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1.  Introduction

Optimization problems in dynamic, stochastic environments are an increas ingly

important part of economic theory and applied economics.  Inspired by th e potential returns

to richer and more realistic models of a variety of policy problems and the promise of ever-

growing computational power, economists have turned more and more to mod els that can be

simulated but not solved in closed form.  Simulation methods can provide  solutions for two

related integration problems.  One integration problem arises in model s olution, for agents

whose expected utilities cannot be expressed as a closed function of sta te and decision

variables.  The other occurs when the investigator combines sources of u ncertainty about

models to draw conclusions about policy.

This chapter concentrates on simulation methods that are both important and useful in

the solution of these integration problems.  In mathematics there is a l ong-standing use of

simulation in the solution of integration problems, notably partial diff erential equations,

where the form of the simulation is often suggested by the problem itsel f.  The history of

simulation methods to solve integration problems in economics is shorter , but these

methods are appealing there for the same reason: integration generally i nvolves probability

distributions in the integrand, which thereby suggests the simulation me thods to be

employed.

This pervasive use of simulation methods in science persists despite the  well-known

asymptotic advantages of deterministic approaches to integration.  This continued use of

simulation methods occurs in part because astronomical computing time is  often required to

realize the promise of deterministic methods.  A more important fact is that simulation

methods are generally straightforward for the investigator to implement,  relying on an

understanding of a few principles of simulation and the structure of the  problem at hand.

By contrast, deterministic methods typically require much larger problem -specific

investments in numerical methods.  Simulation methods economize the use of that most

valuable resource, the investigator’s time.

The objective of this chapter is to convey an understanding of principle s for the

practical application of simulation in economics, with a specific focus on integration

problems.  It begins with a discussion of circumstances in which determi nistic methods are

preferred to simulation, in Section 2.  The next section takes up genera l procedures for

simulation from univariate and multivariate distributions, including acc eptance and adaptive

methods.  The construction and use of independent, identically distribut ed random vectors

to solve the multidimensional integration problems that typically arise in economic models

is taken up in Section 4, with special attention to combination of diffe rent approaches and
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assessment of the accuracy of numerical approximations to the integral.  Section 5

discusses some modifications of these methods to produce identically but  not independently

distributed random vectors, that often greatly reduce approximation erro r in applications in

economics.  Recently developed Markov chain Monte Carlo methods, which m ake use of

samples that are neither independently nor identically distributed, have  greatly expanded the

scope of integration problems with convenient practical solutions.  Thes e procedures are

taken up in Section 6.  The chapter concludes with some examples of rece nt applications of

simulation to integration problems in economics.
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2. Deterministic methods of integration

The evaluation of the integral I = f x( )dx
a

b

∫  is a problem as old as the calculus itself and is

equivalent to solution of the differential equation dy dx = f x( ) subject to the boundary

condition y a( ) = 0.  In well-catalogued instances, analytical solutions are available.

(Gradshteyn and Ryzhik, 1965, is a useful standard reference.)  The li terature on numerical

approaches to each problem is huge, a review of any small part of which could occupy this

entire volume.  This section focuses on those procedures that provide th e most useful tools

in economics and are readily available in commercial software.  This mea ns neglecting the

classical but dated approaches using equally spaced abscissas, like Newt on-Cotes; a useful

overview of these methods is provided by Press et al. (1986, Chapter 4), and a more

extended discussion may be found in Davis and Rabinowitz (1984, Chapter  2).

2.1  Unidimensional quadrature

The principle underlying most state-of-the-art deterministic evaluations  of I = f x( )dx
a

b

∫
is Gaussian quadrature.  If f x( ) = p x( )w x( ) , where p x( )  is any polynomial of degree

2n −1 or lower and w x( )  is a chosen basis function, then there exist points xi ∈ a,b[ ] and a

weight ω i  associated with each point such that

f x( )dx
a

b

∫ = p x( )w x( )dx = ω i p xi( )
i=1

n∑
a

b

∫ .

The points and weights depend only on a, b, and the function w x( ), and if they are known

for a=0 and b=1, then it is straightforward to determine their values for any other c hoices

of a  and b .  If r x( ) = f x( ) w x( ) is not a polynomial of degree 2n −1 or lower, then

ω i r xi( )
i=1

n∑
may be taken as an approximation to I = f x( )dx

a

b

∫ .  If r x( ) is smooth relative to a

polynomial of degree 2n −1, then the approximation should be good.  More precisely, one

may show that if r x( ) is 2n-times differentiable, then

f x( )dx
a

b

∫ − ω i r xi( )
i=1

n∑ = cn r 2n( ) ξ( )
for some ξ ∈ a,b[ ], where cn{ }  is a sequence of constants with limn→∞ cn = 0.  For

example, if w x( ) = 1, a = −1, b = +1, then cn = 22n+1 n!( )4 2n + 1( )! 2n![ ]3{ } (Judd, 1991, pp.

6-7, 6-8).

This approach can be applied to any subinterval of a,b[ ] as well.  As long as r x( ) is

2n-times differentiable, one may satisfy prespecified convergence or error  criteria through

successive bisection.  Error criteria are usually specified as the absol ute or relative
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difference in the computed approximation to I = f x( )dx
a

b

∫  using n -point and m -point

quadrature (Golub and Welsch, 1969).

Infinite and semi-infinite intervals can be treated through appropriate transformation of

variable to a finite interval (Piessens et al., 1983).  Existence and boundedness of r 2n( )

depend in part on the choice of basis function w x( ).  Some of the most useful are indicated

in the following table.

w x( )    Interval Name

        1  (-1,1) Legendre

1 1 − x2  (-1,1) Chebyshev first kind

 1 − x2  (-1,1) Chebyshev second kind
exp −x2( ) −∞,+∞( ) Hermite

1 + x( )α 1 − x( )β  (-1,1) Jacobi

exp −x( )xα  0,∞( ) Generalized Laguerre

1 cosh x( ) −∞,+∞( ) Hyperbolic cosine

For many purposes Gauss-Legendre rules are adequate, and there is a subs tantial stock of

commercially supplied software to evaluate one-dimensional integrals up to specified

tolerances.  These methods have been adapted to include functions having  singularities at

identified points in the interval of integration (Piessens, et al., 1983).

2.2  Multidimensional quadrature

Some multidimensional integration problems in fact reduce to an integrat ion in a single

variable that must be carried out numerically.  For example, all but one  dimension may be

integrable analytically, or the multidimensional integral may in fact be  a product of integrals

each in a single variable, perhaps after a suitable change of variable.  In such cases

quadrature for one-dimensional integrals usually provides a neat solutio n.  Such cases are

rare in economics and econometrics.  If the dimension of the domain of i ntegration is not

too high and the integrand is sufficiently smooth, then one-dimensional methods may be

extended with practical results.  These cases cover a small subset of in tegration problems in

economics, but when they arise they deserve attention because quadrature -based methods

are then often efficient and easy to use.

The straightforward extension of quadrature methods to higher dimensions  shows both

its strengths and weaknesses.  Following Davis and Rabinowitz (1984, pp . 354-359),

suppose that R is an  m -point rule of integration over B ⊆ ℜr , leading to the approximation

R f( ) = ω j f x j( )j =1

m∑ ≈ f x( )dx
B∫ , x j ∈B ,
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and that S is an n -point rule over G ⊆ ℜs , leading to the approximation

S f( ) = νk f yk( )
k =1

n∑ ≈ f y( )dy
G∫ , yk ∈G.

The product rule of R and S is the mn -point rule applicable to B × G ,

R× S f( ) = ω jνk f x j ,yk( )k =1

n∑j =1

m∑ ≈ f x,y( )dxdy
B×G∫ , x j ∈B, yk ∈G .

If h x,y( ) = f i x( )gi y( )
i=1

k∑ , and if R integrates f i x( ) exactly over B  and S integrates gi y( )
exactly over   G i = 1,K ,k( ), then R× S will integrate h x,y( ) exactly over B × G .  The

obvious extensions to the product of three or more rules can be made.  T hese extensions

can be expected to work well when (a) quadrature is adequate in the lo wer dimensional
marginals of the function at hand, (b) h x,y( ) ≈ f x( )g y( ), and (c) the product mn  is small

enough that computation time is reasonable.  Condition (c) and perhaps  (a) are violated

when the support of h is concentrated on a set small relative to the Car tesian boundaries for

that support, as illustrated in Figure 1(a).  A more common occurrence  in economics

involves violations of (b) and (c): B × G  = ℜr × ℜs , but the function is concentrated on a

small subset of its support that cannot be expressed as a Cartesian prod uct, as illustrated in

Figure 1(b).  Whether these difficulties are present or not, the numbe r of function

evaluations and products required in any product rule increases geometri cally with the

number of arguments of the function, a phenomenon sometimes dubbed “t he curse of

dimensionality.”

These constitute the dominant problems for quadrature methods in economi cs.  To a

point, one may extend quadrature to higher dimensions using extensions m ore sophisticated

than product rules.  These extensions are usually specific to functions of a certain type, and

for this reason the literature is large, but reliable software for a pro blem at hand may be hard

to come by.  For example, there has been considerable attention to monom ials (polynomials

for which the highest degree in any one product is bounded), e.g., McNa mee and Stenger

(1967), Genz and Malik (1983), Davis and Rabinowitz (1984, Section 5.7).  Compound, or

subregion, methods provide the most widely applied extensions of quadrat ure to higher

dimensions.  In these procedures, a finer and finer subdivision of the o riginal integration

region is dynamically constructed, with smaller subregions concentrated where the integrand

is most irregular. Within each subregion, a local rule with a moderate n umber of points is

used to approximate the integral.  If, at a given step, a prespecified g lobal convergence

criterion is not satisfied, those regions for which the convergence crit erion is farthest from

being satisfied are subdivided, and the local rule is applied to the new  subdivisions (van

Dooren and de Ridder, 1976; Genz and Malik, 1980; Genz, 1991).   For th ese procedures to

work successfully, it is important to have a scheme for construction of subregions well

suited to the problem at hand, as reconsideration of Figure 1(b) will make clear.  For
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example, Genz (1993) provides an algorithm that copes well with the is olated peaks in high-

dimensional spaces often found in Bayesian multiparameter problems.

These extensions of quadrature are routinely successful for integrals th rough

dimension four or five.  Beyond four or five, success depends on whether  the problem at

hand is of a type for which existing subregion methods are well suited.  Whereas the

application of quadrature to a function of a single variable can be succ essful as a “black

box” procedure, problems of dimensions three and four are more likely  to require

transformations or other analytical work before quadrature can be applie d.  There are very

few applications of quadrature-based methods to integrals of more than f ive dimensions in

the literature.

2.3  Low discrepancy methods

A low discrepancy method defines a deterministic sequence of points x j{ }
j =1

∞
 and a

corresponding m -point integration rule m−1 f x j( )j =1

m∑ ≈ f x( )dx
B∫ .  Gaussian quadrature

organizes the choice of points to evaluate interactions of polynomials w ith basis functions

exactly.  Low discrepancy methods choose the sequence to minimize the di fference between

the number of points in a set and its measure.  (The discussion here cl osely follows parts of

Niederreiter, 1992, Chapters 2 and 3.)

The canonical problem sets B = I
d
, the d -dimensional hypercube.  (This stipulation is

less restrictive than it might seem, and we shall return to this point i n an example in Section

4.4.)  For arbitrary S ⊆ B define

A S; x j{ }
j =1

m( ) = χS x j( )j =1

m∑ ,

where χS x( )  is the characteristic function of S, χS x( ) = 1 if x ∈S and χS x( ) = 0 if x ∉S .

Thus A S; x j{ }
j =1

m( ) is the counting function that indicates the number of j  with 1 ≤ j ≤ m

for which x j ∈S .  If   
)
S  is a nonempty family of Lebesgue measurable subsets of I

d
, then

the discrepancy of the point set x j{ }
j =1

m
 is

  
Dm

)
S; x j{ }

j =1

m( ) = sup
S∈

)
S

A S; x j{ }
j =1

m( ) m − λ d S( ) ,

where λ d ⋅( )  denotes d -dimensional Lebesgue measure.  Let   
)
S* be the family of all

subintervals of I
d
 of the form 0,ui[ ]i=1

d∏ .  Then the star discrepancy of x j{ }
j =1

m
 is

  
Dm

* x j{ }
j =1

m( ) = Dm

)
S*; x j{ }

j =1

m( ) .
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The star discrepancy of x j{ }
j =1

m
 may be used to bound the error of approximation of

f x( )dx
I

d∫  by m−1 f x j( )j =1

m∑ .  To do so, first define the variation of f on  I
d
 in the sense of

Vitali,

  
V d( ) f( ) = L

∂ d f
∂x1L ∂xd

dx1K dxd0

1

∫0

1

∫
for functions f for which the individual partial derivatives are continu ous on I

d
.  Next, let

  V k( ) f;i1,K ,ik( ) be the variation in the sense of Vitali of the restriction of f to the k -

dimensional face 
  

x1,K , xd( ) ∈ I
d
:x j = 1 for j ≠ i1,K ,ik{ } .  The variation of f on I

d
 in the

sense of Hardy and Krause is

  
V f( ) = V k( ) f;ii ,K ,ik( )

1≤i1 ≤K ≤ik ≤d
∑k =1

d∑ .

(See Niederreiter, 1992, Section 2.2, for an extension of this definiti on to functions f that are

not d  times continuously differentiable.)  For any sequence x j{ },x j ∈ I
d
,

  

m−1 f x j( )j =1

m∑ − f x( )dx
I

d
∫ ≤ V f( )Dm

* x1,K ,xm( ) ,

the Koksma-Hlawka inequality (Hlawka, 1961; Niederreiter, 1992, Theorem  2.11).  The

bound is strict (Niederreiter, 1992, Theorem 2.12).

Low discrepancy methods choose sequences x j{ } so as to minimize Dm
* x j{ }

j =1

m( ).

Intuitively, the star discrepancy can be kept small by spacing the point s x j  evenly.  A naive

grid on I
d
 will achieve this, but requires an impractically large number of points  for d ≥ 5

in the same way as quadrature does.  Low discrepancy methods substantial ly extend the

range of practical d  before succumbing to the curse of dimensionality.  To describe two

such sequences, begin with the unique base-b  expansion of any integer n ,

n = a j n( )b j

j =0

∞∑ ,

where b  is an integer exceeding 1 and 0 ≤ a j n( ) < b .  The radical-inverse function φb in

base b  is defined by

φb n( ) = a j n( )b− j +1( )
j =0

∞∑ .

This function maps the integers   1,K ,m  into m  distinct points in the unit interval,

maintaining a regular spacing between the points: if m = bk −1, k integer, then there are m

evenly spaced points beginning with b−k  and ending with 1 − b−k .  Let bj{ }  be a sequence

of relatively prime integers all exceeding 1.  (For example,   b1 = 2, b2 = 3, b3 = 5,K .)  The

Halton sequence in bases   b1,K ,bd  is

  
x j{ }

j =1

∞
, x j = φb1

j( ),K ,φbd
j( )[ ]′
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(Halton, 1960).  The m -element Hammersley sequence in bases   b1,K ,bd  is

  
x j{ }

j =1

m
, x j = j m,φb1

j( ),K ,φbd−1
j( )[ ]′

(Hammersley, 1960).  (An even earlier, closely related sequence is th at of Richtmeyer, 1952,

1958, described in Hammersley and Handscomb, 1964.)

It may be shown (Niederreiter, 1992, Theorem 3.6) that for a Halton se quence in the
pairwise relatively prime bases   b1,K ,bd ,

  

Dm
* x j{ }

j =1

m( ) ≤ d

m
+ 1

m

bj −1

2 logbj

logm +
bj + 1

2






j =1

d∏

≤
bj −1

2 logbj
j =1

d∏






m−1 logm( )d + 0 m−1 logm( )d −1[ ].

(2.3.1)

For the corresponding Hammersley sequence, there is the somewhat better bound

  

Dm
* x j{ }

j =1

m( ) ≤ d

m
+ 1

m

bj −1

2 logbj

logm +
bj + 1

2






j =1

d −1∏

≤
bj −1

2 logbj
j =1

d −1∏






m−1 logm( )d −1 + 0 m−1 logm( )d −2[ ].

(2.3.2)

The second inequalities in (2.3.1) and (2.3.2) imply that the optima l bases are the primes
themselves,   b1 = 2, b2 = 3, b3 = 5,K .

If the upper bounds in (2.3.1)-(2.3.2) are used to govern accuracy, then the number of

function evaluations increases faster than geometrically with dimension,  d , because of the

presence of the term bi −1( ) 2 logbii=1

d∏  or bi −1( ) 2 logbii=1

d −1∏ .  Table 1 provides the

number of evaluations required to assure that f x j( )j =1

m∑ − f x( )dx
I

d∫ ≤ c c = 10−2  or 10−5( )
for a function for which the Hardy-Krause total variation is d .  It also provides the actual

number of evaluations required to guarantee an approximation error of c  or less for the

function f x( ) = x jj =1

d∑ .  While the upper bound on the number of evaluations required

increases faster than exponentially in the dimension d , the actual number required increases

not much faster than linearly and is much smaller.   In general, however, one will not know

the value of the actual error of approximation.  The difficulty of asses sing this error is a

major disadvantage of low discrepancy and other deterministic algorithms  for integration.

2.4  Other deterministic methods

In specialized settings integration in high dimensions can be made more tractable.  The

obvious limiting case is the one in which the entire problem may be solv ed analytically.  But

there are also classes of problems that cannot be solved analytically, w ith common features



9

that suggest specific approximations.  An example is provided by Tierney  and Kadane

(1986) for a class of problems arising in Bayesian statistics and econ ometrics:

  

En g( ) =
g θ( )exp l θ( )[ ]π θ( )dθ

Θ∫
exp l θ( )[ ]π θ( )dθ

Θ∫
=

exp nL* θ( )[ ]dθ
Θ∫

exp nL θ( )[ ]dθ
Θ∫

,

where   l θ( ) is a log-likelihood function; π θ( )  is a prior density kernel; g θ( ) is a strictly

positive function of interest; n  is the number of observations entering the log-likelihood
function;   L θ( ) = log π θ( ) + l θ( )[ ] n ; and   L* θ( ) = logg θ( ) + log π θ( ) + l θ( )[ ] n .

Let θ̂  denote the mode of L, and let Σ = ∂ 2 L θ̂( ) ∂θ∂ ′θ .  Laplace’s approximation is

exp nL θ( )[ ]
Θ∫ dθ ≈ exp nL θ̂( ) − 1

2
n θ − θ̂( )′ Σ θ − θ̂( )







Θ∫ dθ = 2π( )k 2 Σ 1 2 exp nL θ̂( )[ ].

Similarly, if θ̂ * is the mode of L*  and Σ* = ∂ 2 L* θ̂ *( ) ∂θ∂ ′θ , then

exp nL* θ( )[ ]
Θ∫ dθ ≈ 2π( )k 2 Σ* 1 2

exp nL* θ̂ *( )[ ].
The error of approximation in each case is O n−1 2( ), but in the corresponding approximation

Ên g( ) = Σ* Σ( )1 2
exp n L* θ̂ *( ) − L θ̂( )[ ]{ },

the leading terms in the numerator and denominator cancel, and the resul ting error of

approximation for Ên g( )  is O n−1( ) (Tierney and Kadane, 1986).

The approximate solution provided by this method is a substantial improv ement on

previous approximations of this kind, which worked with a single expansi on about θ̂ .  The

method exhibits two attractions shared by most specialized approximation s to integration in

higher dimensions.  First, it avoids the need for specific adaptive subr egion analysis

required for quadrature, if indeed quadrature can be made to work at all .  Second, once

function-specific code has been written, the computations involve standa rd ascent algorithms

to find θ̂  and θ̂ * and are usually extremely fast.  This example also shares some

limitations of this approach.  First, reduction of approximation error t hrough higher order

approximation is tedious at best, whereas in quadrature one can increase  the number of

points or subregions used and in Monte Carlo one can increase the number  of iterations.

Second, there is no way to evaluate the error of approximation; again, q uadrature and Monte

Carlo will provide error estimates.  Third, there is possibly time inten sive analytical work

required for each problem in forming derivatives for different g as well  as different   l.  And

finally, the requirement that g be strictly positive is restrictive.  Th e method may be extended

to more general functions at the cost of some increase in complexity (T ierney, Kass, and

Kadane, 1989).
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3. Pseudorandom number generation

The analytical properties of virtually all Monte Carlo methods for numer ical integration,

and more generally for simulation, are rooted in the assumption that it is possible to observe

sequences of independent random variables, each distributed uniformly on  the unit interval.

Given this assumption, various methods, described in Section 3.2,  may b e used to construct

random variables and vectors with more complex distributions.  Specific transformations

from the uniform distribution on the unit interval to virtually all of t he classical distributions

of mathematical statistics have been constructed using these methods.  S ome examples are

reviewed in Sections 3.3 and 3.4.  These distributions, in turn, constit ute building blocks for

the solutions of integration and simulation problems described subsequen tly in this chapter.

The assumption that it is possible to observe sequences of independent r andom

variables, distributed uniformly or otherwise, constitutes a model or id ealization of what

actually occurs.  In this regard it plays the same role here with respec t to what follows as

does the assumption of randomness in much of economic theory with respec t to the derived

implications for optimizing behavior or does the assumption of randomnes s with respect to

the development of methods of statistical inference in econometrics.  In  current methods for

pseudorandom number generation, the observed sequences of numbers for wh ich the

assumption of an i.i.d. uniform distribution on the unit interval is the  model, are in fact

deterministic.  Since the algorithms that produce these observed sequenc es are known, the

properties of the sequences may be studied analytically in a way that ev ents in the real world

corresponding to assumptions of randomness in economic models may not.  Thus, the

adequacy or inadequacy of stochastic independence as a model for these s equences is on a

surer footing than is this assumption as a model in economic or economet ric theory.  We

begin this section with an overview of current methods of generating seq uences for which

the independent uniform assumption should be an adequate model.

3.1 Uniform pseudorandom number generation

Virtually all pseudorandom number generators employed in practice are li near

congruential generators and their elaborations.  In the linear congruent ial generator a
sequence of integers Ji{ } is determined by the recursion

Ji = aJi−1 + c( )mod m . (3.1.1)

The parameters a, c,  and m  determine the qualities of the generator.  If c = 0, the resulting

generator is a pure multiplicative congruential generator.  For example,  the multiplicative

generator with m = 231 −1 =  2147483647 (a prime) and a =  16807, a =  397204094, or

a =  950706376 is used in the IMSL scientific library (IMSL, 1994), and th e user may
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choose between different values of c  as well as set the seed J0 .   The sequence Ji{ } is

mapped into the pseudorandom uniform sequence Ui{ } by the transformation

Ui = Ji m . (3.1.2)

 If m  is prime, the sequence will cycle after producing exactly m  distinct values; clearly one

can do no better than m = 231 −1 for a sequence of positive integers with 32-bit arithmetic.

There are many criteria for evaluating the i.i.d. uniform distribution o n the unit interval as a
model for the resulting sequences Ui{ }.  Informal but useful discussions are provided by

Press et al. (1986, pp. 192-194) and Bratley, Fox and Schrage (1987, pp. 216-220) .  More

technical and detailed evaluations, including discussion of  the choice of c , may be found in

Coveyou and McPherson (1967), Marsaglia (1972), Knuth (1981), and Fishman and

Moore (1982, 1986).

There are many elaborations on pseudorandom number generation that build  on the

primitive of the linear or multiplicative congruential generator.  In th e shuffled generator, a

table is initialized with q  seeds.  The generator is then used in the obvious way to select a

table entry pseudorandomly, and J1 and U1  are generated as described in the preceding

paragraph.  Then a new entry is selected pseudorandomly, U2 is generated from that entry,

and so on.  If the congruential generator produced i.i.d. uniform random  variables, so would

the shuffled generator, and shuffled generators extend the upper bound o n cycle length to

mq ; this option is provided conveniently in IMSL.  A shuffled generator de scribed by

L’Ecuyer (1986) has cycle length over 1019 .  However, the analytical properties of the

shuffled generator are harder to evaluate.  In another elaboration on th e basic approach, one
may combine two pseudorandom sequences Ji{ } and Ki{ }  from the congruential generator

to produce a third sequence Li{ } that is then mapped into Ui , Ui = Li m, in one of two

ways: (a) Let Li = Ji + Ki( )mod m , or (b) use Ki{ }  to randomly shuffle Ji{ } and then set

Li{ } to the shuffled sequence.  Both of these generators extend cycle length , but subtle

issues arise in the combination of sequences. For a discussion of these issues and

comparison of properties, consult Wichmann and Hill (1982) or L’Ecu yer (1986) for (a),

Marsaglia and Bray (1968) or Knuth (1981, p. 32) for (b).

The add with carry generator (Marsaglia and Zaman, 1991) has a base b , lags r and s
( r > s), and a seed vector   ′j = j1,K , jr ,c( )  with integer elements   ji: 0 ≤ ji < b i = 1,K ,r( )
and carry bit c = 0 or 1.  The generated sequence is   j, f j( ), f f j( )[ ],K  with

  

f j1,K , jr ,c( ) =
j2 ,K , jr , jr +1−s + j1 + c,0( ) if jr +1−s + j1 + c < b

j2 ,K , jr , jr +1−s + j1 + c − b,1( ) if jr +1−s + j1 + c ≥ b






.

With appropriately chosen base b , lags r and s , and seed vector j, the generated sequence

has period br + bs − 2.  Marsaglia and Zaman (1991) discuss appropriate choices of these
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values.  One example is b = 232 − 5, r = 43, s = 22,and seed vector consisting of any 43

integers in 0, 232 − 6[ ].  The sequence of vectors has a cycle exceeding 10414 , and all

possible sequences of 43 integers appear within a cycle.  (The add with  carry generator is

one of a family of closely related generators.  Marsaglia and Zaman, 199 1, discuss the

family.)

Since pseudorandom numbers are in fact deterministic, some consideration  must be

given to systematic differences between the two.  One important quality is the cycle length.

Most simulations on personal computers or workstations are unlikely to e xceed the cycle

length of 231 of typical good linear congruential generators.  But a study carried ou t with

vector or parallel processors could well exceed this length, and in such  cases the shuffled or

add with carry generator should be considered.  Another quality is absen ce of serial

correlation.  This is easily tested but generally is not a problem.  Gre enberger (1961) shows

that the first order serial correlation coefficient of any linear congru ential generator is

bounded above by a−1 1 − 6c m( ) + 6 c m( )2[ ] + a + 6( ) m, and Knuth, 1981, p. 84, points

out that for nearly all m  the serial correlation coefficient is less than 1 m .

Evidence of pseudorandomness is usually exhibited in high dimensional sp aces.  If one

plots successive overlapping sequences of n  pseduorandom numbers, then the sequences

typically lie in a few hyperplanes of dimension n −1 each.  For example, in the case of

linear congruential generators the number of hyperplanes is no more than  n! m( )1 n

(Marsaglia, 1968): e.g., if m = 231 −1, then sequences of length 6 lie on at most 108 distinct

hyperplanes.  In the add with carry generator, successive overlapping se quences of more

than r  values lie on hyperplanes with a separating distance is at least 1 3  (Tezuka et al.,

1993).  One can determine the existence of such hyperplanes using the s pectral test first

proposed in Coveyou and MacPherson (1967).  Accessible descriptions of  this test are

provided in Knuth (1981) and Bratley, Fox, and Schrage (1987).  Most  simulation methods
employ highly nonlinear transformations of Ui{ }, as we shall see subsequently, so the

distribution of sequences on hyperplanes does not carry over.  (However , new problems can

arise: see the discussion below of the Box and Muller transformation to construct normally

distributed random variables.)

A few practical steps will avoid most problems.  First, use only uniform  pseudorandom

number generators that are completely documented with references to the academic

literature.  Second, questions of execution time, often discussed in the  academic literature,

are irrelevant in computational economics: subsequent computations using  pseudorandom

uniform random sequences take much longer than the most elaborate varian ts on linear

congruential generators, so that even if execution time for these genera tors could be driven
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to zero, there would be no significant improvement in overall execution time.  Third, one

should ensure that cycle length is substantially greater than the length  of the pseudorandom

sequence to be generated.  Finally, any publicly reported result based i n part on a sequence

of pseudorandom numbers should be checked for sensitivity to the choice of generator.

This does not imply numerical analysis that takes the investigator far f rom the problem of

interest.  A key advantage of Monte Carlo methods, to be discussed in Se ction 4, is that

measures of accuracy are produced as a by-product based on the assumptio n that successive

pseudorandom numbers are independently and identically distributed.  Res ults obtained

using variants of methods for producing these sequences should agree wit hin these

measures of accuracy.  For example, computations can be executed with di fferent seeds,

with different values of c  in (3.1.1), with or without shuffling, or using an add with carry or

related generator.  This requires only minor changes in code for most so ftware.

3.2  General methods for nonuniform distributions

Throughout this section, x  will denote a random variable with cumulative distribution

function (c.d.f.) F and support C , and u  will denote a random variable with uniform

distribution on the unit interval.  If x  is continuous, its probability density function (p.d.f.)

will be denoted by f.  We turn first to several general methods for mapp ing u  into x .

Inverse c.d.f.  Suppose x  is continuous, and consequently the inverse c.d.f.
F−1 p( ) = c: P x ≤ c( ) = p{ }

exists.  Then x  and F−1 u( ) have the same distribution: P F−1 u( ) ≤ d[ ] = P u ≤ F d( )[ ] = F d( ) .

Hence pseudorandom drawings xi{ }i=1

N
 of x  may be constructed as F−1 ui( ), where ui{ }i=1

N
 is

a sequence of pseudorandom uniform numbers.

A simple example is provided by the exponential distribution with probab ility density
f x( ) = λ exp −λx( ), x ≥ 0 . Correspondingly, F x( ) = 1 − exp −λx( ), F−1 p( ) = − log 1 − p( ) λ ,

and consequently, x = − log u( ) λ .

The inverse c.d.f. method is very easy to apply if an explicit, closed f orm expression

for the inverse c.d.f. is available.  Since most inverse c.d.f.’s req uire the evaluation of

transcendental functions, the method may be inefficient relative to othe rs.  (That is the case

in the foregoing example; see von Neumann, 1951, or Forsythe, 1972, for a more efficient

alternative.)  In some cases, evaluation of the c.d.f. is superficially  closed form to the user of

a mathematical software library but in fact involves nontrivial numerica l integration of the

kind discussed in Section 2.  A leading example is provided by the stand ard normal

distribution, for which specialized methods can be applied to the comput ation of F−1 (Hart
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et al., 1968; Strecok, 1968), but for which acceptance and composition method s (discussed

below) are more efficient.

Discrete distributions.  Suppose that the random variable X  takes on a finite number
of values, without loss of generality the integers   1,K ,n and P X = i( ) = pi.  The preferred

methods will depend (among other things) on the number of draws to be made from the

distribution.  If only a few draws are to be made (as may be the case w ith the Markov chain

Monte Carlo methods discussed in Section 6), then the obvious inverse m apping from the

unit interval to the integers   1,K ,n  can be constructed and subsequently used to search for

the appropriate integer corresponding to the drawn u .  The disadvantage of this method is

that the search time can be substantial.  If many draws are to be made, then the alias method

due to Walker (1974) and refined by Walker (1977) and Kronmal and Pe terson (1979) is

more efficient.  The basic idea is to draw an integer i  from an equiprobable distribution on
the first n  integers, and choose i  with probability ri and its alias ai  with probability 1 − ri .

If the values of ai  and ri  are chosen correctly, then the resulting choice probabilities are pi

for i    i = 1,K ,n( ) .  Setting up the table of ri  and ai  requires O n( )  time (see Bratley, Fox,

and Schrage, 1987, pp. 158-160, for an accessible discussion); whether this overhead is

worthwhile depends on the value of n  and the number of draws to be made from the

discrete distribution.  The aliasing algorithm is implemented in many ma thematical software

libraries.

Acceptance methods.  Suppose that x  is continuous with p.d.f. f x( )  and support C .

Let g be the p.d.f. of a different continuous random variable z  with p.d.f. g z( ) which has a

distribution from which it is possible to draw i.i.d. random variables a nd for which
supx∈C f x( ) g x( )[ ] = a < ∞.

The function g is known as an envelope or majorizing density of f, and the distribution with
p.d.f. g is known as the source distribution.  To generate xi ,

(a)  Generate u ;

(b)  Generate z ;
(c)  If u > f z( ) ag z( )[ ], go to (a);

(d)  xi = z .

The unconditional probability of proceeding from step (c) to step (d)  in any pass is

f z( ) ag z( )[ ]{ }g z( )dz = a−1

−∞

∞

∫ ,

and the unconditional probability of reaching step (d) with value at m ost c  in any pass is

f z( ) ag z( )[ ]{ }g z( )dz = a−1

−∞

c

∫ F c( ).
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Hence the probability that xi  is at most c  at step (d) is F c( ).
The principle of acceptance sampling is illustrated in Figure 2.  The tw o essentials

of applying this procedure are the ability to generate z  and the finite upper bound on

f x( ) g x( ).  The efficiency of the method depends on the efficiency of generating z  and the

unconditional probability of acceptance, which is just the inverse of th e upper bound on

f x( ) g x( ).  (In this respect, acceptance sampling is closely related to importan ce sampling

discussed in Section 4.3.)  The great advantage of acceptance sampling is its ability to cope

with arbitrary probability density functions as long as the two essentia l conditions are met

and efficiency is acceptable for the purposes at hand.  Notice that the method will work in

exactly the same way if f x( )  is merely the kernel of the p.d.f. of x  (i.e., proportional to the

p.d.f.) as long as a = supx∈C f x( ) g x( )[ ]  (although in this case a−1 no longer provides the

unconditional acceptance probability).  This property can be exploited to advantage to avoid

numerical approximation of unknown constants of integration.

Specific examples providing insight into the method may be found in the family of

truncated univariate normal distributions.  As a first example, consider  the standard normal
probability distribution truncated to the interval 0,.5( ) :

f x( ) = .19146( )−1 2π( )−1 2 exp −x2 2( ) = 2.0837exp −x2 2( ), 0 < x ≤.5.

The standard normal distribution itself is a legitimate source distribut ion, but since
sup0< x≤.5 f x( ) g x( )[ ] = .19146( )−1 , the efficiency of this method is low.  However, for a

source distribution uniform on (0, .5], sup0< x≤.5 f x( ) g x( )[ ] = 2.0837 2.0 = 1.0418: the

unconditional probability of acceptance is 1.0418( )−1 =.95985.  As a second example,

consider the same distribution truncated to the interval (5, 8]:

f x( ) = 2.8665 ×10−7( )−1
2π( )−1 2 exp −x2 2( ) = 1.3917 ×106( )exp −x2 2( ), 5 < x ≤ 8.

The standard normal fails as a source distribution since the acceptance probability is

2.8665 ×10−7 . A uniform source density yields an acceptance probability of only .064 271.

An exponential distribution translated to the truncation point is for ma ny purposes an

excellent approximation to a severely truncated normal distribution (Ma rsaglia, 1964;

Geweke, 1986), and for the exponential source density, setting the para meter equal to the

truncation point is an optimal or near optimal choice (Geweke, 1991).  One can readily

verify that the acceptance probability for the source density
g x( ) = 5exp −5 x − 5( )[ ], 5 < x ≤ 8,

is .96406.

Optimizing acceptance sampling.  Acceptance methods may readily be extended to

multivariate distributions.  This topic is taken up in detail in Section  4.2.  We turn now to
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the question of finding an optimal source distribution for a specified p roblem and develop

results for the general case of univariate or multivariate distributions .

In general, suppose that it is desired to draw i.i.d. variables from a d istribution with
target density kernel f x;θ( ),θ ∈Θ , having support C θ( ) ⊆ ℜm ; the parameter vector θ
indexes a family of density kernels f ⋅( ).  Suppose that a family of source distributions with

densities g x;α( ),α ∈Α ⊆ ℜ p , having support D α( ), has been identified, with the property
that for all θ ∈Θ, there exists at least one α  for which supx∈C θ( ) f x;θ( ) g x;α( ) < ∞ .  To

accomplish the goal of i.i.d. sampling from f x;θ( ) , draws from g x;α( )  are retained with

probability q α,θ( )f x;θ( ) g x;α( ), where

q α,θ( ) ≡ supx∈C θ( ) f x;θ( ) g x;α( )[ ]−1

.

Suppose the family of source densities g ⋅ ; ⋅( )  has been fixed, but not the value of α , and

that the objective is to maximize the unconditional probability of accep ting the draw from

the source distribution.  Just as in the foregoing examples, this uncond itional probability is

q α,θ( )f x;θ( ) g x;α( )[ ]g x;α( )dx
D α( )∫ = q α,θ( ).

Hence the problem is to determine the saddle point

minα ∈Α maxx∈C θ( ) logf x;θ( ) − logg x;α( )[ ]{ }.

Given the usual regularity conditions, a necessary condition is that α  be part of a solution
of the m + p( )-equation system

∂ logf x;θ( ) − logg x;α( )[ ] ∂x = 0

∂ logg x;α( ) ∂α = 0.

As an example, consider the target density kernel

f x;T,η( ) = x 2( )Tx 2 Γ x 2( )[ ]−T
exp −ηx( ),

which arises as a conditional posterior density kernel for the degrees-o f-freedom parameter

in a Student-t distribution (Geweke, 1992b, Appendix B).  For the exponential family of

source densities g x;α( ) = α exp −αx( ) , the regular necessary conditions are that

T 2( ) log x 2( ) + 1 − ψ x 2( )[ ] + α − η( ) = 0,

α −1 − x = 0,
where ψ ⋅( ) = ′Γ ⋅( ) Γ ⋅( ) is the digamma function.  The desired value of α  is the solution

of
T 2( ) − log 2α( ) + 1 − ψ 1 2α( )[ ] + α − η( ) = 0 ,

which may be found using standard root-finding algorithms.  Acceptance r ates of about .15

are reported in Geweke (1992b).
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Adaptive methods.  It may be possible to improve upon a source distribution, using

information about the target distribution acquired in the sampling proce ss itself.  A very

useful application of this idea has been made to the problem of sampling  from distributions

with log-concave probability density functions.  It is especially attrac tive when it is costly to

evaluate the target density kernel at a point or when known source densi ties are inefficient or

nonexistent.  The exposition here closely follows Gilks and Wild (1992) , who build on

some earlier work by Devroye (1986); see Wild and Gilks (1993) for a  published

algorithm.  An application of this algorithm is discussed in Section 7.1 .

Let h x( ) = logf x( ).  The support D  of f x( )  is connected, and h x( ) is differentiable

and weakly concave everywhere in D ; i.e., ′h x( ) is monotonically nonincreasing in x on D.

Suppose that h x( ) and ′h x( ) have been evaluated at k points in D ,   x1 ≤K ≤ xk , k ≥ 2.

We assume that if D  is unbounded below, then  ′h x1( ) > 0 and that if D  is unbounded

above, then ′h xk( ) < 0.  Let the piecewise linear upper hull u x( )  of h x( ) be formed from

the tangents to h ⋅( ) at the xj , as shown in Figure 3.  For   j = 1,K ,k −1 the tangents at xj

and xj +1  intersect at

wj =
h xj +1( ) − h x j( ) − xj +1 ′h x j +1( ) + xj ′h x j( )

′h x j( ) − ′h x j +1( ) .

Further let w0 denote the lower bound of D  (possibly −∞ ) and wk  the upper bound of D

(possibly +∞ ).  Then

u x( ) = h x j( ) + x − xj( ) ′h x j( ), x ∈ wj −1,wj( ].

Similarly the piecewise linear lower hull   l x( )  of h x( ) is formed from the chords between
the xj ,

  
l x( ) =

xj +1 − x( )h x j( ) + x − xj( )h x j +1( )
xj +1 − xj

, x ∈ xj , xj +1( ].
For subsequent purposes it is useful to extend the definition to include

  l x( ) = −∞, x < x1 or x > xk .

At the start of an acceptance/rejection iteration, the function exp u x( )[ ] forms a source

density kernel, and   exp l x( )[ ] is a squeezing density kernel.  The iteration begins by

drawing a value z  from the distribution with kernel density function exp u x( )[ ].  This may

be done in two steps:

(a) Compute 
  
pj = P wj −1 < x ≤ wj( ) = I j I j = 1,K ,k( ) , where

I j =
exp h xj( ) − xj ′h x j( )[ ]exp ′h x j( ) wj − wj −1( )[ ] ′h x j( )  if ′h xj( ) ≠ 0

h x j( ) wj − wj −1( ) if ′h xj( ) = 0 






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and I = I jj =1

k∑ .  Choose an interval wj −1,wj( ] from this discrete distribution as

described above.

(b) Conditional on the choice of interval the source distribution is exponen tial.  Draw

z  from this distribution as previously discussed.

The draw z  is accepted or rejected by means of the acceptance sampling algorithm

described above, but using the following shortcut.  Having drawn u , we know that z  will be
accepted if   u ≤ exp l z( ) − u z( )[ ], and in this case no further computations are required.  If

  u > exp l z( ) − u z( )[ ], then evaluate h z( ) and ′h z( )  and accept z  if and only if

u ≤ exp h z( ) − u z( )[ ].  In the latter case add z  to the set of points   x1,K , xk( ), reordering the

xj ‘s, and update u ⋅( ) and   l ⋅( ), unless z  is accepted and no more draws from the target

distribution are needed.  This completes the acceptance iteration.

Notice that this algorithm is more likely to update the source and squee zing densities

the more discordant are these functions at a point.  As the algorithm pr oceeds, the

probability of acceptance of any draw increases toward 1, and the probab ility that an

evaluation of h will be required for any draw falls to 0.

Composition algorithms.  Formally, composition arises from a p.d.f. representation

f x( ) = gy x( )dH y( )
−∞

∞

∫ .

A random variable Y  from distribution H is generated, followed by a random variable X
with p.d.f. gy .  This method goes back at least to Marsaglia (1961), who used it to generate

normal random variables.  It is also the natural method to use for mixtu re distributions.  For
example, suppose that x  is drawn from a N 0,.12( )  distribution with probability .95 and a

N 0,102( ) distribution with probability .05. The probability density

.95 2π( )−1 2 .1( )−1 exp −x2 .02( )+.05 2π( )−1 2 10( )−1 exp −x2 200( )
is strongly leptokurtic and not well suited to acceptance sampling.  But  the construction of

the random variable in fact corresponds to a composition with

P Y = 0( ) =.95, P Y = 1( ) =.05,

gY =0 x( ) = 2π( )−1 2 .1( )−1 exp −x2 .02( ),  gY =1 x( ) =.05 2π( )−1 2 10( )−1 exp −x2 200( ).

3.3  Selected univariate distributions

In most cases there is associated with each of the classical univariate distributions a

substantial literature on the generation of corresponding pseudorandom v ariables.  Good

mathematical and statistical software libraries have drawn on this liter ature and are widely

available.  In many cases the most efficient and accurate routines are n ot simply

implementations of the constructions that appear in the mathematical sta tistics literature, and
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the user is well-advised to take advantage of the capital embodied in go od libraries.  The

discussion here is limited to illustrating how the techniques discussed in Section 3.2 are

used in specific cases.    More thorough surveys in the literature are p rovided by Bratley,

Fox, and Schrage (1987, pp.164-189) and Devroye (1986).  All of the methods discussed

here are implemented in good software libraries, which should always be used.  This

discussion is not intended to form the basis of reliable code.

Binomial distribution.  The binomial distribution indicates the probability of k

successes in n  independent trials if p  is the probability of success in any given trial:

p k( ) = n

k( )pk 1 − p( ) n−k( ) .

The definition provides a direct method for generating the random variab le k , but is

acceptably rapid only if n  is small.  For small values of np , the inverse c.d.f. method is

practical since p k( ) will typically require evaluation for only a few values of k .  In all other

cases, however, composition algorithms with acceptance methods are more efficient.

Examples are given by Ahrens and Dieter (1980) and Kachitvichyanukul ( 1982).

Univariate normal distributions.  Inverse c.d.f methods for the standard normal have

already been mentioned.  Acceptance sampling methods are not hard to des ign, especially if

one exploits the exponential source distribution as first noted by Marsa glia (1964).  Related

and succeeding work by Marsaglia and Bray (1964); Marsaglia, MacLaren,  and Bray

(1964); and Kinderman and Ramage (1976) combining acceptance samplin g and

composition form the basis for the generation of standard normal variabl es in most software

libraries.

Box and Muller (1958) showed that if U1 and U2  are mutually independent standard

uniform random variables, then
X = cos 2πU1( ) −2 logU2 , Y = sin 2πU1( ) −2 logU2

are independent standard normal random variables.  (The key to the demo nstration lies in a

transformation to polar coordinates.)  The combination of this method w ith the linear
congruential random number generator produces a pathology, however.  If Ui and Ui+1 are

successive realizations of (3.1.1)-(3.1.2), then
Ui+1 = amUi + c( )mod m[ ] m ⇒

cos 2πUi+1( ) = cos 2π aUi + c m( )[ ], sin 2πUi+1( ) = sin 2π aUi + c m( )[ ]
and hence

Xi = cos 2π aUi + c m( )[ ] −2 logUi , Yi = sin 2π aUi + c m( )[ ] −2 logUi .
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All possible values of Xi ,Yi( )  fall on a spiral.  As an approximation to a pair of

independent variables the distribution of Xi ,Yi( )   could hardly be worse.  However, if one

discards Yi , the sequence Xi{ } suffers from no known problems of this kind.  This is one

of the reasons that acceptance sampling and composition rather than the Box-Muller

transformation is used in statistical libraries.  It illustrates the ris ks involved in seemingly

straightforward combinations of distribution theory with pseudorandom un iform variables.
Given a sequence of standard normal random variables zi{ }, a sequence from the

general univariate normal distribution N µ ,σ 2( ) can be generated through the familiar

transformation xi = µ + σzi .

Gamma distributions.  The gamma distribution is important in its own right, for

included special cases like the chi-squared, and as a building block for  other distributions

like the beta.  The gamma distribution with scale parameter λ  and shape parameter a  has

probability density

f x( ) = λ exp −λx( ) λx( )a−1 Γ a( ), x ≥ 0.

In general, random variables from this distribution may be generated eff iciently using

composition algorithms and acceptance methods.  Fast and accurate method s are

complicated but readily available in statistical software libraries.  Fo r example, IMSL uses

the composition-acceptance methods of Ahrens and Dieter (1974) and Sch meiser and Lal

(1980).  A few special cases are worth note.

(a) If a = 1, then the distribution is exponential with parameter λ  and the inverse

c.d.f. method discussed above is much more efficient.
(b) If a = 0.5, then x = z2 2, z ~ N 0,λ2( ).

(c) If λ = 0.5, then x ~ χ 2 ν( ),ν = 2a .  If a  is an integer, then x  is the sum of a

independent exponentially distributed random variables each with paramet er
λ = 0.5.  If ν  is an odd integer, then x  is the sum of ν 2[ ] independent

exponentially distributed random variables plus the square of an indepen dent

standard normal.  For integers up to ν = 17, these representations provide the

basis for more efficient generation from the chi-squared distribution, b ut for larger

integers it is more efficient to use the more general composition-accept ance

methods.

3.4 Selected multivariate distributions

Generation of random vectors typically builds upon the ability to genera te univariate

random variables.  Just how this should be done is not always obvious, h owever, and
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sometimes the obvious method is not the most efficient.  The examples th at follow are

intended only to illustrate this fact.  Statistical software libraries s hould be consulted for

implementation of these methods.

Multinomial distribution.  The multinomial distribution indicates the probability of kj

realizations of outcome j , from m  possible outcomes, in n  independent trials.  If pj is the

probability of outcome j  in any given trial, then

p kj( ) = n!

kj !j =1

m∏
pj

kj

j =1

m∏ , kj ≥ 0 and kjj =1

m∑ = n .

The decomposition of this distribution into its full conditionals,   p k1( ), p k2 k1( ),K ,

  
p kj k1,K ,kj −1( ),K , p km k1,K ,km−1( ), may be used to generate the kj .  We have

p k1( ) =
n

k1







p1
k1 1 − p1( ) n−k1( )

, 0 ≤ k1 ≤ n,

  

p kj k1,K ,kj −1( ) =
ñj

kj







p̃j

kj 1 − p̃j( ) ñj −kj( )
, 0 ≤ kj ≤ ñj ,

where ñj ≡ n − ki
i=1

j −1

∑ , p̃j ≡ pj 1 − pi
i=1

j −1

∑





.

These distributions are all binomial.

Multivariate normal distribution.  The generation of a multivariate normal random
vector x

m×1
 from the distribution N µ ,Σ( )  is based on the familiar decomposition

z ~ N 0,Im( ), x = µ + Az with A ′A = Σ .

While any factorization A  of Σ  will suffice, it is most efficient to make A  upper or lower

triangular so that m m + 1( ) 2  rather than m2  products are required in the transformation

from z  to x .  The Cholesky decomposition, in which the diagonal elements of the upp er or

lower triangular A  are positive, is typically used.

Wishart distribution.  If xi
m×1

~
IID

N 0,Σ( ) , the distribution of A = xi − x( ) xi − x( )′
i=1

n∑
is Wishart, with p.d.f.

f A( ) =
A

1

2
n−m( ) exp − 1

2
tr Σ−1A( )

2
1

2
n−1( )m π m m−1( ) 4 Σ

1

2
n−1( ) Γ 1

2
n − i( )[ ]i=1

m∏
;

for brevity, A ~ W Σ,n −1( ).  (For obvious reasons this distribution arises frequently in

simulations.  It is also important in Bayesian inference, where the post erior distribution of

the inverse of the variance matrix for a normal population often has thi s form.)  Direct
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construction of A  through generation of xi{ }i=1

n
 becomes impractical for large n .  A more

efficient indirect method follows Anderson (1984).  Let Σ  have lower triangular Choleski
decomposition Σ = L ′L , and suppose Q ~ W Im ,n −1( ).  Then LQ ′L ~ W Σ,n −1( )
(Anderson, 1984, pp. 254-255).  Furthermore Q  has representation

Q = U ′U uij = 0 i < j < m( )
uij ~ N 0,1( ) uii ~ χ 2 n − i( )

  i = 1,K ,m( ) , with the uij  mutually independent for i ≥ j  (Anderson, 1984, p. 247).  Even if

n  is quite small, this indirect construction is much more efficient than the direct

construction.
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4.  Independence Monte Carlo

Building on the ability to produce sequences of vectors that are well de scribed as i.i.d.

random variables, we return to the integration problem with particular a ttention to high

dimensions.  There are two distinct but closely related problems that ar ise in economics and

econometrics.

Problem I is to evaluate

I = f x( )dx
D∫ .

Problem E is to evaluate
E = E g x( )[ ],

where x  is a random vector with c.d.f. P x( ) .  To simplify notation, assume that P is

absolutely continuous and that x  has a probability density function p x( ) .  It is implicit in

Problem E that g x( )p x( )dx
D∫  is absolutely convergent in its domain D .  Detailed examples

of Problems E and I are provided in Section 7.

If a random vector z  has p.d.f. p z( ) , then any function r z( ) = a ⋅ p z( ), a > 0, is said to

be a kernel density function for z .  In order to express some key moments compactly, let
Er g z( )[ ] denote the expectation of g z( ) if z  has kernel density function r z( ); similarly

varr g z( )[ ] for variance.

Many of the procedures discussed in this section are straightforward app lications of
two results in basic mathematical statistics.  Let yi{ }  be an i.i.d. sequence from a

population, and let yN = 1

N
yii=1

N∑  and sN
2 = 1

N −1
yi − yN( )2

i=1

N∑ .  If the population has finite

first moment, then E yN( ) = E y( ) and the strong law of large numbers states that

yN
a.s. → E y( );

i.e., P limN →∞ yN = E y( )[ ] = 1.  If the same population also has a finite variance σ 2 , then the

central limit theorem establishes that
N yN − E y( )[ ] d → N 0,σ 2( );

i.e., limN →∞P N yN − E y( )[ ] ≤ cσ{ } = Φ c( ), where Φ ⋅( ) is the c.d.f. of the N 0,1( )
distribution.  In this case E sN

2( ) = σ 2 , and from the strong law of large numbers,

sN
2 a.s. → σ 2.

4.1  Simple Monte Carlo

In the case of Problem I, suppose that

f x( ) = g x( )p x( ),
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with p x( ) ≥ 0 and p x( )dx
D∫ = p*, where p* is a known positive constant.  Then p x( )  is a

kernel density function.  Suppose further that it is possible to draw ps eudorandom vectors
x i{ }  from the distribution with probability density function p x( ) p* , as described in

Section 3.  Since

I = f x( )dx
D∫ = p* g x( ) p x( ) p*[ ]dx

D∫ = E p p* g x( )[ ],

it follows that

IN = N −1p * g x i( )
i=1

N∑ a.s. → I . (4.1.1)

The requirement that p* is known may be weakened by replacing p* with a sequence

pN
* a.s. → p* in the last expression.  (Some practical methods of producing pN

*  at

essentially no incremental cost are taken up in Section 4.2.)  If p* is known, then E IN( ) = I ,

but if p* must be replaced by a consistent estimator, then in general E IN( ) ≠ I  but (4.1.1) is

still true.

If in addition g2 x( )p x( )dx
D∫  is absolutely convergent, this result can be extended to

provide a measure of the accuracy of IN .  Let

σ 2 = var p p* g x( )[ ] = p*−1 p* g x( ) − I[ ]2
p x( )dx

D∫ .

Then

N IN − I( ) d → N 0,σ 2( ), N −1 p* g x i( ) − IN[ ]2

i=1

N∑ a.s. → σ 2 .

(The result may be extended to include cases in which p* is approximated by a sequence of

pN
* , but some changes are required; see Section 4.2.)  This result makes e xact the intuitive

notion that p ⋅( ) should be chosen to mimic the shape of f ⋅( ).

The solution of Problem E by simple Monte Carlo is even simpler, as long  as it is
possible to construct an i.i.d. sequence from the probability distributi on of x  in E g x( )[ ],

for then EN = 1

N
g x i( )

i=1

N∑ a.s. → E and E EN( ) = E ∀N .  It is not necessary to know the

integrating constant of the kernel probability density for x .  If σ 2 = var g x( )[ ] exists, then

N EN − E( ) d → N 0,σ 2( )  as well.

As an example, consider the problem

 I = f x( )dx
ℜk∫ = g x( )p x( )dx

ℜk∫ = g x( )exp −
1

2
x − µ( )′H x − µ( )



ℜk∫ dx ,

where H  is positive definite.  Since p x( )  is a multivariate normal kernel density function,

IN = 2π( )k 2 H 1 2 N −1 g x i( )
i=1

N∑ , x i ~
IID

N µ ,H−1( ).
Because p x( ) ≥ 0∀x ∈ℜk ,  IN

a.s. → I  regardless of the form of f x( ) .  However,

convergence will be impractically slow if g x( ) is ill conditioned or (equivalently) µ  and H
are chosen so that p ⋅( ) poorly mimics f ⋅( ).  If varp g x( )[ ] exists, then
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σ 2 = 2π( )k H varp g x( )[ ]
provides the pertinent measure of the adequacy of IN  as an approximation of I .  Only this

expression -- not the dimensionality k  -- matters.

4.2  Acceptance methods

Acceptance methods may be used to evaluate integrals in much the same wa y as they

are used to produce pseudorandom numbers.  In Problem I, suppose that 0 ≤ g x( ) ≤ a < ∞
∀x ∈D.  Suppose further that p* is known or equivalently that p x( )  is a probability

density function and not merely a kernel.  Let x i{ }  be an i.i.d. sequence drawn from a

distribution function with p.d.f. p x( ) , and let ui  be a corresponding Bernoulli random

variable,
ui = 0 or 1, P ui = 1( ) = a−1 g x i( ) .

Then

IN = N −1a uii=1

N∑ a.s. → a Ep ui( ) = a a−1 g x( )p x( )dx =
D∫ I,

E IN( ) = I ∀N, N IN − I( ) d → N 0,σ 2( ),
       σ 2 = aI − I 2 , aIN − IN

2 a.s. → σ 2 . (4.2.1)

This method may be extended to g x( ) for which   −∞ < l≤ g x( ) ≤ u < ∞ , by defining

g+ x( ) = sup 0,g x( )[ ], g− x( ) = − inf 0,g x( )[ ], and approximating g+ x( )dx
D∫  and g− x( )dx

D∫
separately.  Observe that σ 2  is an increasing function of a  and the unconditional
probability of acceptance P ui = 1( ) = a−1I  is a decreasing function of a .  If p x( ) ∝ g x( ),

then P ui( ) = 1 and σ 2 = 0 , but this is tantamount to being able to integrate f x( )
analytically.  In general one seeks to minimize a .  If a  is too large, then very few ui will be

accepted, and the method will be impractical.

In Problem E, acceptance methods may be applied to draw from the distrib ution with

probability density p x( ) .  If h x( ) is a source density as described in Section 3.2,

0 ≤ p x( ) h x( ) ≤ a < ∞∀x ∈D, then a sequence of i.i.d. draws from the distribution with

p.d.f. p x( )  may be constructed.  If we take xi{ }i=1

N
 to be the accepted draws, then

EN = N −1 g x i( )
i=1

N∑ a.s. → E, E EN( ) = E ∀N, N EN − E( ) d → N 0,σ 2( ),

    σ 2 = var p g x( )[ ], sN
2 = g x i( ) − EN[ ]2

i=1

N∑ N a.s. → σ 2 . (4.2.2)

If we take zi{ }i=1

N
 to be draws from the source density, and ui = 1 if zi  is accepted and

ui = 0 if not, then
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EN = ui g zi( )
i=1

N∑ uii=1

N∑ a.s. → E, N EN − E( ) d → N 0,σ 2( ) ,

     σ 2 = a g z( ) − E[ ]2
p z( )dz

D∫ , a ui g zi( ) − E[ ]2

i=1

N∑ uii=1

N∑ a.s. → σ 2 . (4.2.3)

(In this case one again seeks to choose h x( ) so as to minimize a .)  Which expression is

more relevant depends on the particulars of the problem.  We shall retur n to this topic in

Section 4.4.

The acceptance method just described assumes that the probability densit y is known,

including its constant of integration -- i.e., p x( )dx
D∫ = 1.  This assumption may be strong in

practice.  In Problem I, one may recognize p x( )  as a probability density kernel, not

knowing the constant of integration.  Acceptance or adaptive methods mig ht be applied to

draw from the distribution with kernel density p x( ) ; these methods do not require that one

know the constant of integration for p x( ) .  If p x( )  is the kernel and p* = p x( )dx
D∫ , it is

then the case for acceptance methods in Problem I that

IN = N −1ap* uii=1

N∑ a.s. → I .

Whether or not consistent evaluation of p* is possible depends on the method used to

draw variables from the distribution with kernel p x( ) .  If the method is acceptance sampling

or a variant on acceptance sampling (e.g., the adaptive method for log- concave densities

described in Section 3.2), one can approximate p* using the methods just described as long

as the actual probability density (not just the kernel) of the source distribution for the target
kernel p x( )  is known.  This produces a sequence pi

* with the property

pN
* ≡ N −1 pi

*

i=1

N∑ a.s. → p*.  In this case clearly

IN = N −1apN
* uii=1

N∑ a.s. → I, N IN − I( ) d → N 0,σ 2( ),

but σ 2  is affected by the substitution of pn
*  for p*.

One may work out expressions for σ 2  and a corresponding consistent (in N )

approximation of σ 2 , as has been done already in several cases.  Such expressions are quite

useful in the analytical comparison of approximation methods.  But if th e goal is simply to

assess approximation error, straightforward asymptotic expansion is much  simpler.  To

illustrate the method, return to the case of simple Monte Carlo integrat ion with p* unknown,

(4.1.1).  Let M  be the number of i.i.d. draws from source density h z( )  for target density

p z( ) , define a = supD p z( ) h z( )[ ], and let

yi = p zi( ) h zi( )

ui =
1 with probability p zi( ) a h zi( ),
0 otherwise





wi = ui g zi( ).
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Defining yM = M −1 yii=1

M∑ , uM = M −1 uii=1

M∑ , wM = M −1 wii=1

M∑ ,

IM = yMwM uM
a.s. → I .

As long as g2 x( )p x( )dx
D∫  is absolutely convergent, M IM − I( ) d → N 0,σ 2( ) , and

IM
2 vâr yi( )

yM
2

+
vâr wi( )

wM
2

+
vâr ui( )

uM
2

+
2côv yi ,wi( )

yMwM

−
2côv yi ,ui( )

yMuM

−
2côv wi ,ui( )

wMuM











a.s. → σ 2 .

(This expression may be derived by the delta method, i.e., by linearizi ng IM  in yM , uM  and

wM .  The terms vâr yi( ), côv yi ,wi( ) , etc., are computed in the usual way from yi ,wi ,ui{ }i=1

M
.)

4.3  Importance sampling

The method of importance sampling may be used to solve Problem I or Prob lem E,

under similar circumstances: one has available a probability distributio n with p.d.f.

somewhat similar to the integrand f x( )  in Problem I or the probability density function

p x( )  in Problem E and wishes to use an independent, identically distributed sample from

this distribution to approximate I or E.  Rather than use acceptance to generate an i.i.d.

sample from the distribution with p.d.f. p x( ) , importance sampling uses all of the draws

from the source probability distribution but weights that sample to obta in a convergent

approximation.  In this method the probability density function of the s ource distribution is

called the importance sampling density, a term due to Hammersly and Hand scomb (1964),

who were among the first to proposed the method.  It appears to have bee n introduced to the

economics literature by Kloek and van Dijk (1978).  We shall denote th e importance

sampling density j x( ).

Suppose that for Problem I  one can draw an i.i.d. sequence of random ve ctors xi{ }
from the importance distribution and that the support of this distributi on includes D .  Then

E j f x i( ) j xi( )[ ] = f x( ) j x( )[ ]
D∫ j x( )dx = f x( )

D∫ dx = I .

Since f xi( ) j xi( )  is also an i.i.d sequence,

IN ≡ N −1 f x i( ) j xi( )[ ]i=1

N∑ a.s. → I

by the strong law of large numbers.  Furthermore, E IN( ) = I ∀N .  This result is remarkable

for its weakness: no upper bound on f x( ) j x( ) is required as is the case for f x( ) h x( )  in

acceptance sampling.  The requirement that the support of j x( ) include D  is necessary and

usually trivial to verify.

In Problem E importance sampling may be attractive if there is no simple  method of
constructing pseudorandom numbers drawn from the distribution P ⋅( ) underlying the

expectation operator.  If the constant of integration for the probabilit y density is known,

then
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EN = N −1 g x i( )p x i( ) j xi( )[ ]i=1

N∑ a.s. → E and E EN( ) = E ∀N

as long as the support of the importance sampling distribution includes that of P ⋅( ).  If the

constant of integration is not known and p x( )  is merely the kernel of the probability density

function, p x( )dx
D∫ = p*, then

N −1 g x i( )p x i( ) j xi( )[ ]i=1

N∑ a.s. → p*E, N −1 p x i( ) j xi( )[ ]i=1

N∑ a.s. → p* ,

and hence

     EN ≡
g x i( )p x i( ) j xi( )[ ]i=1

N∑
p x i( ) j xi( )[ ]i=1

N∑
a.s. → E , (4.3.1)

but of course E EN( ) ≠ E  in general.  In either case w x( ) = p x( ) j x( ) may be regarded as a

weight function, large weights being assigned to those g xi( ) for which the importance

sampling distribution assigns smaller probability than does the probabil ity distribution
P ⋅( ).

To assess the accuracy of importance sampling approximations using a cen tral limit

theorem, more is required.  In the case of Problem I, suppose that f 2 x( ) j x( )[ ]
D∫ dx  is

absolutely convergent.  Then f x i( ) j xi( )  is an i.i.d. sequence and

IN
a.s. → I, N IN − I( ) d → N 0,σ 2( ) ,

   σ 2 = f 2 x( )
j x( )









dx

D∫ − I 2 = E j

f x( )
j x( )

− I










2

, sN
2 = N −1 f 2 x i( )

j2 xi( ) − IN
2

i=1

N∑ a.s. → σ 2. (4.3.2)

It is therefore practical to assess the accuracy of IN  as an approximation of I .  The

convergence of f 2 x( ) j x( )[ ]
D∫ dx  must be established analytically, however.  If f x( ) j x( )  is

bounded above on D  or if D  is compact and f 2 x( ) j x( ) is bounded above, then

convergence obtains.  If neither of these conditions is satisfied, then verifying convergence

may be difficult.  In choosing an importance sampling density, it is esp ecially important to

insure that the tails of j x( ) decline no faster than those of f x( ) .  If these conditions are not

met, but one still proceeds with the approximation, then convergence is usually quite slow.

Violation of the central limit theorem convergence condition then may be  evidenced by
values of sN

2  that increase with N .

Assessing the accuracy of EN  as an approximation of E  is complicated by the ratio of

terms in (4.3.1).  If both

     Ep w x( )[ ] = p2 x( ) j x( )[ ]
D∫ dx and Ep g2 x( )w x( )[ ] = g2 x( )p x( )[ ]

D∫ dx (4.3.3)

are absolutely convergent, then
EN

a.s. → E, N EN − E( ) d → N 0,σ 2( ),

          σ 2 = Ep g x( ) − E[ ]2
w x( ){ } = p*−1 g x( ) − E[ ]2

w x( )p x( ){ }
D∫ dx, (4.3.4)
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sN
2 =

N g x i( ) − E[ ]2
w x i( )

i=1

N∑
w x i( )

i=1

N∑[ ]2
a.s. → σ 2 .

(Derivations are given in Geweke, 1989.)  This result provides a pract ical way to assess

approximation error and also indicates conditions in which the method of  importance
sampling will work well for Problem E.  A small value of E p w x( )[ ], perhaps as reflected in

a small upper bound on w x( ), combined with small varp g x( )[ ], will lead to small values of

σ 2 .  As in the case of Problem I, central limit theorem convergence condit ions must be

verified analytically.

There has been little practical work to date on the optimal choice of im portance

sampling distributions.  Using a result of Rubinstein (1981, Theorem 4. 3.1) one can show
that the importance sampling density with kernel g x( ) − E p x( ) provides the smallest

possible value of σ 2 .  This is not very useful, since drawing pseudorandom vectors from

this distribution is likely to be awkward at best.  There has been some attention to

optimization within families of importance sampling densities (Geweke, 1989), but

optimization procedures themselves generally involve integrals that in t urn require numerical
approximation.  Adaptive methods use previously drawn xi  to identify large values of

f x( ) j x( ), w x( ),  or g2 x( )w x( )  and modify j x( ) accordingly (Evans, 1991).  Such

procedures can be convenient but are limited by the fact that xi  is least likely to be drawn

where j x( ) is small.  Informal, deterministic methods for tailoring j x( ) have worked well in

some problems in Bayesian econometrics (Geweke, 1989).

In Problem I the objective in choosing the importance sampling density i s to find j x( )
that mimics the shape of f x( )  as closely as possible; the relevant metric is (4.3.2).  Finding

j x( ) ∝ f x( )  will drive σ 2  to zero, but this amounts to analytical solution of the problem

since j x( )dx
D∫ = 1.  In Problem E the relevant metric (4.3.4) is more complicated, invol ving

both the variance of g x( ) and the closeness of j x( ) to p x( )  as reflected in

w x( ) = p x( ) j x( ).  As long as varp g x( )[ ] > 0, no choice of j x( ) will drive σ 2  to zero, and

if varp g x( )[ ] = 0 , then Problem E reduces to Problem I.  If j x( ) ∝ p x( ), then

σ 2 = varp g x( )[ ], which can serve as a benchmark in evaluating the adequacy of j x( ).  The

ratio σ 2 varp g x( )[ ] has been termed the relative numerical efficiency of j x( ) (Geweke,

1989): it indicates the ratio of iterations using p x( )  itself as the importance sampling

density, to the number using j x( ), required to achieve the same accuracy of approximation

of E .  Relative numerical efficiency much less than 1.0 (less than 0.1, cer tainly less than

0.01) indicates poor imitation of p x( )  by j x( ) in the metric (4.3.4), possibly the existence
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of a better importance sampling distribution or the failure of the under lying convergence

conditions (4.3.3).

4.4  A note on the choice of method

There is considerable scope for combining the methods discussed in Secti ons 3 and 4.

For example, the pseudorandom number generation in making draws from the  population

with probability density h x( ), in the case of acceptance sampling, or j x( ), in the case of

importance sampling, generally will involve several of the methods discu ssed in Section 3.2.

In even moderately complex problems, the investigator needs to tailor th ese methods,

balancing computational efficiency against demands for the development a nd checking of

reliable code.

Acceptance sampling and importance sampling are clearly similar.  In fac t, given a

candidate source density, one has the choice of undertaking either accep tance or importance

sampling.  A straightforward comparison of approximation errors indicate s the issues

involved in the choice.  In Problem I, the variance in acceptance sampli ng is

σ1
2 = g x( ) − I[ ]2

p x( )dx
D∫ = g2 x( )p x( )dx

D∫ − I 2

if by draw we mean accepted draw.  But if instead we mean every draw from the source

distribution, the variance is

σ2
2 = aI − I 2 , a = supDg x( ),

from (4.2.1).  In importance sampling, where all draws are used but di fferentially weighted,

the variance is

σ3
2 = g2 x( )p x( )dx

D∫ − I 2 ,

from (4.3.2).  Hence given a choice between acceptance and importance sampling in

Problem I, importance sampling is clearly preferred: it conserves inform ation from all

draws, whereas the rejected draws in acceptance sampling require executi on time but do not

further improve the accuracy of the approximation.

For Problem E the situation is different.  The variance is

σ4
2 = g x( ) − E[ ]2

p x( )
D∫ dx

for acceptance sampling (see (4.2.2)) if we count only accepted draw s and

σ5
2 = a g z( ) − E[ ]2

p z( )
D∫ dz, a = supD p z( ) h z( )[ ]

if we count all draws (see (4.2.3)).  For importance sampling, expre ssing (4.3.4) in the

notation of acceptance sampling, we have

σ6
2 = g x( ) − E[ ]2

w x( )p x( )dx, w x( ) = p x( ) h x( )
D∫ .
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Since σ4
2 ≤ σ6

2 ≤ σ5
2 , a choice between acceptance and importance sampling on grounds of

computational efficiency rests on the particulars of the problem.  If ev aluation of g x( ) is

sufficiently expensive relative to evaluation of p x( ) h x( ), acceptance sampling will be more

efficient; otherwise, importance sampling will be the choice.

In fact one may combine acceptance and importance sampling.  Let c  be any positive

constant, and define

w zi( ) =

p zi( ) c h zi( )  if p zi( ) h zi( )  ≥ c

1 with probability p zi( ) c h zi( ) if p zi( ) h zi( )  < c

0 otherwise










 .

Then w zi( )g zi( )
i=1

n∑ w zi( )
i=1

n∑ a.s. → E .  For any given problem there will be a value of

c  that minimizes the variance of approximation error relative to required  computing time.

This may be found experimentally; or for some analytical methods, see Mü ller (1991,

Chapter 2).  The hybrid method can result in dramatic increases in effi ciency when

computation of g x( ) is relatively expensive (or there are many such functions to be

evaluated) and the weight function w x( ) is small with high probability.

A more fundamental choice is that between the simulation methods discuss ed in this

and the previous section and the deterministic algorithms outlined in Se ction 2.  Many

problems in economics require integration in very high dimensions. (Two  examples are

presented in Section 7.)  For such problems the most practical determin istic procedures are

the low discrepancy methods of Section 2.3.  Tables 2 and 3 provide some  specific

comparisons for dimensions as high as d = 100.  (Execution time for quadrature methods

in these problems is approximately 8 × 4d −10  seconds on a Sun 10/51 workstation: .01

seconds for d = 5, 8 seconds for d = 10, 3 months for d = 20, about 104  times the

estimated age of the universe for d = 40, ... .)

Table 2 extends the analysis of the same problem taken up in Section 2.3 .  As noted

there, the bounds in (2.3.1) and (2.3.2) are useless for this proble m and most others.  The

actual Halton errors presented in Table 2 were found by direct computati on, using the first

d  primes as the bases.  The Monte Carlo errors were found analytically.  Two error bounds

are presented, one based on a 95% confidence interval ( ±1.96σ ) and a second based on a

100(1-10−12 )% confidence interval ( ±7.13σ ).  For lower dimensions the comparison is

dominated by the convergence of the Halton sequence at rate logm m  compared with

Monte Carlo at rate m−1 2 : the Halton sequence is much more accurate.  But for any

reasonable fixed value of m , the comparison in higher dimensions is dominated by an

approximately exponential rate of error increase in d  for the Halton sequence, contrasted

with the rate d1 2 for Monte Carlo.  For m = 1,000  iterations, Monte Carlo is more efficient



32

for d  exceeding about 25 if one applies the p =.05 standard and for d  exceeding about 45

for the p = 10−12  standard.  For m = 50,000 the breakpoints occur around d = 35 and

d = 110, respectively.  (The Halton error is not monotone decreasing in m  because of the

systematic way in which points are selected.)

Table 3 provides a comparison of these methods for an example of Problem  E.  The

Halton sequence is first mapped into the normal distribution applying th e inverse-c.d.f.

transformation in each dimension.  Each of the five panels provides appr oximations to

successively higher moments, p , of the multivariate normal distribution.  Within each panel,

the comparison is dominated by the same features noted for Table 2.  Com parisons across

panels are dominated by important characteristics of each method.  Monte  Carlo errors are

proportional to 
  
E z( )2 p[ ] = 2 p −1( ) ⋅ 2 p − 3( )⋅L ⋅3 ⋅1[ ]1 2

, where z ~ N 0, 1( ).  Halton errors

reflect an interaction between the ordering of the points and the charac teristics of xi
p .

When p  is odd, xi
p  is an odd monotone increasing function of xi , whereas the standard

normal probability density function is even.  For any fixed m , the Halton points
systematically exclude positive xi  values for which the corresponding −xi  value has been

included.  Hence the error is always negative (as it was in Table 2 for  the same reason).

When p  is even, this is not the case and the size of the error is smaller as w ell.  The

tendency of the Halton sequence to systematically exclude larger xi  has more severe

consequences for evaluation of the integral the higher the value of odd p .  Thus, for p = 5

independence Monte Carlo becomes dominant for values of d  exceeding a fairly small

threshold.

The largest problems worked for Table 3 ( d = 100, m = 50,000) required about 75

seconds on a Sun 10/51 when solved using a Halton sequence.  Independenc e Monte Carlo

was about 15 times faster in every case.  The difference reflects the in herent speed of linear

congruential generators, contrasted with the floating point operations r equired to generate a

Halton sequence.  For more complex and realistic problems the relative s peed of

independence Monte Carlo is less important, since computation time typic ally will be

dominated by subsequent computations involving the sequences produced by  either method.

These comparisons illustrate the general rule that simulation methods ar e preferred for

higher dimensional problems.  If the dimension is very low, then quadrat ure methods are

much faster and more accurate.  For intermediate dimensions, quadrature is impractical and

low discrepancy methods are more accurate than simulation methods.  Just  where the

breakpoints occur is problem-specific, and the situation is complicated by the fact that there

are no useful independent assessments of approximation error for low dis crepancy

methods.  Simulation methods always provide an assessment of numerical e rror as a by-

product, for square-integrable functions.  Combined with the checks for robustness of
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results with respect to alternative uniform random number generators and  seed values, these

methods are practical and reliable for a much wider range of problems th an is any

deterministic algorithm.  As we shall see, their application in complex problems can be very

natural.
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5.  Variance reduction

In any of the independence Monte Carlo methods a single draw can be repl aced by the

mean of M  identically but not independently distributed draws.  For example, in s imple

Monte Carlo for Problem I,

IN ,M = N −1 M −1 g x ij( )j =1

M∑[ ]{ }i=1

N∑ .

For any i ≠ k  x ij  and   xkl are independent, whereas x ij  and   xil are dependent.  Since all x ij

are drawn from the distribution with probability density p x( ) ,

IN ,M
a.s. → I, N IN ,M − I( ) d → N 0,σ *2( ),

σ *2 = var M −1 g x ij( )j =1

M∑[ ], sN
*2 = N −1 M −1 g x ij( ) − IN ,Mj =1

M∑[ ]2

i=1

N∑ a.s. → σ *2 .

The idea is to set up the relation among   x i1,K ,xiM in such a way that

σ *2 < M −1 var p g x ij( )[ ].  If in addition the cost of generating the M -tuple is insignificantly

greater than the cost of generating M  independent variables from p x( ) , then IN ,M  provides

a computationally more efficient approximation of I  than does IN .

There are numerous variants on this technique.  This section takes up fo ur that account

for most use of the method: antithetic variables, systematic sampling, c onditional

expectations, and control variables.  The scope for combining these vari ance reduction

techniques with the methods of Section 4 or Section 6 is enormous.  Rath er than list all the

possibilities, the purpose here is to provide some appreciation of the c ircumstances in which

each variant may be practical and productive.

5.1  Antithetic Monte Carlo

This technique is due to Hammersly and Morton (1956) and has been wide ly used in

statistics, experimental design, and simulation (e.g., Mikhail, 1972; M itchell, 1973; Geweke,

1988).  In antithetic simple Monte Carlo integration M = 2  correlated variables are drawn in

each of N  replications.  Then,

σ *2 = 1

2
var g x i1( )[ ] + cov g xi1( ),g xi2( )[ ]{ } .

As long as cov g xi1( ),g xi2( )[ ] < 0, antithetic simple Monte Carlo integration with N 2

replications will have smaller error variance than simple Monte Carlo it eration with N

replications, and the computational requirements will be about the same.

To focus on the main ideas, consider the situation in which p x( )  is symmetric about a

point µ  in Problem I set out in Section 4.  In this case xi1 = µ + wi , xi2 = µ − wi  describes

a pair of variables drawn from the distribution with p.d.f. p x( )  with correlation matrix −I .

If g x( ) were a linear function, then var 1

2
g x i1( ) + g x i2( )[ ]{ } = 0 , and variance reduction
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would be complete.  (Clearly I = g µ( ) ; this case is of interest only as a limit for numerical

integration problems.)  At the other extreme, if g x( ) is also symmetric about µ , then

var 1

2
g x i1( ) + g x i2( )[ ]{ } = var g x( )[ ]: N  replications of antithetic simple Monte Carlo

integration will yield as much information as N  replications of simple Monte Carlo, but will

usually require about double the number of computations.  As an intermed iate case, suppose
that d y( ) = g xy( )  is either monotone nondecreasing or monotone nonincreasing for all x .

Then g xi1( ) − I and g xi2( ) − I  must be of opposite sign if they are nonzero.  This implies

cov g xi1( ),g xi2( )[ ] < 0, whence σ *2 ≤ 1

2
var g x( )[ ] = σ 2 2, and so antithetic simple Monte

Carlo integration produces gains in efficiency.

The use of antithetic Monte Carlo integration is especially powerful in an important

class of Bayesian learning and inference problems.  In these problems x  typically

represents a vector of parameters unknown to an economic agent or an eco nometrician, and

p x( )  is the probability density of that vector conditional on information av ailable.  The

integral I  could correspond to an expected utility or a posterior probability.  If  the available

information is based on an i.i.d. sample of size T , then it is natural to write pT x( )  for p x( ) .

As T  increases, the distribution pT x( )generally becomes increasingly symmetric and

concentrated about the true value of the vector of unknown parameters, r eflecting the

operation of a central limit theorem.  In these circumstances g x( ) is increasingly well

described by a linear approximation of itself over most of the support o f pT x( ) , as T

increases.  Suppose that the agent or econometrician approximates I  using simple Monte

Carlo with accuracy indicated by σT
2  or by antithetic simple Monte Carlo with accuracy

indicated by σT
*2 .  Given some side conditions, mainly continuous differentiability of g x( )

in a neighborhood of the true value of the parameter vector x  and a nonzero derivative of

g x( ) at this point, it may be shown that σT
*2 σT

2 → 0 (Geweke, 1988).  Given additional

side conditions, mainly twice continuous differentiability of g x( ) in a neighborhood of the

true value of the parameter vector x , it may be shown that TσT
*2 σT

2  converges to a constant.

The constant is inversely related to the magnitude of ∂ g x( ) ∂x  and directly related to the

magnitude of ∂ 2 g x( ) ∂x∂ ′x , each evaluated at the true value of the parameter vector x

(Geweke, 1988).  This result is an example of acceleration, because it  indicates an

interesting sequence of conditions under which the relative advantage of  a variance reduction

method increases without bound.

Application of the method of antithetic variables with techniques more c omplicated than
simple Monte Carlo is generally straightforward.  In the case of importa nce sampling, xi1

and xi2  are drawn from the importance sampling density j x( ).  In Problem I the term
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1

2
f x i1( ) j xi1( ) + f x i2( ) j xi2( )[ ] replaces f x i( ) j xi( ) .  In Problem E, define

w x( ) = p x( ) j x( ) as before.  Then

EN ≡
g x i1( )w x i1( ) + g x i2( )w x i2( )[ ]i=1

N∑
w x i1( ) + w x i2( )[ ]i=1

N∑
a.s. → E, N EN − E( ) d → N 0,σ *2( ),

σ *2 = Ep

g x i1( )w x i1( ) + g x i2( )w x i2( )
w x i1( ) + w xi2( ) − E











2
w x i1( ) + w xi2( )

2












,

sN
2 =

N
g x i1( )w x i1( ) + g x i2( )w x i2( )

w x i1( ) + w xi2( ) − EN











2

w x i1( ) + w xi2( )[ ]i=1

N∑
4 w x i1( ) + w xi2( )[ ]i=1

N∑{ }2
a.s. → σ *2 .

These results are valid for any antithetic variables algorithm, even if j x( ) is not symmetric

and even if the variance of the approximation error σ 2  is increased rather than decreased in
moving to the use of antithetic variables.  The essential requirements a re that the x ij ’s be

drawn from the importance sampling distribution and that xij  and   xkl be independent for

i ≠ k .

In complex problems involving multivariate x , pseudorandom variables often may be

generated by use of successive conditionals for 
  

′x = ′x 1( ),K , ′x m( )( ),

  
p x( ) = p x 1( )( )p x 2( ) x 1( )( )K p x m( ) x 1( )K x m−1( )( ).

In such cases a pair of antithetic variables xi1 and xi2  may be created by constructing a pair

for a single, convenient subvector x
j( ) .  Especially if g x( ) = g x

j( )( ) , the benefits of antithetic

Monte Carlo will then be realized in both Problem I and Problem E.  An e xample of this use

of antithetic variables is taken up in Section 7.2.

5.2  Systematic sampling

Systematic sampling (McGrath, 1970) combines certain advantages of det erministic

and Monte Carlo methods.  The former achieve great efficiency by systema tically choosing

points for evaluation in specific low-dimensional problems; the latter p roduce indications of

accuracy as a byproduct and are amenable to high-dimensional problems.  Systematic

sampling specifies an m -tuple of points as a deterministic function of a random vector u ,

  x j = f j u( ) j = 1,K ,m( ),
with the property that the induced distribution of every x j  is that of the probability density

function p x( ) .

As a leading example consider the case of univariate x , with pseudorandom variables

from the distribution of x  constructed using the inverse c.d.f method (Section 3.2).  Denote
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F c( ) = P x ≤ c[ ], suppose   ui i = 1,K , N( )  are independently and uniformly distributed on

the unit interval, and take

  
xij = F−1 ui + j m[ ]( ) j = 1,K ,m( ),

where “[ .]” denotes greatest fractional part.  Clearly the method need not be limited to

evenly spaced grids; e.g., Richtmeyer’s method (Section 2.3) could just as easily be applied.

Extension to higher dimensions is straightforward, but is subject to all  of the problems of

deterministic methods there.  The advantage of systematic methods is tha t approximation
error is generally O m−1( )  whereas that in Monte Carlo is O p N −1 2( ) .

In high-dimensional problems systematic sampling can be advantageous whe n

confined to a subset of the vector x  that is especially troublesome for Monte Carlo and/or is

an important source of variation in the function g x( ).  As an example of the former

condition, suppose it is difficult to find an importance sampling densit y that mimics p x( ) ,

but ′x =
1×m1

′x 1( ) ,
1×m2

′x 2( )






, a good importance sampling density for the marginal p.d.f. p x 1( )( ) is

available, and the inverse c.d.f. F−1 p x 1( )( ) of the conditional distribution of x 2( )  can be

evaluated.  One may generate x1 i( )  together with corresponding importance sampling weight

wi ; draw 
  
u1,K ,um2

( ) independently distributed on the unit interval; create the systematic

sample

  
x 2( )ij1K jm2

= F−1 u1 + j1 l1[ ],K , um2
+ jm2

lm2[ ]( ) jk = 1,K ,lk ;k = 1,K ,m2( ).

Then record

  
gi = lkk =1

m2∏[ ]−1

L g x 1( )i ,x 2( )ij1K jm2
( )jm2 =1

lm2∑j1 =1

l1∑
along with each weight wi .  Previous expressions in Section 4.3 for IN , σ 2 ,  and sN

2  are then

valid with gi  in place of g x i( ).  In particular (4.3.2) is still true, and sN
2  may be used to

assess the increase in accuracy yielded by systematic sampling with high er values of the   lk .

5.3  The use of conditional expectations

Suppose there is a partition of x , ′x = ′x 1( ), ′x 2( )( ) , such that

  
g x( ) = g x 1( ),x 2( )( ) = g* x 1( )( )l x 2( )( ),

where   l ⋅( ) is linear; p x( ) = p x 1( ),x 2( )( ) = p x 1( )( )p x 2( ) x 1( )( ); it is possible to draw

pseudorandom vectors from the marginal distribution for x 1( ) with p.d.f. p x 1( )( ); and

E x 2( ) x 1( )[ ] is known analytically.  Then

      
  

g x( )p x( )dx
D∫ = g* x 1( )( )p x 1( )( )lE x 2( ) x 1( )( )[ ]D∫ dx 1( ) , (5.3.1)
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and

  
var

p x 1( )( ) g* x 1( )( )lE x 2( ) x 1( )( )[ ]{ } ≤ varp x( ) g x( )[ ].
Consequently, application of Monte Carlo methods directly in (5.3.1) w ill produce an

approximation error with smaller variance than would Monte Carlo in the general

framework set forth in Section 4.

The use of conditional expectations in fact bears a close relationship t o antithetic Monte
Carlo integration.  In particular, if one could draw antithetic variable s x 2( )i1 and x 2( )i2  from

the distribution with p.d.f. p x 2( ) x 1( )( )  with perfectly negative correlation, then

1

2
x 2( )i1 + x 2( )i2( ) = E x 2( ) x 1( )( ) , and exactly the same result would be obtained.

More generally, whenever g x( ) is a function of x 1( ) only, it is usually worth noting

whether  E g x 1( )( ) x 2( )[ ] can be evaluated analytically.  If so, then the variance of

approximation error can be reduced by using the function of interest E g x 1( )( ) x 2( )i[ ] rather

than g x 1( )i( ).  Since g x 1( )( ) = E g x 1( )( ) x 2( )[ ] + η with cov η, E g x 1( )( ) x 2( )[ ]{ } = 0,

 var
p x 2( )( ) E g x 1( )( ) x 2( )[ ]{ } ≤ var

p x 1( )( ) g x 1( )( )[ ].

Against this improvement should be balanced the time required for the ad ditional
computations, which are generally of no further use in generation of the  xi ; this time is

usually small.

5.4  Control variables

It is often the case that one is able to solve approximations to Problem  I or Problem E

analytically.  For example, if the mean µ  of the distribution with p.d.f p x( )  is known and

one has available a linear approximation   g l( ) x( ) of the function g x( ), then the mean of

  g l( ) x( ) is   g l( ) µ( ) .  Moreover if xi{ }i=1

N
 is a pseudorandom sample drawn from the

distribution with p.d.f. p x( ) , then g x i( ) and   g l( ) x i( )  will be positively correlated if the

linear approximation is good for most xi .  In this situation the method of control variables,

introduced by Kahn and Marshall (1953) and Hammersly and Handscomb (1 964), can be
used to reduce the variance of the approximation error in IN  or EN .

We develop the specific method for simple Monte Carlo integration in Pro blem I;

extension to more involved methods is straightforward.  Let JN = N −1 h x i( )
i=1

N∑  have

known mean J .  (In the example given   h x i( ) = g l( ) xi( ),    JN = N −1 g l( ) xi( )
i=1

N∑  and

  J = g l( ) µ( ).)  Consider approximations of the form

′IN = IN + β JN − J( ),
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where IN  is computed as before.  It is the case that ′IN
a.s. → I , and as long as varp h x i( )[ ]

exists, a central limit theorem may still be used to evaluate numerical accuracy.  One can
easily verify that var ′IN( ) is minimized by β = − cov JN , IN( ) var JN( ), and in this case

var ′IN( ) = var IN( ) −
cov2 JN , IN( )

var JN( ) = var IN( ) 1 − corr2 JN , IN( )[ ].

Usually the parameter β  is unknown.  It may be estimated in the obvious way from the

replications.

This method is easily extended to the case in which a vector of estimate s

  
JN = JN

1( ),K , JN
q( )( )′  with known mean 

  
J = J 1( ),K , J q( )( )′  is available.  If we denote

Σ
q×q

= var JN( ), c
q×1

= cov JN , IN( ) ,

then the variance of the approximation
′IN = IN + ′β JN − J( )

is minimized by β = Σ−1c, and in this case

var ′IN( ) = var IN( ) − ′c Σ−1c = var IN( ) 1 − ′c Σ−1c
var IN( )









 .
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6.  Markov chain Monte Carlo methods

All of the independence Monte Carlo methods for integration assume the a bility to

efficiently generate pseudorandom variables from a distribution with spe cified probability

density function p x( ) .  But in many economic problems it is difficult or impossible to find

a generation algorithm that is sufficiently efficient to be practical.  An instructive limiting

case is the one in which the constituents of x  are independently distributed,

p x( ) = pi xi( )
i=1

m∏ .

One could construct an acceptance sampling algorithm with a source densi ty h i zi( )
corresponding to each pi zi( ) , and accept the draw with probability p z( ) a h z( ), where

  
a = supz p z( ) h z( )[ ] = aii=1

m∏ , ai = supzi
p zi( ) h zi( )[ ] i = 1,K ,m( ) .

Since a  is directly proportional to the time required to obtain an accepted dra w (see Section

3.2) this expression makes clear that acceptance sampling can be subjec t to its own curse of

dimensionality if the source density is constructed element-by-element.  Essentially the

same difficulty can arise in importance sampling, where it is manifested  in only a few
weights w x i( )  accounting for the sum.

This example is of interest only as a limiting case.  If the xi  really were independent,

one could employ acceptance sampling element-by-element, and computation  time would

then be proportional to aii=1

m∑ .  An obvious extension of this idea to the general case is to

write

  
p x( ) = p x1( ) pi 1,K ,i−1 xi x1,K , xi−1( )i=1

m∏
and employ acceptance or importance sampling for each conditional.  The difficulty here is

that construction of probability density kernels for the marginal in x1 and all but the last

conditional require analytic integration.  Notable simple cases aside, t his is not possible, and

it remains impossible for subvectors as well as individual components.

This section takes up a recently developed generalization of independenc e Monte Carlo

that has become known as Markov chain Monte Carlo.  The idea is to construct a Markov

chain with state space D  and invariant distribution with p.d.f. p x( ) .  Following an initial

transient or burn-in phase, simulated values from the chain form a basis for approximating
Ep g x( )[ ], thus solving Problem E.  If the p.d.f. p x( )  does not contain an unknown factor of

proportionality p*, then Problem I is solved as well.  What is required is to construct an 

appropriate algorithm and verify that its invariant distribution is uniq ue, with p.d.f. p x( ) .

Markov chain methods have a history in mathematical physics dating back to the

algorithm of Metropolis et al. (1953).  This method, which is described in Hammersly and

Handscomb (1964, Section 9.3) and Ripley (1987, Section 4.7), was ge neralized by
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Hastings (1970), who focused on statistical problems, and was further explored by Peskun

(1973).  A version particularly suited to image reconstruction and pro blems in spatial

statistics was introduced by Geman and Geman (1984).  This was subsequ ently shown to

have great potential for Bayesian computation by Gelfand and Smith (199 0).  Their work,

combined with data augmentation methods (Tanner and Wong, 1987), has p roven very

successful in the treatment of latent variables and other unobservables in economic models.

(An example is given in Section 7.1.)  Since 1990 application of Marko v chain Monte Carlo

methods has grown rapidly; new refinements, extensions, and applications  appear almost

continuously.

This section concentrates on developing the methods, deferring serious e xamples to

Section 7.  We begin with a heuristic introduction to two widely used va riants of these

methods, the Gibbs sampler and the Metropolis-Hastings algorithm (Secti on 6.1).  Some

theory of continuous state Markov chains required to demonstrate converg ence is given in

Section 6.2.  Easily verified sufficient conditions for convergence of t he Gibbs sampler are

set forth in Section 6.3 and for convergence of the Metropolis-Hastings algorithm in

Section 6.4.  Some practical issues in assessing the error of approximat ion are treated in

Section 6.5.  Much of the treatment here draws heavily on the work of Ti erney (1991a,

1991b), who first used the theory of general state space Markov chains to demonstrate

convergence, and Roberts and Smith (1992), who elucidated sufficient c onditions for

convergence that turn out to be applicable in a wide variety of problems  in economics.

6.1  Two Markov chain Monte Carlo algorithms
Motivated by the role of p x( )  in Problem I or Problem E, discussion here proceeds

assuming that x  is continuously distributed.  However, there is no harm in regarding x  as

discrete on a first reading.  A full development covering both the conti nuous and discrete

cases is given in Section 6.2.

The Gibbs sampler begins with a partition, or blocking, of
  
x

m×1
, ′x = ′x 1( ),K , ′x k( )( ) .  For

  
i = 1,K ,k, ′x i( ) = x i1,K ,xim i( )( ) and m i( ) ≥ 1; m i( )

i=1

k∑ = m; and the xij  are the components

of x .  Let p x i( ) x − i( )( ) denote the conditional p.d.f.’s induced by p x( ) , where

x − i( ) = x
j( ), j ≠ i{ }.

Suppose we were given a single drawing 
  
x0 , ′x 0 = ′x 1( )

0 ,K , ′x k( )
0( ), from the distribution

with p.d.f. p x( ) .  Successively make drawings from the conditional distribution as follo ws:
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x 1( )
1 ~ p ⋅ x −1( )

0( )
x 2( )

1 ~ p ⋅ x 1( )
1 ,x 3( )

0 ,K ,x k( )
0( )

M

x
j( )

1 ~ p ⋅ x 1( )
1 ,K ,x

j −1( )
1 ,x

j +1( )
0 ,K ,x k( )

0( )
M

x k( )
1 ~ p ⋅ x −k( )

1( ).

(6.1.1)

This defines a transition process from 
  
x0 to x1 = ′x 1( )

1 ,K , ′x k( )
1( ).  The Gibbs sampler is

defined by the choice of blocking and the forms of the conditional densi ties induced by

p x( )  and the blocking.  Since 
  
x0 ~ p x( ), x 1( )

1 ,K ,x
j −1( )

1 ,x
j( )

1 ,x
j +1( )

1 ,K ,x k( )
1( ) ~ p x( ) at each

step in (6.1.1) by definition of the conditional density.  In particul ar, x1 ~ p x( ).
Iteration of the algorithm produces a sequence   x0 , x1,K ,x t ,K  which is a realization of

a Markov chain  with probability density function kernel for the transit ion from point x  to

point y  given by

  
KG x,y( ) = p y l( ) x

j( ) j > l( ),y j( ) j < l( )[ ]l=1

k∏ .

Any single iterate x t  retains the property that it is drawn from the distribution with p.d.f. 

p x( ) .

For the Gibbs sampler to be practical, it is essential that the blocking  be chosen in such

a way that one can make the drawings (6.1.1) in an efficient manner.  For many problems in

economics, the blocking is natural and the conditional distributions are  familiar; Section 7.1

provides an example.  In making the drawings (6.1.1) all the methods o f Sections 3 and 4

are at our disposal.  Observe that in this context acceptance sampling i s attractive relative to

importance sampling, since the former produces independent, identically distributed,

unweighted drawings from the conditional distribution.

Of course, it is generally difficult or impossible to make even one init ial draw from the

distribution with p.d.f. p x( ) .  The purpose of that assumption here is to marshal an

informal argument that p x( )  is the p.d.f. of the invariant distribution of the Markov chain.

A leading practical problem is to elucidate conditions in which the dist ribution of x t  will

converge to that corresponding to p x( )  for any choice of x0  in the domain D , and we turn

to this in Section 6.3.

The Metropolis-Hastings algorithm begins with an arbitrary transition pr obability
density function q x,y( ) and a starting value x0 .  If x t = x , the random vector generated
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from q x,y( ) is considered as a candidate value for x t +1.  The algorithm actually sets

x t +1 = y  with probability

α x,y( ) = min
p y( )q y,x( )
p x( )q x,y( ) , 1









;

otherwise, the algorithm sets x t +1 = x = x t .  This defines a Markov chain with a generally

mixed continuous-discrete transition probability from x to y given by

K x,y( ) =
q x,y( )α x,y( ) if y ≠ x

1 − q x,z( )α x,z( )dz  
D∫ if y = x






.

This form of the algorithm is due to Hastings (1970).  The Metropolis  et al. (1953)
form takes q x,y( ) = q y,x( ) .  A simple variant that is often useful is the independence chain

(Tierney, 1991a, 1991b), q x,y( ) = j y( ) .  Then

α x,y( ) = min
p y( ) j x( )
p x( ) j y( ) ,1









= min
w y( )
w x( )

,1








,

where w x( ) = p x( ) j x( ).  The independence chain is closely related to acceptance sampling

(Section 4.2) and importance sampling (Section 4.3).  But rather tha n place a low (high)

probability of acceptance or a low (high) weight on a draw that is too  likely (unlikely)

relative to p x( ) , the independence chain assigns a high (low) probability of accepting  the

candidate for the next draw.

There is a simple two-step argument that motivates the convergence of th e sequence
x t{ } generated by the Metropolis-Hastings algorithm to p ⋅( ).  (This approach is due to

Chib and Greenberg, 1994.)  First, observe that if any transition proba bility function p x,y( )
satisfies the reversibility condition

p x( )p x,y( ) = p y( )p y,x( ),

then it has p ⋅( ) as its invariant distribution.  To see this, note that

p x( )p x,y( )dx∫ = p y( )p y,x( )dx∫ = p y( ) p y,x( )dx∫ = p y( ) .

The second step is to consider the implications of the requirement that K x,y( )  be

reversible: p x( )K x,y( ) = p y( )K y,x( ).  For y ≠ x  it implies that

p x( )q x,y( )α x,y( ) = p y( )q y,x( )α y,x( ).

Suppose (without loss of generality) that p x( )q x,y( ) ≥ p y( )q y,x( ) .  If we take α y,x( ) = 1

and α x,y( ) = p y( )q y,x( ) p x( )q x,y( ), this equality is satisfied.

In implementing the Metropolis-Hastings algorithm, the transition probab ility density

function must share two important properties.  First, it must be possibl e to generate y
efficiently from q x,y( ).  All the methods of Sections 3 and 4 are potential tools for these

drawings.  (Once again, acceptance sampling is attractive relative to i mportance sampling.)

A second key characteristic of a satisfactory transition process is that  the unconditional
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acceptance rate not be so low that the time required to generate a suffi cient number of

distinct x t  is too great.

6.2  Mathematical background

Let x t{ }
t =0

∞
 be a Markov chain defined on D ⊆ ℜm  with transition kernel

K:D × D → ℜ+  such that, with respect to a σ -finite measure ν  on the Borel σ -field of

ℜm , for ν -measurable A ,

P x t ∈ A x t −1 = x( ) = K x,y( )dν y( ) + r x( )χA x( )
A∫ ,

where r x( ) = 1 − K x,y( )dν y( )
D∫  and χA x( ) =

1 if x ∈ A

0 if x ∉ A




.

The measure ν  will be Lebesgue for continuous distributions and discrete for discrete 

distributions.

The transition kernel K is substochastic: it defines only the distributi on of accepted

candidates.  Assume that K has no absorbing states, so that r x( ) < 1 ∀x ∈D.  The

corresponding substochastic kernel over t  steps is then defined iteratively,

K t( ) x,y( ) = K t −1( ) x,z( )K z,y( )dν z( )∫ + K t −1( ) x,y( ) r y( ) + r x( )[ ]t −1
K x,y( ).

This describes all t-step transitions that involve at least one accepted move.  As a functio n

of y  it is the p.d.f. with respect to ν of x t ,  given x0 = x , excluding realizations with

  x t = x∀ j = 1,K ,t .

An invariant distribution for the Markov chain is a function p x( )  that satisfies

P A( ) = p x( )dν x( )
A∫ = K x,y( )dν y( ) + r x( )χA x( )

A∫{ }p x( )dν x( )
D∫

= P x t ∈ A x t −1 = x( )p x( )dν x( )
D∫

for all ν -measurable A .  Let D* = x ∈D:p x( ) > 0{ }.  The kernel K  is p-irreducible if for

all x ∈D*, P A( ) > 0  implies that P x t ∈ A x0 = x( ) > 0  for some t ≥ 1.  It is aperiodic if

there exists no ν -measurable partition 
  
D = Bss=0

r −1

U r ≥ 2( )  such that

P x t ∈Bt mod r( ) x0 = x ∈B0( ) = 1 ∀ t .

Define f = f x( ) dν x( )
D∫  for all ν -measurable functions f defined on D .  If K is p-

irreducible and aperiodic, then

(A) For all x0 ∈D, limt→∞ K t( ) − p = 0;

(B) If g is p-integrable, then for all x0 ∈D,

N −1 g x t( )
t =1

N∑ a.s. → g x( )p x( )dν x( )
D∫

(Tierney, 1991b, based on Numelin, 1984).
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The kernel K is Harris recurrent if P x t ∈B i.o.[ ] = 1 for all ν -measurable B  with

p x( )dν x( )
B∫ > 0 and all x0 ∈D.  (A general discussion of recurrence is provided by

Numelin (1984, Chapter 3).)  If K is p-irreducible and Harris recurre nt, then

(C) The invariant probability distribution p x( )  is unique.

(Numelin, 1984, Corollary 5.2; Tierney, 1991b, Section 3.1).  Harris r ecurrence eliminates

situations like the one shown in Figure 4, where the support is disconne cted and the Markov
chain is the Gibbs sampler.  Note that if x0 ∈Di , it is impossible that

x t ∈Dj j ≠ i,  any t > 0( ).  In the situation portrayed in Figure 4, there are two invariant

distributions, one for D1  (reached if x0 ∈D1) and one for D2  (reached if x0 ∈D2 ).

6.3  Convergence of the Gibbs sampler

The Gibbs sampler requires that the conditional probability density func tions

  
p x i( ) x − i( )[ ] = p x( ) p x( )dνi x i( )( )

x i( )
∫ i = 1,K ,k( )

be well-defined on their supports.  In this case the transition kernel d ensity is

  
KG x,y( ) = p y l( ) x

j( ) j > l( ),y j( ) j < l( )[ ]l=1

k∏ .

If x0 ∈D, then p x( )  is the density of an invariant distribution of the chain defined by KG :

  

KG x,y( )p x( )dν x( )
D∫

= p y k( ) y −k( )( ) p y k −1( ) x k( ),y j( ) j < k −1( )[ ]∫ p y k −2( ) x k( ),x k −1( ),y j( ) j < k − 2( )[ ]∫
L p y 2( ) y 1( ),x j( ) j > 2( )[ ]∫ p y 1( ) x

j( ) j > 1( )[ ]∫ p x 1( ) x
j( ) j > 1( )[ ]∫ dν1 x 1( )( )

p x 2( ) x
j( ) j > 2( )[ ]dν2 x 2( )( )p x 3( ) x

j( ) j > 3( )[ ]dν3 x 3( )( )
L p x k −1( ) x k( )[ ]dνk −1 x k −1( )( )p x k( )[ ]dνk x k( )( )

  

= p y k( ) y −k( )( ) p y k −1( ) x k( ),y j( ) j < k −1( )[ ]∫ p y k −2( ) x k( ),x k −1( ),y j( ) j < k − 2( )[ ]∫
L p y 2( ) y 1( ),x j( ) j > 2( )[ ]∫ p y 1( ) x

j( ) j > 2( )[ ]∫ p x 3( ) x
j( ) j > 3( )[ ]dν3 x 3( )( )

L p x k −1( ) x k( )[ ]dνk −1 x k −1( )( )p x k( )[ ]dνk x k( )( )
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= p y k( ) y −k( )( ) p y k −1( ) x k( ),y j( ) j < k −1( )[ ]∫ p y k −2( ) x k( ),x k −1( ),y j( ) j < k − 2( )[ ]∫
L p y 1( ),y 2( ) x

j( ) j > 3( )[ ]∫ L p x k −1( ) x k( )[ ]dνk −1 x k −1( )( )p x k( )[ ]dνk x k( )( )

          

  

= L

= p y k( ) y −k( )( ) p y k −1( ) x k( ),y j( ) j < k −1( )[ ]∫ p y k −2( ) x k( ),x k −1( ),y j( ) j < k − 2( )[ ]∫
⋅ p y 1( ),y 2( ),K ,y k −3( ) x k −1( ),x k( )[ ]p x k −1( ) x k( )[ ]dνk −1 x k −1( )( )p x k( )[ ]dνk x k( )( )

= p y k( ) y −k( )( ) p y k −1( ) x k( ),y j( ) j < k −1( )[ ]∫ p y 1( ),y 2( ),K ,y k −2( ) x k( )[ ]p x k( )[ ]dνk x k( )( )

= p y k( ) y −k( )( )p y 1( ),y 2( ),K ,y k −1( )[ ] = p y( ).

If ν  is discrete, p-irreducibility of KG  is sufficient for results (A), (B), and (C) in

Section 6.2 (Tierney, 1991b).  The continuous (Lebesgue measure) cas e is technically more

difficult, but it may be shown that three simple conditions are jointly sufficient for results

(A), (B), and (C) (Roberts and Smith, 1992):

(1)  p x( )  is lower semicontinuous at 0;

(2)  p x( )dxi∫  is locally bounded   i = 1,K ,k( ) ;

(3)  D* is connected.

A function h x( ) is lower semicontinuous at 0 if, for all x  with h x( ) > 0, there exists an

open neighborhood Nx ⊃ x and ε > 0  such that for all y ∈Nx , h y( ) ≥ ε > 0 .  This

condition rules out situations like the one shown in Figure 5, where the  probability density

is uniform on a closed set.  For any point x  on the boundary there is no open
neighborhood Nx ⊃ x  such that for all y ∈Nx , h y( ) is bounded away from 0.  The point A

is absorbing.

The local boundedness condition, together with lower semicontinuity at 0 , ensures that

the Markov chain is aperiodic.  It does so by guaranteeing that for the sequence of support

sets Bt x( ) = y ∈D*: KG
t( ) x,y( ) > 0{ }, Bt x( ) ⊆ Bt +1 x( )  for all t ≥ 1 and all x ∈D*  (Roberts

and Smith, 1992, Lemma 3).

Connectedness of D*, together with conditions (1) and (2), implies that the Gibbs

sampler is p-irreducible (Roberts and Smith, 1992, Theorem 2).  Condit ions (2) and (3)

further imply that the probability measure P corresponding to p x( )  is absolutely
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continuous, and consequently (Tierney, 1991b, Corollary 1) the Gibbs s ampler is Harris

recurrent.  Therefore p x( )  is the unique invariant probability density of the Gibbs sampler.

These conditions are by no means necessary for convergence of the Gibbs sampler;

Tierney (1991b) provides substantially weaker conditions.  However, th e conditions stated

here are satisfied for a very wide range of problems in economics and ar e much easier to

verify than the weaker conditions.

6.4  Convergence of the Metropolis-Hastings algorithm
Take the transition probability density function q x,y( ) of Section 6.1 to be a Markov

chain kernel with respect to ν, q:D* × D* → ℜ+ .  Defining α:D* × D* → 0,1[ ] as before,

define KH :D* × D* → ℜ+  by

KH x,y( ) = q x,y( )α x,y( ).

This is the substochastic kernel governing transitions of the chain from  x to y that are

accepted according to the probability α x,y( ).  The distribution p x( )dν x( )  is invariant if for

all ν -measurable sets A ,

P A( ) = p x( )dν x( ) = P y ∈ A x[ ]p x( )dν x( )
D∫A∫ .

Recalling that

P y ∈ A x[ ] = KH x,y( )dν y( )
A∫ + 1 − KH x,z( )dν z( )

D∫[ ]χA x( ) ,

P y ∈ A x[ ]p x( )dν x( )
D∫

= KH x,y( )dν y( )
A∫D∫ p x( )dν x( )

+ χA x( )p x( )dν x( ) −
D∫ KH x,y( )dν y( )

D∫D∫ χA x( )p x( )dν x( )

= KH x,y( )dν y( )
A∫D∫ p x( )dν x( )

+ p x( )dν x( )
A∫ − KH x,y( )dν y( )

D∫A∫ p x( )dν x( ).

Since p x( )KH x,y( ) = min p y( )q y,x( ), p x( )q x,y( )[ ] is symmetric in x and y, the last

expression reduces to p x( )dν x( )
A∫ = P x ∈ A( ) .

From this derivation it is clear that invariance is unaffected by an arb itrary scaling of
KH x,y( )  by a constant c .  The choice of c  affects the properties of the Metropolis-

Hastings algorithm in important practical ways.  Larger values of c  result in fewer rejected



48

draws but slower convergence to p x( ) , whereas smaller values of c  increase the proportion

of rejected candidates but accelerate the rate of convergence to p x( ) .

Roberts and Smith (1992) show that the convergence properties of the H astings-
Metropolis algorithm are inherited from those of q x,y( ): if q is aperiodic and p-irreducible,

then so is the Hastings-Metropolis algorithm.  If q x,y( ) is constructed as a Gibbs sampler

(as is often the case), then the conditions set forth in Section 6.3 m ay be used to verify

aperiodicity and p-irreducibility.  A Hastings-Metropolis chain is alway s Harris recurrent,

and therefore the invariant distribution p is unique.

6.5  Assessing convergence and numerical accuracy

In any practical application one is concerned with the discrepancy betwe en

E g x( )[ ] = g x( )p x( )dx
D∫  and its numerical approximation N −1 g xi( )

i=1

N∑ .  Consider the

decomposition

N −1 g x t( )
t =1

N∑ − E g x( )[ ] = E N −1 g x t( )
t =1

N∑ x0[ ] − E g x( )[ ]{ }
+ N −1 g x t( )

t =1

N∑ − E N −1 g x t( )
t =1

N∑ x0[ ]{ } = AN x0( ) + BN x0( ).
The term AN x0( ) is nonstochastic and in general nonzero, but limN →∞AN x0( ) = 0 if

conditions set forth earlier in this section are satisfied.  The purpose  of a transient or burn-
in phase is to reduce AN x0( ), but for any finite transient period it will still be the case in

general that AN x0( ) ≠ 0.  This difficulty is termed the convergence or sensitivity to initial

conditions problem.  The term BN x0( ) is stochastic and is the analog of EN − E or IN − I

for acceptance or importance sampling.  This term vanishes as N → ∞ , but assessing its
size is complicated by the fact that x t{ } is neither independently nor identically distributed.

This difficulty may be termed the numerical accuracy problem.

A leading cause of slow convergence is multimodality of the probability distribution,

for example, as shown in Figure 6 for a Gibbs sampler.  In the limit mul timodality

approaches disconnectedness of the support, and increasingly large value s of N  are
required for AN x0( ) to be close to 0.  This difficulty is essentially undetectable given a

single Markov chain: for a chain of any fixed length, one can imagine mu ltimodal

distributions for which the probability of leaving the neighborhood of a  single mode is

arbitrarily small.  This sort of convergence problem is precisely the sa me as the

multimodality problem in optimization, where iteration from a single sta rting value can by

itself never guarantee the determination of a global optimum.  Multimoda l disturbances are

difficult to manage by any method, including those discussed in Section 4.  In the context of

the Markov chain Monte Carlo algorithms, the question may be recast as o ne of sensitivity
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to initial conditions: xA
0 , xB

0 , and xC
0  will lead to quite different chains, in Figure 6, unless

the simulations are sufficiently long.

A Markov chain Monte Carlo algorithm can be made fully robust against se nsitivity to

initial conditions by constructing many very long chains.  Just how one should trade off the

number of chains against their length for a given budget of computation time is problem

specific and as a practical matter not yet full understood.  Many of the  issues involved are

discussed by Gelman and Rubin (1992), Geyer (1992), and their discus sants and cited

works.  In an extreme variant of the multiple chains approach, the chain  is restarted many

times, with initial values chosen independently and identically distribu ted from an

appropriate distribution.  But finding an appropriate distribution may b e difficult: one that is

too concentrated reintroduces the difficulties exemplified by Figure 6; one that is too diffuse

may require excessively long chains for convergence.  These problems asi de, proper use of

the output of Markov chain Monte Carlo in a situation of multimodality r equires specialized

diagnostics; Zellner and Min (1992) have obtained some interesting res ults of this kind.  At

the other extreme a single starting value is used.  This approach provid es the largest number

of iterations toward convergence, but diagnostics of the type of problem  illustrated in Figure

6 will not be as clear.
In specific circumstances a central limit theorem applies to BN x0( ), which may

therefore be used to assess the numerical accuracy problem.  To develop one set of such

circumstances, suppose that the Markov chain is stationary.  This could be guaranteed by

drawing x0  from the stationary distribution.  Such a drawing would be time consumi ng (if

not, i.i.d. sampling from p x( )  is possible), but only one is required.  Alternatively, one

could iterate the chain many times beginning from an arbitrary initial v alue, discard all but

the last iteration, and take this value as drawn from the stationary dis tribution to begin a new

chain.  Suppose varp g x( )[ ] is finite and denote γ i = covK g x t( ),g x t + i( )[ ].  A Markov chain

with kernel K is reversible if K x,y( ) = K y,x( ) for all x,y ∈D.  Hastings-Metropolis

chains are always reversible; Gibbs sampling chains are not (Geyer, 199 2, Section 2).  If the

Markov chain is stationary, p-irreducible, and reversible, then

N var gN( ) a.s. → σ 2 = γ ii=−∞

∞∑ ,

and if σ 2 < ∞ , then
N gN − G( ) d → N 0,σ 2( )

(Kipnis and Varadhan, 1986).

In the absence of reversibility, known sufficient conditions for central  limit theorems

are strong and difficult to verify.  For example, if for some m < ∞
P x t + m ∈ A x t = x( ) p x( )dν x( )

A∫  is bounded below uniformly in x , then D  is a small state
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space and x t{ } is uniformly ergodic (Tierney, 1991b, Proposition 2).  Then if varp g x( )[ ] is

finite, there exists σ 2 < ∞  such that N gN − G( ) d → N 0,σ 2( ) .  The boundedness

condition, however, is generally difficult to establish.

In neither circumstance is there a known sufficient condition for approx imation of the

variance term σ 2  of the central limit theorem.  The problem is formally quite similar to 

estimating the variance of the sample mean zN = N −1 ztt =1

N∑  of a stationary time series zt{ }.

In the time series problem, well-established mixing conditions (rates o f decay for
cov zt , zt + i( )) are sufficient for consistent estimation of var zN( ) (e.g., Hannan, 1970, pp.

207-210).  In time series applications these conditions remain assumpti ons.  The difficulty

in applying these conditions to Markov chain Monte Carlo is that they ca nnot be established

from verifiable fundamentals.

Nevertheless, applications of the time series procedures as if sufficien t mixing

conditions obtain appear to give quite reliable results for real problem s in economics.  That

is, applying a central limit theorem as if the output of the Markov chai n Monte Carlo

algorithm were a stationary process satisfying the mixing conditions yie lds accurate

probability statements about the output of the same algorithm applied to  the same problem

with a new starting value and initial seed for the random number generat or (Geweke, 1992a;

Geyer, 1992).  This leads to a conservative but practical procedure for  assessing the

accuracy and reliability of Markov chain Monte Carlo.  First, execute se veral short runs -- a

burn-in of 50 to 100 iterations followed by a chain of length N =  500 or N =  1000 is
sufficient for many problems.  Examine the gN  and their standard errors as assessed by

conventional time series procedures for a single time series to see whet her the scatter of
each gN  across the short runs is consistent with these standard errors.  If nec essary,

increase the length of the short runs until this consistency is achieved .  Second, choose the

last value of one of the short runs, and use it as the starting value of  a long run of from
N = 104  to N = 106  iterations.  As a final check, compare the gN  from the single long run

with the confidence intervals implied by the short runs.  Report the fin al value of gN ,

together with its numerical standard error as computed by time series me thods for a single

series.
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7.  Some examples

The usefulness of all of these methods lies as much in their appropriate  combination as

in the application of any one individually.  We turn now to some example s that illustrate

some useful combinations and in the process treat a few topics closely r elated to integration

and simulation.

7.1  Stochastic volatility

Models in which the volatility of asset returns varies smoothly over tim e have received

considerable attention in recent years.  (For a survey of several appro aches, see Bollerslev,

Chou, and Kroner, 1992.)  Persistent but changing volatility is an evid ent characteristic of

returns data.  Since the conditional distribution of returns is relevant  in the theory of

portfolio allocation, proper treatment of volatility is important.  Time -varying volatility also

affects the properties of real growth and business cycle models.

A simple model of time-varying volatility is the stochastic volatility m odel, the

descriptive properties of which have been examined by a series of invest igators beginning

with Taylor (1986).  The approach here closely follows that of Jacquie r, Polson, and Rossi
(1994).  Let rt  denote the one-period return of a single asset, and let x t  be a vector of

deterministic time series such as indicators for day of the week, holida ys, etc.  A simple

stochastic volatility model is
    rt = ′β x t + ε t , ε t = ht

1 2ut (7.1.1)

  loght = α + δ loght −1 + σvvt (7.1.2)

        
ut

vt







~
IID

N 0, I2( ). (7.1.3)

At time T  an economic agent is concerned with future returns   rT +1,K ,rT +q through an

expected utility function

 
  
E V rT +1,K ,rT +q ; z( ) ΦT[ ] = E V rq ;K( ) ΦT[ ], (7.1.4)

where z  is a generic vector of other arguments which may be known or unknown at  time T .

Evaluation of this expected utility function requires the solution of an  integration

problem.  We will consider this problem for three different specificatio ns of the information

set ΦT  in turn.  Denoting 
  
rT = r1,K ,rT( )′ , xT +q = x1,K ,xT +q( )′ , ′θ = ′β ,α,δ ,σv( ), and

  hT = h1,K ,hT( )′ , these are

ΦT
1( ) = rT ,xT +q ,θ,hT{ }; ΦT

2( ) = rT ,xT +q ,θ{ }; ΦT
3( ) = rT ,xT +q{ }.

As one may readily verify, deterministic approximations of the type disc ussed in Section 2

are inconvenient for this problem.  Even explicit expressions of the int egrals in closed form
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are awkward and unrevealing.  Simulation methods are much more direct an d have the

added advantage that one set of simulations can suffice for several alte rnative values of the

other arguments z  in (7.1.4).  These arguments might include taste parameters or the va lues
of decision variables which themselves do not affect rq .  (Section 7.2 provides an example

involving explicit optimization.)

The solution for the problem for ΦT
1( ) is simple.  In the notation of Section 4, repeated

period-by-period simulation of x = rq  provides an independent identically distributed

sample r̃q
i( ){ }

i=1

N
 with a probability density p x( ) = p rq ΦT

1( )( )  that we have not even

expressed.  Then

  
E V rT +1,K ,rT +q ;K( ) ΦT

1( )[ ] = g x( )p x( )dx∫ ,

where 
  
g x( ) = V x;K( ) = V rT +1,K ,rT +q ;K( ).  Consequently,

  
E V rT +1,K ,rT +q ;K( ) ΦT

1( )[ ] ≈ N −1 V r̃q
i( )( )i=1

N∑ .

The problem for ΦT
2( ) is more difficult.  Rather than hT  itself, the agent has available

only
p hT rT ,xT ,θ( ) = p hT ,rT xT ,θ( ) p rT( )

= p rT hT ,xT ,θ( )p hT xT ,θ( ) p rT( ) ∝ p rT hT ,xT ,θ( )p hT xT ,θ( )
= 2π( )−T 2 ht

−1 2 exp − ε t
2

t =1

T∑ 2ht[ ]t =1

T∏
⋅ 2π( )−T 2 σv

−Tht
−1 exp − loght − α − δ loght −1( )2

t =1

T∑ 2σv
2[ ]

  ∝ ht
−3 2 exp − ε t

2

t =1

T∑ 2ht[ ]t =1

T∏ exp − loght − α − δ loght −1( )2

t =1

T∑ 2σv
2[ ], (7.1.5)

where ε t = rt − ′β x t .  The simple Monte Carlo solution of the previous problem could be

extended to this one if one could draw an i.i.d. sample h̃T
i( ){ }

i=1

N

 from the distribution implied

by the last kernel.  This is clearly not possible, nor are there obvious  source or importance

sampling distributions for the methods of Sections 4.2 or 4.3.

This problem can be solved in a number of ways, and a comparison of thre e alternatives

is instructive.  All begin with the kernels of the conditional probabili ty densities for
individual ht  implied by (7.1.5).  For   t = 2,K ,T −1 the kernel is

        p ht hs t ≠ s( ),θ,ε t[ ] ∝ ht
−3 2 exp −ε t

2 2ht( )exp − loght − µ t( )2
2σ 2[ ], (7.1.6)

where

       µ t =
α 1 − δ( ) + δ loght −1 + loght +1( )

1 + δ 2
, σ 2 = σv

2

1 + δ 2
.

(Similar expressions for h1 and hT may be constructed.)
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The first two approaches construct a Gibbs sampler for the ht , drawing and

successively replacing   h1,h2 ,K ,hT .  Each cycle of drawing and replacement produces the

next realization of h̃T
i( )  in the Markov chain.  Note from (7.1.5) that limht →0p ht rt ,x t ,θ( ) = 0

for any   t = 1,K ,T, and since the support of hT  is the positive orthant of ℜT  the probability

density function of hT  is lower semicontinuous at 0.  The remaining sufficient conditions

for convergence of the Gibbs sampler are clearly satisfied.  Conditional  on each h̃T
i( )  in the

chain, draw a single r̃q
i( )  as in the problem for ΦT

1( ).  Since p h̃T
i( )( ) − p hT rT ,xT ,θ( ) → 0, it

follows that p r̃q
i( )( ) − p rq rT ,xT +q ,θ( ) → 0.  Both approaches work directly with the

conditional distribution of Ht = loght , which from (7.1.6) is given by

      log p Ht Hs s ≠ t( ),θ,ε t( ) = − exp −ε t
2 2( )exp −Ht( ) − Ht − µ t

*( )2
2σ 2 (7.1.7)

(up to an additive constant), where µ t
* = µ t −.5σ 2 , but differ in the method for obtaining Ht .

The first approach is to use acceptance sampling.  A reasonable source d istribution is
N µ t

*,σ 2( ) , for which the acceptance probability is

exp − ε t
2 2( )exp −Ht( )[ ] = exp −ε t

2 2ht( ) .

The acceptance probability falls below .01 if and only if ε t
2 ht  exceeds 9.2, which is highly

unlikely if the model reasonably well describes the distribution of the returns rt .  The

acceptance probability could be improved somewhat using the optimizing p rocedures set out
in Section 3.2, but given the favorable acceptance probabilities for the  N µ t

*,σ 2( )  source

distribution, the additional overhead might not be warranted.

The second approach is to note that the log-conditional kernel densities  (7.1.7) are

strictly concave and apply the adaptive method of Gilks and Wild (1992) .  Their algorithm
(described in Section 3.2) may be initialized by noting that Ht = µ t

* lies to the left of the

mode of the log-conditional and a solution of 1 − Ht + Ht
2 2( )exp −ε t

2 2( ) − Ht − µ t
*( ) σ 2

lies to the right of the mode.  Except for the method of drawing Ht , the solution of the

problem proceeds as in the first approach.

The third approach is to construct a Metropolis-Hastings independence ch ain.  This is
done by forming a Metropolis step Mt  for each ht  and then combining all T  steps into a

single transition   M = M1M2K MT .  At each Mt  either a candidate new value is accepted or

the old value of ht  is retained.  Thus, when M  operates on the old hT  it generally produces

a mixture of old and new ht  in the new hT .  The transition kernel M  is p-irreducible and

aperiodic, and an argument like the one in Section 6.4 shows that p hT rT ,xT ,θ( ) is the

invariant distribution of M  (Jacquier, Polson, and Rossi, 1994, Section 2).  A useful

distribution for the Metropolis-Hastings independence chain is the gamma  distribution for

ht
−1 with shape parameter a = 1 − 2exp σ 2( )[ ] 1 − exp σ 2( )[ ]+.5 and scale parameter
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λ = a −1( )exp µ t +.5σ 2( )+.5ε t
2 .  Combined with an appropriate scaling of the transition

kernel, as discussed in Section 6.4, this chain produces convergence at a practical rate (see

Jacquier, Polson, and Rossi, 1994, Section 2.4, for details).

The solution of the problem for ΦT
2( ) is directly usable in the solution of the problem

for ΦT
3( ) , in the context of the Gibbs sampler.  From the form of (7.1.1)-(7.1 .3) the

probability density kernel for θ and hT  underlying the expectations operator in (7.1.4) is

 
ht

−1 2 exp − rt − ′β x t( )2

t =1

T∑ 2ht[ ]t =1

T∏
⋅ σv

−T exp − loght − α − δ loght −1( )2

t =1

T∑ 2σv
2[ ]p β ,α,δ ,σv( ),

(7.1.8)

where p β ,α,δ ,σv( )  is the prior probability density function of ′θ = ′β ,α,δ ,σv( ).  A Gibbs

sampler with blocking hT ,θ( ) will alternate drawing and substitution for hT rT ,xT ,θ  and

θ rT ,xT ,hT .  The drawing for hT  is the same one constructed to solve the problem for ΦT
2( ).

The second drawing is facilitated by noting that the kernel of (7.1.8)  in θ  may be expressed

∝ exp − rt − ′β x t( )t

2

t =1

T∑ 2ht[ ]t =1

T∏
⋅ σv

− T +1( ) exp − loght − α − δ loght −1( )2

t =1

T∑ 2σv
2[ ]

if the prior probability distribution has the conventional improper kern el
p β ,α,δ ,σv( ) ∝ σv

−1.  Thus, β and α,δ ,σv( ) are conditionally independent.  In each case

the distribution follows from standard treatments of Bayesian learning a bout a linear model

(e.g., Poirier, 1995, Section 9.9):

β ~ N b, Q−1( ),  where Q = ht
−1x t ′x tt =1

T∑  and b = Q−1 ht
−1x trtt =1

T∑ ,

for β  and

S2 σv
2 ~ χ 2 T − 2( ), α,δ( )′ σv ~ N c,σv

2P−1( ),  where

P =
T loght −1t =1

T∑
loght −1t =1

T∑ log 2ht −1t =1

T∑











, c = P−1

loght −1t =1

T∑
loght loght −1t =1

T∑











,

and S2 = loght − c1 − c2 loght −1( ),
t =1

T∑
for α,δ ,σv( ).

7.2  Integration and optimization

The solution of all but the simplest dynamic optimization problems canno t be

expressed in closed form.  Since the objective function in these problem s is expected utility,

integration is required to evaluate a candidate solution.  Finding a goo d numerical

approximation to the solution therefore requires optimizations of a func tion which can be

evaluated only inexactly.  Moreover this evaluation must in general be r epeated many times
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in the process of approximating the solution.  Several approaches to thi s important problem

have been proposed: a good introduction is provided by Taylor and Uhlig (1990) and the

papers following that article; more recent work includes McGrattan (199 3).  Here we

discuss a widely applicable procedure that uses Monte Carlo integration to solve dynamic

optimization problems subject to an imposed parameterization of the deci sion rule and then

loosens the parametric restrictions so as to approach the optimum.  The description here

closely follows Smith (1991) who invented the method.  The notation an d assumptions are

largely those of Stokey and Lucas (1989, Chapter 9).

The problem.  Many dynamic optimization problems can be expressed

          
  
max

xt{ }t=1
∞ E0 β t r x t

p×1
,x t +1, zt

l×1





t =0

∞∑ (7.2.1)

given x0 ,z0  and subject to x t +1 ∈Γ x t ,zt( ) ∀ t .

The sequence of state vectors zt{ }t =1

∞
 is a Markov process with transition density

  
  
v zt +1 zt( ); zt ∈Z ⊆ ℜl ∀ t; (7.2.2)

and Z  is either compact or countable.  The decision vector x t ∈ X ⊆ ℜ p; X is closed and

convex.  The agent observes the state vector ′st = ′x t , ′zt( ) ∈S = X × Z  prior to choosing x t +1.

The operator E0  denotes expectations conditional on the period 0 information set s0.  The

return function r is bounded, continuous in x t ,x t +1,zt( ), and concave in x t ,x t +1( ) ∀ zt ∈Z .

The correspondence Γ  is nonempty, compact- and convex-valued, and continuous.  The

convexity of Γ  precludes problems with discrete choice sets; for a treatment of discre te

choice similar to the one here for continuous choice, see Geweke, Slonim , and Zarkin

(1992).

These assumptions imply the existence of a unique, time-invariant contin uous decision
rule w:S → X  that expresses optimal x t +1 = w x t ,zt( ) (Stokey and Lucas, 1989, Chapter 9).

The optimization problem is to determine the decision rule.  The approac h taken here is to
replace w with a rule of thumb characterized by a vector of parameters ψ

k ×1
:

  x t +1 = h x t ,zt ;ψ( ), ψ ∈C ⊆ ℜk ,C compact. (7.2.3)

This rule closes the model.  Given s0 , z = zt{ }t =1

T
,  and ψ , (7.2.2)-(7.2.3) determines

x = x t{ }t =1

T +1 = q z;ψ ,s0( ) through the obvious iterations.

Let b x,z;s0( ) = β t r x t ,x t +1,zt( )
t =0

T∑  denote the utility delivered by the sequences x

and z  given s0 for the dynamic optimization problem with horizon truncated at T .

Repressing s0 to maintain notational simplicity, g z,ψ( ) = b q z;ψ ,s0( ),z;s0[ ] is delivered

utility for decision rule h with parameterization ψ .  Given h the agent chooses the best

possible ψ , which we shall denote
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  ψ 0 = argmaxψ E0 g z,ψ( )[ ]. (7.2.4)

Problem (7.2.4) is a simplification of Problem (7.2.1), but it still  cannot be solved
analytically.  The chief complication is the evaluation of the integral associated with E0  in

(7.2.4).  The key idea in the solution described here is to simulate t he behavior of s for
different values of ψ , thereby providing approximations to E0 g z,ψ( )[ ].  As we shall see,

arbitrarily good approximations to ψ 0  may be obtained in this way.  By increasing T  and

employing a sequence of functions h that are increasingly flexible throu gh a longer

parameter vector ψ , the solution of (7.2.4) may be made to approximate that of (7.2.1)

(Smith, 1991).

The algorithm.  Generate n  i.i.d. sequences z̃ i( ) = z̃t
i( ){ }

t =1

T
 according to (7.2.2), and

take Θ = z̃ i( ){ }
i=1

n
 to be the collection of these sequences.  If we let Qn Θ,ψ( )

= g z̃ i( ),ψ( )i=1

n∑ , then n−1 Qn Θ,ψ( ) a.s. → E0 g z,ψ( )[ ].  Since the set of sequences Θ  is

fixed,
ψ̂ n = argmaxψ n−1 Qn Θ,ψ( )

is a well-defined, deterministic optimization problem that can be solved  using standard hill

climbing methods.  These methods will be more efficient to the extent th at ∂ r ∂ h  and

∂ h ∂ψ  (better yet, ∂ 2r ∂ h2  and ∂ 2 h ∂ψ∂ ′ψ  in addition) can be evaluated analytically.

Asymptotic properties.  Given four further assumptions, ψ̂ n
a.s. → ψ 0 and central

limit theorems may be used to assess the accuracy of the approximation o f ψ 0 by ψ̂ n  and

of E0 g z,ψ( )[ ] by n−1 Qn Θ,ψ( ).

(1) g z,ψ( ) is twice continuously differentiable in ψ  for all z .

(2) The following functions are regular:
(a)  g z,ψ( ), ∂ g z,ψ( ) ∂ψ , ∂ 2 g z,ψ( ) ∂ψ∂ ′ψ ;

(b)  ∂ g z,ψ( ) ∂ψ[ ] ∂ g z,ψ( ) ∂ ′ψ[ ];
(c)  g2 z,ψ( ).

Regular is used in the sense of Tauchen (1985).  Denoting the probability den sity
function of z  by f z( ), d z,ψ( )  is regular if

(i) d z,ψ( ) is measurable in z∀ψ ∈C ;

(ii) d is separable (Huber, 1967);

(iii) d is dominated -- i.e., ∃b ∋ b z( )dz∫ < ∞ and d z,ψ( ) < b z( )∀ψ ∈C ;

(iv) d z,ψ( ) is continuous in ψ ∀z .
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(3) E g z,ψ( )[ ] (the existence of which is guaranteed by Assumption 2(a)) is unique ly

maximized at ψ 0 , an interior point of C .

(4) E ∂ 2 g z,ψ 0( ) ∂ψ∂ ′ψ[ ] (the existence of which is also guaranteed by Assumption

2(a)) is nonsingular.
Given these four further assumptions, one can usefully approximate ψ 0 :

ψ̂ n
p → ψ 0 , n1 2 ψ̂ n − ψ 0( ) d → N 0,V( );

V = A−1BA−1,  with A = E
∂ 2 g z,ψ 0( )

∂ψ∂ ′ψ








, B = E

∂ g z,ψ 0( )
∂ψ

∂ g z,ψ 0( )
∂ ′ψ









;

Ân = n−1 ∂ 2 Qn Θ, ψ̂ n( )
∂ψ∂ ′ψ

p → A, B̂n = n−1
∂ g z̃ i( ), ψ̂ n( )

∂ψ
∂ g z̃ i( ), ψ̂ n( )

∂ ′ψi=1

n∑ p → B.

Under exactly the same conditions, one can also usefully approximate E g z,ψ( )[ ]:
n−1 Qn Θ, ψ̂ n( ) a.s. → E g z,ψ( )[ ], n1 2 n−1 Qn Θ, ψ̂ n( ) − E g z,ψ( )[ ]{ } d → N 0,σ 2( );

σ̂n
2 = n−1 g2 z̃ i( ), ψ̂ n( )i=1

n∑ − n−1 Qn Θ, ψ̂ n( )[ ]2 p → σ 2 = var g z,ψ( )[ ].
Proofs are given by Smith (1991) who uses asymptotic theory developed by Amemiya

(1985) and Tauchen (1985).  The second result is especially useful i n valuing the

approximation error: see Smith (1991, Section 5).

Antithetic variables.  In many applications the conditional distribution of the

exogenous state vector zt , with probability density function v zt zt −1( ) , is smooth and

symmetric or nearly symmetric.  The return function r is commonly monoto ne increasing or
decreasing in each element of zt  and may be nearly linear over most of the support of the

distribution of zt .  In such circumstances there are substantial gains in the use of antit hetic

variables as described in Section 5.1.  Let z̃ i1( ) and z̃ i2( )  denote such an antithetic pair.

(Exactly how the pair is drawn will depend on the particulars of the pr oblem.  What is

essential, as discussed in Section 5.1, is that z̃ i1( ) and z̃ i2( )  be identically distributed.)

Consider n 2replications of z̃ i1( ) and z̃ i2( )  in lieu of n  replications of z̃ i( ) .  Redefine

Qn Θ,ψ( ) = g z̃ i1( ),ψ( ) + g z̃ i2( ),ψ( )[ ]i=1

n 2∑
with Θ = z̃ i1( ), z̃ i2( ){ }

i=1

n 2
 and take ψ̂ n = argmaxψ n−1 Qn Θ,ψ( ) .  Then ψ̂ n and n−1 Qn θ,ψ( )

are consistent for ψ and E g z,ψ( )[ ] as before.  There are again central limit theorems, but

now

  

V = A−1B*A−1,  with B* = B + 1

2
C + ′C( ),  where

C = E
∂ g z̃ i1( ),ψ 0( )

∂ψ
∂ g z̃ i2( ),ψ 0( )

∂ ′ψ












, Ĉn = n

2






−1 ∂ g z̃ i1( ),ψ 0( )
∂ψ

∂ g z̃ i2( ),ψ 0( )
∂ ′ψi=1

n 2∑ p → C
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and

σ 2 = var g z,ψ 0( )[ ] + cov g z̃ i1( ),ψ 0( ), g z̃ i2( ),ψ 0( )[ ],
n−1 g2 z̃ i1( ), ψ̂ n( ) + g2 z̃ i2( ), ψ̂ n( )[ ]i=1

n 2∑ + n

2






−1

g z̃ i1( ), ψ̂ n( )g z̃ i2( ), ψ̂ n( )i=1

n∑
− 2 n−1 Qn Θ, ψ̂ n( )[ ]2 p → σ 2 .

Smith (1991) applies this method to a variant of the Brock and Mirman (1972) growth

model.  The characteristic of the model that is important for the succes s of the use of

antithetic variables is that the exogenous state variables move smoothly  over time and the

return function is only modestly nonlinear over most of the support of z .  Using only 100

antithetic pairs and T = 800 , Smith determines ψ  up to four significant figures.  The

suboptimality of the resulting decision rules turns out to be equivalent  to a per-period

decrease in consumption of 2 ×10−5%.
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Figure 1.  Contours of the function to be integrated are shown.
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Figure 2.  The target density is f( x), the source density is g( x), and a = sup[f(x)/ g(x)].
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x(2)

x(1)
D2

D1

Figure 4.  The disconnected support D = D1 ∪ D2 for the probability 

distribution implies that a Gibbs sampler with blocking   x(1),  x(2)  will not be 
Harris recurrent.  In the example shown it cannot converge from any star ting 
value.

(           )

x1 w1 x2 w2 x3
x

Figure 3.  The function h( x) = log f(x), where f(x) is a log-concave p.d.f.  
The lower hull l  (x) is formed by the chords joined at the xj, and the upper 

hull u(x) is formed by the tangents at the xj which are joined at the  wj. 

h(x)

u(x)

l (x)



x(2)

x(1)

Figure 6.  Iso-probability density contours of a multimodal bivariate 
distribution are shown.  (Arrows indicate directions of increased densi ty.)
Given sufficiently steep gradients the Gibbs sampler will converge very 
slowly.

x(2)

x(1)

A

D

J

Figure 5.  The probability density p( x) is uniform on the closed set D  and 
consequently is not lower semicontinuous at 0.  The point A is absorbing 
for the Gibbs sampler with blocking  x (1),x (2)  , so if x0

  = A convergence (            )
will not occur.
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Table 1

Evaluations required to approximate f x( )dx
I

d∫ , f x( ) = f x j( )j =1

d∑ ,

with maximum error c :  Actual number and upper bound

       d         2            3      4           5

c =.01:

Actual            228           442            661           1060

Bound       19,335 1,014,825 9.154 ×107 1.522 ×1010

c = 10−5 :

Actual      640,426 1,039,188 1,523,433   2,379,162

Bound 52,477,915 3.469 ×109 3.513 ×1011 6.114 ×1013
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Table 2

Error comparison for Halton sequence and independence Monte Carlo

f x( )dx
I

d∫ , f x( ) = xii=1

d∑
m = 1,000

     d            Halton error          Halton bound      MC error( p =.05)     MC error( p = 10−12 )

5 -7.526 ×10−3 9.302 ×102 .04000 .1455

10 -.02807 6.053 ×1019 .05658 .2058

20 -.1097 2.616 ×1029 .08002 .2911

40 -.3824 8.225 ×1072 .1132 .4117

60 -.8202 2.467 ×10121 .1386 .5042

80 -1.476 1.250 ×10173 .1600 .5822

100 -2.062 1.447 ×10227 .1789 .6509

m = 50,000

      d           Halton error          Halton bound      MC error( p =.05)     MC error( p = 10−12 )

5 -2.786 ×10−4 1.071 ×102 5.658 ×10−3 .02058

10 -8.861 ×10−4 3.533 ×1010 8.002 ×10−3 .02911

20 -3.537 ×10−3 3.225 ×1030 .01132 .04117

40 -.02216 3.356 ×1075
.01600 .05822

60 -.02768 2.2990 ×10127 .01960 .07131

80 -.05681 2.4186 ×10181 .02263 .08234

100 -.08779 5.235 ×10237 .02530 .09205
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Table 3

Error comparison for Halton sequence and Monte Carlo

f x( ) = xii=1

d∑ , x ~ N 0, Id( ) ; evaluate E f x( )[ ]

                       m = 1,000       m = 50,000

                                   Monte Carlo error                                          Monte Carlo error
   d    Halton error    ( p =.05)     ( p = 10−12 )         Halton error    ( p =.05)     ( p = 10−12 )

5 -.04190 .1386 .5042 -1.808 ×10−3 .01960 .07131

10 -.1411 .1960 .7131 -5.552 ×10−3 .02772 .1008

20 -.5497 .2772 1.008 -.02076 .03920 .1426

40 -1.7306 .3920 1.426 -.06548 .05544 .2017

60 -3.3617 .4801 1.747 -.1461 .06790 .2470

80 -5.6578 .5544 2.017 -.2573 .07840 .2852

100 -7.8073 .6198 2.255 -.2336 .08765 .3189

f x( ) = xi
2

i=1

d∑ , x ~ N 0, Id( ); evaluate E f x( )[ ]

                       m = 1,000       m = 50,000

                                   Monte Carlo error                                          Monte Carlo error
   d    Halton error    ( p =.05)     ( p = 10−12 )         Halton error    ( p =.05)     ( p = 10−12 )

5 -.0496 .2400 .8733 -1.664 ×10−3 .03395 .1235

10 -.0941 .3395 1.2350 -2.418 ×10−3 .04801 .1747

20 -.0864 .4801 1.746 -4.611 ×10−3 .06790 .2470

40 .2436 .6790 2.470 -6.367 ×10−3 .0962 .3493

60 .5680 .8316 3.0252 -3.662 ×10−3 .1176 .4278

80 .4982 .9602 3.4932 .0243 .1358 .4940

100 1.449 1.074 3.906 -.04932 .1518 .5523
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Table 3 (continued)

f x( ) = xi
3

i=1

d∑ , x ~ N 0, Id( ) ; evaluate E f x( )[ ]

                       m = 1,000       m = 50,000

                                   Monte Carlo error                                          Monte Carlo error
   d    Halton error    ( p =.05)     ( p = 10−12 )         Halton error    ( p =.05)     ( p = 10−12 )

5 -.3500 .5368 1.953 -.02286 .07591 .2761

10 -1.083 .7591 2.762 -.06800 .1073 .3906

20 -4.072 1.074 3.906 -.2386 .1518 .5523

40 -11.865 1.518 5.523 -.6821 .2174 .7811

60 -19.564 1.859 6.765 -1.411 .2630 .9567

80 -27.78 2.147 7.811 -2.641 .3036 1.104

100 -36.18 2.400 8.733 -2.218 .3395 1.235

f x( ) = xi
4

i=1

d∑ , x ~ N 0, Id( ); evaluate E f x( )[ ]

                       m = 1,000       m = 50,000

                                   Monte Carlo error                                          Monte Carlo error
   d    Halton error    ( p =.05)     ( p = 10−12 )         Halton error    ( p =.05)     ( p = 10−12 )

5 -.7442 1.420 5.167 -.03612 .2008 .7307

10 -1.046 2.008 7.307 -.04667 .2840 1.0333

20 -.8494 2.840 10.33 -.07076 .4017 1.461

40 7.504 4.016 14.61 .03523 .5681 2.067

60 16.88 4.919 17.90 .1150 .0957 2.521

80 23.48 5.681 20.66 -.1898 .8034 2.923

100 32.94 6.351 23.105 -.7909 .8982 3.268
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Table 3 (continued)

f x( ) = xi
5

i=1

d∑ , x ~ N 0, Id( ) ; evaluate E f x( )[ ]

                       m = 1,000       m = 50,000

                                   Monte Carlo error                                          Monte Carlo error
   d    Halton error    ( p =.05)     ( p = 10−12 )         Halton error    ( p =.05)     ( p = 10−12 )

5 -3.216 4.260 15.50 -.3365 .6026 2.192

10 -1.043 6.025 21.92 -1.006 .8521 3.100

20 -36.44 8.521 31.00 -3.433 1.205 4.384

40 -118.9 12.05 43.84 -9.549 1.704 6.200

60 -202.8 14.76 53.69 -14.50 2.087 7.593

80 -281.6 17.04 62.00 -13.11 2.410 8.760

100 -359.7 19.05 69.32 -23.97 2.695 9.803


