the

expectation operator. If the constant of integration for the probabilit y density is known,
then
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E,=N?*Y" [a(x)) (x,)]—=—>Eand E(E,)=EVN
aslong asthe support of thei mportance %mplmg distribution includes that of P(-). If the
constant of integration is not known and p(x) is merely the kernel of the probability density
function, _[Dp X)dx = p’, then

N3 o) p(x )/i(x) | === P'E. N7 [p(x)/i(x)]—==—

and hence

> L) p(x)/i(x)] .
Ey = o Jp ] E, (4.3.1)

but of course E(E, ) # E in general. In elther case W(x) = p(x)/j(x) may be regarded as a
weight function, large weights being assigned to those g(xi) for which the importance

sampling distribution assigns smaller probability than does the probabil ity distribution
P(-).

To assess the accuracy of importance sampling approximations using a cen tral limit
theorem, more is required. In the case of Problem |, suppose that jD[fz(x)/j(x)]dx is

absolutely convergent. Then f(x;)/j(x;) isani.i.d. sequence and
ly—22>1, VN(I,-1)——>N(0,6%),

fz(x):| 2 |:f( :| v ( )

o= | ax—12=E & = S22 67 (43.2)
L[ i(x) Lix) s PEx) "

It is therefore practical to assess the accuracy of |, as an approximation of |. The
convergence of JD[fz(x)/j(x)]dx must be established analytically, however. If [f(x)/j(X)| is

bounded above on D or if D is compact and f?(x)/j(x) is bounded above, then
convergence obtains. If neither of these conditionsis satisfied, then verifying convergence
may be difficult. In choosing an importance sampling density, it is esp ecialy important to
insure that the tails of j(x) decline no faster than those of f(x). If these conditions are not
met, but one still proceeds with the approximation, then convergenceis usualy quite slow.

Violation of the central limit theorem convergence condition then may be evidenced by
valuesof < that increasewith N.

Assessing the accuracy of E,, asan approximation of E is complicated by the ratio of
termsin (4.3.1). If both
E,[w(X)]= j [P*(x)/j(X)]dx and E,[g*(x)w (x)]:JD[gz(x)p(x)]dx (4.3.3)

are absolutely convergent, then
E,—2*>E, VN(E,-E)—>N(0,0%),

= Ep{[g(x)— E]Zw(x)} =p D{[g(x) ~E['w x)p(x)}dx, (4.3.4)
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N 2
2 NZi:l[g(Xi)_ E] W(Xi) as. 2
S = - 5 o°.
[Zizlw(xi)]
(Derivations are given in Geweke, 1989.) This result provides a pract ical way to assess

approximation error and also indicates conditions in which the method of importance
sampling will work well for Problem E. A small value of Ep[w(x)], perhaps as reflected in

asmall upper bound on w(x), combined with small var [g(x)], will lead to small values of

o’. Asin the case of Problem I, central limit theorem convergence condit ions must be
verified anayticaly.

There has been little practical work to date on the optimal choice of im portance
sampling distributions. Using aresult of Rubinstein (1981, Theorem 4. 3.1) one can show
that the importance sampling density with kernel |g(x)— E|p(x) provides the smallest
possible value of ¢”. Thisis not very useful, since drawing pseudorandom vectors from
this distribution is likely to be awkward at best. There has been some attention to
optimization within families of importance sampling densities (Geweke, 1989), but

optimization procedures themselves generally involve integrals that in t urn require numerical
approximation. Adaptive methods use previously drawn X, to identify large values of

f(x)/j(x), w(x), or g*(x)w(x) and modify j(x) accordingly (Evans, 1991). Such
procedures can be convenient but are limited by the fact that x; isleast likely to be drawn
where j(x) issmall. Informal, deterministic methods for tailoring j(x) have worked well in
some problemsin Bayesian econometrics (Geweke, 1989).

In Problem | the objective in choosing the importance sampling density i sto find j(x)
that mimics the shape of f(x) as closely as possible; the relevant metric is (4.3.2). Finding
j(x) o< f(x) will drive o to zero, but this amounts to analytical solution of the problem
since JDj(x)dx =1. In Problem E the relevant metric (4.3.4) is more complicated, invol ving
both the variance of g(x) and the closeness of j(x) to p(x) as reflected in
w(x) = p(x)/j(x). Aslongas var [g(x)]> 0, no choice of j(x) will drive o” to zero, and
if var [g(x)]=0, then Problem E reduces to Problem I. If j(x)e<p(x), then
o’ = varp[g(x)], which can serve as a benchmark in evaluating the adequacy of j(x). The
ratio o”/var [g(x)] has been termed the relative numerical efficiency of j(x) (Geweke,
1989): it indicates the ratio of iterations using p(x) itself as the importance sampling
density, to the number using j(x), required to achieve the same accuracy of approximation

of E. Relative numerical efficiency much less than 1.0 (Iessthan 0.1, cer tainly less than
0.01) indicates poor imitation of p(x) by j(x) inthe metric (4.3.4), possibly the existence
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of a better importance sampling distribution or the failure of the under lying convergence
conditions (4.3.3).

4.4 A note on the choice of method

There is considerable scope for combining the methods discussed in Secti ons 3 and 4.
For example, the pseudorandom number generation in making draws from the population
with probability density h(x), in the case of acceptance sampling, or j(x), in the case of
importance sampling, generally will involve several of the methods discu ssed in Section 3.2.
In even moderately complex problems, the investigator needs to tailor th ese methods,
balancing computational efficiency against demands for the development and checking of
reliable code.

Acceptance sampling and importance sampling are clearly similar. In fact, given a
candidate source density, one has the choice of undertaking either accep tance or importance
sampling. A straightforward comparison of approximation errors indicate s the issues

involved in the choice. In Problem I, the variance in acceptance sampli ngis
o7 = | [900) = 1T peodx = | g?(x) px)x — 17
if by draw we mean accepted draw. But if instead we mean every draw from the source
distribution, the varianceis
o:=al -1?, a=sup,g(x),
from (4.2.1). Inimportance sampling, where all draws are used but di fferentially weighted,

thevarianceis

a3 = | g ()p(x)dx—17,
from (4.3.2). Hence given a choice between acceptance and importance sampling in
Problem I, importance sampling is clearly preferred: it conserves inform ation from all
draws, whereas the rejected draws in acceptance sampling require executi on time but do not
further improve the accuracy of the approximation.

For Problem E the situation is different. The varianceis

o = [ [900) — EJ" p(x)ax

for acceptance sampling (see (4.2.2)) if we count only accepted draw sand
o =a| [a(2)-E[ p(z)dz, a=sup,[p(2)/h(2)]

if we count all draws (see (4.2.3)). For importance sampling, expre ssing (4.3.4) in the
notation of acceptance sampling, we have

0% = | [900— EJ w(x) p(x)dx, w(x) = p(x)/h(x).
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Since o} < o} < o7, achoice between acceptance and importance sampling on grounds of
computational efficiency rests on the particulars of the problem. If ev aluation of g(x) is
sufficiently expensive relative to evauation of p(x)/h(x), acceptance sampling will be more
efficient; otherwise, importance sampling will be the choice.
In fact one may combine acceptance and importance sampling. Let ¢ be any positive

constant, and define

p(z)/ch(z) if p(z)/h(z) =c

w(z;) =41 with probability p(z,)/ch(z)if p(z)/h(z) <c.

0 otherwise

Then Zi”:lw(zi )a(z) / Zi”:lw(zi )—2=—E. For any given problem there will be avalue of

¢ that minimizes the variance of approximation error relative to required computing time.
This may be found experimentally; or for some analytical methods, see M ller (1991,
Chapter 2). The hybrid method can result in dramatic increases in effi ciency when
computation of g(x) is relatively expensive (or there are many such functions to be
evaluated) and the weight function w(x) is small with high probability.

A more fundamental choice is that between the simulation methods discuss ed in this
and the previous section and the deterministic algorithms outlined in Section 2. Many
problems in economics require integration in very high dimensions. (Two examples are
presented in Section 7.) For such problems the most practical determin istic procedures are
the low discrepancy methods of Section 2.3. Tables 2 and 3 provide some specific
comparisons for dimensions as high as d =100. (Execution time for quadrature methods
in these problems is approximately 8x 4% seconds on a Sun 10/51 workstation: .01
seconds for d=5, 8 seconds for d=10, 3 months for d =20, about 10* times the
estimated age of the universefor d = 40, ... .)

Table 2 extends the analysis of the same problem taken up in Section 2.3. As noted
there, the boundsin (2.3.1) and (2.3.2) are useless for this proble m and most others. The
actual Halton errors presented in Table 2 were found by direct computati on, using the first
d primes asthe bases. The Monte Carlo errors were found analytically. Two error bounds
are presented, one based on a 95% confidence interval (£196c) and a second based on a
100(1-107*)% confidence interval (+7.130). For lower dimensions the comparison is
dominated by the convergence of the Halton sequence at rate logm/m compared with
Monte Carlo at rate m™*?: the Halton sequence is much more accurate. But for any
reasonable fixed value of m, the comparison in higher dimensions is dominated by an
approximately exponential rate of error increasein d for the Halton sequence, contrasted
with therate d** for Monte Carlo. For m= 1,000 iterations, Monte Carlo is more efficient
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for d exceeding about 25 if one appliesthe p =.05 standard and for d exceeding about 45
for the p=10" standard. For m= 50,000 the breakpoints occur around d =35 and
d =110, respectively. (The Halton error is not monotone decreasing in m because of the
systematic way in which points are selected.)

Table 3 provides a comparison of these methods for an example of Problem E. The
Halton sequence is first mapped into the normal distribution applying th e inverse-c.d.f.
transformation in each dimension. Each of the five panels provides appr oximations to
successively higher moments, p, of the multivariate normal distribution. Within each panedl,
the comparison is dominated by the same features noted for Table 2. Com parisons across
panels are dominated by important characteristics of each method. Monte Carlo errors are
proportional to E[(z)zp] =[(2p-1)-(2p-3)L -3-1]”2, where z~N(0,1). Halton errors
reflect an interaction between the ordering of the points and the charac teristics of x".
When p isodd, x” isan odd monotone increasing function of x, whereas the standard
normal probability density function is even. For any fixed m, the Halton points
systematically exclude positive x. values for which the corresponding —x, value has been
included. Hence the error is always negative (as it was in Table 2 for the same reason).
When p is even, this is not the case and the size of the error is smaller asw ell. The
tendency of the Halton sequence to systematically exclude larger x, has more severe
consequences for evaluation of theintegral the higher thevalue of odd p. Thus, for p=5
independence Monte Carlo becomes dominant for values of d exceeding afairly small
threshold.

The largest problems worked for Table 3 (d =100, m=50,000) required about 75
seconds on a Sun 10/51 when solved using a Halton sequence. Independenc e Monte Carlo
was about 15 times faster in every case. The difference reflects the in herent speed of linear
congruential generators, contrasted with the floating point operations r equired to generate a
Halton sequence. For more complex and realistic problems the relative s peed of
independence Monte Carlo is less important, since computation time typic ally will be
dominated by subsequent computations involving the sequences produced by either method.

These comparisonsillustrate the general rule that simulation methods ar e preferred for
higher dimensional problems. If the dimension is very low, then quadrat ure methods are
much faster and more accurate. For intermediate dimensions, quadrature isimpractical and
low discrepancy methods are more accurate than simulation methods. Just where the
breakpoints occur is problem-specific, and the situation is complicated by the fact that there
are no useful independent assessments of approximation error for low dis crepancy
methods. Simulation methods always provide an assessment of numerical e rror as a by-
product, for square-integrable functions. Combined with the checks for robustness of
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results with respect to aternative uniform random number generators and seed values, these
methods are practical and reliable for a much wider range of problems th an is any
deterministic algorithm. Aswe shall see, their application in complex problems can be very
natural.
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5. Variance reduction

In any of the independence Monte Carlo methods a single draw can be repl aced by the
mean of M identically but not independently distributed draws. For example, in simple
Monte Carlo for Problem I,

_ N _ M
luw =N 1 i_1{|\/| 1[2j:lg(xij )]}
Forany i #k x; and x,, areindependent, whereas x; and x;, are dependent. Sinceall x;

are drawn from the distribution with probability density p(x),
Lo —22>1, VN(ly, —1)—>N(0,67?),

o= var[M’lszzlg(xij )] s?= N’lzll[M’lz?A:lg(x”)— INYM]ZLG’*Z.
The idea is to set up the relation among x,,K ,Xx,in such a way that
o’< M’lvarp[g(xij )] If in addition the cost of generating the M -tupleisinsignificantly
greater than the cost of generating M independent variablesfrom p(x), then I, provides
acomputationally more efficient approximation of | than does | ,.

There are numerous variants on this technique. This section takes up fo ur that account
for most use of the method: antithetic variables, systematic sampling, c onditional
expectations, and control variables. The scope for combining these vari ance reduction
techniques with the methods of Section 4 or Section 6 is enormous. Rath er than list all the
possibilities, the purpose here is to provide some appreciation of the ¢ ircumstancesin which
each variant may be practical and productive.

5.1 Antithetic Monte Carlo

This technique is due to Hammersly and Morton (1956) and has been wide ly used in
statistics, experimenta design, and simulation (e.g., Mikhail, 1972; M itchell, 1973; Geweke,
1988). In antithetic smple Monte Carlo integration M = 2 correlated variablesare drawn in
each of N replications. Then,

0°%= %{Var[g(xil)] + Cov[g(xil)’g(xiz)]} .
As long as cov[g(x;,).9(x;,)] <0, antithetic simple Monte Carlo integration with N/2
replications will have smaller error variance than simple Monte Carlo it eration with N
replications, and the computational requirements will be about the same.

To focus on the main ideas, consider the situation in which p(x) is symmetric about a
point 1 in Problem | set out in Section 4. Inthiscase x;, = u +w,, X;, = 4 — W, describes
apair of variables drawn from the distribution with p.d.f. p(x) with correlation matrix —I .
If g(x) were a linear function, then var{;[g(xil) + g(xiz)]} =0, and variance reduction
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would be complete. (Clearly | =g(u); this caseis of interest only as alimit for numerical
integration problems.) At the other extreme, if g(x) is also symmetric about 1, then
var{%[g(xil)+g(xi2)]}= var[g(x)]: N replications of antithetic simple Monte Carlo
integration will yield as much information as N replications of smple Monte Carlo, but will

usually require about double the number of computations. As an intermed iate case, suppose
that d(y) = g(xy) is either monotone nondecreasing or monotone nonincreasing for all x.

Then g(x;;)— I and g(x,,)— | must be of opposite sign if they are nonzero. Thisimplies
cov[g(x,,).9(x;,)] < 0, whence 6% < Jvar[g(x)] = 6°/2, and so antithetic simple Monte
Carlo integration produces gains in efficiency.

The use of antithetic Monte Carlo integration is especially powerful in an important
class of Bayesian learning and inference problems. In these problems x typically
represents a vector of parameters unknown to an economic agent or an eco nometrician, and
p(x) isthe probability density of that vector conditional on information av ailable. The
integral | could correspond to an expected utility or a posterior probability. If the available
information isbased on ani.i.d. sample of size T, thenit is naturd to write p;(x) for p(x).
As T increases, the distribution p,(x)generally becomes increasingly symmetric and
concentrated about the true value of the vector of unknown parameters, r eflecting the
operation of a central limit theorem. In these circumstances g(x) is increasingly well
described by a linear approximation of itself over most of the support of p,(x), as T
increases. Suppose that the agent or econometrician approximates | using simple Monte
Carlo with accuracy indicated by o2 or by antithetic simple Monte Carlo with accuracy
indicated by o7?. Given some side conditions, mainly continuous differentiability of g(x)
in a neighborhood of the true value of the parameter vector x and a nonzero derivative of
g(x) at this point, it may be shown that ¢;*/0? — 0 (Geweke, 1988). Given additional
side conditions, mainly twice continuous differentiability of g(x) in a neighborhood of the
true value of the parameter vector X, it may be shownthat To;?/o? convergesto aconstant.
The constant isinversely related to the magnitude of dg(x)/dx and directly related to the
magnitude of 9°g(x)/dxdx’, each evaluated at the true value of the parameter vector x
(Geweke, 1988). This result is an example of acceleration, because it indicates an
interesting sequence of conditions under which the relative advantage of avariance reduction
method increases without bound.

Application of the method of antithetic variables with techniques more c omplicated than
simple Monte Carlo is generally straightforward. In the case of importa nce sampling, X;,

and x,, are drawn from the importance sampling density j(x). In Problem | the term
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S[F(xa)/i(x) +F(x2)/i(x2)] replaces f(x,)/i(x;).  In Problem E, define
w(x) = p(x )/j(x)asbefore Then

I W CATTUAE CRIVES) I,

> [ (¥i2) +w(x;,)]
2 9(Xi)W(Xi1) +9(Xi5) W(X, )_ ZW(Xil)"‘W(Xiz)
E{[ wix 3 }

)+ W(Xo) 2

ol )wix,) ¢ |

_ S EN] [w(x,) +w(x,)]

Si — i . i2 . a.s. 6*2.
4{2i21[w(xil) + W(Xiz)]}

These results are valid for any antithetic variables algorithm, even if j(X) is not symmetric

and even if the variance of the approximation error o isincreased rather than decreased in
moving to the use of antithetic variables. The essential requirements are that thex;’s be

drawn from the importance sampling distribution and that x; and x,, be independent for

I #K.
In complex problems involving multivariate x, pseudorandom variables often may be
generated by use of successive conditionalsfor x” = (x K X/ )

) (m

p(x) = p(x(l))p(x(z)‘x(l))K p(X(m)‘X(l)K X(mfl))'
In such cases apair of antithetic variables x,, and x,, may be created by constructing a pair
for asingle, convenient subvector x ;). Especially if g(x)= g(xm), the benefits of antithetic

Monte Carlo will then beredlized in both Problem | and Problem E. An e xample of thisuse
of antithetic variablesistaken up in Section 7.2.

5.2 Systematic sampling

Systematic sampling (McGrath, 1970) combines certain advantages of det erministic
and Monte Carlo methods. The former achieve great efficiency by systematically choosing
points for evaluation in specific low-dimensional problems; the latter p roduce indications of
accuracy as a byproduct and are amenable to high-dimensional problems. Systematic
sampling specifies an m-tuple of points as adeterministic function of arandom vector u,
x,=f,(u) (j=1k,m),
with the property that the induced distribution of every x; isthat of the probability density
function p(x).

As aleading example consider the case of univariate x, with pseudorandom variables
from the distribution of x constructed using the inverse c.d.f method (Section 3.2). Denote
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F(c)=P[x<c], suppose u, (i =LK ,N) are independently and uniformly distributed on
the unit interval, and take
X =F([u+j/m]) (j=1x.m),

where “[ -]” denotes greatest fractional part. Clearly the method need not be limited to
evenly spaced grids; e.g., Richtmeyer’s method (Section 2.3) could just as easily be applied.
Extension to higher dimensions is straightforward, but is subject to all of the problems of
deterministic methods there. The advantage of systematic methods is that approximation
error isgenerally O(m ™) whereasthat in Monte Carlois O (N™?).

In high-dimensional problems systematic sampling can be advantageous whe n
confined to a subset of the vector x that is especially troublesome for Monte Carlo and/or is
an important source of variation in the function g(x). As an example of the former
condition, suppose it is difficult to find an importance sampling densit y that mimicsp(x),
but x’ = (XED 1XEz)]1 agood importance sampling density for the marginal p.d.f. p(x(l)) is

Ixm  1xm,
available, and the inverse c.d.f. F‘l(p‘x(l)) of the conditional distribution of X, can be

evaluated. One may generate X, ., together with corresponding importance sampling weight

1)
w;; draw (u,X ,u,, ) independently distributed on the unit interval; create the systematic
sample
X ()i iy = Ffl([uﬁ /LK *[Umz + jmz/lmz]) (I =1K,Lok=1K ,m,).
Then record
oL Im2
9 :I:H:illk] ZjlzlL Z;mflg(xu)i’x(z)um jmz)

aong with each weight w,. Previous expressionsin Section 4.3 for |, 0%, and ; are then
2

valid with g in place of g(xi). In particular (4.3.2) is still true, and s, may be used to
assesstheincrease in accuracy yielded by systematic sampling with high er values of thel, .

5.3 Theuse of conditional expectations

Suppose thereisa partition of x, X’ = (x(’l),x(’z)), such that

900 = 9% X)) = 0 (X ) 1%,z
where 1(-) is linear; p(x):p(x(l),x(z)):p(x(l))p(x(z)‘x(l)); it is possible to draw
pseudorandom vectors from the marginal distribution for x, with p.d.f. p(x(l)); and

E[X | i known analytically. Then

ID 9(x)p(x)dx = JDg*(Xu)) p(x(l))1[E(x(2)‘x(l))]dx(l), (5.3.1)
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and

Varp(x(l,){g*(Xu))l[E(X(a‘Xu))]} < varo|9(x)]-

Consequently, application of Monte Carlo methods directly in (5.3.1) will produce an
approximation error with smaller variance than would Monte Carlo in the genera
framework set forth in Section 4.

The use of conditional expectationsin fact bears a close relationship t o antithetic Monte
Carlointegration. In particular, if one could draw antithetic variable sx ,;, and X ,, from
the distribution with p.d.f. p(x(z)‘x(l)) with perfectly negative correlation, then

;(x(z)il + x(z)iz) = E(x(z)‘x(l)), and exactly the same result would be obtained.

More generally, whenever g(x) is a function of x, only, it is usually worth noting

whether E[g(x(l))‘x(z)] can be evaluated analytically. If so, then the variance of

approximation error can be reduced by using the function of interest E[g(x(l) )‘x(z)i] rather
than g(x(l)i). Since g(x(l)) = E[g(x(l))‘x(z)] + 1 with cov{n, E[g(x(l))‘x(z)]} =0,

var p(X<2>){E[9(X<1>)‘X<2>]} : Varp<X<1>)[g(X<1>)]'
Against this improvement should be balanced the time required for the ad ditional
computations, which are generally of no further use in generation of the x;; this time is
usualy small.

5.4 Control variables

It is often the case that one is able to solve approximations to Problem | or Problem E
andyticaly. For example, if the mean u of the distribution with p.d.f p(x) is known and
one has available a linear approximation g'”(x) of the function g(x), then the mean of
g”(x) is g¥(u). Moreover if {xi}iN:l is a pseudorandom sample drawn from the
distribution with p.d.f. p(x), then g(x;) and g"”(x,) will be positively correlated if the
linear approximation is good for most x;. In this situation the method of control variables,

introduced by Kahn and Marshall (1953) and Hammersly and Handscomb (1 964), can be
used to reduce the variance of the approximation error in |, or E,,.

We develop the specific method for simple Monte Carlo integration in Pro blem I;
extension to more involved methods is straightforward. Let J, = N’lzllh(xi) have
. _ N
known mean J. (In the example given h(x,)=g”(x,), Jy=N7"> " g”(x;) and
J=g"(u).) Consider approximations of the form
1= 1y +B(3y - ),
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where 1, iscomputed as before. Itisthe casethat 1}, —2=—1, and aslong as var,[h(x; )]

exists, a central limit theorem may still be used to evaluate numerical accuracy. One can
easily verify that var(l},) isminimized by = —cov(Jy,I,)/var(Jy), andinthiscase

var(I;,):var(l“—%:var(IN)[l—corrz(JN,lN)].

Usually the parameter B is unknown. It may be estimated in the obvious way from the
replications.
This method is easily extended to the case in which a vector of estimates

J, = (Jﬁ,l),K ,Jﬁ,q)) with known mean J :(J(l),K ,J(“)) isavailable. If we denote
Evald,) o=l )
then the variance of the approximation
I =1y +8(3y=J)
isminimized by 8 =X"c, andin thiscase

var(1}) = va(l,) -z = var(IN)[l— Cx c }

var(l,)
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6. Markov chain Monte Carlo methods

All of the independence Monte Carlo methods for integration assume the ability to
efficiently generate pseudorandom variables from a distribution with spe cified probability
density function p(x). But in many economic problemsit is difficult or impossible to find
ageneration algorithm that is sufficiently efficient to be practical. An instructive limiting
caseisthe onein which the constituents of x are independently distributed,

p(x)=TT7,p.(x)
One could construct an acceptance sampling algorithm with a source densi ty hi(;)
corresponding to each p,(z ), and accept the draw with probability p(z)/ah(z), where

a=sup,[p(2)/h(2)]=[1 ,a. & =sup,[p(z)/Nn(z)](i=1k ,m).
Since a isdirectly proportional to the time required to obtain an accepted draw (see Section
3.2) this expression makes clear that acceptance sampling can be subjec t to its own curse of
dimensionality if the source density is constructed element-by-element. Essentially the

same difficulty can arise in importance sampling, where it is manifested in only a few
weights w(x; ) accounting for the sum.

This exampleis of interest only as alimiting case. If the x really wereindependent,

one could employ acceptance sampling element-by-element, and computation time would
then be proportional to 22131 . An obvious extension of thisideato the general caseisto

write

p(x) = PG T, Proe (%X %)
and employ acceptance or importance sampling for each conditional. The difficulty hereis
that construction of probability density kernels for the marginal in x;, and all but the last
conditional require analytic integration. Notable smple cases aside, t hisis not possible, and
it remainsimpossible for subvectors aswell asindividual components.

This section takes up arecently devel oped generalization of independenc e Monte Carlo
that has become known as Markov chain Monte Carlo. Theideaisto construct a Markov
chain with state space D and invariant distribution with p.d.f. p(x). Following an initia
transient or burn-in phase, ssimulated values from the chain form abasis for approximating
E,[9(x)], thus solving Problem E. If the p.d.f. p(x) does not contain an unknown factor of
proportionality p’, then Problem | is solved as well. What is required is to construct an
appropriate algorithm and verify that itsinvariant distribution is uniq ue, with p.d.f. p(x).

Markov chain methods have a history in mathematical physics dating back to the
algorithm of Metropolis et al. (1953). This method, which is described in Hammersly and
Handscomb (1964, Section 9.3) and Ripley (1987, Section 4.7), was ge neralized by
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Hastings (1970), who focused on statistical problems, and was further explored by Peskun
(1973). A version particularly suited to image reconstruction and pro blems in spatial
statistics was introduced by Geman and Geman (1984). This was subsequ ently shown to
have great potential for Bayesian computation by Gelfand and Smith (199 0). Their work,
combined with data augmentation methods (Tanner and Wong, 1987), has p roven very
successful in the treastment of latent variables and other unobservables in economic models.
(Anexampleisgivenin Section 7.1.) Since 1990 application of Marko v chain Monte Carlo
methods has grown rapidly; new refinements, extensions, and applications appear almost
continuougly.

This section concentrates on devel oping the methods, deferring serious e xamples to
Section 7. We begin with a heuristic introduction to two widely used variants of these
methods, the Gibbs sampler and the Metropolis-Hastings algorithm (Secti on 6.1). Some
theory of continuous state Markov chains required to demonstrate converg enceisgivenin
Section 6.2. Easily verified sufficient conditions for convergence of t he Gibbs sampler are
set forth in Section 6.3 and for convergence of the Metropolis-Hastings algorithm in
Section 6.4. Some practical issues in assessing the error of approximat ion are treated in
Section 6.5. Much of the treatment here draws heavily on the work of Ti erney (1991a,
1991b), who first used the theory of general state space Markov chains to demonstrate
convergence, and Roberts and Smith (1992), who elucidated sufficient ¢ onditions for
convergence that turn out to be applicable in awide variety of problems in economics.

6.1 Two Markov chain Monte Carlo algorithms

Motivated by the role of p(x) in Problem | or Problem E, discussion here proceeds
assuming that x is continuously distributed. However, thereisno harmin regarding x as
discrete on afirst reading. A full development covering both the conti nuous and discrete
casesisgiven in Section 6.2.

The Gibbs sampler begins with a partition, or blocking, of X X' = (x(’l),

i=1K Kk X, =(Xi1,K ,x.m(i)) and m(i) > 1; Eik:lm(i): m; and the x; are the components

’
K ,x(k)). For

of x. Let p(x(i)‘x(_i)) denote the conditional p.d.f.’s induced by p(x), where

X = {X(i)’j * i}'
Suppose we were given asingle drawing x°, x’° = (X('f)K ’XE%)’ from the distribution

with p.d.f. p(x). Successively make drawings from the conditional distribution asfollo ws:
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1 _ IO
X p( ‘X<—1>)

1
Xy ~ p(- X1y X3 K X )

0 ) (6.1.1)

N (i
X (k) p( X(—k))'

This defines a transition process from x° tox* = (X(l),K X/ )) The Gibbs sampler is

defined by the choice of blocking and the forms of the conditional densi ties induced by
p(x) and the blocking. Since x° ~ p(x), (X(l),K X Xy X (o K ,x(lk)) ~p(x) at each
stepin (6.1.1) by definition of the conditional density. In particul ar, x* ~ p(x).

Iteration of the algorithm produces a sequence x°, x*,K ,x',K which is arealization of
aMarkov chain with probability density function kernel for the transit ion from point x to
point y given by

Ko(xy) =TTy, (5> Dy, (i < D)
Any singleiterate x' retains the property that it is drawn from the distribution with p.d.f.
p(x).

For the Gibbs sampler to be practical, it is essentia that the blocking be chosen in such
away that one can make the drawings (6.1.1) in an efficient manner. For many problemsin
economics, the blocking is natural and the conditional distributions are familiar; Section 7.1
provides an example. In making the drawings (6.1.1) all the methods o f Sections 3 and 4
are at our disposal. Observethat in this context acceptance sampling i s attractive relative to
importance sampling, since the former produces independent, identically distributed,
unweighted drawings from the conditional distribution.

Of coursg, it is generdly difficult or impossible to make even oneinit ial draw from the
distribution with p.d.f. p(x). The purpose of that assumption here is to marshal an
informal argument that p(x) isthe p.d.f. of the invariant distribution of the Markov chain.
A leading practical problem isto elucidate conditions in which the dist ribution of x* will
converge to that corresponding to p(x) for any choice of x° in the domain D, and we turn
to thisin Section 6.3.

The Metropolis-Hastings algorithm begins with an arbitrary transition pr obability
density function g(x,y) and astarting value x°. If x' =x, the random vector generated
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from q(x,y) is considered as a candidate value for x'**. The algorithm actually sets
x'** =y with probability
a(y)= i n{ p(y)a(y.x) 1};
p(x)a(x.y)
otherwise, the algorithm sets x'** = x = x'. This defines a Markov chain with a generally
mixed continuous-discrete transition probability from x toy given by
a(x,y)a(x,y) if y # x
K(x,y)= _ )
{1— qu(x,z)a(x,z)dz ify=x
This form of the algorithm is due to Hastings (1970). The Metropolis et al. (1953)
form takes g(x,y) =q(y,x). A simplevariant that is often useful is the independence chain
(Tierney, 19914, 1991b), q(x,y) =j(y). Then
a(x,y)= min{—p(y)J_(X) ,1} = min{m,l},
p(X)i(y) w(x)

where w(x) = p(x)/j(x). Theindependence chainis closely related to acceptance sampling
(Section 4.2) and importance sampling (Section 4.3). But rather than place alow (high)
probability of acceptance or alow (high) weight on a draw that is too likely (unlikely)
relativeto p(x), the independence chain assigns a high (low) probability of accepting the
candidate for the next draw.

There is a simple two-step argument that motivates the convergence of th e sequence
{x‘} generated by the Metropolis-Hastings algorithm to p(-). (This approach is due to

Chib and Greenberg, 1994.) First, observe that if any transition proba bility function p(x,y)
satisfiesthe reversibility condition
p(x) p(x,y) = p(y) p(Y.X),
thenit has p(-) asitsinvariant distribution. To seethis, note that
[ PO P(x,y)ax = [ p(y) p(y,x)dx = p(y) [ p(y,X)dx = p(y).
The second step is to consider the implications of the requirement that K(x,y) be
reversible: p(x)K(x,y) = p(y)K(y,x). For y = x itimpliesthat
p(x)a(x,y)e(x,y) = p(y)d(y. x)e(y. ).
Suppose (without loss of generality) that p(x)q(x,y) = p(y)a(y,x). If wetake o(y,x)=1
and a(x,y)=p(y)a(y,x)/p(x)q(x,y), thisequality is satisfied.

In implementing the Metropolis-Hastings a gorithm, the transition probab ility density
function must share two important properties. First, it must be possibl e to generatey
efficiently from qg(x,y). All the methods of Sections 3 and 4 are potential tools for these
drawings. (Once again, acceptance sampling is attractive relative to i mportance sampling.)
A second key characteristic of a satisfactory transition process is that the unconditional
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acceptance rate not be so low that the time required to generate a suffi cient number of
distinct x' istoo great.

6.2 Mathematical background

Let {x'} _ be a Markov chain defined on DcR™ with transition kernel
K:Dx D — R" such that, with respect to a o-finite measure v on the Borel o-field of
R", for v-measurable A,

P(x' & A =x) = [ K(x,y)dv(y) + () za(0),

lifxeA
Oifxeg A
The measure v will be Lebesgue for continuous distributions and discrete for discrete
distributions.

The transition kernel K is substochastic: it defines only the distributi on of accepted
candidates. Assume that K has no absorbing states, so that r(x)<1VxeD. The

corresponding substochastic kernel over t stepsisthen defined iteratively,

KY(x,y)= JK(t_l)(X,Z) K(zy)dv(z) + K2 (x,y)r(y) +[r()] 7 K(x,y).
Thisdescribes al t-step transitions that involve at least one accepted move. Asafunction
of y it is the p.d.f. with respect to v of X', given x° = x, excluding realizations with
X'=xVj=1K ,t.

An invariant distribution for the Markov chain isafunction p (x) that satisfies

P(A) = Jp )dv(x) = J{j (x,y)dv(y) } (x)dv(x)

:J x eAle:x) p(x)dv(x)
for al v-measurable A. Let D' ={x e D:p(x)>0}. Thekernel K is p-irreducibleif for
al xe D', P(A) >0 implies that P(x eAlx _x)>0 for some t>1. Itisaperiodic if

where r(x 1] (x,y)dv(y andxA(x):{

there existsno v-measurable partition D = U:) B, (r > 2) such that
P(X' € By X =x€B))=1 Vt.

tmod(r)

Define |f|= J [f(x)|dv(x) for all v-measurable functions f defined on D. If K is p-

irreducible and gperiodic, then
(A) Foral x°eD, |imw\K<t>_ p‘:
(B) If gisp-integrable, thenfor al x° e D,
- N a.s.
N, a(x)—22— ] g0 p(x)dv(x)
(Tierney, 1991b, based on Numelin, 1984).



The kernel K is Harris recurrent if P[x' e Bi.o]=1 for all v-measurable B with
JBp(x)dv(x)> 0 and all x°eD. (A general discussion of recurrence is provided by
Numelin (1984, Chapter 3).) If K isp-irreducible and Harris recurre nt, then

(C)  Theinvariant probability distribution p(x) isunique.
(Numelin, 1984, Corollary 5.2; Tierney, 1991b, Section 3.1). Harrisr ecurrence eliminates

situations like the one shown in Figure 4, where the support is disconne cted and the Markov
chain is the Gibbs sampler. Note that if x°eD, it is impossible that
x' e D; (j #i, any t>0). Inthe situation portrayed in Figure 4, there are two invariant

distributions, onefor D, (reached if x° € D,) and onefor D, (reached if x° € D,).

6.3 Convergence of the Gibbs sampler
The Gibbs sampler requires that the conditional probability density func tions

p[x(i)‘x(_i)] = p(x)/J;m p(x)dvi(x(i)) (i=1K ,k)
be well-defined on their supports. In this case the transition kernel d ensity is
Ke(xy)=11. lp[y(l) 1>y, (i< 1)]-
If x° e D, then p(x) isthe density of an invariant distribution of the chain defined by K

| Ko (xy)p(x)dv(x)

(y(k)‘y k)) p[y(k 1>‘X<k> Y <k- 1]jp[y k- 2>‘X<k> ey Yy (T <K= 2)]
L o[y W) (5> D) oY i (> D] o], >1)]dv1(xm)
p[ ‘x j>2) ]dv2 @ p[ (3)‘x (j>3 ]dv3

L p[x<k1 <k>]dvkl Xy ) X JAVi(X o)

= p(y(k)‘y(fk))‘[ p[y(k,l) XY (i) (j< k—l)]J. p[y k72)‘x(k),x(k71 Y, (j <k- 2)]
L .[ p[y(z)‘y(l) (i>2) ]J p[y(l (i>2) ]ID[ (i>3 ]dv3 (3)

L p[x(k_l)‘x(k)]dkal x(k_l))p[x(k)]dvk(x(k))
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p(y(k)‘y(*k))," p[y(kfl) X(k)’y(i)(j < k_l)]J. pl:y(k—Z)‘X(k)’X(kfl)’y(j)(j <k- 2)]

_[ p[y(l),y(z)‘x(j)(j>3)] L p[x(kfl)‘x(k)]dkal(x(kfl))p[x(k)]dvk(x(k))

=

= L

p(y(k)‘y(_k))_[ p[y(k_l) XY iy (I <K= DU p[y(k_z)‘x(k),x(k_l),y(j)(j <k- 2)]

' p[y(n'y(z)’K Yik-s) X(k—l)'x<k>] p[x(k—1>‘X(k)]d"k—l()((k—l)) p[x(k)]dvk(x(k))

= p(y(k)‘y(_k))_[ p[y(k_l) XYy (1 < k_l)] p[ya)’y(z)’K ,y(k_z)‘x(k)]p[x(k)]dvk(x(k))

= BV oo | P Vi K Vo] = PO

If v isdiscrete, p-irreducibility of K is sufficient for results (A), (B), and (C) in
Section 6.2 (Tierney, 1991b). The continuous (L ebesgue measure) cas e istechnically more
difficult, but it may be shown that three ssmple conditions are jointly sufficient for results
(A), (B), and (C) (Roberts and Smith, 1992):

(1) p(x) islower semicontinuous at O;
(2) [p(x)dx islocally bounded (i = 1K ,K);
(3) D’ isconnected.

A function h(x) islower semicontinuous at O if, for al x with h(x) > 0, there exists an
open neighborhood N, >xande>0 such that for al yeN,, h(y)>e>0. This
condition rules out situations like the one shown in Figure 5, where the probability density
is uniform on a closed set. For any point x on the boundary there is no open
neighborhood N, o x suchthat for al y € N,, h(y) isbounded awvay from 0. The point A
is absorbing.

Thelocal boundedness condition, together with lower semicontinuity at O, ensures that
the Markov chainis aperiodic. It does so by guaranteeing that for the sequence of support
sets B'(x)={y e D:K{(x,y)>0}, B (x) = B™(x) forall t>1and all xe D" (Roberts
and Smith, 1992, Lemma 3).

Connectedness of D', together with conditions (1) and (2), implies that the Gibbs

sampler is p-irreducible (Roberts and Smith, 1992, Theorem 2). Condit ions (2) and (3)
further imply that the probability measure P corresponding to p(x) is absolutely
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continuous, and consequently (Tierney, 1991b, Corollary 1) the Gibbs sampler is Harris
recurrent. Therefore p(x) isthe unique invariant probability density of the Gibbs sampler.

These conditions are by no means necessary for convergence of the Gibbs sampler;
Tierney (1991b) provides substantially weaker conditions. However, th e conditions stated
here are satisfied for a very wide range of problems in economics and ar e much easier to
verify than the weaker conditions.

6.4 Convergence of the Metropolis-Hastings algorithm
Take the transition probability density function q(x,y) of Section 6.1 to be a Markov

chain kernel with respectto v, g:D" x D" — R*. Defining a:D" x D" — [0,1] as before,
define K,,;:D" x D" — R* by
Ky (%y) = a(x.y)e(x.y).

This is the substochastic kernel governing transitions of the chain from xtoy that are
accepted according to the probability o(x,y). Thedistribution p(x)dv(x) isinvariant if for
al v-measurable sets A,

P(A) = [ pO)dv(x) = | Ply € Ax]p(x)dv(x).
Recaling that

Ply e Ax]= JK (x,y)dv(y) [1 JK(xzdv ]ZA
J'D Ply € Ax]p(x)dv(x)

:J J' Ky (x,y)dv(y) p(x)dv(x)
+ | 2a00p0dV() =] Ky (x,y)dv(y)ra () p(x)dv(x)

:J J Ky (%, y)dv(y) p(x)dv(x)
+Jp X)dv(x JIK (x,y)dv(y)p(x)dv(x).

Since p(x)K,,(x,y)=min[p(y)a(y.x),p(x)d(x,y)] is symmetric in xandy, the last
expression reduces to J X)dv(x) = P(x € A).

From this derivation it is clear that invariance is unaffected by an arb itrary scaling of
Ky (x,y) by aconstant c. The choice of c affects the properties of the Metropolis-

Hastings algorithm in important practical ways. Larger values of ¢ result in fewer rejected
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draws but dower convergenceto p(x), whereas smaller values of ¢ increase the proportion
of rejected candidates but accelerate the rate of convergenceto p(x).

Roberts and Smith (1992) show that the convergence properties of the H astings-
Metropolis algorithm are inherited from those of q(x,y): if qisaperiodic and p-irreducible,
then so isthe Hastings-Metropolis algorithm. If q(x,y) is constructed as a Gibbs sampler
(as is often the case), then the conditions set forth in Section 6.3 m ay be used to verify
aperiodicity and p-irreducibility. A Hastings-Metropolis chain is alway s Harris recurrent,
and therefore the invariant distribution p is unique.

6.5 Assessing convergence and numerical accuracy

In any practical application one is concerned with the discrepancy betwe en
E[g(x)]:JDg(x)p(x)dX and its numerical approximation N’lziN:lg(xi). Consider the
decomposition

N_thNzlg(Xt) N E[g(x)] - {E[N‘lz:\'—lg(xtﬂxo] - E[g(x)]}

HNE00) - ENTR o = A () + By (7).
Theterm A (x°) is nonstochastic and in general nonzero, but lim,_,_A(x°) =0 if

conditions set forth earlier in this section are satisfied. The purpose of atransient or burn-
in phase is to reduce AN(XO), but for any finite transient period it will still be the case in

N—eo

general that A (x°) # 0. Thisdifficulty istermed the convergence or sensitivity to initial
conditions problem. Theterm B (x,) is stochastic and is the analog of Ey,—Eor |, —|

for acceptance or importance sampling. This term vanishesas N — oo, but assessing its
sizeis complicated by the fact that {xt} Is neither independently nor identically distributed.
This difficulty may be termed the numerical accuracy problem.

A leading cause of slow convergence is multimodality of the probability distribution,
for example, as shown in Figure 6 for a Gibbs sampler. In the limit mul timodality
approaches disconnectedness of the support, and increasingly large values of N are
required for A (x°) to be close to 0. This difficulty is essentially undetectable given a
single Markov chain: for a chain of any fixed length, one can imagine mu ltimodal
distributions for which the probability of leaving the neighborhood of a single mode is
arbitrarily small. This sort of convergence problem is precisely the same as the
multimodality problem in optimization, where iteration from a single sta rting value can by
itself never guarantee the determination of a global optimum. Multimodal disturbances are
difficult to manage by any method, including those discussed in Section 4. In the context of
the Markov chain Monte Carlo algorithms, the question may be recast as o ne of sensitivity
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toinitial conditions: x5, x%, and x2 will lead to quite different chains, in Figure 6, unless
the smulations are sufficiently long.

A Markov chain Monte Carlo algorithm can be made fully robust against se nsitivity to
initial conditions by constructing many very long chains. Just how one should trade off the
number of chains against their length for a given budget of computation time is problem
specific and as a practical matter not yet full understood. Many of the issuesinvolved are
discussed by Gelman and Rubin (1992), Geyer (1992), and their discus sants and cited
works. In an extreme variant of the multiple chains approach, the chain isrestarted many
times, with initial values chosen independently and identically distribu ted from an
appropriate distribution. But finding an appropriate distribution may b e difficult: onethat is
too concentrated reintroduces the difficulties exemplified by Figure 6; onethat istoo diffuse
may require excessively long chains for convergence. These problems asi de, proper use of
the output of Markov chain Monte Carlo in a situation of multimodality r equires specialized
diagnostics; Zellner and Min (1992) have obtained some interesting res ults of thiskind. At
the other extreme a single starting value isused. This approach provid es the largest number
of iterations toward convergence, but diagnostics of the type of problem illustrated in Figure
6 will not be as clear.

In specific circumstances a central limit theorem applies to BN(XO), which may
therefore be used to assess the numerical accuracy problem. To develop one set of such
circumstances, suppose that the Markov chain is stationary. This could be guaranteed by
drawing x° from the stationary distribution. Such a drawing would be time consumi ng (if
not, i.i.d. sampling from p(x) is possible), but only one is required. Alternatively, one
could iterate the chain many times beginning from an arbitrary initial v alue, discard all but
the last iteration, and take this value as drawn from the stationary dis tribution to begin anew
chain. Suppose var [g(x)] isfinite and denote ¥, = cov, [g(x'),a(x'"")]. A Markov chain
with kernel K isreversibleif K(x,y)=K(y,x) for all x,yeD. Hastings-Metropolis
chains are dways reversible; Gibbs sampling chains are not (Geyer, 199 2, Section 2). If the
Markov chain is stationary, p-irreducible, and reversible, then

Nvar(g,)—2>> 0% = Zfo Y

andif 02 < oo, then
VN(g, - G)—>N(0,0%)
(Kipnisand Varadhan, 1986).
In the absence of reversibility, known sufficient conditions for central limit theorems
are strong and difficult to verify. For example, if for some m<e

P(x\"™ e Alx' = X)/L p(x)dv(x) isbounded below uniformly in x, then D isasmall state
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space and {x'} isuniformly ergodic (Tierney, 1991b, Proposition 2). Thenif var,[g(x)] is
finite, there exists 6® << such that /N(g, —G)—->N(0,0%). The boundedness

condition, however, is generaly difficult to establish.

In neither circumstance is there a known sufficient condition for approx imation of the
varianceterm o of the central limit theorem. The problem is formally quite similar to
estimating the variance of the sample mean z,, = N’lz[N:lz[ of astationary time series {z[}
In the time series problem, well-established mixing conditions (rates of decay for
cov(z,z,;)) are sufficient for consistent estimation of var(z,) (e.g., Hannan, 1970, pp.
207-210). Intime series applications these conditions remain assumpti ons. The difficulty
in applying these conditions to Markov chain Monte Carlo isthat they ca nnot be established
from verifiable fundamentals.

Nevertheless, applications of the time series procedures as if sufficient mixing
conditions obtain appear to give quite reliable results for real problem sin economics. That
is, applying a central limit theorem as if the output of the Markov chai n Monte Carlo
algorithm were a stationary process satisfying the mixing conditions yie |lds accurate
probability statements about the output of the same algorithm applied to the same problem
with anew starting value and initial seed for the random number generat or (Geweke, 1992a;
Geyer, 1992). This leads to a conservative but practical procedure for assessing the
accuracy and reliability of Markov chain Monte Carlo. First, execute se veral short runs-- a
burn-in of 50 to 100 iterations followed by a chain of length N= 500 or N= 1000 is
sufficient for many problems. Examine the g, and their standard errors as assessed by

conventional time series procedures for a single time series to see whet her the scatter of
each g, across the short runs is consistent with these standard errors. If nec essary,
increase the length of the short runs until this consistency is achieved . Second, choose the

last value of one of the short runs, and use it as the starting value of along run of from
N =10"to N =10° iterations. Asafinal check, compare the g, from the single long run

with the confidence intervals implied by the short runs. Report the fin a value of g,,

together with its numerical standard error as computed by time series me thods for asingle
series.
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7. Some examples

The usefulness of all of these methods lies as much in their appropriate combination as
in the application of any one individually. We turn now to some example s that illustrate
some useful combinations and in the process treat afew topics closely r elated to integration
and smulation.

7.1 Stochastic volatility

Modelsin which the volatility of asset returns varies smoothly over tim e have received
considerable attention in recent years. (For asurvey of severa appro aches, see Bollerslev,
Chou, and Kroner, 1992.) Persistent but changing volatility is an evid ent characteristic of
returns data.  Since the conditional distribution of returns is relevant in the theory of
portfolio allocation, proper treatment of volatility isimportant. Time -varying volatility also
affects the properties of real growth and business cycle models.

A simple model of time-varying volétility is the stochastic volatility m odel, the
descriptive properties of which have been examined by a series of invest igators beginning
with Taylor (1986). The approach here closely follows that of Jacquier, Polson, and Rossi
(1994). Let r, denote the one-period return of a single asset, and let x, be a vector of
deterministic time series such as indicators for day of the week, holidays, etc. A simple
stochastic volatility model is

r.=p%+¢, € =h"y (7.1.1)
logh = a+dlogh _;, + oy, (7.1.2)
[3‘) < N(O,1,). (7.1.3)

Attime T an economic agent is concerned with future returns r, ,,K ,r. , through an

expected utility function
V(1K orgi 2@ = EV(r ik o, ], (7.1.4)
where z isageneric vector of other arguments which may be known or unknown at timeT .

Evaluation of this expected utility function requires the solution of an integration
problem. We will consider this problem for three different specificatio ns of the information

’

set @, in turn. Denoting r, =(r,K ,rT), Xriq = (XK Xr,4) 0" =(B",2,8,0,), and

' AT+q —
’

h; =(h.K ,h;) , theseare

O =[x Oh i OF =frx o) o =[x}
As one may readily verify, deterministic approximations of the type disc ussed in Section 2
are inconvenient for this problem. Even explicit expressions of theint egralsin closed form
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are awkward and unrevealing. Simulation methods are much more direct an d have the
added advantage that one set of simulations can suffice for several alte rnative values of the

other arguments z in (7.1.4). These arguments might include taste parameters or the values
of decision variables which themselves do not affect r,. (Section 7.2 provides an example

involving explicit optimization.)

The solution for the problem for ®{” issimple. In the notation of Section 4, repeated
period-by-period simulation of x =r, provides an independent identically distributed
sample {FS)}L with a probability density p(x)= p(rq‘dD(Tl)) that we have not even
expressed. Then

E[V(rruk ek O] = Ja00 p(x)ax,
where g(x) = V(XK ) = V(r;.,,K ,I7,;K ). Consequently,
V(1K T K 0P = NTY V(FS).
The problem for ®'? is more difficult. Rather than h, itself, the agent has available
only
Pl 0, 6) = bl 1 ., ol )
= p(r o|hr X7, 8) p(he[x7,8)/P(r ) o= P(r o|hr, X1, 8) p(hy [, 6)
= (27:)‘T/21_LT:l h* exp[—z;sf /Zh]
{(2r) "o Th* exp[—z;(logh[ —a-38log h[_l)z/Zovz]
o Htllhﬁ/z exp[—z;ef /2h[]exp[—z:=1(logh —a-&logh )’ / 205], (7.1.5)

where g, =r, — ’X,. The simple Monte Carlo solution of the previous problem could be
N

. from the distribution implied

extended to this one if one could draw an i.i.d. sample {Fﬁ)}

by the last kernel. Thisisclearly not possible, nor are there obvious source or importance
sampling distributions for the methods of Sections 4.2 or 4.3.

This problem can be solved in anumber of ways, and acomparison of thre e alternatives
is instructive. All begin with the kernels of the conditional probabili ty densities for
individual h implied by (7.1.5). For t=2,K ,T —1thekerndl is

p[h[|hs(t £9), 9,81] oc ¥ exp(—ef/Zh[)exp[—(Iogh - ‘th)Z/ZGZ], (7.1.6)
where
_ o(1-06)+6(logh_, +logh,, ) o = _or
1+ 6° ’ 1+ 6%
(Similar expressionsfor h, and h, may be constructed.)

My
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The first two approaches construct a Gibbs sampler for the h, drawing and
successively replacing h,h,,K ,h,. Each cycle of drawing and replacement produces the
next redlization of hY’ in the Markov chain. Note from (7.1.5) that lim, _,p(h]r,,x,,0)=0
forany t =1,k , T, and since the support of h. isthe positive orthant of R the probability
density function of h, islower semicontinuous at 0. The remaining sufficient conditions
for convergence of the Gibbs sampler are clearly satisfied. Conditional on each ﬁ$) in the

chain, draw asingle 7§’ asin the problem for ®{. Since ‘p(ﬁ?)— p(helrs.%;,0) — 0, it

follows that ‘p(F(q”) - p(rq‘rT,an, 0)‘ — 0. Both approaches work directly with the
conditional distribution of H, =logh,, which from (7.1.6) is given by
log p(Ht|Hs(s¢ t), O,Et) =—exp(-¢’/2)exp(—H,) - (H, — 1, )2/202 (7.1.7)

(up to an additive constant), where u; = u,—.507, but differ in the method for obtaining H,.

The first approach is to use acceptance sampling. A reasonable source d istribution is
N(u,, 0?), for which the acceptance probability is

exp[—(gf/z) exp(—Ht)] = exp(—¢?/2h).

The acceptance probability fallsbelow .01 if and only if €7 /h exceeds 9.2, which is highly
unlikely if the model reasonably well describes the distribution of the returnsr,. The
acceptance probability could be improved somewhat using the optimizing p rocedures set out
in Section 3.2, but given the favorable acceptance probabilities for the N(u;,0°) source
distribution, the additional overhead might not be warranted.

The second approach is to note that the log-conditional kernel densities (7.1.7) are

strictly concave and apply the adaptive method of Gilks and Wild (1992) . Their algorithm
(described in Section 3.2) may beinitialized by noting that H, = u; lies to the left of the

mode of the log-conditional and a solution of (1- H, + HZ/2)exp(—¢7/2) - (H, — 1;)/o”
lies to the right of the mode. Except for the method of drawing H,, the solution of the
problem proceeds asin the first approach.

The third approach isto construct a Metropolis-Hastings independence ch ain. Thisis
done by forming a Metropolis step M, for each h and then combining al T stepsinto a

singletransition M = M;M,K M;. Ateach M, either acandidate new valueis accepted or
theold value of h isretained. Thus, when M operates on the old h; it generally produces
amixture of old and new h inthenew h;. Thetransition kernel M is p-irreducible and
aperiodic, and an argument like the one in Section 6.4 shows that p(hT|rT,xT,9) is the

invariant distribution of M (Jacquier, Polson, and Rossi, 1994, Section 2). A useful
distribution for the Metropolis-Hastings independence chain is the gamma distribution for
h™ with shape parameter a:[1—2exp(62)] /[1— exp(az)]+.5 and scale parameter
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A =(a—1)exp(u,+.50°)+.5¢7. Combined with an appropriate scaling of the transition
kernel, as discussed in Section 6.4, this chain produces convergence at a practical rate (see
Jacquier, Polson, and Rossi, 1994, Section 2.4, for details).

The solution of the problem for ®'? is directly usable in the solution of the problem
for @, in the context of the Gibbs sampler. From the form of (7.1.1)-(7.1.3) the
probability density kernel for 6 and h, underlying the expectations operator in (7.1.4) is

H::lhlﬁ]/z exp[_zz-:l(rt - ﬁ’xt)z/Zh[]

.0, exp|-Y, (logh - &~ 8logh,.)’ /202 |p(B, e, ,5,),
where p(B,,8,0,) isthe prior probability density function of 6’ =(p’,,6,0,). A Gibbs
sampler with blocking (h;,8) will alternate drawing and substitution for h.|r;,x,,6 and
6|r 1, X;,h;. Thedrawing for h, isthe same one constructed to solve the problem for &,

The second drawing is facilitated by noting that the kernel of (7.1.8) in6& may be expressed
oc l_LTzlexp[—ZtT:l(rt -Bx.); /Zh]
.o, (™Y exp[—z;(logh[ —o—6log hH)Z/ZO'VZ]

if the prior probability distribution has the conventional improper kern el
p(B,,8,0,)<0c,'. Thus, fand(e,d,0,) are conditionally independent. In each case

(7.1.8)

the distribution follows from standard treatments of Bayesian learning a bout alinear model
(e.g., Poirier, 1995, Section 9.9):
B~N(b,Q™), whereQ = Z;'Tlxtxf and b = Q’lz;h{lxtrt :

for § and
$/0% ~ 2(T-2), (e6) |0, ~N(c,02P™), where
_ T ZtT:llog h-l _p-l Zthllog h—l
= 7 T ) , c=P T ,
> logh, > log?h, >.,loghlogh
and & = z::l(logh[ —¢ —¢,logh ),
for (@, 6,0,).

7.2 Integration and optimization

The solution of all but the simplest dynamic optimization problems cannot be
expressed in closed form. Since the objective function in these problem sis expected utility,
integration is required to evaluate a candidate solution. Finding a goo d numerical
approximation to the solution therefore requires optimizations of afunc tion which can be
evaluated only inexactly. Moreover this evaluation must in general be r epeated many times
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in the process of approximating the solution. Several approachesto thi simportant problem
have been proposed: a good introduction is provided by Taylor and Uhlig (1990) and the
papers following that article; more recent work includes McGrattan (199 3). Here we
discuss awidely applicable procedure that uses Monte Carlo integration to solve dynamic
optimization problems subject to an imposed parameterization of the deci sion rule and then
loosens the parametric restrictions so as to approach the optimum. The description here
closely follows Smith (1991) who invented the method. The notation an d assumptions are
largely those of Stokey and Lucas (1989, Chapter 9).

The problem. Many dynamic optimization problems can be expressed

ax, . E > B r( X, X, 1th1) (7.2.1)
given x,,z, and subject to x,,, e I'(x,,z,) V t.
The sequence of state vectors {z, } " isaMarkov process with transition density
v(z H1|zt), zeZC RV (7.2.2)
and Z iseither compact or countable. The decision vector x, € X ¢ R"; Xis closed and
convex. The agent observes the state vector s =(x{,z/) € S= X x Z prior to choosing X,,,.
The operator E,, denotes expectations conditional on the period O information set s,. The
return function r is bounded, continuousin (x,,x,.,,z,), and concavein (x,,X,,) V z, € Z.
The correspondence T" is nonempty, compact- and convex-valued, and continuous. The
convexity of T" precludes problems with discrete choice sets; for a treatment of discre te
choice similar to the one here for continuous choice, see Geweke, Slonim, and Zarkin
(1992).
These assumptions imply the existence of a unigque, time-invariant contin uous decision
rule w:S— X that expresses optimal x,,, = w(X,,z,) (Stokey and Lucas, 1989, Chapter 9).

The optimization problem is to determine the decision rule. The approac h taken hereisto
replace w with arule of thumb characterized by a vector of parameters v

X, = h(X,,z;;¥), y € C = R*,C compact. (7.2.3)

This rule closes the model. Given s,,z= {z} and v, (7.2.2)-(7.2.3) determines

e
x={x} = q(z v.S)) through the obvious iterations.

Let b x z s 2 [3 t+1,zt) denote the utility delivered by the sequences x
and z given s, for the dynamm optimization problem with horizon truncated at T.
Repressing s, to maintain notational simplicity, g(z, ) = b[q(z v.s,).z:S, ] is delivered
utility for decision rule h with parameterization w. Given h the agent chooses the best
possible v, which we shall denote
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v, =argmax,E [g(z, v)). (7.2.4)
Problem (7.2.4) is a simplification of Problem (7.2.1), but it still cannot be solved
analytically. The chief complication isthe evaluation of the integral associated withE, in

(7.2.4). The key ideain the solution described here is to ssimulate t he behavior of s for
different values of y, thereby providing approximationsto E,[g(z, )| Aswe shall see,

arbitrarily good approximationsto y, may be obtained in thisway. By increasing T and

employing a sequence of functions h that are increasingly flexible throu gh a longer
parameter vector v, the solution of (7.2.4) may be made to approximate that of (7.2.1)

(Smith, 1991).

The algorithm. Generate n i.i.d. sequences 7" = {25‘)}; according to (7.2.2), and
take ©={z"}
=Y (2", y), then nQ (0, y)—22>E,[g(z,v)]. Since the set of sequences © is
fixed,

_nl to be the collection of these sequences. If we let Q.(©,y)

¥, =agmax, n"Q,(6,y)
isawell-defined, deterministic optimization problem that can be solved using standard hill
climbing methods. These methods will be more efficient to the extent that dr/dh and
dh/ oy (better yet, 9°r/dh? and 9> h/dwdy’ in addition) can be evaluated analytically.

Asymptotic properties. Given four further assumptions, w,—2>— v, and central
limit theorems may be used to assess the accuracy of the approximation o f v, by . and
of Eo[g(z w)] by nQ,(©,v).

(1) 9(z, v) istwice continuoudly differentiablein y for al z.

(2) Thefollowing functions areregular:

@ 9(z.w). 29(z.y)/dy, "oz v)/dydy’;

(b) [29(z w)/dy ]9z y)/ov];

© F(zv)-

Regular is used in the sense of Tauchen (1985). Denoting the probability den sity
function of z by f(z), d(z, y) isregular if

(i) d(z y)ismeasurablein zV y € C;

(i) disseparable (Huber, 1967);

(iii) disdominated--i.e, 3b 3J b(z)dz < == and |d(z, )| < b(2) V v € C;

(iv) d(z w) iscontinuousin yVz.
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(3) E[g(z v)] (the existence of which is guaranteed by Assumption 2(a)) is unique ly
maximized & y,,, aninterior point of C.
4) E[0*9(z v,)/dwoy’] (the existence of which is also guaranteed by Assumption
2(a)) isnonsingular.
Given these four further assumptions, one can usefully approximate y,:
l)’l\/n%y/o* nj/z(l:[/n_ WO)%N(O’V)’
2
V — A_IBA_l, W|th A — E a g(Z, l//O) , B — E a9(21 l//0) ag(Z, l//O) ,
dydy’ Iy oy’
. 2 ~ R 0 z(i)’A 0 2(i)’“
An — n—l a Qn(G)’ l//n) p A, Bn — n_lZ, g( l//n) g( Wn) p
dyoy’ = Jdy Y’
Under exactly the same conditions, one can also usefully approximate E[g(z, )]:
Q0. ¥,)—*—E[gz y)l n*{n"Q,(®,¥,)-E[e(z w)]}——N(0.0°);
~ n ~(i ~ _ ~ 2
62=nY" (2", 9,)-[n"Q,(0.v,)] ——>0® =varg(z v)].
Proofs are given by Smith (1991) who uses asymptotic theory developed by Amemiya
(1985) and Tauchen (1985). The second result is especially useful i n valuing the
approximation error: see Smith (1991, Section 5).

B.

Antithetic variables. In many applications the conditional distribution of the
exogenous state vector z,, with probability density function v(z,|z_,), is smooth and
symmetric or nearly symmetric. The return function r is commonly monoto ne increasing or
decreasing in each element of z, and may be nearly linear over most of the support of the
distribution of z,. In such circumstances there are substantial gainsin the use of antit hetic
variables as described in Section 5.1. Let 'Y and Z'” denote such an antithetic pair.
(Exactly how the pair is drawn will depend on the particulars of the pr oblem. What is
essential, as discussed in Section 5.1, is that z'” and 2'? be identically distributed.)
Consider n/2replicationsof ' and 2'? inlieu of n replicationsof Z". Redefine

Qu(@.¥)= X1 02 v) + o2, v)]
i

with © = {2“1),2“2)}_ 21 and take , =argmax, ' Q (O, y). Then y, andn™Q,(6,vy)

are consistent for y and E[g(z, )] as before. There are again central limit theorems, but

now
V=A"B'A™, withB =B+ ,(C+C’), where
o 2977 w) 992", V/o)]’ C, = (ﬂ)_lZT‘ZZ 092% o) 092 va)
Yy ay’ 2 = Jy ay’
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and
o’ =varlg(z v, )|+ cov[g(i(”), ¥, ) 9(2"?, I/IO)],

o n/2 ~(i ~ ~(i ~ n n ~(i ~ ~(i A
OMCICRARCERAE DM CENAL RN
- 2[n‘1 Q.(6, lﬂn)]z —t 502
Smith (1991) applies this method to a variant of the Brock and Mirman (1972) growth
model. The characteristic of the model that is important for the succes s of the use of
antithetic variables is that the exogenous state variables move smoothly over time and the

return function is only modestly nonlinear over most of the support of z. Using only 100
antithetic pairs and T =800, Smith determines v up to four significant figures. The

suboptimality of the resulting decision rules turns out to be equivalent to a per-period
decrease in consumption of 2 x107°%.
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(b)

Figure 1. Contours of the function to be integrated are shown.

F(%)

g (%)

a-g(x

Figure 2. The target density is f( x), the source density is g( x), and a = sup[f(x)/ g(x)].



u(x)

TR > x

Figure 3. The function h(x) = log f(x), where f(x) is a log-concave p.d.f.
The lower hull I (x) is formed by the chords joined at the Xj, and the upper

hull u(x) is formed by the tangents at the X; which are joined at the wj.

/\ > X(l)

Figure 4. The disconnected support D = Dy u D, for the probability

distribution implies that a Gibbs sampler with blocking (X(l)’ x(z)) will not be

Harris recurrent. In the example shown it cannot converge from any star ting
value.



X@)

> Xa)

Figure 5. The probability density p( x) is uniform on the closed set D and
consequently is not lower semicontinuous at 0. The point A is absorbing

for the Gibbs sampler with blocking (X (1)X (2))+ SO if X = A convergence
will not occur.

> X1)

Figure 6. Iso-probability density contours of a multimodal bivariate
distribution are shown. (Arrows indicate directions of increased densi ty.)
Given sulfficiently steep gradients the Gibbs sampler will converge very

slowly.



Actual

Bound
c=10":

Actual

Bound

228

19,335

640,426

52,477,915

Tablel

442

1,014,825

1,039,188

3.469x10°
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Evaluations required to approximate de f(x)dx, f(x)= 2
with maximum error ¢: Actual number and upper bound

661

9.154x10’

1,523,433

3.513x10"

,:1f(xj)’

1060

1.522x10%

2,379,162

6.114x10%



d

5

10

20

40

60

80

100

10

20

40

60

80

100

Halton error

-7.526 x10°°
-.02807
-.1097
-.3824
-.8202

-1.476

-2.062

Halton error
-2.786 x10™
-8.861 x10™

-3.537x10°°

-.02216
-.02768
-.05681

-.08779

Table?2

66

J. x)dx, f(x Z. R

m= 1,000
Haltonbound  MC error( p=.05)
9.302x10? .04000
6.053x10" .05658
2.616x10% .08002
8.225x10" 1132
2.467x10" 1386
1.250x10'" .1600
1.447x10% 1789

m= 50,000
Hatonbound MC error( p=.05)
1.071x10? 5.658x107°
3.533x10" 8.002x107°
3.225x10% .01132
3.356x10" .01600
2.2990x10%’ .01960
2.4186x10™"" .02263
5.235x10% .02530

Error comparison for Halton sequence and independence Monte Carlo

MC error( p=10")
1455
.2058
2911
4117
5042
.5822

.6509

MC error( p=10")
.02058
.02911

.04117

.05822
07131
.08234

.09205



10
20
40
60
80
100

10

20

40

60
80
100

Error comparison for Halton sequence and Monte Carlo

Halton error

-.04190

-.1411
-.5497
-1.7306
-3.3617
-5.6578
-7.8073

Halton error

-.0496

-.0941

-.0864

2436

.5680
4982
1.449

Table3

Halton error
-1.808 x10°2

-5.552 x107°
-.02076
-.06548
-.1461
-.2573
-.2336

x ~N(0, 1,); evaluate E[f(x)]

m= 50,000

Monte Carlo error

(p=.05)
.01960

02772
.03920
.05544
.06790
.07840
.08765

N(O, I4); evaluate E[f(x)]

)= 0%,
m= 1,000
Monte Carlo error
(p=.05) (p=10")
.1386 5042
.1960 7131
2772 1.008
3920 1.426
4801 1.747
5544 2.017
.6198 2.255
f(x)= zl R
m=1,000
Monte Carlo error
(p=.05) (p=107")
.2400 8733
3395 1.2350
4801 1.746
.6790 2470
.8316 3.0252
.9602 3.4932
1.074 3.906
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Halton error
-1.664 x10°°
-2418 x10°°
-4.611 x10°°
-6.367 x10°°

-3.662 x10°°
.0243
-.04932

m= 50,000

(p=10")
07131

.1008
1426
2017
2470
.2852
.3189

Monte Carlo error

(p=.05)
.03395
.04801
.06790
.0962

1176
1358
1518

(p=107")
1235
A747
2470
3493

4278
4940
.5523



Table 3 (continued)
fx)=3Y" %, x~N(0,1,); evaluate E[f(x)]
m= 1,000 m = 50,000

Monte Carlo error Monte Carlo error
d Hatonerror (p=.05) (p=10") Haltonerror (p=.05) (p=10")

5 -.3500 .5368 1.953 -.02286 07591 2761
10 -1.083 7591 2.762 -.06800 1073 .3906
20 -4072 1.074 3.906 -.2386 1518 5523
40 -11.865 1.518 5.523 -.6821 2174 7811
60 -19.564 1.859 6.765 -1411 .2630 9567
80 -27.78 2.147 7.811 -2.641 .3036 1.104

100 -36.18 2.400 8.733 -2.218 .3395 1.235

f(x)= zl X% x~N(0,1,); evaluate E[f(x)]

m=1,000 m= 50,000

Monte Carlo error Monte Carlo error
d Hdtonerror (p=.05) (p=10") Haltonerror (p=.05) (p=10"%)

5 -. 7442 1.420 5.167 -.03612 .2008 7307
10 -1.046 2.008 7.307 -.04667 .2840 1.0333
20 -.8494 2.840 10.33 -.07076 4017 1.461
40  7.504 4.016 14.61 .03523 .5681 2.067
60 16.88 4.919 17.90 1150 .0957 2.521
80 2348 5.681 20.66 -.1898 .8034 2.923

100 32.94 6.351 23.105 -.7909 .8982 3.268
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Table 3 (continued)
f(x)= Zid:lxis, X ~N(0, I 4); evaluate E[f(x)]
m=1,000 m= 50,000

Monte Carlo error Monte Carlo error
d Hatonerror (p=.05) (p=10") Haltonerror (p=.05) (p=10")

5 -3.216 4.260 15.50 -.3365 .6026 2.192
10 -1.043 6.025 21.92 -1.006 8521 3.100
20 -3644 8.521 31.00 -3.433 1.205 4.384
40 -1189 12.05 43.84 -9.549 1.704 6.200
60 -202.8 14.76 53.69 -14.50 2.087 7.593
80 -281.6 17.04 62.00 -13.11 2410 8.760

100 -359.7 19.05 69.32 -23.97 2.695 9.803
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