
On the Mechanics of Forming and Estimating

Dynamic Linear Economies

Evan W. Anderson

University of Chicago

Lars Peter Hansen

University of Chicago

Ellen R. McGrattan

Federal Reserve Bank of Minneapolis

Thomas J. Sargent

University of Chicago

and

Hoover Institution

Stanford University

ABSTRACT

This paper catalogues formulas that are useful for estimating dynamic linear economic mod-

els. We describe algorithms for computing equilibria of an economic model and for recur-

sively computing a Gaussian likelihood function and its gradient with respect to parameters.

We apply these methods to several example economies.

Lars Peter Hansen and Thomas J. Sargent acknowledge �nancial support from the Na-

tional Science Foundation, and Evan W. Anderson from a University of Chicago Cen-

tury graduate fellowship. This report bene�ted greatly from insightful comments by an

anonymous referee. We especially thank Peter Zadrozny for his invaluable comments.

Conversations with Sherwin Rosen were very helpful in formulating two of our example

economies and in estimating the cattle cycle model. To obtain computer programs that

implement the calculations described in the appendices, please send an e-mail message to

erm@ellen.mpls.frb.fed.us. To obtain computer programs that implement the algo-

rithms for solving Riccati and Sylvester equations, please send an e-mail message to ewan-

ders@midway.uchicago.edu. The views expressed herein are those of the authors and not

necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

Mechanics of Forming and Estimating

Dynamic Linear Economies

Evan W. Anderson, Lars Peter Hansen,

Ellen R. McGrattan and Thomas J. Sargent

1. Introduction

This paper describes recent advances for rapidly and accurately solving matrix Ric-

cati and Sylvester equations and applies them to devise e�cient computational methods

for solving and estimating dynamic linear economies. The paper surveys the most promis-

ing solution methods available and compares their speed and accuracy for some particular

economic examples. Except for the simplest dynamic linear models, it is necessary to com-

pute solutions numerically. In estimation contexts, computation speed is important because

climbing a likelihood function can require that a model be solved many times. We describe

methods that are faster than direct iterations on the Riccati equation and are more reliable

than solutions based on eigenvalue-eigenvector decompositions of the state-costate evolution

equation. Our survey of these methods draws heavily on Anderson (1978), Gardiner and

Laub (1986), Golub, Nash and Van Loan (1979), Laub (1979, 1991), and Pappas, Laub and

Sandell (1980).

This paper is organized as follows. Section 2 decomposes the optimal linear regulator

into sub-problems that are more e�cient to solve and describes classes of economic problems

that give rise to such problems. Sections 3, 4, 5, and 6 describe recent algorithms for solving

these sub-problems. Section 7 extends the range of the basic algorithms to the domain of

\distorted economies" whose equilibria do not correspond to solutions of optimum problems.

Section 8 describes three particular economic models, one of which is the cattle cycle model

of Rosen, Murphy and Scheinkman (1994). Section 9 uses each of these models as contexts

for speed and accuracy comparisons of alternative algorithms. Sections 10 and 11 briey

describe innovations representations and recursive computation of Gaussian likelihood func-

tions. Two appendices (A and B) provide formulas for computing derivatives of a Gaussian

likelihood with respect to a set of unknown parameters governing the tastes, technology,

and information ows of our economic models. These formulas, which build directly from

the work of Zadrozny (1988, 1989), are designed to make numerical search algorithms for

maximizing a likelihood function more reliable and to assist in making statistical inferences

about the parameters of interest. Section 12 uses these formulas to estimate Rosen, Murphy,

and Scheinkman's model.

1

2. Control Problems

In this section, we pose three optimal control problems. We begin with a problem close

to the much studied time-invariant deterministic optimal linear regulator problem. We label

this problem the deterministic regulator problem. We then consider two progressively more

general problems.

The �rst generalization introduces forcing sequences or \uncontrollable states" into the

deterministic regulator problem. While this generalization is also a deterministic regulator

problem, there are computational gains to exploiting the a priori knowledge that some

components of the state vector are uncontrollable. We refer to this generalization as the

augmented regulator problem. As we will see, a convenient �rst step for solving an augmented

regulator problem is to solve a corresponding deterministic regulator problem in which the

forcing sequence is \zeroed out." In other words, we obtain a piece of the solution to the

augmented regulator problem by initially solving a problem with a smaller number of state

variables.

The second generalization introduces, among other things, discounting and uncertainty

into the augmented regulator problem. We refer to the resulting problem as the discounted

stochastic regulator problem. Using well known transformations of the state and control

vectors, we show how to convert this problem into a corresponding undiscounted augmented

regulator problem without uncertainty. Therefore, while our original problem is a discounted

stochastic regulator problem, we solve it by �rst solving a deterministic regulator problem

with a smaller number of state variables, then solving a corresponding augmented regulator

problem, and �nally using this latter solution to construct the solution to the original problem

in the manner described below.

2.1. Deterministic Regulator Problem

Choose a control sequence fvtg to maximize

�
1X
t=0

(vt
0
Rvt + yt

0
Qyyyt);

subject to

yt+1 = Ayyyt +Byvt

1X
t=0

(jvtj2 + jytj2) <1: (2:1)

This control problem is a standard time-invariant, deterministic optimal linear regulator

problem with one modi�cation. We have added a stability condition, (2:1), that is absent in

the usual formulation. This stability condition plays a central role in at least one important

class of dynamic economic models: permanent income models. More will be said about these

models subsequently. In these models, the stability condition can be viewed as an in�nite

horizon counterpart to a terminal condition on the capital stock.

Following the literature on the time-invariant optimal linear regulator problem, we

impose the following:

De�nition: The pair (Ayy ; By) is stabilizable if y
0
By = 0 and y0Ayy = �y

0 for some complex

number � and some complex vector y implies that j�j < 1 or y = 0.

Assumption 1: (Ayy; By) is stabilizable.

Stabilizability is equivalent to the existence of a time-invariant control law that stabilizes

the state (see Anderson and Moore, 1979, Appendix C). For our applications, it can often

2

be veri�ed by showing that a trivial control law, such as setting investment equal to zero,

achieves this stability.

In solving this problem, we are primarily interested in speci�cations for which all of the

state variables are \endogenous," and hence the following stronger restriction is met:

De�nition: The pair (Ayy; By) is controllable if y
0
By = 0 and y0Ayy = �y

0 for some complex

number � and some complex vector y implies that y is zero.

When (Ayy; By) is controllable, starting from an initialization of zero, the state vector can

attain any arbitrary value in a �nite number of time periods by an appropriate setting of

the controls (see Anderson and Moore, 1979, Appendix C).1 For this reason, we can think

of a state vector sequence with evolution equation governed by a pair (Ayy; By) that is

controllable as being an endogenous state vector sequence.

While Assumption 1 gives us a nonempty constraint set, it is still possible that the

supremum of the objective is not attained. We assume the following:

Assumption 2: The matrix Qyy is positive semide�nite, and the matrix R is positive de�nite.

Among other things, this concavity assumption puts an upper bound of zero on the crite-

rion function. Therefore, the supremum is �nite (and nonpositive). We require that the

supremum is attained.

Assumption 3: There exists a solution to the deterministic regulator problem for each ini-

tialization of y0.

A commonly used su�cient condition in the control theory literature for there to exist a

solution is detectability. Factor Qyy = DyDy
0.

De�nition: The pair (Ayy; Dy) is detectable if D0
yy = 0 and Ayyy = �y for some complex

number � and some complex vector y implies that j�j < 1 or y = 0.

When the pair (Ayy ; Dy) is detectable, it is optimal to choose a control sequence that

stabilizes the state vector. In this case, the solution to the control problem is the same with or

without the stability constraint (2:1). However, as we mentioned previously, for permanent

income models the stability constraint is essential for obtaining an interpretable solution to

the problem. For these models, detectability is too strong of a condition to impose. Chan,

Goodwin and Sin (1984) give a weaker su�cient condition for there to exist a solution (see

(iii) of Theorem 3.10). In context of a continuous-time formulation, Hansen, Heaton and

Sargent (1991) proposed a very similar su�cient condition for stabilizable systems based

on a spectral representation of the deterministic regulator problem. Unfortunately, these

conditions may be tedious to check in practice. Some of the solution algorithms we survey

below could in principle be modi�ed to detect a violation of Assumption 3.

A su�cient condition for convergence of one of the solution algorithms that we survey

below is that the pair (Ayy ; Dy) be observable:

De�nition: The pair (Ayy; Dy) is observable if Dy
0
y = 0 and Ayyy = �y for some complex

number � and some complex vector y implies that y = 0.

Clearly, observability is stronger than detectability. Moreover, observability is guaranteed

when the matrix Qyy is nonsingular. When the pair (Ayy; Dy) is observable, the value

function associated with the deterministic regulator problem is strictly concave in the state

vector y (Caines and Mayne 1970, 1971).

1 This is one of �ve equivalent characterizations of reachability given in Appendix C

of Anderson and Moore (1979). However, many other control theorists take one of these

characterizations as the de�nition of controllability. For instance, see Kwakernaak and Sivan

(1972) and Caines (1988). We choose to follow this latter convention.

3

The solution to the deterministic regulator problem takes the form

vt = �Fyyt

for some feedback matrix Fy. Stability constraint (2:1) guarantees that the eigenvalues of

Ayy �ByFy have absolute values that are strictly less than one because the state evolution

equation when the optimal control is imposed is given by

yt+1 = (Ayy �ByFy)yt:

2.2. Augmented Regulator Problem

Choose a control sequence fvtg to maximize

�
1X
t=0

(vt
0
Rvt + yt

0
Qyyyt + 2yt

0
Qyzzt);

subject to �
yt+1

zt+1

�
=

�
Ayy Ayz

0 Azz

� �
yt

zt

�
+

�
By

0

�
vt

1X
t=0

(jvtj2 + jytj2) <1:

We have modi�ed the linear regulator problem by including the exogenous forcing se-

quence fztg. The presumption here is that this partitioning may occur naturally in the

speci�cation of the original control problem. Of course, as is well known in the control

theory literature, we could always transform an original state vector into controllable and

uncontrollable components. Constructing this transformation, however, can be di�cult to

do in a numerically reliable way. In the next section we will display a class of optimal re-

source allocation problems associated with dynamic economies for which zt contains a vector

of taste and technology shifters. By assumption, this component of the state vector cannot

be inuenced by a control vector such as the level of investment.

For the augmented regulator problem to be well posed, we require that the forcing

sequence be stable:

Assumption 4: The eigenvalues of Azz have absolute values that are strictly less than one.

The solution to the deterministic regulator problem gives us a piece of the solution to

the augmented regulator problem. More precisely, the solution to the augmented problem is

vt = �Fyyt � Fzzt;

where the matrix Fy is the same as in the solution to the regulator problem for which

the forcing sequence fztg is zeroed out. Consequently, our solution methods entail �rst

computing Fy by solving a deterministic regulator problem of lower dimension and then

computing Fz given Fy.

4

2.3. Discounted Stochastic Regulator Problem

Let fFt : t = 0; 1; :::g denote an increasing sequence of sigma algebras (information sets)
de�ned on an underlying probability space. We presume the existence of a \building block"

process of conditionally homoskedastic martingale di�erences fwt : t = 1; 2; :::g, which obeys
Assumption 5: The process fwt : t = 1; 2; :::g satis�es
(i) E(wt+1jFt) = 0;

(ii) E(wt+1wt+1
0jFt) = I:

The discounted stochastic regulator problem is to choose a control process futg, adapted to

fFtg, to maximize

�E

1X
t=0

�
t [ut

0
xt
0]

�
R W

W
0

Q

� �
ut

xt

� ���� F0
!
;

subject to

xt+1 = Axt +But + Cwt+1

E

1X
t=0

�
t(jutj2 + jxtj2)

���� F0
!
<1:

The state vector xt is taken to be the composite of the endogenous and exogenous state

variables. Let Uy = [I 0] be a matrix that selects the endogenous state vector Uyxt and

Uz = [0 I] be a matrix that selects the exogenous state vector Uzxt for an optimization

problem with discounting. To justify our partitioning, the matrix A is restricted to satisfy

UzAUy
0 = 0, and the matrix B is restricted to satisfy UzB = 0. Notice that in addition

to incorporating discounting and uncertainty, the discounted stochastic regulator includes

cross-product terms between controls and states, which are absent in the augmented control

problem.

We now apply a standard trick for converting a discounted stochastic regulator problem

to an augmented regulator problem. Using the well known certainty equivalence property

of stochastic linear regulator problems, we zero out the uncertainty without altering the

optimal control law. That is, we are free to set the matrix C to zero and instead solve the

resulting deterministic control problem. We eliminate discounting and cross-product terms

between states and controls by using the transformations

yt = �
t=2
Uyxt; zt = �

t=2
Uzxt; vt = �

t=2(ut +R
�1
Wxt):

As is evident from these formulas, we have absorbed the discounting directly into the con-

struction of the transformed state and control vectors. In addition, the cross-product matrix

W is folded into the construction of the transformed control vector. We are left with a ver-

sion of the augmented regulator problem with the following matrices:

�
Ayy Ayz

0 Azz

�
= �

1=2(A�BR
�1
W); By = �

1=2
UyB;

�
Qyy Qyz

Qyz
0

Qzz

�
= Q�W

0
R
�1
W: (2:2)

Assumptions 1 - 4 are imposed on the constructed matrices on the left-hand side of the equal

signs in (2:2).

As before, write the solution to the augmented regulator problem as

vt = �Fyyt � Fzzt:

5

Then the solution to the discounted stochastic regulator problem is

ut = �Fxt;

where

F =

�
Fy

Fz

�
+R

�1
W:

Also as before, the matrix Fy can be computed by solving the corresponding deterministic

regulator problem with the forcing sequence zeroed out. In subsequent sections we will

describe methods for computing Fy and Fz .

In macroeconomics, the discounted stochastic regulator problem is often obtained in the

fashion of Kydland and Prescott (1982), who use it to replace a nonlinear-quadratic problem.

Thus consider the nonquadratic optimization problem: choose an adapted (to fFtg) control
process futg to maximize

�E

1X
t=0

�
t
r(ut; xt)

���� F0
!
; (2:3)

subject to

xt+1 = Axt +But + Cwt+1:

Here r is not required to be a quadratic function of ut and xt. When the associated con-

straints are nonlinear, sometimes we can substitute the nonlinear constraints into the crite-

rion function to obtain a problem of the form of (2:3). Kydland and Prescott (1982) simply

replace the function r by a quadratic form in [ut
0

xt
0]
0
as required for the discounted

stochastic regulator problem, where the quadratic function is designed to \approximate" r

well near a particular value for the state vector.2 In the next subsection, we describe a

di�erent approach where, by design, the initial optimal resource allocation problem can be

directly converted into a discounted stochastic regulator problem.

2.4. A Class of Linear-Quadratic Economies

We will consider several numerical examples that are members of a class of economies

used by Hansen (1987) and Hansen and Sargent (1994). As in the discounted stochastic

regulator problem, there is an exogenous information vector zt governed by

ẑt+1 = Âzz ẑt + Ĉzwt+1; (2:4)

where fwtg satis�es Assumption 5, and Azz �
p
�Âzz satis�es Assumption 4. The vector

ẑt determines a time t preference shock bt and a time t endowment shock dt via

dt = Ud ẑt

bt = Ub ẑt:
(2:5)

A representative household has preferences ordered by

�(1=2)E

1X
t=0

�
t(jst � btj2 + jgtj2)

���� F0
!
; (2:6)

2 While Kydland and Prescott (1982) apply an ad hoc global approximation to r in

which the range of approximation is adapted to the amount of underlying uncertainty, many

subsequent researchers have instead simply used a local Taylor series approximation around

some \nonstochastic" steady state produced by shutting down all randomness in the model.

Kydland and Prescott (1982) note that for the range of uncertainty they considered, the

two methods gave similar answers.

6

where gt is a vector of labor-using intermediate activities (designed to capture generalized

adjustment costs), and st is a vector of household services produced at time t via the

household technology
st = �ht�1 +�ct;

ht = �hht�1 +�hct:
(2:7)

In (2:7), ht is a vector of stocks of household durable goods at t; ct is a vector of consumption

ows, and �; �; �h; �h are matrices. There is a constant returns to scale production

technology
�cct +�iit +�ggt = �kt�1 + dt;

kt = �kkt�1 +�kit;
(2:8)

where kt is a vector of capital goods used in production, it is a vector of investment goods,

and �k is a matrix.
3 Hansen and Sargent (1994) describe a competitive equilibrium for this

economy. Associated with the competitive equilibrium is a social planning problem, namely,

to maximize (2:6) over choices of contingency plans for fst; ct; it; gt; kt; htg1t=0 (adapted pro-
cesses) subject to (2:4), (2:5), (2:7), and (2:8) with given initializations for (z0; h�1; k�1).

To map this problem into the notation of the previous section, we let

xt �
2
4ht�1kt�1

ẑt

3
5 :

We view the �rst two components of the state vector to be endogenous and the third com-

ponent to be exogenous. The control vector ut can be chosen to be investment it when the

matrix � � [�c �g] is nonsingular because in this case4�
ct

gt

�
= ��1(�kt�1 + Udẑt � �iit): (2:9)

Using this relation, the constraints (2:7) and (2:8) can be rewritten

xt+1 = Axt +But + Cwt+1

for appropriately chosen matrices A;B;C. The matrix A is block triangular and the bottom

row block of B is zero as required for the discounted stochastic regulator problem. Moreover,

using (2:9) and (2:7), the time t terms jst�btj2 and jgtj2 in the objective function (2:6) of the
social planner both can be expressed as quadratic forms in the control it and the augmented

state xt. Therefore, the social planner's problem is a discounted stochastic regulator problem.

In permanent income economies, stability of the state vector process is not obtained

automatically as an implication of optimality. An example of such an economy is one with

a single consumption and capital good and no labor-using intermediate activities. The

counterpart to equation (2:9) is

ct = �kt�1 + Udẑt � it:

We constrain the subjective discount factor to be the reciprocal of the physical return to

capital: � = 1
�+�k

: In the absence of a stability constraint, the solution to the resulting

control problem does not \stabilize" the capital stock sequence because the sequence of

capital stocks often diverges to minus in�nity at a rate not even dominated by 1p
�
. This

3 Under the constant returns to scale interpretation, dt is taken as an additional \input"

available in �xed supply.
4 When � is singular, the control vector can be augmented to include some of the com-

ponents of consumption or the labor-using intermediate activities.

7

solution to the control problem is not interesting. Therefore, we impose stability as an

additional constraint, with the consequence that the solution to the resulting in�nite-horizon

control problem is equal to the limit of the solutions to a sequence of corresponding �nite-

horizon problems, each of which has a zero restriction imposed on the terminal capital stock.

3. Solving the Deterministic Linear Regulator Problem

In this section we describe ways to solve for the matrix Fy. Recall that this matrix has

a double role. First, it gives the control law for a particular deterministic regulator problem.

More importantly for us, it also gives a piece of the solution to the discounted stochastic

regulator problem.

In describing methods for computing Fy, it is convenient to work with the state-costate

equations associated with the Lagrangian

L = �
1X
t=0

[y0tQyyyt + v
0

tRvt + 2�t+1
0(Ayyyt +Byvt � yt+1)]: (3:1)

First-order necessary conditions for the maximization of L with respect to fvtg1t=0 and

fytg1t=0 are
vt : Rvt +By

0
�t+1 = 0; t � 0 (3:2)

yt : �t = Qyyyt +Ayy
0
�t+1; t � 0: (3:3)

To obtain a composite state-costate evolution equation, solve (3:2) for vt, substitute the

solution into the state evolution equation, and stack the resulting equation and (3:3) and

write the state-costate evolution equation as

L

�
yt+1

�t+1

�
= N

�
yt

�t

�
; (3:4)

where

L �
�
I ByR

�1
By

0

0 Ayy
0

�
; N �

�
Ayy 0

�Qyy I

�
:

There is also a continuous-time counterpart to this system given by�
Dyt

D�t

�
= H

�
yt

�t

�
; (3:5)

where

H �
�
Ayy �ByR

�1
B
0
y

�Qyy �Ayy
0

�
: (3:6)

Equation (3:5) is the state-costate equation corresponding to the continuous-time regula-

tor problem with criterion � R1
0
[y(t)0Qyyy(t) + u(t)0Ru(t)]dt and law of motion Dy(t) =

Ayyy(t)+Byu(t); where D is the time-di�erentiation operator. We describe several methods

for solving equations (3:4) and (3:5). Formally, we will devote most of our attention to the

discrete-time system (3:4). As we will see, methods designed for solving the continuous-time

system (3:5) can be adapted easily to solve the discrete-time system (3:4), and conversely.

The solution to (3:4) of interest to us is the one that stabilizes the state-costate vector

sequence for any initialization y0. Since we have transformed the state vector to eliminate

discounting, we impose stability in the form of square summability:

1X
t=0

��� � yt
�t

� ���2<1; (3:7)

8

for the discrete-time system (3:4). (We impose the analogous square integrability restriction

on the continuous-time system (3:5)).

One way to ascertain the solution to the deterministic regulator problem is to �nd an

initial costate vector expressed as a function of the initial state vector y0 that guarantees

the stability of system (3:4) or (3:5). The initialization of the costate vector takes the form

�0 = Pyy0 and is replicated over time. Substituting Pyyt for �t into (3:4), we �nd that

(I +ByR
�1
By

0
Py)yt+1 = Ayyyt

Ayy
0
Pyyt+1 = �Qyyyt + Pyyt:

(3:8)

It is straightforward to verify that

(I + ByR
�1
By

0
Py)

�1 = I �By(R+ By
0
PyBy)

�1
B
0

yPy: (3:9)

Solving the �rst equation in (3:8) for yt+1

yt+1 = (Ayy �ByFy)yt; (3:10)

where

Fy � (R +By
0
PyBy)

�1
B
0

yPyAyy: (3:11)

Premultiplying (3:10) by A0yyPy gives

A
0

yyPyyt+1 = (A0yyPyAyy �A
0

yyPyByFy)yt: (3:12)

For the right-hand side of equation (3:12) to agree with the right-hand side of the second

equation of (3:8) for any initialization y0, it must be that

Py = Qyy +A
0

yyPyAyy �A
0

yyPyBy(R+B
0

yPyBy)
�1
B
0

yPyAyy

= Qyy + (Ayy �ByFy)
0
Py(Ayy �ByFy) + Fy

0
RFy

; (3:13)

which is the familiar Riccati equation. In other words, the matrix Py used to set the initial

condition on the costate vector is also a solution to the Riccati equation (3:13). With this

initialization, the costate relation �t = Pyyt holds for all t � 0. Finally, it follows from

(3:10) that this state-costate solution is implemented by the control law vt = �Fyyt:
The remainder of this section is organized as follows. In the �rst subsection, we initially

consider the case in which the matrix Ayy is nonsingular. While this case is studied for

pedagogical simplicity, it is also of interest in its own right. In the second subsection,

we then treat the more general case in which Ayy can be singular. As emphasized by

Pappas, Laub and Sandell (1980), singularity in Ayy occurs naturally in dynamic systems

with delays. One of our example economies used in our numerical experiments has a singular

matrix Ayy. Finally, in the third subsection we study the continuous-time counterpart to

the deterministic regulator problem. We describe an alternative solution method and show

how to convert a discrete-time regulator problem into a continuous-time regulator with the

same relation between optimally chosen state and co-state vectors. We defer the discussion

of the numerical algorithms used for implementing these methods until the next section.

9

3.1. Nonsingular Ayy

When the matrix Ayy is nonsingular, we can solve (3:4) for

�
yt+1

�t+1

�
:

�
yt+1

�t+1

�
=M

�
yt

�t

�
; (3:14)

where

M � L
�1
N =

�
Ayy +ByR

�1
B
0
yA

0
yy
�1
Qyy �ByR

�1
B
0
yA

0
yy
�1

�A0yy�1Qyy A
0
yy
�1

�
: (3:15)

We �nd the matrix Py by locating the stable invariant subspace of the matrix M .

De�nition: An invariant subspace of a matrix M is a linear space C of possibly complex

vectors for which MC = C:

Invariant subspaces are constructed by taking linear combinations of eigenvectors of M . A

stable invariant subspace is one for which the corresponding eigenvalues have absolute values

less than one. To solve the model, we aim to �nd the matrix Py such that

�
I

Py

�
y is in the

stable invariant subspace of M for every n dimensional vector y. We now elaborate on how

to compute this subspace.

The matrix M has a particular structure that we can exploit in characterizing its

eigenvalues. To represent this structure, we introduce a matrix J given by

J �
�
0 �I
I 0

�
:

Notice that J�1 = J
0 = �J .

De�nition: A matrix M is symplectic if MJM
0 = J .

It is straightforward to verify that M given by (3:15) is symplectic. It follows that

M
0 = J

�1
M

�1
J: (3:16)

Therefore, the transpose of M is similar to its inverse. Recall that similar matrices de�ne

the same linear transformation but with respect to a di�erent coordinate system. Thus M 0

and M
�1 share the same eigenvalues. For any matrix M , the eigenvalues of M�1 are the

reciprocals of the eigenvalues of M , so it follows that the eigenvalues of a real symplectic

matrix come in reciprocal pairs, and the number of stable eigenvalues cannot exceed the

number of states n. However, merely requiring M to be symplectic permits there to be

eigenvalues with absolute values equal to one, and so we will need an additional argument

to show that there are exactly n stable eigenvalues.

To locate the stable invariant subspace of the symplectic matrix M , we follow Laub

(1979) and (block) triangularize M :

V
�1
MV =W

W =

�
W11 W12

0 W22

�
; (3:17)

where V is a nonsingular matrix. By construction, the matrices M and W are similar. The

matrix partitions in (3:17) are built to coincide with the number of stable and unstable

eigenvalues. In particular, the absolute values of the eigenvalues of W11 are stable.

10

A special case of this decomposition is an appropriately ordered Jordan decomposition

of M as was used by Vaughan (1970) in developing an invariant subspace algorithm for

computing Py. Laub (1991) traces this solution strategy back to the 19th century and

credits MacFarlane (1963) and Potter (1966) with introducing it to the control literature.

As emphasized by Laub (1991), it is preferable to build algorithms based on other upper

triangular decompositions that are more numerically stable. The Jordan decomposition is

particularly problematic when the symplectic matrix M has eigenvalues with multiplicities

greater than one (see also Golub and Wilkinson 1976). In the next section, we describe

alternative Schur decompositions, which are more reliable numerically.

To use this triangularization to calculate Py, apply V
�1 to both sides of the state

equation (3:14):

y
�

t+1 =Wy
�

t ;

where

y
�

t = V
�1

�
yt

�t

�
:

This transformation permits us to study asymptotic properties in terms of two smaller

uncoupled subsystems. Partition y
�
t into two blocks with dimensions given by the number

of stable and unstable eigenvalues:

y
�

t �
�
y
�
1;t

y
�
2;t

�
:

Then

y
�

2;t+1 =W22y
�

2;t;

and the solution sequence fy�2;tg fails to converge to zero unless it is initialized at zero.

Setting y
�
2;0 at zero can be accomplished by an appropriate initialization of the costate

vector, as we now verify.

Partition the matrices V and V �1 as

V =

�
V11 V12

V21 V22

�
; V

�1 =

�
V
11

V
12

V
21

V
22

�
:

Since V is nonsingular and there exists a (stable) solution to the optimal control problem,

we must have

V
21
yt + V

22
�t = 0: (3:18)

The rank of the matrix [V 21
V
22] equals the number of unstable eigenvalues of M , and

thus the rank of its null space must equal the number of stable eigenvalues. For a solution

to exist for every initialization y0 = y, it follows from (3:18) that there must exist a � such

that

V
21
y + V

22
� = 0:

Thus the dimensionality of the null space of [V 21
V
22] must also be at least n. Therefore,

M has exactly n stable eigenvalues, and the matrix partition V
22 is nonsingular. Solving

(3:18) for �t gives

�t = �(V 22)�1V 21
yt:

Consequently, the matrix Py used to initialize the costate vector is given by

Py = �(V 22)�1V 21 = V21V11
�1
; (3:19)

where the second equality follows from the fact that the rank of

�
V11

V21

�
has rank n, and

[V 21
V
22]

�
V11

V21

�
= 0:

11

3.2. Singular Ayy

We now extend the solution method to accommodate singularity in Ayy. This method

avoids inverting the L matrix in (3:4). Instead of locating the stable invariant subspace of

M , a deating subspace method �nds the stable deating subspace of the pencil �L�N .

De�nition: A pencil �L � N is the family of matrices f�L � Ng indexed by the complex

variable �.

De�nition: A deating subspace of the pencil �L�N is the subspace C of complex vectors

such that the dimension of C is at least as large as the dimension of the sum of the subspaces

LC and NC.

For the matrices L and N of equation (3:4), it can be veri�ed that the intersection of

their null spaces contains only the zero vector.5 This ensures us that a generalized eigenvalue

problem is well posed. When a subspace C is deating, there exists a vector x in C that

solves the generalized eigenvalue problem

�Ly = Ny

(see Theorem 2.1 in Stewart 1972). Implicitly, we are including the possibility of a solution

with � = 1, which occurs when y is in the null space of L but not in the null space of

N . As with the previous (invariant subspace) method, the deating subspace of interest

for solving the optimal control problem is the deating subspace associated with the stable

state-costate sequence. The stable deating subspace is the subspace associated with the

stable generalized eigenvectors (the eigenvectors associated with generalized eigenvalues with

absolute values strictly less than one.) Hence we solve the model by �nding a matrix Py

such that

�
I

Py

�
y is in the stable deating subspace of the pencil �L�N .

Recall that when Ayy is nonsingular, the matrix M is symplectic. More generally,

system (3:4) is associated with a symplectic pencil.

De�nition: A pencil �L�N is symplectic if LJL0 = NJN
0.

Pappas, Laub and Sandell (1980, Theorem 4) show that the generalized eigenvalues of the

symplectic pencil (�L�N) come in reciprocal pairs, just as the eigenvalues of M do when

Ayy is nonsingular. Hence we again have that the number of stable generalized eigenvalues

is no greater than n. Furthermore, we can imitate our argument in the case in which Ayy is

nonsingular to show that there are exactly n stable generalized eigenvalues.6

We triangularize the state-costate system (3:4) using the solutions to the generalized

eigenvalue problem. As in Theorem 2.1 of Stewart (1972), there exists a decomposition of

the pencil �L�N such that

ULV = T =

�
T11 T12

0 T22

�
; UNV =W =

�
W11 W12

0 W22

�
; (3:20)

5 See Theorem 3 of Pappas, Laub and Sandell (1980) for the case in which (Ayy; Dy) is

detectable. As we noted previously, the restriction to a detectable system rules out some

interesting economic models. More generally, nonexistence of a common nonzero vector

in the null spaces of N and L can be shown by way of contradiction. Suppose there is a

common nonzero vector in the null space. Then the matrix (I +QyyByR
�1
B
0
y) is singular.

However, this singularity contradicts Theorem 1 of Kimura (1988).
6 Theorems 3 and 4 of Pappas, Laub and Sandell (1980) establish this result when the

pair (Ayy; Dy) is detectable.

12

where U and V are unitary matrices and the matrix partitions have the same number, n; of

elements as the number of entries in the state vector yt. Premultiplication of the pencil �L�
N by the nonsingular matrix U preserves the solutions to the generalized eigenvalue problem,

and postmultiplication by V alters the generalized eigenvectors but not the eigenvalues.

A consequence of the triangularization is that the solutions to the generalized eigenvalue

problem for the original system are constructed directly from the solutions to the following

two smaller problems:
�T11~y =W11~y

�T22~y =W22~y:
(3:21)

As with the invariant subspace method, we build the blocks of the triangularization so

that the generalized eigenvalues of the �rst problem in (3:21) satisfy j�j < 1; and for the

second problem j�j > 1: As a consequence, the span of the �rst n columns of V gives the

vectors of the deating subspace we seek. The span of the remaining n columns contains the

problematic initializations of the state-costate vector for which the implied sequence of state-

costate vectors diverges exponentially. In addition, it includes the span of the generalized

eigenvectors associated with in�nite eigenvalues. Imitating the solution method when Ayy

is nonsingular, we initialize the costate vector as �t = Pyyt, where the matrix Py is again

given by (3:19).

To understand better the nature of this unstable subspace, recall that an eigenvector as-

sociated with an in�nite eigenvalue is in the null space of T22. Suppose the triangularization

of L and N is built so that we can further partition the matrices:

T22 =

�
M11 M12

0 0

�

W22 =

�
O11 O12

0 O22

�
;

where the matrices M11 and O22 are nonsingular. Such a triangularization always exists.

Consider solving the following equation recursively for a sequence f~yt+1g; for each t solve

for ~yt+1 given ~yt by using

T22~yt+1 =W22~yt:

For this equation to have a solution, the second component of ~yt must be zero for all t

because

O22~yt;2 = 0; (3:22)

and O22 is nonsingular. In addition to eliminating the nonexistence problem, imposing this

restriction also resolves the multiplicity problem. Note that the multiplicity problem for

the triangular system is that for a given t, (3:22) does not restrict ~xt+1;2. However, (3:22)

applied to time t+ 1 resolves the problem.

13

3.3. Continuous-Time Systems

To conclude this section, we consider solving continuous-time Hamiltonian systems of

the form (3:5). The de�ning feature of a Hamiltonian matrix is:

De�nition: A matrix H is Hamiltonian if JH is symmetric.

The matrix H in (3:5), (3:6) clearly satis�es this property. It follows that

H
0 = �JHJ

�1
;

which in turn implies that the matrix H
0 is similar to �H . Consequently, the eigenvalues

of a real Hamiltonian matrix come in pairs that are symmetric about the imaginary axis

of the complex plane. The stable eigenvalues of a Hamiltonian matrix are those whose real

parts are strictly negative. Similar arguments to those given above guarantee that there

are exactly n stable eigenvalues of H . Therefore, (3:5) can be solved by using an invariant

subspace method and its associated decomposition (3:17), provided that the classi�cation

of stable and unstable eigenvalues is modi�ed appropriately.7

There is an alternative approach for solving a continuous-time Hamiltonian system.

Given a Hamiltonian matrix H , another Hamiltonian matrix G is constructed with the

same stable and unstable invariant subspaces. The matrix G is called the \sign" of the

matrix H , and is de�ned as follows. Take the Jordan decomposition of H :

H = V

�
�11 0

0 �22

�
V
�1
;

where �11 is an upper triangular matrix with the eigenvalues of H that have strictly negative

real parts on the diagonals, and �22 is an upper triangular matrix with the eigenvalues of

H that have strictly positive real parts on the diagonals. Then

G = sign(H) � V

��I 0

0 I

�
V
�1
:

Thus the sign of a matrix is a new matrix with the same eigenvectors as the original matrix

and with eigenvalues replaced by �1 or 1 depending on the signs of the real parts of the

original eigenvalues.

The matrix Py can be inferred directly from G. To see this, we use an insight from

Roberts (1980). By construction, all of the stable eigenvalues of G are equal to �1. Conse-
quently, the matrix Py satis�es the following eigenvalue problem:

G

�
I

Py

�
y = �

�
I

Py

�
y

for any n dimensional vector y, and the matrix Py solves the a�ne equation

G

�
I

Py

�
+

�
I

Py

�
= 0: (3:23)

7 Deating subspace methods are not needed for solving the class of continuous-time

quadratic control problems considered here because we can form directly the Hamiltonian

matrix and apply an invariant subspace method. However, as we have formulated it, the

continuous-time problem does not permit systems with �nite gestation lags in making in-

vestment goods productive or systems for which consumption services depend on only a

�nite interval of past consumptions.

14

This method is implemented by �nding fast ways to compute the \sign" of a matrix.

While the matrix sign method is directly applicable for solving continuous-time Hamil-

tonian systems, Hitz and Anderson (1972) and Gardiner and Laub (1986) show how to use it

to locate deating subspaces of discrete-time systems. Consider the generalized eigenvalue

problem for the symplectic pencil

�Ly = N:

Then

(1 + �)(L�N)y = (1� �)(L+N)y:

Since the only common vector in the null space of L and N is zero, we construct the solution

to the eigenvalue problem

�y = (L�N)�1(L+N);

where

� =
1 + �

1� �
:

Consequently, the stability relations (2:1) carry over here as well, and we apply the matrix

sign algorithm to (L�N)�1(L+N).

It also turns out that (L�N)�1(L+N) is a Hamiltonian matrix, which we can exploit

in computation. To verify the Hamiltonian structure, note that

(L�N)J(L0 +N
0) = LJL

0 �NJN
0 �NJL

0 + LJN
0

= �NJL
0 + LJN

0

= NJN
0 � LJL

0 �NJL
0 + LJN

0

= �(L+N)J(L0 �N
0)

;

where we have used the fact that �L�N is a symplectic pencil. Therefore,

J(L�N)�1(L+N) = (L0 +N
0)(L0 +N

0)�1J(L�N)�1(L+N)

= (L0 +N
0)[�(L�N)J(L0 +N

0)]�1(L+N)

= (L0 +N
0)[(L+N)J(L0 �N

0)]�1(L+N)

= (L0 +N
0)(L0 �N

0)�1J 0;

which proves that (L�N)�1(L+N) is a Hamiltonian matrix.

In summary, by construction, the stable (unstable) invariant subspace of the Hamilto-

nian matrix (L�N)�1(L+N) coincides with the stable (unstable) deating subspace of the

symplectic pencil �L�N . This coincidence permits us to compute the matrix Py used for

initializing the costate vector for the discrete-time system (3:4) by applying a matrix sign

algorithm to (L�N)�1(L+N).

15

4. Computational Techniques for Solving Riccati Equations

We consider three types of algorithms for computing Py:

(i) Schur algorithm;

(ii) doubling algorithm;

(iii) matrix sign algorithm.

A Schur algorithm is based on locating a stable subspace using a Schur decomposition of the

state-costate system. As we noted in the previous section, once a stable subspace is located,

the relevant Riccati equation solution Py is easily computed. There are two versions of a

Schur decomposition, depending on whether the matrix Ayy is known to be nonsingular or

not. A Schur decomposition gives a more reliable way of locating stable spaces than the

familiar Jordan decomposition and its generalization for pencils.

A doubling algorithm is an iterative method for speeding up the dynamic programming

Riccati equation iteration by doubling the number of time periods in each iteration. Recall

from our discussion in the previous section that the stable deating subspace of the pencil

f�L�Ng coincides with the invariant subspace of the sign of the matrix (L�N)�1(L+N)

associated with the eigenvalue �1. A matrix sign algorithm is an iterative method for

computing the sign of (L�N)�1(L+N) from which we can recover Py easily.

4.1. Schur Algorithm

Suppose the matrix Ayy is nonsingular. As we noted in section 3, the matrix Py can be

found by locating the stable invariant subspace of the matrix M given in (3:15). In some of

our numerical calculations, we use what is referred to as a real Schur decomposition of M

to locate its invariant subspace.

De�nition: The real Schur decomposition of a real matrixM is an orthogonal matrix V̂ and

a real upper block triangular matrix Ŵ such that

V̂
0
MV̂ = Ŵ =

2
664
Ŵ11 Ŵ12 : : : Ŵ1m

0 Ŵ22 : : : Ŵ2m
...

. . .
. . .

...

0 : : : 0 Ŵmm

3
775

where Ŵii is either a scalar or a 2� 2 matrix with complex conjugate eigenvalues.8

A real Schur decomposition is a computationally convenient version of the block triangu-

lar decomposition (3:17) used to compute Py when Ayy is nonsingular. Golub and Van

Loan(1989) describe how to compute the real Schur decomposition (in particular, see sec-

tions 7.4 and 7.5). Recall that the block triangular matrix W in (3:17) results from parti-

tioning the eigenvalues into stable and unstable eigenvalues. Algorithms that compute the

real Schur decomposition of a matrix typically do not partition the diagonal blocks of Ŵ

according to stability. Instead, given an arbitrary real Schur decomposition M = V̂ Ŵ V̂
0,

one can use the approaches described in either Bai and Demmel (1993) or Stewart (1976) to

construct a sequence of orthogonal transformations that reorder the diagonal blocks of Ŵ ;

while updating V̂ so that M = V̂ Ŵ V̂
0 holds at every step.

In summary, the steps for implementing a Schur algorithm are

8 There is also a complex Schur decomposition of a real or complex matrix in which V̂ is

a unitary matrix and Ŵ is upper triangular.

16

(1) form the matrix M in (3:15);

(2) form a real Schur decomposition of M where the �rst n columns of V̂ ; written in a

partitioned form as
�
V̂11

0

V̂21
0 �0

; are a basis for the stable invariant subspace of M ;

(3) solve PyV̂11 = V̂21 for Py.

For the numerical computations which follow, we compute the real Schur decomposition of

M using the LAPACK9 function DGEES. For comparisons, we also compute an eigenvector

decomposition using the built-in MATLAB function EIG. Our eigenvector routine assumes

that the eigenvalues of M are distinct, and we do not attempt to implement an algorithm

designed for the more troublesome case in which there are repeated eigenvalues. We compute

Py in step (3) using the built-in MATLAB operator '/', which solves a linear equation using

Gaussian elimination with partial pivoting.

A deating subspace method is required when Ayy is singular and likely to be more

stable numerically when Ayy is nearly singular. To implement this approach in practice, we

use an ordered real generalized Schur decomposition to �nd an appropriate triangularization

of the state-costate dynamical system (see Van Dooren, 1982).

De�nition: A generalized real Schur decomposition of a real matrix pencil �L�N is a pair

of orthogonal matrices Û and V̂ , a real upper triangular matrix T̂ ; and a real upper block

triangular matrix Ŵ , such that

ÛLV̂ = T̂ =

2
664
T̂11 T̂12 : : : T̂1m

0 T̂22 : : : T̂2m
...

. . .
. . .

...

0 : : : 0 T̂mm

3
775

ÛNV̂ = Ŵ =

2
664
Ŵ11 Ŵ12 : : : Ŵ1m

0 Ŵ22 : : : Ŵ2m
...

. . .
. . .

...

0 : : : 0 Ŵmm

3
775 ;

where the pencil �T̂ii � Ŵii is either a 1 � 1 matrix pencil or a 2 � 2 matrix pencil with

complex conjugate generalized eigenvalues.

As with the real Schur decomposition, we initially compute a generalized real Schur de-

composition of �L�N without regard to whether the generalized eigenvalues are stable or

not. We then reorder the diagonal blocks of T̂ and Ŵ so that the generalized eigenvalues

are partitioned in the manner required by (3:20). This partitioning can be done using the

algorithms described in Van Dooren (1981, 1982) or in K�agstr�om and Poromaa (1994).

Thus the steps for implementing a generalized Schur algorithm are

(1) form the matrices L and N in (3:4);

(2) form a generalized real Schur decomposition of the pencil �L � N where the �rst n

columns of V̂ ; written in a partitioned form as
�
V̂11

0

V̂21
0 �0

, span the deating subspace

of the pencil �L�N ;

(3) solve PyV̂11 = V̂21 for Py.

9 The algorithms described in this paper use routines from the FORTRAN packages

LAPACK, LINPACK, and RICPACK. All of these packages can be obtained by anonymous

ftp from netlib.att.com and various mirrors. MATLAB is a commercial matrix algebra

package available from TheMathWorks, Inc. All of our FORTRAN routines are implemented

as MATLAB MEX-�les.

17

For the numerical comparisons which follow, we implement the generalized Schur algorithm

by using the routines QZHESW, QZITW, QZIT, and ORDER from RICPACK. We also re-

port results for a method that uses generalized eigenvectors to compute deating subspaces.

This method takes the �rst n columns of the matrix V̂ to be the generalized eigenvectors of

�L �N that correspond to stable generalized eigenvalues. We implement this method us-

ing the built-in MATLAB function EIG, making no attempt to handle repeated generalized

eigenvalues.

4.2. Doubling Algorithm

Dynamic programming solves the in�nite horizon problem by backward induction,

which leads to iterations on the Riccati equation (3:13). A doubling algorithm can be

viewed as a re�nement of this approach. It preserves the idea of approximating the solution

to the in�nite horizon problem by a sequence of �nite horizon problems, but instead of in-

creasing the horizon by one time period in each iteration, the number of time periods gets

doubled.

To see how this approach works, recall that the solution to the �nite horizon problem

for periods 0; : : : ; (� � 1) can be viewed as a two point boundary value problem where the

initial state vector y0 is set to some arbitrary vector y and the costate vector at the terminal

date �� is set to zero. Suppose for simplicity that Ayy is nonsingular. By iterating on

relation (3:14), we �nd that

M̂

�
y�

0

�
=

�
y0

�0

�
; (4:1)

where

M̂ �M
��
:

To approximate the matrix Py, we solve (4:1) for the initial costate vector �0 as a function

of y0. Partitioning M̂ conformably to the state-costate partition, we see that

M̂11y� = y0; M̂21y� = �0:

Therefore, the implicit initialization of the costate vector is

�0 = M̂21(M̂11)
�1
y0;

and our approximation for the matrix Py is given by M̂21(M̂11)
�1.

What is needed to implement this approach is a way to compute M̂ when the horizon �

is large. Expanding the horizon one period at a time corresponds to multiplying the matrix

M
�1, � times in succession. However, when � is chosen to be a power of two, computations

can be sped up by using

M
�2k+1 = (M�2k)M�2k

: (4:2)

As a consequence, when � = 2j , the desired matrix can be computed in j iterations instead

of 2j iterations, which explains the name doubling algorithm.

Given that the matrix M�1 has unstable eigenvalues, direct iterations on (4:2) can be

very unreliable. Clearly, the sequence of matrices fM�2kg diverges. One of the features of a
doubling algorithm is to transform these computations into matrix iterations that converge.

Another feature is that a doubling algorithm exploits the fact that the matrix M is sym-

plectic. Symplectic matrices have several nice properties.10 We have already seen that their

10 There is a variation of the Schur algorithm that exploits the symplectic structure ofM:

See pages 431-434 of Petkov et al. (1991) for an overview of this algorithm.

18

eigenvalues come in reciprocal pairs. In addition, the product of symplectic matrices is sym-

plectic, and the inverse of a symplectic matrix is symplectic. Moreover, for any symplectic

matrix S, the matrices S21(S11)
�1 and (S11)

�1
S12 are both symmetric and

S22 = (S011)
�1 + S21(S11)

�1
S12

= (S011)
�1 + S21(S11)

�1
S11(S11)

�1
S12:

Therefore, a (2n � 2n) symplectic matrix can be represented in terms of the three n �
n matrices � = (S11)

�1
; � = (S11)

�1
S12; = S21(S11)

�1, the latter two of which are

symmetric.

The doubling algorithm described by Anderson (1978) and Anderson and Moore (1979)

exploits such a representation by using the following parameterization of M�2k :

M
�2k =

�
(�k)

�1 (�k)
�1
�k

k(�k)
�1

�
0

k + k(�k)
�1
�k

�
;

where the n� n matrices �k; �k; k are given by the recursions

�k+1 = �k(I + �kk)
�1
�k

�k+1 = �k + �k(I + �kk)
�1
�k�

0

k

k+1 = k + �
0

kk(I + �kk)
�1
�k:

(4:3)

While this alternative parameterization introduces a matrix inverse into the recursions (4:3)

that is absent in (4:2), the matrix I + �kk being inverted is only n dimensional. The non-

singularity of this matrix for all k is established in Kimura (1988). To initialize the doubling

algorithm, we simply deduce the implicit parameterization ofM�1 given in partitioned form

by

M
�1 = N

�1
L =

�
Ayy

�1
Ayy

�1
ByR

�1
By

0

QyyAyy
�1

QyyAyy
�1
ByR

�1
By

0 +Ayy
0

�
; (4:4)

which leads to the initializations

�0 = Ayy; �0 = ByR
�1
By

0
; 0 = Qyy:

While our derivation took the matrix Ayy to be nonsingular, Anderson (1978) argues that

the doubling algorithm is more generally applicable.

A convenient feature of this parameterization is that there are known conditions un-

der which the matrix sequences f�kg; f�kg; fkg converge. When the pair (Ayy; Dy) is

detectable, then the sequence fkg is nondecreasing and converges to the matrix Py. (Here

we are adopting the usual partial ordering for positive semide�nite matrices.) As noted

by Kimura (1988, Theorem 5), under the same restrictions, the sequence f�kg is nonde-

creasing and converges to a positive semide�nite matrix P �
y associated with a \dual" to the

deterministic regulator problem.

The convergence of the f�kg sequence is more problematic. Unfortunately, without

simultaneous convergence of f�kg, it is not evident that iterations of the form given in (4:3)

can be used as the basis of a numerical algorithm. If this latter sequence diverges, small

numerical errors may get magni�ed, causing the resulting algorithm to be poorly behaved.

Kimura (1988) provides some su�cient conditions for f�kg to converge to a matrix of zeros.
His su�cient conditions are used to guarantee that either Py or P

�
y is nonsingular.

As we noted previously, a su�cient condition for Py to be nonsingular is that the pair

(Ayy; Dy) be observable. Su�cient conditions for the nonsingularity of the matrix P
�
y are

that (i) (Ayy; By) is controllable; and (ii) (Ayy; Dy) is detectable (Kimura 1988). Recall

that controllability is often achieved by our a priori partitioning of the state vector into

endogenous and exogenous components. Thus for our purposes, the restrictions guaranteeing

19

the nonsingularity of P �
y may be of particular interest. Even so, detectability is too strong

for some of our applications.

To apply a doubling algorithm more generally, we sometimes modify the control problem

by adding small quadratic penalties to linear combinations of the states and controls. As

long as these penalties are su�cient to guarantee that either Py or P �
y is nonsingular, we

are assured of convergence of all three sequences. Of course, there is a danger that the

penalty distorts the solution to the original control problem in a nontrivial way, which must

be checked in practice.

4.2.1. Initialization From a Positive De�nite Matrix

Instead of adding small quadratic penalties objective function for each calendar date,

we could add a terminal penalty to the �nite horizon approximation to the control problem.

From Chan, Goodwin and Sin (1984), it is known that iterations on the Riccati di�er-

ence equation converge to the unique stabilizing solution whenever the Riccati equation is

initialized at a positive de�nite matrix.11 Initializing the Riccati di�erence equation at a

positive de�nite matrix is equivalent to imposing a terminal penalty that is a negative def-

inite quadratic form in the state vector. We will now show how to initialize the doubling

algorithm to impose a terminal penalty. This will permit us to compute Py via a doubling

algorithm for a richer class of control problems.

Consider �rst a �nite time horizon problem with a quadratic penalty on the terminal

state. We select this penalty so that the terminal multiplier �� = Poy� for some positive

de�nite matrix Po. Then equation (4:1) is altered to be

M̂

�
I

Po

�
y� =

�
y0

�0

�
: (4:5)

Build a matrix K

K �
�
I 0

Po I

�
:

Then equation (4:5) can be rewritten as

K
�1
M̂KK

�1

�
I

Po

�
y� = K

�1

�
y0

�0

�
:

Equivalently,

M
�

�
y�

0

�
=

�
y0

�0 � Poy0

�
;

where

M
� = K

�1
M̂K:

Partitioning M� consistently with the state-costate vector, the implicit initialization of the

costate vector is now

�0 = Poy0 +M
�

12(M
�

11)
�1
y0;

and our approximation for Py is given by M�
12(M

�
11)

�1 + Po.

We are now left with computing the matrixM� when the horizon � is very large. Notice

that

M
� = (K�1

MK)�� :

11 Here we are using the fact that the pair (Ayy ; By) is stabilizable and that there exists a

solution to the deterministic regulator problem when constraint (2:1) is imposed. The result

follows from (i) and (iii) of Theorem 3.1 and Theorem 4.2 of Chan, Goodwin and Sin (1984).

20

It is straightforward to verify that becauseM is symplectic, so is K�1
MK. This means that

doubling algorithm (4:3) is applicable for computing (K�1
MK)�2

k

; however, the initializa-

tions must be altered. The new initializations can be deduced by looking at the implicit

parameterization of the symplectic matrix K�1
M

�1
K, and they are given by

�0 = (I +ByR
�1
By

0
Po)

�1
Ayy

�0 = (I +ByR
�1
By

0
Po)

�1
ByR

�1
By

0

0 = Qyy � Po +Ayy
0
Po(I +ByR

�1
By

0
Po)

�1
Ayy:

(4:6)

Not surprisingly, the original initializations coincide with setting Po to zero in (4:6).

There are two related advantages to these initializations over the previous ones. First,

the sequence fjg converges to Py � Po whenever Po is positive de�nite. This follows from

the Riccati di�erence equation convergence described previously and does not require that

(Ayy; Dy) be detectable. Second, the sequence f�jg converges and satis�es the bounds

0 � �j � (Po)
�1

even when (Ayy; Dy) is not detectable.
12 Although we do not have a complete characteriza-

tion of convergence of the resulting algorithm, all three matrix sequences (including f�jg)
are guaranteed to converge with these alternative initializations if they converge with the

original ones.

In summary, the steps for implementing the doubling algorithm are

(1) initialize �0, �0, and 0 according to (4:6);

(2) iterate in accordance with (4:3);

(3) form Py as the limit of fkg+ Po.

We implement the doubling algorithm in FORTRAN, exploiting the fact that �k and k

are symmetric matrices for all k:13 We use two di�erent settings for Po. To obtain the

12 The convergence and bound can be established as follows. Let f��j g denote the sequence
starting from the original initialization. Then it is straightforward to show that

�j = (I + �
�

j Po)
�1
�
�

j :

Exploiting the nonsingularity of Po, the following equivalent formula can be deduced:

�j = (Po)
�1 � (Po + Po�

�

jPo)
�1
:

The reported bound follows immediately. The sequence f��j g is monotone increasing because
it is a subsequence of Riccati di�erence equation iterations for a dual problem initialized

at zero. Therefore, the sequence f�jg is also monotone increasing. Given the upper bound

(Po)
�1, this latter sequence must converge.

13 We iterate on (4:3) until

kk � k�1k1 � � kkk1 ;

where we set � = 1�10�15 on a computer with a machine precision of 2�52 � 2:2204�10�16:
Here kXk1 denotes the matrix 1-norm of a matrix X :

kXk1 = max
j

X
i

jXij j :

21

original doubling algorithm, we set Po to zero; and to investigate the potential advantages

of including a terminal penalty, we set Po to an identity matrix.

4.2.2. Application to Continuous-Time

As noted by Anderson (1978) and Kimura (1989), a doubling algorithm for a discrete-

time symplectic system can be used to solve a continuous-time Hamiltonian system. Recall

that in our discussion of solving control problems via a matrix sign algorithm, we showed

how to covert a discrete-time symplectic system into a continuous-time Hamiltonian system.

To apply a doubling algorithm, we want to \invert" this mapping, e.g., given a Hamiltonian

matrix H , we construct a symplectic pencil with the same stable deating subspace. The

symplectic pencil associated with H is given by �(I +H) � (I � H). By adopting a very

similar argument as before, we found it easy to show that the generalized eigenvectors for

the constructed pencil coincide with the eigenvectors of the original Hamiltonian matrix H .

Moreover, the classi�cation of stable and unstable (generalized) eigenvalues is preserved.

4.3. Matrix Sign Algorithm

In section 3.3 we showed how to compute Py from the sign of the Hamiltonian matrix

for a continuous-time state-costate system. To compute Py for a symplectic pencil �L�N ,

we �rst form the Hamiltonian matrix

H = (L�N)�1(L+N)

and then compute sign(H). For this to be a viable solution method, we must be able to

compute sign(H) easily.

There are alternative matrix sign algorithms. An algorithm advocated by Roberts

(1980) and Denman and Beavers (1976) is to average a matrix and its inverse:

G0 = H

Gk+1 = Gk + (1=2)[(Gk)
�1 �Gk]; k = 0; 1; : : : :

(4:7)

To speed up convergence, Gardiner and Laub (1986) suggest using the recursion

G0 = H; Gk+1 = (1=2�k)(Gk + �k
2
Gk

�1);

where

�k = j detGkj1=n: (4:8)

Bierman (1984) and Byers (1987) propose a further re�nement, which exploits the fact

that the matrix Gk is a Hamiltonian matrix for each k. Recall that if H is a Hamiltonian

matrix, then JH is symmetric where

J =

�
0 �I
I 0

�
:

Hence

JGk+1 =
1

2�k
(JGk + �k

2
JJGk

�1
J); (4:9)

where �k is either set to one as in the original sign algorithm or set via formula (4:8) using

JGk in place of Gk. Consequently, it su�ces to compute the sequence of symmetric matrices

fJGkg recursively via (4:9) starting from the initialization JH .14

14 Kenney, Laub and Papadopoulos (1993) and Lu and Lin (1993) discuss further improve-

ments to the matrix sign algorithm.

22

In summary, the steps for implementing a matrix sign algorithm are

(1) form the matrices L and N in (3:4);

(2) compute the sign of G = (L�N)�1(L+N);

(3) compute Py by solving the over-determined system

�
G12

G22 + I

�
Py = �

�
G11 + I

G21

�
(4:10)

for Py:

For our numerical comparisons, we compute the sign of G by iterating on (4:9) until con-

vergence with �k = j detGkj1=n.15 To compute (JGk)
�1

we use the symmetric inversion

routines DSIFA and DSIDI from LINPACK. We solve (4:10) for Py using least squares.

As noted in Anderson (1978), the original sign algorithm (4:7) also can be viewed as a

doubling algorithm. Interpreted in this manner, it uses (at least implicitly) an alternative

parameterization of the symplectic matrix M
�1 to that used in doubling algorithm (4:3).

Both recursions entail inverting a matrix. While recursion (4:9) requires that a symmetric

(2n� 2n) matrix be inverted in each iteration, the doubling algorithm (4:3) requires that a

nonsymmetric n� n matrix be computed at each iteration.

5. Solving the Augmented Regulator Problem

So far, we have shown how to compute the matrix Fy , which provides us with the

optimal control law for the deterministic regulator problem. This matrix also gives us a piece

of the solution to the augmented control problem and, hence, to the problem of interest: the

discounted stochastic regulator problem. The missing ingredient is the matrix Fz, where the

optimal control law for the augmented regulator problem is given by vt = �Fyyt � Fzzt. In

this section, we show that Fz can be calculated by solving a particular Sylvester equation.

We start by forming a Lagrangian modi�ed to incorporate the exogenous state vector

sequence fztg:

L = �
1X
t=0

[y0tQyyyt + 2yt
0
Qyzzt + v

0

tRvt + 2�t+1
0(Ayyyt +Ayzzt +Byvt � yt+1)];

where the evolution of the forcing sequence is given by

zt+1 = Azzzt: (5:1)

First-order necessary conditions for the maximization of L with respect to fvtg1t=0 and

fytg1t=0 are
vt : Rvt +By

0
�t+1 = 0; t � 0 (5:2)

yt : �t = Qyyyt +Qyzzt +Ayy
0
�t+1; t � 0: (5:3)

15 More precisely, we iterate on (4:9) until

kJGk � JGk�1k1 � � kJGkk1 ;

where � = 1� 10�15:

23

Solve equation (5:2) for vt; substitute it into the state equation; and stack the resulting

equation along with (5:3) and (5:1) as composite system

L
a

2
4 yt+1�t+1

zt+1

3
5 = N

a

2
4 yt�t
zt

3
5 ;

where

L
a �

2
4 I ByR

�1
B
0
y 0

0 Ayy
0 0

0 0 I

3
5 ; N

a �
2
4 Ayy 0 Ayz

�Qyy I �Qyz

0 0 Azz

3
5 : (5:4)

As with the deterministic regulator problem, the relevant solution is the one that stabi-

lizes the state-costate vector for any initialization of y0 and z0: Hence we seek a characteri-

zation of the multiplier �t of the form

�t = P

�
yt

zt

�
;

such that the resulting composite sequence [yt
0

�t
0

zt
0]
0
is in the stable deating subspace

of the augmented pencil �La �N
a. Assuming for the moment that a solution P exists, it

must be the case that P = [Py Pz], where Py is the Riccati equation solution that was

characterized in section 3, and Pz is a matrix that has not yet been characterized. To

see why this must be the case, note that the solution to the augmented regulator problem

with z0 = 0 coincides with the solution to the deterministic regulator problem . We have

previously shown that Py is a matrix, such that all vectors in the deating subspace of the

pencil �L�N can be represented as [y0 y
0
Py]

0
. When the forcing sequence is initialized at

zero, so it remains there for all t; it must also be the case that [y0 y
0
Py 0]

0
is in the stable

deating subspace of the augmented pencil �La�N
a
: This justi�es our previous claim that

the solution to the deterministic regulator problem gives us a piece of the solution to the

augmented regulator problem .

To deduce the control law associated with the matrix P , we substitute P into (5:4),

which yields

L
a

2
4 yt+1

Pyyt+1 + Pzzt+1

zt+1

3
5 = N

a

2
4 yt

Pyyt + Pzzt

zt

3
5 :

If we write the three equations in this composite system separately,

(I +ByR
�1
By

0
Py)yt+1 +ByR

�1
By

0
Pzzt+1 =Ayyyt +Ayzzt

Ayy
0
Pyyt+1 +Ayy

0
Pzzt+1 =(Py �Qyy)yt + (Pz �Qyz)zt

zt+1 =Azzzt:

(5:5)

Substitute the last equation into the �rst and solve for yt+1:

yt+1 = (I +ByR
�1
By

0
Py)

�1[Ayyyt + (Ayz �ByR
�1
By

0
PzAzz)zt]:

It follows from relation (3:9) that this evolution equation for yt can be rewritten as

yt+1 = (Ayy �ByFy)yt + (Ayz �ByFyz)zt; (5:6)

where Fy and Fz are given by

Fy � (R+By
0
PyBy)

�1
By

0
PyAyy;

Fz � (R+By
0
PyBy)

�1
By

0(PyAyz + PzAzz): (5:7)

24

For the reasons given previously, our construction of Fy coincides with (3:11) used to repre-

sent the optimal control law for the deterministic regulator problem. Stability of the state

vector sequence fytg is guaranteed by evolution equation (5:6) because the matrixAyy�ByFy

is the same matrix that appears in the state evolution equation for the deterministic regula-

tor problem under the optimal control law. Since the solution to the deterministic regulator

problem is stable by design, the eigenvalues of Ayy � ByFy have absolute values that are

strictly less than one. The optimal control law for the augmented regulator problem is given

by

vt = �Fyyt � Fzzt:

The matrix Fz can be computed using formula (5:7) once we know Pz . We now show

that Pz is the solution to a Sylvester equation. Premultiply (5:6) by Ayy
0
Py :

Ayy
0
Pyyt+1 = Ayy

0
Py(Ayy �ByFy)yt +Ayy

0
Py(Ayz �ByFz)zt: (5:8)

Using formula (5:7), we rewrite the coe�cient matrix on zt as

Ayy
0
Py(Ayz � Fz) = (Ayy �ByFy)

0(PyAyz + PzAzz)�Ayy
0
PzAzz :

To obtain an alternative formula for this coe�cient, substitute the last equation of (5:5) into

the second equation and solve for Ayy
0
Pyyt+1:

Ayy
0
Pyyt+1 = (Pz �Qyz �Ayy

0
PzAzz)zt + (Py �Qyy)yt: (5:9)

Equating coe�cients on zt in (5:8) and (5:9) results in

(Ayy �ByFy)
0(PyAyz + PzAzz)� Ayy

0
PzAzz = Pz �Qyz �Ayy

0
PzAzz:

Rewriting this in the form of a Sylvester equation (in the unknown matrix Pz), we have that

Pz = Qyz + (Ayy �ByFy)
0
PyAyz + (Ayy �ByFy)

0
PzAzz : (5:10)

As we noted previously, the matrix (Ayy �ByFy) has only stable eigenvalues. Also, we

assumed that the matrix Azz has only stable eigenvalues (Assumption 4). These restrictions

are su�cient for there to exist a unique solution Pz to (5:10). Up to now, our discussion

proceeded under the presumption that there exists a matrix P , such that by setting �t =

P

�
yt

zt

�
, we stabilize the state vector sequence. We can now work backwards using the

(unique) solution to the Sylvester equation to show that indeed such a matrix P does exist.

25

6. Computational Techniques for Solving Sylvester Equations

A Sylvester equation is represented by

M =W + SMT; (6:1)

where the matricesW , S, and T are speci�ed in advance andM is the matrix to be computed.

Consistent with (5:10), the matrices S and T have stable eigenvalues.16 There is a variety

of ways to depict the solution to a Sylvester equation. One is to vectorize (6:1) as

[I � T
0
 S]vec(M) = vec(W); (6:2)

where vec(�) denotes stacks of the columns of a matrix argument. (To derive (6:2) from

(6:1), use the identity vec(SMT) = [T 0
 S]vec(M)). Hence vec(M) is the solution to a

linear equation system. Alternatively, M is given by the in�nite sum

M =

1X
j=0

S
j
WT

j
: (6:3)

This representation can be deduced by iterating on equation (6:1), starting from any initial

matrix with the appropriate dimensions.

We consider two types of algorithms for computing M :

(i) Hessenburg-Schur algorithm;

(ii) doubling algorithm.

The Hessenberg-Schur algorithm uses a Schur decomposition of the matrix T to convert

a single Sylvester equation to a collection of much smaller Sylvester equations, each of

which can be vectorized as in (6:2). A Hessenberg decomposition of the matrix S is used

further to simplify the calculations. The doubling algorithm is an iterative algorithm that

approximates the in�nite sum on the right-hand side of (6:3) by a �nite sum. Similar to

the doubling algorithm for solving a Riccati equation, the number of terms included in the

�nite sum approximation \doubles" at each iteration.

6.1. The Hessenberg-Schur Algorithm

As suggested by Bartels and Stewart (1972), one strategy for solving Sylvester equations

entails block triangularizing the matrices T and/or S. We follow Golub, Nash and Van

Loan (1979) by forming a Schur decomposition of the matrix T : V 0
TV = T̂ , where V is

an orthogonal matrix and T̂ is upper block triangular with row and column blocks that are

either one or two dimensional (see section 4.1 for a formal de�nition). Postmultiply Sylvester

equation (6:1) by V and rewrite the equation as

M̂ = Ŵ + ŜM̂T̂ ; (6:4)

where M̂ = MV , Ŵ = WV , and Ŝ = S. Notice that (6:4) is in the form of a Sylvester

equation in the matrix M̂ .

16 We o�er the following word of caution (or apology) to the reader. We are compelled to

recycle some of the notation used in previous sections.

26

The block triangularity of T̂ can now be exploited to reduce (6:4) into m smaller

Sylvester equations, where m is the number of row and column blocks of T̂ . Write the

matrix T̂ in partitioned form as

T̂ =

2
664
T̂11 T̂12 : : : T̂1m

0 T̂22 : : : T̂2m
...

. . .
. . .

...

0 : : : 0 T̂mm

3
775 :

Use the column partition of W to partition M̂ and Ŵ , and let M̂j and Ŵj denote the

corresponding jth partitions. Decompose Sylvester equation (6:4):

M̂1 = Ŵ1 + ŜM̂1T̂11 (6:5)

M̂j = Ŵj + Ŝ

j�1X
k=1

M̂kT̂kj + ŜM̂jT̂jj ; j = 2; :::;m: (6:6)

Notice that (6:5) is a Sylvester equation in M̂1 and that (6:6) is a Sylvester equation in M̂j

as long as the matrices M̂k for k = 1; 2; :::; j� 1 have already been computed. Thus these m

Sylvester equations can be solved sequentially as linear equations using vectorization (6:2).

An additional re�nement advocated by Golub, Nash and Van Loan (1979) entails taking

a Hessenberg decomposition of the matrix S.17

De�nition: The Hessenberg decomposition of the square matrix S is an orthogonal matrix

U and a matrix Ŝ that has all zeros below the �rst subdiagonal, such that S = UŜU
0
:

In addition to postmultiplying equation (6:1) by V , we now also premultiply this equation

by U
0. Equation (6:4) continues to hold with M̂ = U

0
MV , Ŵ = U

0
WV , and Ŝ = U

0
SU .

This Sylvester equation can still be decomposed as in (6:5) and (6:6). With Ŝ in Hessenberg

form, we can solve these latter Sylvester equations more e�ciently using an equation solver

designed for Hessenberg systems.18

In summary, the steps for implementing a Hessenberg-Schur algorithm for computing

Pz are

(i) form the matrices W = Qyz + (Ayy �ByFy)
0
PyAyz, S = (Ayy �ByFy)

0, and T = Azz ;

(ii) form a Hessenberg decomposition S = UŜU
0 and a Schur decomposition T = V T̂V

0;

(iii) compute the solution M̂ to (6:5) and (6:6) and form Pz = UM̂V
0
:

Since the Hessenberg decomposition of a matrix can be computed faster than the real Schur

decomposition, one should always arrange the Sylvester equation so that the Hessenberg

decomposition is taken of the matrix (Ayy � ByFy)
0 or Azz , whichever has more entries.

The steps just described should be implemented if there are more elements in the vector yt
than zt. If zt has more elements, then the alternative Sylvester equation

Pz
0 = Qyz

0 + A
0

yzPy(Ayy �ByFy) +A
0

zzPz
0(Ayy �ByFy)

0

should be solved for the matrix Pz
0.

17 Alternatively, we could take the Schur decomposition of S as proposed by Bartels and

Stewart (1972).
18 Interesting variations on the Hessenberg-Schur algorithm have been proposed by Ham-

marling(1982) and Gardiner et al. (1992).

27

In the numerical comparisons that follow, we form the Hessenberg decomposition of

a matrix using MATLAB subroutine HESS and the Schur decomposition of a matrix with

SCHUR. We solve Hessenberg systems using the routines HSFA and HSSL, which are part

of the package described in Gardiner et al. (1992).19

6.2. Doubling Algorithm

The doubling algorithm for Sylvester equations iterates

�k+1 = �k�k

�k+1 = �k�k

k+1 = k + �kk�k

(6:7)

to convergence, where �0 = S, �0 = T; and 0 = W: By repeated substitution, it can be

shown that

k =

2k�1X
j=0

S
j
WT

j
:

In other words, each iteration doubles the number of terms in the sum.20

To use this doubling algorithm to compute Pz

(i) initialize �0 = (Ayy �ByFy)
0, �0 = Azz, and 0 = Qyz + (Ayy �ByFy)

0
PyAyz ;

(ii) iterate in accordance to (6:7);

(iii) form Pz as the limit of fkg.

We implement the doubling algorithm in FORTRAN.21

19 See pages 364-370 of Golub and Van Loan (1989) for a discussion of how to compute

the Hessenberg decomposition.
20 This algorithm is a slight generalization of the doubling algorithm for Lyapunov equa-

tions discussed in Anderson and Moore (1979). A Lyapunov equation is a Sylvester equation

in which S = T
0
:

21 We iterate on (6:7) until

kk � k�1k1 � � kkk1 ;

where we set � = 1� 10�15.

28

7. Distorted Economies

Some of the algorithms described previously are directly applicable to solving models

whose equilibrium quantity allocations are not the solutions to optimal resource allocation

problems. To illustrate this point, we use a simpli�ed version of McGrattan's (1994) model

of a distorted economy.22 Consider a setup with a representative agent who chooses a control

sequence fvtg to maximize

�
1X
t=0

(vt
0
Rvt + yt

0
Qyyyt + 2yt

0
Qyŷŷt);

subject to

yt+1 = Ayyyt +Ayŷŷt +Byvt (7:1)

1X
t=0

(jvtj2 + jytj2) <1;

where the sequence fŷtg is viewed by the agent as being beyond his control when making

decisions. As an equilibrium condition, ŷt is an exact function of yt and vt:

ŷt =
yt +	vt: (7:2)

In formulating the decision problem for the representative agent, we have abstracted from

uncertainty and used analogous tricks to those described earlier for eliminating discount-

ing and cross products between states and controls. (See McGrattan 1994 and appendix

B.3 of this paper for a more complete treatment.) Also, we have zeroed out the forcing

sequence fztg, so this setup should be viewed as a distorted equilibrium counterpart to the

deterministic regulator problem.

To de�ne an equilibrium for this model, we introduce a process fy�t g that in equilibrium
coincides with fytg. This additional process is used to capture the perceived evolution of fŷtg
by economic agents in making their decisions. Formally, the perceived evolution equation is

given by
y
�

t+1 = A
�
y
�

t ;

ŷt =
�y�t ;

where the eigenvalues of A� are assumed to have absolute values that are strictly less than

one. Adding this evolution equation to the decision problem of the private agent is su�cient

to make his problem a fully speci�ed deterministic regulator problem. Write the solution to

this decision problem as

vt = �Fyyt � F
�

y y
�

t : (7:3)

Then a rational expectations equilibrium is a speci�cation of (Fy; F
�
y ; A

�
;
�) such that

A
� = Ayy +Ayŷ
� (Ayŷ	+By)(Fy + F

�

y);

� =
�	(Fy + F
�

y);

where control law (7:3) solves the decision problem of the private agent.

As an initial step in solving for an equilibrium, we obtain �rst-order necessary conditions

for the private agent's control problem:

vt : Rut +By
0
�t+1 = 0; t � 0 (7:4)

yt : �t = Qyyyt +Qyŷŷt +Ayy
0
�t+1; t � 0 (7:5)

22 In appendix B.3, we take another version of McGrattan's formulation and di�erentiate

the equilibrium law with respect to parameters in the control problem and equilibrium

conditions.

29

where f�tg are Lagrange multipliers associated with the constraint Eq. (7:1). At this stage,

we are free to substitute for ŷt from equilibrium condition (7:2). Solving Eq. (7:3) for vt,

substituting it and Eq. (7:2) into Eqs. (7:1) and (7:5), and rearranging gives

L

�
yt+1

�t+1

�
= N

�
yt

�t

�
; (7:6)

where

L =

�
I B̂R

�1
By

0

0 ~A0

�
; N =

�
Â 0

�Q̂ I

�
;

and Â = Ayy + Ayŷ
, Q̂ = Qyy + Qyŷ
, B̂ = By + Ayŷ	, and ~A = Ayy � ByR
�1	0

Qz
0
:

Note how these equations generalize (3:4) to a distorted equilibrium model. When distor-

tions are active, the pencil �L � N may fail to be symplectic, so the eigenvalues do not

necessarily occur in reciprocal pairs. When the eigenvalues can be split with half inside the

unit circle and half outside and the analog of V11 in (3:19) is nonsingular, then the deating

subspace and matrix sign methods described earlier can be used to compute the unique

stable equilibrium.23 Under the same conditions, if either Â or ~A is nonsingular and well

conditioned, then invariant subspace methods also can be used. Finally, Anderson (1995)

describes a generalization of the doubling algorithm for Riccati equations that can be used

to solve distorted equilibria. Since the pencil is not symplectic, this generalized doubling

algorithm includes an additional partition.

For economies with a forcing sequence fztg with �rst-order dynamics, there is an anal-

ogous formulation of a distorted economy equilibrium. As with the augmented regulator

problem, the equilibrium can be computed in two steps. First, a distorted equilibrium for z0
set to zero can be computed using one of the methods described above. Then the full equi-

librium can be deduced by solving a Sylvester equation analogous to that deduced for the

augmented control problem. The Hessenburg-Schur algorithm and the doubling algorithm

described in section 6 are both applicable in this second step.

8. Example Economies

In preparation for our numerical work, we describe three examples with various features

that \stretch" various of our algorithms to the boundaries of their domains of applicability.

23 When applying matrix sign methods, one should iterate on (4:7) or (4:8) instead of

(4:9), since the matrix J(L�N)�1(L+N) is not, in general, symmetric.

30

8.1. A Model of Permanent Income with Habit Persistence

Our �rst example is an economy with two interacting unit roots in the endogenous

dynamics. As in Hall (1978), Flavin (1981), and Sargent (1987), one unit root comes from

the permanent income character of the model. The technology is speci�ed so that the rate

of return on capital and the subjective rate of time discount are equated. As in Hansen

(1987), Becker and Murphy (1988), and Heaton (1993), we use an extended version of the

permanent income model to accommodate preferences that are not time separable. The

second unit root occurs because of the special way we model habit persistence.

There is a single consumption good ct, a single investment good it, a single physical

capital stock kt, and a single household capital stock ht, in each time period. The household

capital stock is constructed to be a geometric average of current and past consumptions:

ht = :9ht�1 + :1ct;

where :9 dictates the geometric decay in the average. We capture habit persistence by

introducing a service process:

st = ct � ht�1:

One source for a unit root in the endogenous dynamics is that the magnitude of the time t

service is the di�erence between current and an average of past consumptions.

The production technology is given by the two relations:

ct + it = :1kt�1 + dt

kt = :95kt�1 + it:

To provide a permanent income character to this model, we set the subjective discount rate

� = 1
1:05

.

The preference shock process is restricted to be constant over time (b = 30), and the

technology shock process fdtg is a �rst-order autoregression with mean 5 and autoregressive
coe�cient :8. We represent these processes using the setup of section 2.4 by introducing

an exogenous state vector ẑt with two components. Recall that the exogenous state vector

process is assumed to have �rst-order dynamics. The autoregressive matrix for this process

is given by

Âzz =

�
1 0

0 :8

�
;

where the �rst component of ẑt is initialized at one and remains constant over time. While

the second component of ẑt can be subject to shocks in each time period, certainty equiva-

lence makes the magnitude of the uncertainty inconsequential for solving the model. Hence

it is unnecessary to specify the matrix Ĉz. The selection matrices Ub and Ud are given by

Ub = [30 0] and Ud = [5 1].24

For this particular economy, there are potential problems in applying two of the al-

gorithms we described in sections 3 and 4. Since the economy has repeated unit roots in

the endogenous dynamics, an invariant subspace method that uses an eigenvector routine

designed for distinct eigenvalues might give a poor approximation to the solution. Also, this

is an economy in which the square summability constraint (2.1) is binding. In other words,

it is not optimal to stabilize the endogenous state vector process in the absence of such a

constraint. As a consequence, Riccati di�erence equation iterations starting from the zero

matrix converge to the wrong solution, as does the corresponding partition of the Po = 0

doubling algorithm.

24 In this economy, there are no intermediate goods gt. As suggested in section 2:4, we

still use it as the control vector, and we can clearly solve for ct as a linear function of the

control and state vectors.

31

As a potential remedy for both of these pitfalls, we \approximate" our economy by one

in which there is a very tiny adjustment cost for physical capital. The cost is captured by

introducing a single intermediate good gt, such that

�it � gt = 0;

where we set � = 1� 10�7. This small adjustment cost is enough to eliminate the repeated

unit roots in the endogenous dynamics. Moreover, it makes (Ayy; Dy) detectable, so that

it is optimal to stabilize the endogenous state vector process. Since the pair (Ayy ; By) is

controllable, this small adjustment cost is enough to guarantee convergence of the Po = 0

version of the doubling algorithm. One of the issues considered in our numerical experiments

is how well this \�x up" works in practice. Does the introduction of small adjustment costs

make either the eigenvector algorithm or the doubling algorithm a viable method for solving

the original control problem? We shall also study this economy with the adjustment costs

set equal to zero and with the Po = I version of the doubling algorithm.

8.2. Siow's Time-To-Educate Model

This example is a version of a time-to-build (or time-to-educate) model of wage skill

di�erentials that was formulated by Siow (1984). Siow's model interprets the premium

on educated labor as a present-value-equalizing di�erential required to compensate for the

income foregone during training years. To accord with the framework of section 2:4, we

reformulate a version of Siow's model as an optimal resource allocation problem.

Suppose there are three skill levels of labor: \low skill," \medium skill," and \high skill."

We adopt the notational convention that low skill work is engaged in home production, while

the other two skill levels produce market goods. We assume that it takes four periods to

train skilled workers and eight periods to train highly skilled workers. Trainees are not

permitted to switch training programs. This gives rise to gestation lags in the production

technology.

Let im;t denote the number of workers who choose the medium-skilled training program

and ih;t the number who choose the high-skilled training program at time t. Let km;t and

kh;t be the corresponding stocks of workers. Then

km;t = :97km;t�1 + :974im;t�4

kh;t = :97kh;t�1 + :978ih;t�8;

where (1� :97) is the exit rate from the labor force. To capture this gestation lag with the

�rst-order speci�cation of section 2:4, we include in kt the following:

kt = [km;t; kh;t; :97
3
im;t�3; :97

2
im;t�2; :97im;t�1; im;t; :97

7
ih;t�7; : : : ; :97ih;t�1; ih;t]

0
:

The �rst-order evolution equation for fktg can now be constructed in the obvious way.

Hence to capture the delays in the dynamic technology, we are compelled to augment the

endogenous state vector. This augmentation is the source of the singularity in the matrix

Ayy. The control vector is it = [im;t ih;t]
0
.

The rest of the people engage in home production. Let d1;t denote the time t ow of

newborn or raw labor. The di�erence

c1;t = d1;t � im;k � ih;k

is the ow of workers into home production. We include c1;t as a component of the con-

sumption goods vector for notational convenience. In addition to c1;t, there are two other

32

components to ct: goods produced by medium-skilled workers and goods produced by high-

skilled workers. These goods are produced according to the (linear) constant returns to scale

technology:

cm;t = :7km;t�1

ch;t = :9kh;t�1:

To capture the disutility of working, we introduce two intermediate goods that satisfy

gm;t = km;t�1

gh;t = kh;t�1;

and to capture costs associated with matching new entrants with training programs, we

introduce two additional intermediate goods that satisfy

ĝm;t = :0002im;t

ĝh;t = :0003ih;t:

When these constraints are combined, the technology for producing intermediate goods and

consumption goods is given by

2
66666664

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

3
77777775

2
4 c1;t

cm;t

ch;t

3
5+

2
66666664

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

3
77777775

2
64
gmt

ght

ĝm;t

ĝh;t

3
75+

2
66666664

1 1

0 0

0 0

0 0

0 0

:0002 0

0 :0003

3
77777775
�
imt

iht

�

=

2
66666664

0 0

:7 0

0 :9

1 0

0 1

0 0

0 0

3
77777775
�
km;t�1

kh;t�1

�
+

2
66666664

1

0

0

0

0

0

0

3
77777775
d1;t:

Consider next the household technology. Recall that by our notational convention, c1;t
denotes the quantity of new entrants into household production. The stock of such workers

at time t (after including the new entrants) is denoted ht. This \household capital stock"

evolves according to

ht = :97ht�1 + c1;t;

so the depreciation factor is the same as for the other two types of labor. Consumption

services s1;t are produced according to the linear technology

s1;t = :5ht�1:

To capture the disutility of working in the household, we introduce a second service

s2;t = �ht�1;

and to capture the (utility) costs to matching new entrants to the household technology, we

introduce a third consumption service

s3;t = �:0001c1;t:

33

All total, there are �ve components to the consumption service vector st because we also

include the consumption goods produced by medium-skilled and high-skilled workers:

st = [s1;t s2;t s3;t cm;t ch;t]
0
:

The household's subjective rate of time discount is � = 1
1:05

: Forcing process fd1;tg is given
recursively by

pt =

47X
j=1

�jpt�j + zt

d1;t = pt�18;

(8:1)

where pt are the new births at date t and the �j 's are set to match the birth rates in the United

States in 1990 as reported in the American Almanac: Statistical Abstract of the United

States 1993-1994. We abstract from long term population growth by appropriately scaling

the �j 's to sum to one.25 The process fztg has a �rst-order autoregressive representation

with coe�cient .9. The variable pt�18 occurs with an 18 period lag in the second equation

of (8:1) because we assume that it takes 18 periods (years) before a newborn person is ready

to enter a training program or produce household goods.

The preference shock process has three nondegenerate components:

bt = [b1;t 0 0 bm;t bh;t]
0
:

The zeros in the preference shock process bt are associated with (dis)services to working in

the household and to matching labor to household production. The three nondegenerate

components are independent �rst-order autoregressive processes augmented by 300. For

each scalar autoregression, the autoregressive coe�cient is .9.

8.3. A Model of Cattle Cycles

In this subsection, we present three versions of Rosen, Murphy, and Scheinkman's (1994)

model of cattle cycles. The versions di�er according to whether the time units are years,

quarters, or months. To match the setup of section 2.4, we reformulate Rosen, Murphy,

and Scheinkman's market equilibrium model as an optimal resource problem. We initially

describe the yearly model. For our numerical speed and accuracy comparisons with the

annual version of this model, we estimated some of the parameters using the methods to

be described in subsequent sections. The parameters for the versions of the model at the

quarterly and monthly timing intervals were deduced in ways described below.

Let kb;t denote the total stock of breeding cows. Each such animal gives birth to �

calves, and calves become part of the adult stock after two years. For simplicity, we set the

death rate of cattle to zero. Therefore, the law of motion for the breeding stock is given by

kb;t = kb;t�1 + �kb;t�3 + it; (8:2)

25 Formally, the �j 's were constructed as follows. We took birthrates for women from

Table 93 of the American Almanac: Statistical Abstract of the United States 1993-1994 in

the year 1990 and divided by two. Since birthrates are only recorded for women grouped

in �ve year age brackets, we interpolated linearly from the midpoints of each age bracket.

Birthrates for ages 12 and 47 were set to zero when doing this interpolation, and birth rates

up to age 12 were set to zero. The resulting birthrates imply an autoregression with an

explosive root that induces geometric growth in population. We then scaled the birth rate

parameters by the inverse of the growth factor raised to the appropriate powers to eliminate

the growth. The resulting autoregressive process has a unit root by construction.

34

where it denotes deletions from the breeding stock due to slaughtering. Stacking the breeding

stocks so as to represent this evolution equation as a �rst-order system, we obtain2
4 kb;t

kb;t�1

kb;t�2

3
5 =

2
4 1 0 �

1 0 0

0 1 0

3
5
2
4 kb;t�1kb;t�2

kb;t�3

3
5+

2
4 10
0

3
5 it:

Consumption ct = �it. We use one intermediate good to capture slaughtering costs

and three additional ones to capture the holding costs. Holding costs di�er depending on

whether the animal is a calf, a yearling, or an adult. Let

g1;t = �ct + (1=�)ds;t

g2;t = �kb;t�1 + (1�=�)dh;t

g3;t = �kb;t�2 + (2�=�)dh;t

g4;t = �kb;t + (1=�)dh;t:

(8:3)

As speci�ed, the holding and slaughtering costs are quadratic. The parameter � is set to

a small positive number to approximate the linear cost structure used by Rosen, Murphy

and Scheinkman (1994). The parameters 1 and 2 dictate the holding costs for calves

and yearlings, respectively, relative to those for fully grown animals. For instance, the

approximate holding period cost is dh;t for an adult, 1dh;t for a calf, and 2dh;t for a

yearling. In our computational experiments, the parameters 1 and 2 are set to 1/3 and

to 2/3, respectively. Substituting for kb;t in (8:3) using (8:2) and stacking the equations for

consumption and intermediate goods into a system, we get

2
6664

1

��
0

0

�

3
7775 ct +

2
6664
1

0

0

0

0

3
7775 it +

2
6664
0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
7775
2
64
g1;t

g2;t

g3;t

g4;t

3
75

= �

2
6664
0 0 0

0 0 0

1 0 0

0 1 0

1 0 �

3
7775
2
4 kb;t�1kb;t�2

kb;t�3

3
5+ (1=�)

2
6664
0 0

1 0

0 1�

0 2�

0 1

3
7775
�
ds;t

dh;t

�
:

Consumption goods and services are related trivially by

st = (1=�1)ct;

where �1 is positive. As a consequence, preferences for consumption are time separable, and

the slope of the Frisch demand function for beef is ��1.
The exogenous processes are speci�ed as follows. The preference shock process is given

by the constant (�0=�1). The parameter �0 is the intercept in the Frisch demand function.

The two technology shock processes fds;tg and fdh;tg are each scalar �rst-order autoregres-

sive processes with unconditional means �s and �h and autoregressive coe�cients �s and

�h, respectively.

As a device for proliferating endogenous state variables, we construct analogous quar-

terly and monthly versions of a cattle cycle model. In so doing, we abstract from any

(realistic) periodic speci�cation whereby, for example, a certain season of the year is desig-

nated as a calving season. Also, we design the higher frequency models to be only roughly

compatible with the annual model. The parameter values selected for all three versions are

reported in Table 8.1. The higher frequency parameters are obtained from the following

algorithms. Let � denote the number of seasons in a year (either four or twelve). The higher

35

Table 8.1: Parameter Values for Yearly, Monthly, and Quarterly Formulations

of the Cattle Cycles Model

Parameters Yearly Quarterly Monthly

� 0.960 0.990 0.997

�0 146.0 36.50 12.17

�1 1.270 0.318 0.106

1 + � 1.938 1.180 1.057

�h 0.888 0.971 0.990

�s 0.699 0.914 0.971

�h 37.00 9.250 3.083

�s 63.00 63.00 63.00

� 1 � 10�04 2:5� 10�05 8:33 � 10�06

Table 9.1: Number of State Variables

Economy Endogenous States Exogenous States Norm of Py Norm of Pz

Permanent Income 2 2 2:45 � 10+00 2:08 � 10+02

Yearly Cattle Cycles 3 4 1:37 � 10+00 2:88 � 10+02

Quarterly Cattle Cycles 9 4 3:53 � 10+00 1:26 � 10+03

Monthly Cattle Cycles 25 4 9:67 � 10+00 3:93 � 10+03

Education 15 52 8:76 � 10+01 3:77 � 10+04

frequency versions of �, 1+ �, �h, and �s are obtained by taking the annual parameters and

raising them to the power 1=� . The higher frequency versions of �, �, and �h are constructed

by dividing the annual parameters by � . The parameter �s is the same for all versions of

the model. Finally, as we proliferate time periods, we extend the number of periods it takes

for a calf to become a cow. Instead of two periods, it now takes the animal 2� periods to

be an adult. Accordingly, there are 2� cost parameters j ; j = 1; : : : ; 2� . As in the annual

model, we assumed these parameters increased linearly from zero to one. Hence j =
j

�+1
.

9. Numerical Comparisons

In this section, we study the performance of algorithms for computing solutions to

the optimal resource allocation problems described in section 8. We report results for six

di�erent economies: two permanent income/habit persistence economies, three cattle cycle

economies, and one time-to-educate model. Recall that the two permanent income economies

are very similar except the second one introduces a very small adjustment cost term so that

the resulting (Ayy; Dy) is detectable. We label these two economies Permanent Income and

Permanent Income (with adjustment costs) in the subsequent tables. The three cattle cycle

economies di�er with respect to the presumed decision time interval. The three cattle cycle

economies are calibrated to be yearly, quarterly, and monthly decision periods and are la-

beled Yearly Cattle Cycles, Quarterly Cattle Cycles, andMonthly Cattle Cycles, respectively.

Finally, the time-to-educate economy is labeled Education in our tables.

Table 9.1 gives the number of endogenous and exogenous state variables for each of

six optimal resource allocation problems.26 There are four exogenous state variables for

26 We also give approximate matrix one-norms for the true solutions. For the Permanent

Income economy we used the true solutions to calculate the norms. For the other economies

36

Table 9.2: Performance of Algorithms that Solve Riccati Equations

Economy Algorithm CPU time Residual Norm

Permanent Income Riccati Iteration 0.0334 2:8� 10�15

Eigenvector 0.0047 1:1� 10�03

Schur 0.0039 4:4� 10�16

Generalized Eigenvector 0.0045 1:5� 10�04

Generalized Schur 0.0037 4:6� 10�16

Doubling(P0 = I) 0.0031 6:1� 10�16

Matrix Sign 0.0058 9:7� 10�16

Permanent Income Riccati Iteration 0.0334 1:9� 10�15

(with adjustment costs) Eigenvector 0.0057 2:4� 10�07

Schur 0.0046 1:4� 10�15

Generalized Eigenvector 0.0048 2:9� 10�04

Generalized Schur 0.0037 1:1� 10�16

Doubling(P0 = 0) 0.0022 9:2� 10�16

Doubling(P0 = I) 0.0030 9:4� 10�16

Matrix Sign 0.0062 3:7� 10�15

Yearly Cattle Cycles Riccati Iteration 0.0056 9:7� 10�16

Eigenvector 0.0076 2:3� 10�15

Schur 0.0079 3:3� 10�16

Generalized Eigenvector 0.0125 1:7� 10�15

Generalized Schur 0.0054 2:1� 10�15

Doubling(P0 = 0) 0.0026 5:6� 10�16

Doubling(P0 = I) 0.0036 3:9� 10�16

Matrix Sign 0.0089 6:7� 10�16

Quarterly Cattle Cycles Riccati Iteration 0.0520 2:6� 10�15

Eigenvector 0.0400 9:4� 10�15

Schur 0.0373 1:1� 10�14

Generalized Eigenvector 0.1177 6:2� 10�15

Generalized Schur 0.0248 6:9� 10�15

Doubling(P0 = 0) 0.0125 6:7� 10�16

Doubling(P0 = I) 0.0131 5:6� 10�16

Matrix Sign 0.0314 2:3� 10�15

Monthly Cattle Cycles Riccati Iteration 1.3860 1:0� 10�14

Eigenvector 0.6904 2:9� 10�14

Schur 0.6575 8:2� 10�14

Generalized Eigenvector 1.3100 5:9� 10�14

Generalized Schur 0.3370 6:1� 10�14

Doubling(P0 = 0) 0.1435 3:7� 10�15

Doubling(P0 = I) 0.1437 1:4� 10�15

Matrix Sign 0.2569 2:2� 10�14

Education Riccati Iteration 0.2554 8:2� 10�14

Generalized Eigenvector 0.2437 2:2� 10+04

Generalized Schur 0.0394 2:2� 10�06

Doubling(P0 = 0) 0.0371 3:1� 10�07

Doubling(P0 = I) 0.0447 2:7� 10�07

Matrix Sign 0.0841 1:9� 10�07

we used the solutions computed by the Riccati Iteration algorithm and the doubling algo-

rithm for Sylvester equations. Given the tables that follow, these norms allow a reader to

construct a relative measure of accuracy for the candidate solutions.37

Table 9.3: Accuracy of Solutions to the Permanent Income Model

Economy Algorithm Absolute error of P c
y Absolute error of F c

y

Permanent Income Riccati Iteration 6:6� 10�14 8:8� 10�15

Eigenvector 2:4� 10�02 3:0� 10�03

Schur 8:8� 10�15 1:1� 10�15

Generalized Eigenvector 3:1� 10�03 4:0� 10�04

Generalized Schur 1:9� 10�14 2:6� 10�15

Doubling(P0 = I) 8:2� 10�13 1:3� 10�13

Matrix Sign 2:8� 10�14 3:7� 10�15

Permanent Income Riccati Iteration 5:7� 10�13 8:2� 10�14

(with adjustment costs) Eigenvector 4:9� 10�06 6:4� 10�07

Schur 5:0� 10�14 1:1� 10�15

Generalized Eigenvector 6:0� 10�03 7:8� 10�04

Generalized Schur 1:4� 10�13 1:5� 10�14

Doubling(P0 = 0) 5:0� 10�13 7:3� 10�14

Doubling(P0 = I) 1:7� 10�12 2:8� 10�13

Matrix Sign 5:7� 10�13 8:3� 10�14

Table 9.4: Performance of Algorithms that Solve Sylvester Equations

Economy Algorithm CPU time Residual Norm

Permanent Income Hessenberg-Schur 0.0017 3:6� 10�15

Doubling 0.0010 3:6� 10�15

Yearly Cattle Cycles Hessenberg-Schur 0.0027 3:3� 10�13

Doubling 0.0014 2:8� 10�14

Quarterly Cattle Cycles Hessenberg-Schur 0.0041 7:8� 10�13

Doubling 0.0028 2:6� 10�13

Monthly Cattle Cycles Hessenberg-Schur 0.0154 2:6� 10�12

Doubling 0.0186 6:5� 10�13

Education Hessenberg-Schur 0.2601 4:3� 10�11

Doubling 0.1233 5:2� 10�12

the cattle cylce economy because we included a state that could be used to represent a

preference shock. The autogressive parameter for this state was set to zero. Since the

gestation time period for a newborn calf to become a cow is held �xed across the three

cattle cycle economies, the number of endogenous state variables is larger forMonthly Cattle

Cycles than for the other two cattle cycle economies. Recall that the number of exogenous

state variables and endogenous state variables is large for the Education economy because

of the presumed population dynamics and the number of time periods it takes to get highly

skilled.

Associated with each of the six optimal resource allocation problems is a Riccati equa-

tion and a Sylvester equation that are solved in �nding the optimal decision rule. We

report the Riccati equation comparisons in the �rst subsection and the Sylvester equation

comparisons in the second subsection. Recall that Sylvester equations take as one of their

inputs a matrix constructed from the solution to the corresponding Riccati equation. To

simplify comparisons, we use the same input matrix for each of the two Sylvester equation

algorithms.

38

9.1. Solutions to Riccati Equations

We compare the performance of seven of the Riccati equation solving algorithms de-

scribed in section 4. We consider two invariant subspace algorithms: one is based on an

eigenvector decomposition labeled Eigenvector and the other on the Schur decomposition

labeled Schur in the tables described below. We study two deating subspace algorithms

that are generalizations of the two invariant subspace algorithms designed to permit the

state evolution matrix (Ayy) to be singular. (In fact, this matrix is singular for the Educa-

tion resource allocation problem.) We label these deating subspace algorithms Generalized

Eigenvector and Generalized Schur. We investigate two doubling algorithms that di�er with

respect to how they are initialized. The �rst doubling algorithm uses the standard initial-

ization (Po = 0), and the second one initializes the doubling algorithm so that the terminal

state and costate vectors coincide (Po = I). Since the (Po = 0) doubling algorithm gives the

wrong solution to the Permanent Income resource allocation problem, it is not included for

that control problem. Both of these algorithms are labeled Doubling with the speci�cation

of Po given in parentheses. Our seventh algorithm is the matrix sign algorithm and is la-

beled accordingly. As a benchmark, one of the algorithms iterates on the Riccati di�erence

equation from dynamic programming.27 This algorithm is labeled Riccati Iteration in the

tables.

Table 9.2 reports comparisons of the performance of the eight algorithms used to com-

pute candidate solutions (P c
y ; F (P

c
y)) to the associated deterministic regulator problem's

given the inputs (Ayy; By; Qyy; R): Here F (P) = (R +By
0
PBy)

�1
By

0
PAyy:

28 To measure

the accuracy of the computed solutions, we use the matrix one-norm of the Riccati equation

residual P c
y � T (P c

y) where

T (P) = Qyy +A
0

yyPAyy �A
0

yyPBy(R+By
0
PBy)

�1
By

0
PAyy:

Gudmundsson, Kenney and Laub(1992) show that P c
y is an accurate solution of the Riccati

equation (3:13) if it has a small residual and the Riccati equation is \well-conditioned."

For the Permanent Income resource allocation problems, Table 9.3 reports the absolute

errors Py � P
c
y

1
;

Fy � F (P c
y)

1
:

These errors were computed under the presumption that the �rst problem (without ad-

justment costs) is the problem of interest. That is, we compare the true solutions to the

Permanent Income Economy to the computed solutions to the Permanent Income Economy

and the Permanent Income Economy(with adjustment costs). Recall that the primary reason

we introduced the adjustment costs is to make the doubling (Py = 0) algorithm applicable.

For the Permanent Income economy, we calculated the true solutions for Fy and Py by hand:

Py =

�
7=3 �7=60
�7=60 7=1200

�
; Fy = [�1=3 1=60] :

27 The Riccati iteration algorithm iterates on

Pj+1 = Qyy + (Ayy �ByFj)
0
Pj(Ayy �ByFy) + Fj

0
RFj ;

where

Fj = (R+By
0
PjBy)

�1
By

0
PjAyy

until kPj+1 � Pjk1 � � kPjk1, where we set � = 1 x 10�15. We initialize this algorithm at

Po = I .
28 All comparisons reported in the section were performed on an HP-9000/730 computer

with 64MB of memory using version 4.2a of MATLAB and HP's FORTRAN compiler. We

base our CPU times on 1100 replications.

39

The results verify that (for the Permanent Income economy) the residual errors reported in

Table 9.2 are close proxies for the absolute errors reported in Table 9.3. Since solutions to

Permanent Income (with adjustment costs) approximate closely the solutions to Permanent

Income, applying the doubling algorithm to the adjustment cost version gives a reliable

solution to the resource allocation problem without adjustment costs.

Returning now to the result in Table 9.2, the following comparisons are noteworthy.

(1) The eigenvector and generalized eigenvector algorithms are unreliable for three of our

six economies. Not suprisingly, the presence of repeated roots in the solution to the

Permanent Income control problem caused the eigenvector algorithm to give unreliable

solutions. Shifting to the generalized eigenvector algorithm resulted only in marginal

improvements in accuracy. While introducing tiny adjustment costs to the Permanent

Income control problem improved the accuracy of the eigenvector method, it failed

to make the eigenvector method as accurate as the other methods. The generalized

eigenvector method performed poorly for both this control problem and the Education

problem.

(2) The Riccati iteration algorithm computed accurate solutions for all of the control prob-

lems and, in particular, computed the most accurate solution for the Education problem.

Hence if accuracy is the primary concern, rather than speed, this algorithm is a rea-

sonable choice. However, in situations in which repeated solutions are required, other

algorithms can save the researcher a signi�cant amount of time.29 Speed gains are

likely to be important in econometric estimation and in determining the sensitivity of

solutions to changes in parameter settings.

(3) Algorithms that allow Ayy to be singular do not su�er any \penalties" in speed or in

accuracy. Hence for our discrete-time control problems, there does not seem to be a

good reason to use the invariant subspace algorithms.

(4) Both doubling algorithms performed relatively well across the six economies. The Po =

0 algorithm is a little faster than the Po = I algorithm for the Permanent Income (with

adjustment costs) and for the Yearly Cattle Cycles control problems with comparable

accuracy. The Po = I algorithm is the quickest of the seven applicable algorithms in

solving the original Permanent Income control problem. The Po = 0 doubling algorithm

outperforms the generalized Schur and matrix sign algorithms. A possible reason it is

faster than the generalized Schur algorithm is that the generalized Schur algorithm does

not exploit the symplectic structure of the control problem.

29 The speed of the Riccati iteration algorithm can be increased by lowering the tolerance

�. For instance, if � is changed to 1� 10�07, for the Permanent Income Economy the CPU

is reduced to 0.0163 with an absolute error of 5:3 � 10�06 for Py: Comparable changes

in tolerance settings for the other iterative algorithms had very minor changes in speed

and accuracy for the Permanent Income Economy. Our experience with the matrix sign

algorithm applied to other economies is that signi�cantly lowering the tolerance can have

disastrous consequences for accuracy.

40

9.2. Solutions to Sylvester Equations

Table 9.4 compares the performance of the Sylvester equation algorithms discussed in

section 6 applied to the �ve control problems. The algorithms take as inputs the matri-

ces (S; T;W): To assess the accuracy of the solutions, we use the matrix one-norm of the

Sylvester equation residual W + SM
c
T �M

c, where Mc is a candidate solution. For the

Permanent Income control problem, the absolute error, kM �M
ck1 ; of the Hessenberg-

Schur solution is 9:1� 10�13 and the absolute error of the doubling algorithm's solution is

1:0� 10�12.

The accuracy of the doubling and Hessenberg-Schur algorithms are comparable. While

the doubling algorithm is faster in solving four of the �ve Sylvester equations, the Hessenberg-

Schur algorithm is faster in solving the Sylvester equation for the Monthly Cattle Cycles

control problem. Recall that this problem has 25 endogenous states but only four exogenous

states. The Hessenberg-Schur algorithm is apparently better at exploiting this asymmetry.

10. Innovations Representations

Constructing an innovations representation is a key step in deducing the implications of

a model for vector autoregressions and for evaluating a Gaussian likelihood function.30 An

innovations representation is a state-space representation in which the vector white noise

driving the system is of the correct dimension (equal to that of the vector of observables) and

lives in the proper space (the space spanned by current and lagged values of the observables).

Suppose that our theorizing and data collection lead us to a system of the form31

xt+1 = Aoxt + Cwt+1

zt = Gxt + vt

vt+1 = Dvt +Hwt+1;

(10:1)

where D is a matrix whose eigenvalues are bounded in modulus by unity, and fwtg is

a martingale di�erence sequence with E(wt+1wt+1
0jFt) = I , where Ft is the sigma �eld

generated by the history of ws up to t. We take zt to be the time t vector of variables

on which an econometrician has observations, and we interpret vt as a serially correlated

measurement error vector. We let R = HH
0
; which is the covariance matrix of Hwt+1:

We impose CH 0 = 0, by way of assuming that the \state" and \measurement" errors are

uncorrelated.

We de�ne the following quasi-di�erenced process

�zt � zt+1 �Dzt: (10:2)

From Eq. (10:1) and the de�nition (10:2), it follows that

�zt = (GAo �DG)xt + (GC +H)wt+1:

Then (xt; �zt) is governed by the state space system

xt+1 = Aoxt + Cwt+1

�zt = �Gxt + (GC +H)wt+1;
(10:3)

30 The calculations in this section are versions of ones described by Anderson and Moore

(1979). We alert the reader that we are \recycling" or \reinitializing" some of notation used

in earlier sections, such as zt; vt; ut; D;R.
31 In particular, the solution to the discounted stochastic regulator problem can be ex-

pressed as xt+1 = Aoxt + Cwt+1 where Ao = A�BF:

41

where �G = GAo �DG. This system has nonzero covariance between the state noise Cwt+1
and the \measurement noise" (GC +H)wt+1. Let [Kt;�t] be the Kalman gain and state

covariance matrix associated with the Kalman �lter, namely,

Kt = (CC 0
G
0 +Ao�t

�G0)
�1t (10:4)

t = �G�t
�G0 +R+GCC

0
G
0 (10:5)

�t+1 = Ao�tAo
0+CC 0�(CC 0

G
0+Ao�t

�G0)
�1t (�G�tAo
0+GCC 0): (10:6)

Then an innovations representation for system (10:3) is

x̂t+1 = Aox̂t +Ktut

�zt = �Gx̂t + ut;
(10:7)

where
x̂t = Ê[xt j �zt�1; �zt�2; : : : ; �z0; x̂0]
ut = �zt � Ê[�zt j �zt�1; : : : ; �z0; x̂0]

t � Eutu

0

t =
�G�t

�G0 +R+GCC
0
G
0
:

(10:8)

Initial conditions for the system are x̂0 and �0. From de�nition (10:2), it follows that

[zt+1; zt; : : : ; z0; x̂0] and [�zt; �zt�1; : : : ; �z0; x̂0] span the same space, so that

x̂t = Ê[xt j zt; zt�1; : : : ; z0; x̂0]
ut = zt+1 � Ê[zt+1 j zt; : : : ; z0; x̂0]:

The process ut is said to be an innovation process in zt+1.

Equation (10:6) is a matrix Riccati di�erence equation. The Kalman �lter has a steady-

state solution if there exists a time-invariant positive semi-de�nite matrix � which satis�es

Eq. (10:6) with �t+1 = �t, i.e., one that satis�es the algebraic matrix Riccati equation. In

this case, the same computational procedures used for the optimal linear regulator problem

apply: a bene�t of the duality of �ltering and control. The steady-state Kalman gain K is

given by Eq. (10:4) with �t = � and
t = �G� �G0 +R +GCC
0
G
0.

10.1. Wold and Autoregressive Representations

The innovations representation is associated with a Wold representation or vector au-

toregression. Estimates of these representations are recovered in empirical work using the

vector autoregressive techniques promoted by Sims (1980) and Doan, Litterman, and Sims

(1984). Wold and vector autoregressive representations are easy to obtain when A�K �G is

a stable matrix. To get a Wold representation for zt; substitute Eq. (10:2) into Eq. (10:7)

to obtain
x̂t+1 = Aox̂t +Kut

zt+1 �Dzt = �Gx̂t + ut:
(10:9)

A Wold representation for zt is

zt+1 = [I �DL]�1[I + �G(I �AoL)
�1
KL]ut; (10:10)

where, again, L is the lag operator. From Eq. (10:9) a recursive whitening �lter for obtaining

futg from fztg is given by

ut = zt+1 �Dzt � �Gx̂t

x̂t+1 = Aox̂t +Kut

: (10:11)

42

Hansen and Sargent (1994) show that an autoregressive representation for zt is

zt+1 = fD + (I �DL) �G[I � (Ao �K �G)L]�1KLg zt + ut (10:12)

or

zt+1 =[D + �GK]zt +

1X
j=1

[�G(Ao �K �G)jK

�D �G(Ao �K �G)j�1K]zt�j + ut:

(10:13)

This equation expresses zt+1 as the sum of the one-step-ahead linear least squares forecast

and the one-step prediction error.

11. The Likelihood Function

Obtaining the Kalman gain sequence fKtg of the previous section is a key step in

constructing and manipulating a recursive representation of a Gaussian quasi-likelihood

function. It is often necessary to transform the observations into a form matching the linear

state-space form. Thus, we start with a \raw" time series fytg that determines an adjusted

series zt according to

zt = f(yt;�);

where � is the vector containing the free parameters of the model, including parameters

determining particular detrending procedures. For example, if our raw series has a geometric

growth trend equal to �
t which is to be removed before estimation, then the adjusted

series is zt = yt=�
t. We assume that the state space model of the form (10:3) and the

associated innovations representation (10:7) pertain to the adjusted data fztg. We can

use the innovations representation (10:7) recursively to compute the innovation series, then

calculate the conditional Gaussian log-likelihood function

L(�) =

T�1X
t=0

�
log j
tj+ trace(
�1t utu

0

t)� 2 log
��@f(yt;�)

@yt

��	 (11:1)

and �nd estimates, �̂ = argmin�L(�); where
t = Eutu
0
t is the covariance matrix of

the innovations computed from (10:8).32 To �nd the minimizer �̂; we can use a standard

optimization program. In practice, it is best if we can calculate both the log-likelihood

function and its derivatives analytically. First, the computational burden is much lower

with analytical derivatives. Consider, for example, the model of McGrattan, Rogerson, and

Wright (1995), which has 64 elements in �. For each step of a quasi-Newton optimization

routine, L and @L
@�

are computed. To obtain @L
@�

numerically for the McGrattan, Rogerson,

32 This is the log likelihood function conditional on an initial distribution x̂0;�0 of the

state vector. The log likelihood function of fzt; zt�1; : : : ; z0g is conveniently factored as

logPr(zt; zt�1; : : : ; z0) = logPr(ztjzt�1; : : : ; z0) � � � logPr(z1jz0) logPr(z0):

We obtain the conditional likelihood by replacing Pr(z0) by Pr(z0jx0). For alternative

approaches to treating the distribution of z0, see Ansley and Kohn (1985), Hamilton (1994),

and Hansen and Sargent (1994).

43

andWright (1995) example, the log-likelihood function must be evaluated 128 times if central

di�erences are used in computing an approximation for @L
@�
; e.g.,

@L

@�
� L(� + �e)� L(�� �e)

2�
; (11:2)

where e is a vector of zeros except for a one in the element corresponding to � and � is some

positive number. Usually, the costs of computing L a large number of times far outweigh the

costs of computing @L
@�

once. If L and @L
@�

are to be computed many times, which is typically

the case, then the costs of computing numerical derivatives can be quite large. A second

advantage to analytical derivatives is numerical accuracy. If the log-likelihood function is

not very smooth for the entire parameter space, there may be problems with the accuracy of

approximations such as Eq. (11:2). With inaccurate derivatives, it is di�cult to determine

the curvature of the function and, hence, to �nd a minimum.

For L(�) in Eq. (11:1), the derivatives @L(�)=@� can be derived by following procedures

of Kashyap (1970), Wilson and Kumar (1982), and Zadrozny (1988, 1989, 1992). We display

these derivatives in Appendix B and distinguish formulas that are steps in the derivation

from those that would be put into a computer code. Note that although the �nal expression

for @L
@�

derived in Appendix B is complicated, we can use numerical approximations such as

Eq. (11:2) to uncover coding errors.

Once we have the log-likelihood function and its derivatives, we can apply standard

optimization methods to the problem of �nding the maximum likelihood estimates. In prac-

tice, we will have a constrained optimization problem since the equilibrium is not typically

computable for all possible parameterizations. For example, we may have simple constraints

such as ` < � < u; where ` and u are the lower and upper bounds for the parameter vec-

tor. In this case, we use either a constrained optimization package or penalty functions (see

Fletcher 1987).

After computing the maximum likelihood estimates, we need to compute their standard

errors,

Se(�) = diag

�s�X
t

@Lt

@�

@Lt

@�

0��1�
; (11:3)

where Lt(�) is the logarithm of the density function of the date t innovation, i.e.,

Lt(�) = log j
tj+ u
0

t

�1
t ut � 2 log

��@f(yt;�)
@yt

��: (11:4)

The formula for @Lt
@�

is also given in Appendix B.

44

12. Estimating the Cattle Cycles Model

In this section, we present estimates of some of the parameters of Rosen, Murphy, and

Scheinkman's (1994) model. 33 We let pt be the price of freshly slaughtered beef, ds;t the

feeding cost of preparing an animal for slaughter, dh;t the one-period holding cost for a

mature animal, 1dh;t the one-period holding cost for a yearling, and 2dh;t the one-period

holding cost for a calf. The costs fdh;t; ds;tg1t=0 are exogenous stochastic processes, while the
stochastic process fptg1t=0 is determined by an equilibrium. Let kb;t be the breeding stock

and yt be the total stock of animals. Each animal that is reserved for breeding gives birth

to � calves. Calves that survive become part of the adult stock after two years. Letting t

index years, the law of motion for stocks is34

kb;t = kb;t�1 + �kb;t�3 � ct; (12:1)

where ct is a rate of slaughtering. The total head count of cattle is

yt = kb;t + �kb;t�1 + �kb;t�2; (12:2)

which is the sum of adults, yearlings, and calves, respectively.

A representative farmer maximizes

E0

1X
t=0

�
t
n
ptct � dh;tkb;t � (1dh;t)(�kb;t�1)� (2dh;t)(�kb;t�2)� ds;tct � �

2
	t

o
(12:3)

where

	t =
�
k
2
b;t + k

2
b;t�1 + k

2
b;t�2 + c

2
t

�
:

Here � is a small positive parameter which measures the quadratic costs of carrying stocks

and slaughtering.

Demand is governed by

ct = �0 � �1pt (12:4)

where �0 > 0 and �1 > 0: The stochastic processes fdh;t; ds;tg are univariate autoregressions
with orthogonal innovations

dh;t+1 = (1� �h)�h + �hdh;t + �h;t;

ds;t+1 = (1� �s)�s + �sdm;t + �s;t;

where E�2h;t = �
2
h and E�

2
s;t = �

2
s . The disturbance processes f�h;tg and f�s;tg are white

noises that are uncorrelated at all lags.

To compute parameter estimates, we use the data of Rosen, Murphy, and Scheinkman

(1994), which include annual observations for yt, ct, and pt for the United States during the

period 1900-1990.35 We assume that there is error in measuring the total stock of cattle

yt and the slaughter rate ct. In particular, we assume that the (1,1) element of R, the

variance-covariance matrix of the measurement errors, is equal to �2y, and we assume that

the (2,2) element of R is equal to �2c . All other elements of R are set equal to zero.

33 We have used estimates of key parameters from this section in the numerical experiments

for the annual model.
34 We have set the death probability in Rosen, Murphy and Scheinkman's (1994) model

to zero.
35 The sources of these data are the Historical Statistics of the United States, Colonial

Times to 1970 and Agricultural Statistics. In the data, y is the total stock of cattle excluding

milk cows, c is the cattle slaughtered, and p is price of slaughtered cattle.

45

Table 12.1: Parameter estimates for \Cattle Cycle" example.

Parameters Estimates Standard Errors

�0 146 33.4

�1 1.27 0.323

1 0.647 11.5

2 1.77 12.0

� 0.938 0.0222

�h 0.888 0.115

�s 0.699 0.0417

�h 6.82 10.6

�s 4.04 1.05

�y 0.273 0.0383

�c 4.82 0.531

We are now equipped to estimate the parameters of this model by applying the formulas

of the previous sections. We start with some a priori restrictions. Assume that � = 0:96;

� = 1 � 10�4; �h = 37, and �s = 63. The remaining parameters are elements of �, i.e.,

� = [�0, �1, 1, 2, �, �h, �s, �h, �s, �y, �c]. In Table 12.1, we report estimates of these

parameters and standard errors for the estimates. Note that from the values for �0 and �1

we can get an estimate of the demand elasticity. For this model, the elasticity is given by

-0.61.36 The values of 1 and 2 give us information about the holding costs. The estimates

indicate that the costs are higher for calves than for yearlings. However, the standard errors

on 1 and 2 indicate that these parameters are not precisely estimated. The value of �

implies that 0.94kb;t�1 calves are born at date t, where kb;t�1 is the breeding stock at t� 1.

This estimate is higher than Rosen, Murphy, and Scheinkman's (1994) estimate of 0.85.

The estimates of �h and �s imply that there is persistence in the processes for holding and

feeding costs. Finally, the estimates of �y and �c indicate that the measurement error is

higher for the slaughter rate than for the total stock.

In Figures 1 through 3, we plot the predicted and actual time series for the stock

of cattle, the slaughter rate, and the price. The predicted series are the one-step-ahead

forecasts. Using the notation of section 10 these are given by the vector �Gx̂t.

36 This estimate is �1 � p0=c0 (-1.27�0.48).

46

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
10

20

30

40

50

60

70

Actual

Forecast

Figure 1. One-step-ahead forecast and actual total stock.

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
4

6

8

10

12

14

16

18

20

22

24

Forecast

Actual

Figure 2. One-step-ahead forecast and actual slaughter rate.

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
90

95

100

105

110

115

120

Forecast

Actual

Figure 3. One-step-ahead forecast and actual price of slaughtered beef.

47

A. Computing @L
@� and

@Lt
@� for a State Space Model

Di�erentiating the log-likelihood function with respect to the free parameters of the eco-

nomic model can be broken into two steps: �rst, di�erentiating the log-likelihood function

with respect to matrices appearing in the state space model (10:7); and second, di�erenti-

ating the parameters of the state space model (10:3) with respect to the free parameters of

the underlying economic model. In this appendix, we derive @L
@�

in terms of the derivatives

of Ao, C, G, D, R, x̂0, �0, and fzt; t = 0; : : : ; Tg. We ignore the Jacobian in Eq. (11:1)

since it di�ers for each problem. In Appendix B, we show how to compute derivatives of Ao

for the linear-quadratic and nonlinear economies with and without distortions.

A.1. The Formula for @L
@�

For the �rst step, we take as given Ao, C, G, D, R, x̂0, �0, and fzt; t = 0; : : : ; Tg and
their derivatives with respect to the deeper economic parameters. We shall show that the

derivative of the log-likelihood function is

@L

@�
=

T�1X
t=0

�
2 tracef@Ao

@�
�t

�G0
MtG� x̂tu

0

t

�1
t Gg+ 2 tracef@C

@�
C
0
G
0
MtGg

+ 2 tracef@G
@�

(Ao�t
�G0
Mt ��t

�G0
MtD + CC

0
G
0
Mt �Aox̂tu

0

t

�1
t

+ x̂tu
0

t

�1
t D)g

� 2 tracef@D
@�

G�t
�G0
Mt � ztu

0

t

�1
t +Gx̂tu

0

t

�1
t)g

+ tracef@R
@�

Mtg+ tracef@�t

@�

�G0
Mt

�Gg � 2 tracef@x̂t
@�

u
0

t

�1
t

�Gg

+ 2 tracef@zt+1
@�

u
0

t

�1
t g � 2 tracef@zt

@�
u
0

t

�1
t Dg�; (A:1)

where

@�t+1

@�
=
@Ao

@�
�tA

0

o +Ao

@�t

@�
A
0

o +Ao�t

@Ao

@�

0

+
@C

@�
C
0 + C

@C

@�

0

�
�
@C

@�
C
0
G
0 + C

@C

@�

0

G
0 + CC

0
@G

@�

0

+
@Ao

@�
�t

�G0

+Ao

@�t

@�

�G0 +Ao�t

@ �G

@�

0�
K
0

t +Kt

@
t

@�
K
0

t

�K

�
@ �G

@�
�tA

0

o +
�G
@�t

@�
A
0

o +
�G�t

@Ao

@�

0

+
@G

@�
CC

0 +G
@C

@�
C
0 +GC

@C

@�

0�
(A:2)

@x̂t+1

@�
= �Ao

@x̂t

@�
+ (

@Ao

@�
� @Kt

@�

�G�Kt

@ �G

@�
)x̂t +

@Kt

@�
�zt

+Kt(
@zt+1

@�
�D

@zt

@�
): (A:3)

The expressions in (A:2) and (A:3) follow from the de�nitions of �t in Eq. (10:6) and x̂t in

Eq. (10:7). The initial conditions x̂0 and �0 and their derivatives are assumed to be given.

48

If �0 is given by the steady state solution of the Riccati equation, then the computation

can be simpli�ed. The formula for the derivative of the log-likelihood function is given by

@L

@�
= 2T tracef@Ao

@�
(� �G0

MG� �x̂u

�1
G� �x̂�(I �KG)

� � �G0
�1�u�(I �KG)�� �A0o�
0

u�

�1
G

+� �A0o�(I �KG))g

+ 2T tracef@C
@�

C
0
�
G
0
MG�G

0
�1�u�(I �KG)

� (I �G
0
K
0)�0u�

�1
G+ (I �G

0
K
0)�(I �KG)

�g
+ 2T tracef@G

@�
(Ao� �G0

M �� �G0
MD + CC

0
G
0
M

�Ao�x̂u

�1 + �x̂u

�1
D +Ao�x̂�K

� �x̂�KD � CC
0(I �G

0
K
0)�0u�

�1

+ CC
0
G
0
�1�u�K �Ao� �A0o�

0

u�

�1

+� �A0o�
0

u�

�1
D +Ao� �G0
�1�u�K

� � �G0
�1�u�KD �Ao� �A0o�K +� �A0o�KD

� CC
0�K + CC

0
G
0
K
0�K)g

� 2T tracef@D
@�

(G� �G0
M + (�zu �G�x̂u)

�1

+G�x̂�K � �z�K �G� �A0o�
0

u�

�1

+G� �G0
�1�u�K �G� �A0o�K)g

+ 2T tracef@R
@�

(
1

2
M +
�1�u�K +

1

2
K
0�K)g

+ 2 tracef
T�1X
t=0

(
@zt+1

@�
�D

@zt

@�
)u0t

�1g

� 2 tracef
T�1X
t=1

(
@zt

@�
�D

@zt�1

@�
)�0tKg � 2 tracef@x̂0

@�
�
0

0g; (A:4)

where � is the asymptotic state covariance matrix found by iterating on Eq. (10:6) and �G,

K,
, ut and x̂t are de�ned in Eqs. (10:3), (10:4), (10:5), and (10:7), and

�t = (Ao �K �G)0�t+1 + �G0
�1ut; t = 0; : : : ; T � 2

�T�1 = �G0
�1uT�1

�uu =
1

T

T�1X
t=0

utu
0

t

�x̂u =
1

T

T�1X
t=0

x̂tu
0

t

�zu =
1

T

T�1X
t=0

ztu
0

t

�u� =
1

T

T�1X
t=1

ut�1�
0

t (A:5)

49

�x̂� =
1

T

T�1X
t=1

x̂t�1�
0

t (A:6)

�z� =
1

T

T�1X
t=1

zt�1�
0

t (A:7)

M =
�1 �
�1�uu

�1

�Ao = Ao �K �G

� = �A0o�
�Ao + �G0

M �G� �G0
�1�u� �Ao � �A0o�
0

u�

�1 �G:

In the remainder of this appendix, we derive the formulas in Eq. (A:1) and Eq. (A:4).

Readers who are not interested in this derivation can skip the rest of this appendix.

A.2. Derivation of the Formula

The derivative of the log-likelihood function with respect to any element � of the pa-

rameter vector is given by

@L

@�
=

T�1X
t=0

trace
�@
t

@�
Mt

	
= S1

+

T�1X
t=0

trace
�
(
@ut

@�
u
0

t + ut
@u

0
t

@�
)
�1t

	
+ S2

; (A:8)

where Mt =
�1t �
�1t utu
0
t

�1
t and
t = Eutu

0
t. We start with the �rst term in the

expression for the derivative of the log-likelihood function S1. For this, we need the derivative

of the covariance matrix
t which satis�es

@
t

@�
=
@ �G

@�
�t

�G0 + �G
@�t

@�

�G0 + �G�t

@ �G

@�

0

+
@R

@�
+
@G

@�
CC

0
G
0

+G
@C

@�
C
0
G
0 +GC

@C

@�

0

G
0 +GCC

0
@G

@�

0

= (
@G

@�
Ao +G

@Ao

@�
� @D

@�
G�D

@G

@�
)�t

�G0 + �G
@�t

@�

�G0

+ �G�t(A
0

o

@G

@�

0

+
@Ao

@�

0

G
0 �G

0
@D

@�

0

� @G

@�

0

D
0)

+
@R

@�
+
@G

@�
CC

0
G
0 +G

@C

@�
C
0
G
0 +GC

@C

@�

0

G
0 +GCC

0
@G

@�

0

: (A:9)

The second equality follows from the de�nition of �G. If we post-multiply the derivative of

t by Mt and take the trace of the result, we have the �rst term of the derivative of the

log-likelihood function in Eq. (A:8):

S1 =

T�1X
t=0

�
2 trace(

@Ao

@�
�t

�G0
MtG) + 2 trace(

@C

@�
C
0
G
0
MtG)

+ 2 trace(
@G

@�
fAo�t

�G0
Mt ��t

�G0
MtD + CC

0
G
0
Mtg)

� 2 trace(
@D

@�
G�t

�G0
Mt) + trace(

@R

@�
Mt)

+ trace(
@�t

@�

�G0
Mt

�G)
�
: (A:10)

Note that the formula for S1 depends on derivatives @Ao

@�
, @C
@�
, @G
@�
, @D
@�
, and @R

@�
, which are

known, and @�t

@�
, which is yet to be derived.

50

We now turn to the second term of the log-likelihood function derivative S2, where

S2 = trace(@utu
0
t=@�

�1
t). Let �uu(t) = utu

0
t. By de�nition, �uu(t) = (�zt� �Gx̂t)(�zt� �Gx̂t)

0

and, therefore, its derivative is given by

@�uu(t)

@�
= (

@�zt

@�
� @ �G

@�
x̂t � �G

@x̂t

@�
)u0t + ut(

@�zt

@�
� @ �G

@�
x̂t � �G

@x̂t

@�
)0

= (
@zt+1

@�
� @D

@�
zt �D

@zt

@�
� @G

@�
Aox̂t �G

@Ao

@�
x̂t

+
@D

@�
Gx̂t +D

@G

@�
x̂t � �G

@x̂t

@�
)u0t

+ ut(
@zt+1

@�

0

� z
0

t

@D

@�

0

� @zt

@�

0

D
0 � x̂

0

tAo
0 @G

@�

0

� x̂
0

t

@Ao

@�

0

G
0

+ x̂
0

tG
0
@D

@�

0

+ x̂
0

t

@G

@�

0

D
0 � @x̂t

@�

0

�G0): (A:11)

If we post-multiply this derivative by
�1t , take the trace of the resulting matrix, and sum

over t, then we have the second term of the derivative of the log-likelihood function, i.e.,

S2 = �
T�1X
t=0

�
2 tracef@Ao

@�
x̂tu

0

t

�1
t Gg+ 2 tracef@G

@�
(Aox̂tu

0

t

�1
t � x̂tu

0

t

�1
t D)g

+ 2 tracef@D
@�

(ztu
0

t �Gx̂tu
0

t)

�1
t g � 2 tracef

T�1X
t=0

@zt+1

@�
u
0

t

�1
t g

+ 2 tracef
T�1X
t=0

@zt

@�
u
0

t

�1
t Dg+ 2 tracef

T�1X
t=0

@x̂t

@�
u
0

t

�1
t

�Gg�: (A:12)

Sum the expressions in Eqs. (A:10) and (A:12) to get the expression for the derivative of

the log-likelihood function in (A:1).

For the time-invariant case, several more steps are needed. First, we derive the last

term in Eq. (A:12) in terms of the derivatives that are taken as inputs. Following Kashyap

(1970), Wilson and Kumar (1982), and Zadrozny (1988), we can simplify the computations

by working with sequences fdtg and f�tg de�ned as follows

dt = (
@Ao

@�
� @K

@�

�G�K
@ �G

@�
)x̂t +

@K

@�
�zt +K

@�zt

@�
; t = 0; : : : ; T � 1

�t = (Ao �K �G)0�t+1 + �G0
�1ut; t = 0; : : : ; T � 2

�T�1 = �G0
�1uT�1: (A:13)

Notice that the time subscripts have been dropped from K and
 since the time-invariant

case assumes that �t = � for all t. Let �Ao = Ao�K �G. Notice that since x̂t+1 = �Aox̂t+K�zt,

its derivative is given by
@x̂t+1

@�
= �Ao

@x̂t

@�
+ dt: (A:14)

Write out the last term in Eq. (A:12) and substitute in x̂t = �At
o +

Pt�1
s=0

�As�1
o dt�s. Then

group terms involving x̂0 and dt, t = 0; : : : T � 2. These steps lead to

� 2

T
trace (

T�1X
t=0

@x̂t

@�
u
0

t

�1 �G) = � 2

T
trace(

@x̂0

@�
�
0

0 +

T�1X
t=1

dt�1�
0

t)

= � 2

T
trace(

@x̂0

@�
�
0

0)� 2 tracef(@Ao

@�
� @K

@�

�G�K
@G

@�
Ao

51

�KG
@Ao

@�
+K

@D

@�
G+KD

@G

@�
)�x̂� +

@K

@�
��z�

+
1

T
K

T�1X
t=1

@zt

@�
�
0

t �K
@D

@�
�z� � 1

T
KD

T�1X
t=1

@zt�1

@�
�
0

tg

= � 2 tracef@Ao

@�
�x̂�(I �KG)g

+ 2 tracef@G
@�

(Ao�x̂�K � �x̂�KDg

� 2 tracef@D
@�

(G�x̂�K � �z�K)g

� 2

T
tracefK

T�1X
t=1

@zt

@�
�
0

t �KD

T�1X
t=1

@zt�1

@�
�
0

tg

� 2

T
trace(

@x̂0

@�
�
0

0)� 2 tracef@K
@�

�u�g; (A:15)

where �u�, �x̂�, and �z� are the sums de�ned in Eqs. (A:5) through Eq. (A:7) and ��z� =PT�1
t=1 �zt�1�

0
t=T . The second equality follows from the de�nitions of dt�1 and �G and some

algebraic manipulation. The last term in Eq. (A:15) uses the fact that ut = �zt� �Gx̂t. With

the exception of @K
@�

, the expression in Eq. (A:15) is a function of known derivatives. The

expression for @K
@�

follows from the de�nition in Eq. (10:4) and is given by

@K

@�
=

�
@C

@�
C
0
G
0 + C

@C

@�

0

G
0 + CC

0
@G

@�

0

+
@Ao

@�
� �G0 +Ao

@�

@�

�G0

+Ao�A
0

o

@G

@�

0

+Ao�
@Ao

@�

0

G
0 �Ao�G

0
@D

@�

0

�Ao�
@G

@�

0

D
0

�

�1

� (CC 0
G
0 +Ao� �G0)
�1

�
@G

@�
Ao� �G0 +G

@Ao

@�
� �G0 � @D

@�
G� �G0

�D
@G

@�
� �G0 + �G

@�

@�

�G0 + �G�A0o
@G

@�

0

+ �G�
@Ao

@�

0

G
0

� �G�G0
@D

@�

0

� �G�
@G

@�

0

D
0 +

@R

@�
+
@G

@�
CC

0
G
0

+G
@C

@�
C
0
G
0 +GC

@C

@�

0

G
0 +GCC

0
@G

@�

0
�

�1: (A:16)

Note that we have written @ �G
@�

in terms of @G
@�
, @Ao

@�
, and @D

@�
. Substituting @K

@�
into the

expression in Eq. (A:15) and rearranging terms, we have

� 2

T
trace(

T�1X
t=0

@x̂t

@�
u
0

t

�1 �G) =

� 2 tracef@Ao

@�
(�x̂�(I �KG) + � �G0
�1�u�(I �KG)

+ � �A0o�
0

u�

�1
Gg

� 2 tracef@C
@�

C
0(G0
�1�u�(I �KG) + (I �G

0
K
0)�0u�

�1
G)g

+ 2 tracef@G
@�

(Ao�x̂�K � �x̂�KD � CC
0(I �G

0
K
0)�0u�

�1

52

+ CC
0
G
0
�1�u�K �Ao� �A0o�

0

u�

�1 +� �A0o�

0

u�

�1
D

+ Ao� �G0
�1�u�K �� �G0
�1�u�KD)g

� 2 tracef@D
@�

(G�x̂�K � �z�K �G� �A0o�
0

u�

�1 +G� �G0
�1�u�K)g

+ 2 tracef@R
@�

�1�u�Kg

� 2

T
tracefK

T�1X
t=1

@zt

@�
�
0

t �KD

T�1X
t=1

@zt�1

@�
�
0

tg

� 2

T
tracef@x̂0

@�
�
0

0g � 2 tracef@�
@�

(�G0
�1�u� �Ao)g: (A:17)

Therefore, the expression for the second term of the log-likelihood function derivative S2 is

given by

S2 = � 2 tracef@Ao

@�
(�x̂u

�1
G+ �x̂�(I �KG) + � �G0
�1�u�(I �KG)

+ � �A0o�
0

u�

�1
Gg

� 2 tracef@C
@�

C
0(G0
�1�u�(I �KG) + (I �G

0
K
0)�0u�

�1
G)g

� 2 tracef@G
@�

(Ao�x̂u

�1 � �x̂u

�1
D �Ao�x̂�K + �x̂�KD

+ CC
0(I �G

0
K
0)�0u�

�1 � CC
0
G
0
�1�u�K

+Ao� �A0o�
0

u�

�1 �� �A0o�

0

u�

�1
D

�Ao� �G0
�1�u�K +� �G0
�1�u�KD)g

� 2 tracef@D
@�

((�zu �G�x̂u)

�1 +G�x̂�K � �z�K �G� �A0o�

0

u�

�1

+G� �G0
�1�u�K)g

+ 2 tracef@R
@�

�1�u�Kg

+
2

T
tracef

T�1X
t=0

@zt+1

@�
u
0

t

�1g � 2

T
tracef

T�1X
t=0

@zt

@�
u
0

t

�1
Dg

� 2

T
tracefK

T�1X
t=1

@zt

@�
�
0

t �KD

T�1X
t=1

@zt�1

@�
�
0

tg

� 2

T
tracef@x̂0

@�
�
0

0g

� 2 tracef@�
@�

�G0
�1�u� �Aog: (A:18)

Our expressions for S1 in Eq. (A:10) and S2 in Eq. (A:18) depend on
@Ao

@�
, @C
@�
, @G
@�
, @D
@�
,

@R
@�
, which are known, and @�

@�
, which we will now derive. Using the expression in Eq. (A:2)

with �t+1 = �t = �, we get

@�

@�
= �Ao

@�

@�

�A0o +W +W
0
; (A:19)

53

where

W =
@Ao

@�
�A0o +

@C

@�
C
0 � @C

@�
C
0
G
0
K
0 � C

@C

@�

0

G
0
K
0 � CC

0
@G

@�

0

K
0

� @Ao

@�
� �G0

K
0 �Ao�A

0

o

@G

@�

0

K
0 �Ao�

@Ao

@�

0

G
0
K
0

+Ao�G
0
@D

@�

0

K
0 +Ao�

@G

@�

0

D
0
K
0 +

1

2
K
@R

@�
K
0

+K
@G

@�
Ao� �G0

K
0 +KG

@Ao

@�
� �G0

K
0 �K

@D

@�
G� �G0

K
0

�KD
@G

@�
� �G0

K
0 +K

@G

@�
CC

0
G
0
K
0 +KG

@C

@�
C
0
G
0
K
0
: (A:20)

The terms W and W
0 in Eq. (A:19) include all derivatives but @�

@�
. To get the expression

in Eq. (A:20), we substituted the expressions for @

@�

and @G
@�

into Eq. (A:19). Let � be a

symmetric matrix that satis�es

� = �A0o�
�Ao +

1

2
(H +H

0); (A:21)

where

H = �G0
M �G� 2 �G0
�1�u� �Ao: (A:22)

Then

trace(
@�

@�
H) = tracef@�

@�

1

2
(H +H

0)g

= tracef@�
@�

(�� �A0o�
�Ao)g

= tracef@�
@�

�g � tracef �Ao

@�

@�

�A0o�g

= tracef(@�
@�

� �Ao

@�

@�

�A0o)�g
= tracef(W +W

0)�g
= 2 tracefW�g: (A:23)

If we post-multiply W by � and take two times the trace, then we have an expression for

trace(@�
@�
H) in terms of known derivatives, i.e.,

trace(
@�

@�
H) = 2 tracef@Ao

@�
� �A0o�(I �KG)g

+ 2 tracef@C
@�

C
0(I �G

0
K
0)�(I �KG)g

� 2 tracef@G
@�

(Ao� �A0o�K �� �A0o�KD + CC
0(I �G

0
K
0)�Kg

+ 2 tracef@D
@�

G� �A0o�Kg+ tracef@R
@�

K
0�Kg: (A:24)

Sum S1, which appears in Eq. (A:10) with �t = � and
t =
, and S2 in (A:18).

Substitute in the expression for trace(@�
@�
H) from Eq. (A:24). The result is the derivative of

the log-likelihood function which is given in Eq. (A:4).

54

A.3. Standard Errors

After we have computed parameter estimates, we want to compute their standard errors

as given in Eq. (11:3). For this, we need to compute the derivative of

Lt(�) = log j
tj+ u
0

t

�1
t ut

with respect to any element � of the parameter vector.37 This derivative is given by

@Lt

@�
= trace(
�1t

@
t

@�
) +

@ut

@�

0

�1t ut + u
0

t

�1
t

@ut

@�
� u

0

t

�1
t

@
t

@�

�1t ut

= tracef(
�1t �
�1t utu
0

t

�1
t)

@
t

@�
g+ tracef@ut

@�

0

�1t ut + u
0

t

�1
t

@ut

@�
g

= tracef@
t

@�
Mtg+ tracef
�1t

@(utu
0
t)

@�
g; (A:25)

where Mt =
�1t �
�1t utu
0
t

�1
t . Above, we calculated @
t

@�
and

@(utu
0

t)

@�
. These expressions

are given in Eq. (A:9) and Eq. (A:11).

37 Note that we are again ignoring the Jacobian since the relationship between z and y

di�ers for each problem.

55

B. Di�erentiating the State-SpaceModel with Respect to Economic
Parameters

In this appendix, we describe how to compute derivatives of Ao with respect to the

free parameters of an economic model. We do this for four economies: a linear-quadratic

economy without distortions; a nonlinear economy without distortions; a linear-quadratic

economy with distortions; and a nonlinear economy with distortions. Because we use linear

approximations for the nonlinear economies, most of the work is in deriving the formulas

for the linear-quadratic economies.

B.1. A Linear-Quadratic Economy without Distortions

We consider a discounted stochastic regulator problem. The optimization problem is

max
futg

E0

1X
t=0

�
t(x0tQxt + u

0

tRut + 2x0tWut); (B:1)

subject to xt+1 = Axt +But + Cwt+1:

We assume that the matrices Q, R, W , A, and B depend on a vector of parameters �. For

the remainder of this section we assume that C = 0: Typically, the number of elements in �

is small relative to the combined number of elements in these matrices. We also assume that

the derivatives of the matrices in Eq. (B:1) with respect to the elements of � are known.

The optimal decision function is given by ut = �Fxt, where
F = (R+ �B

0
PB)�1(�B0

PA+W
0) (B:2)

for P satisfying

P = Q+ �A
0
PA� (W + �A

0
PB)(R + �B

0
PB)�1(�B0

PA+W
0): (B:3)

The law of motion for x in equilibrium is

xt+1 = Aoxt; Ao = A�BF: (B:4)

Therefore, the derivative of Ao with respect to an element of � is

@Ao

@�
=
@A

@�
� @B

@�
F �B

@F

@�
: (B:5)

The derivatives @A
@�

and @B
@�

depend on the speci�cation of the problem in Eq. (B:1) and are

assumed to be known. The derivative of F is

@F

@�
= �(R+ �B

0
PB)�1

�@R
@�

+ �
@B

@�

0

PB + �B
0
@P

@�
B + �B

0
P
@B

@�

�
F

+ (R + �B
0
PB)�1

�
�
@B

@�

0

PA+ �B
0
@P

@�
A+ �B

0
P
@A

@�
+
@W

@�

0�
: (B:6)

Notice that this formula depends on the derivative of P , with the remaining derivatives

provided by the modeler. The derivative @P
@�

satis�es the following equation:

@P

@�
=
@Q

@�
+ �

@A

@�

0

PA+ �A
0
@P

@�
A+ �A

0
P
@A

@�
� (

@W

@�
+ �

@A

@�

0

PB

+ �A
0
@P

@�
B + �A

0
P
@B

@�
)F + F

0(
@R

@�
+ �

@B

@�

0

PB + �B
0
@P

@�
B

+ �B
0
P
@B

@�
)F � F

0(�
@B

@�

0

PA+ �B
0
@P

@�
A+ �B

0
P
@A

@�
+
@W

@�

0

)

= �A
0

o

@P

@�
Ao +

@Q

@�
+ �

h
@A

@�

0

� F
0
@B

@�

0i
PAo + �A

0

oP

h
@A

@�
� @B

@�
F

i

� @W

@�
F � F

0
@W

@�

0

+ F
0
@R

@�
F: (B:7)

56

Although this formula determines only an implicit function for @P
@�
, the gradient of P can be

represented explicitly in terms of things we know. De�ne the gradient operator as follows:

for any matrix A that depends on the parameter �, r�A = vec(@A
@�
). Then,

r�P = (I � �A
0

o
A
0

o)
�1
�r�Q+ �(A0oP
 I)r�A0 + �(I
A

0

oP)r�A
� �(A0oP
 F

0)r�B0 � �(F 0
A
0

oP)r�B � (F 0
 I)r�W
� (I
 F

0)r�W 0 + (F 0
 F
0)r�R

	
; (B:8)

which is a function of the gradients of A, B, Q, R, and W . The gradient of P can then be

substituted into the following formula for r�F :

r�F = �(I
RB0
P)r�A� �(F 0
RB0

P)r�B + �(A0oP
R)r�B0

� (F 0
R)r�R+ (I
R)r�W 0 + �(A0o
RB0)r�P; (B:9)

where R = (R + �B
0
PB)�1. Finally, we substitute this expression for r�F into

r�Ao = r�A� (F 0
 I)r�B � (I
B)r�F: (B:10)

B.2. A Nonlinear Economy without Distortions

The optimization problem that we start with is

max
futg

E0

1X
t=0

�
t
r(zt; �); (B:11)

subject to xt+1 = Axt +But + Cwt+1

zt = [x0t; u
0

t]
0
;

where fwt+1g is a martingale di�erence sequence and E0 is the mathematical expectation

conditioned on time 0 information. We solve a related problem, namely:

max
futg

E0

1X
t=0

�
t
z
0

tMzt (B:12)

xt+1 = Axt +But;

where

M = e(r(�z; �)� @r(�z; �)

@�z

0

�z +
1

2
�z0
@
2
r(�z; �)

@�z2
�z)e0 +

1

2
(e
@r(�z; �)

@�z

0

+
@r(�z; �)

@�z
e
0 � e�z0

@
2
r(�z; �)

@�z2
� @

2
r(�z; �)

@�z2
�ze0 +

@
2
r(�z; �)

@�z2
); (B:13)

and where e is a vector of zeros except for a one in the element corresponding to the constant

term in xt, �z and �w are the steady state values of zt and wt, and Sx = [In; 0k;n] and

Su = [0n;k; Ik] (where the \;" denotes stacking) are selector matrices and imply zt = Sxxt

+Suut, where n is the dimension of xt and k is the dimension of ut. The latter problem

yields the same decision function as that of Eq. (B:1) (where Q = S
0
xMSx, R = S

0
uMSu,

and W = S
0
xMSu).

57

In the nonlinear case, however, the derivatives are slightly more complicated. To derive
@Ao

@�
, we need to calculate derivatives of the coe�cient matrices of the objective function.

For this, we need the derivative of M with respect to �:

@M

@�
= e
�@r(�z; �)

@�
� @

2
r(�z; �)

@�z@�

0

�z +
1

2
�z0
�
r�z @

2
r(�z; �)

@�z2
@�z

@�

�
(:) �z

+
1

2
�z0
@
3
r(�z; �)

@�z2@�
�z
�
e
0 +

1

2

�
e
@
2
r(�z; �)

@�z@�

0

+
@
2
r(�z; �)

@�z@�
e
0

� e�z0
�
r�z @

2
r(�z; �)

@�z2
@�z

@�

�
(:)�

�
r�z @

2
r(�z; �)

@�z2
@�z

@�

�
(:) �ze0

� e�z0
@
3
r(�z; �)

@�z2@�
� @

3
r(�z; �)

@�z2@�
�ze0 +

@
3
r(�z; �)

@�z2@�

+
�
r�z @

2
r(�z; �)

@�z2
@�z

@�

�
(:)
�
; (B:14)

where rzA(z) = [@
@z1

A(z); : : : ; @
@zn

A(z)] for A(z) which is n�n and b(:) is an n�n matrix

created from a vector of length n
2 by stacking the �rst n elements of b into column 1, the

next n elements of b into column 2, etc. As this formula indicates, the modeler must provide

�rst, second, and third-order derivatives of the return function. The derivatives of Q, R,

and W follow immediately from @M
@�

, e.g., @Q

@�
= S

0
x
@M
@�

Sx. The remaining derivations are

the same as in the linear-quadratic case.

B.3. A Linear-Quadratic Economy with Distortions

The optimization problem that we start with is given by

max
f�utg

E0

1X
t=0

�
t
� � �yt

�zt

�0 � �Qy
�Qz

�Q0
z

�Q22

� �
�yt
�zt

�
+ �u0t

�R�ut + 2

�
�yt
�zt

�0 � �Wy

�Wz

�
�ut
	
; (B:15)

subject to

�yt+1 = �Ay�yt + �Az�zt + �By�ut + C �wt+1:

Equilibrium conditions are imposed in the form of a set of linear equations

�zt = ���yt + �	�ut:

In the notation of this subsection (which di�ers from that used in section 7 in the text), �yt
denotes the endogenous state variables a�ected by the representative agent, and �zt denotes

variables that the agent takes as beyond its control. To ease notation, we convert the

problem to one without cross-products or discounting. Let

yt = �
t=2�yt

zt = �
t=2�zt

ut = �
t=2�ut

wt = �
t=2 �wt

R = �R

Qy = �Qy � �Wy
�R�1 �W 0

y

Qz = �Qz � �Wy
�R�1 �W 0

z

Q22 = �Q22 � �Wz
�R�1 �W 0

z

58

Ay =
p
�(�Ay � �By

�R�1 �W 0

y)

Az =
p
�(�Az � �By

�R�1 �W 0

z)

By =
p
� �By

� = (I + �	 �R�1 �W 0

z)
�1(��� �	 �R�1 �W 0

y)

	 = (I + �	 �R�1 �W 0

z)
�1 �	: (B:16)

With these de�nitions, we can restate the optimization problem as follows

max
futg

1X
t=0

� � yt
zt

�0 �
Qy Qz

Q
0
z Q22

��
yt

zt

�0
+ u

0

tRut

	
; (B:17)

subject to

yt+1 = Ayyt +Azzt +Byut:

Let Â = Ay + Az�, Q̂ = Qy + Qz�, B̂ = By + Az	, and ~A = Ay � ByR
�1	0

Q
0
z. The

decision function in this case is given by

F =
�
R+B

0

yPB̂
��1

B
0

yPÂ; (B:18)

where P satis�es

P = Q̂+ ~A0PÂ� ~A0PB̂(R +B
0

yPB̂)
�1
B
0

yPÂ: (B:19)

The decision function for the original problem is given by

�F = (�R+ �W 0

z
�)�1(�RF + �W 0

y +
�W 0

z
��); (B:20)

and the equilibrium law of motion for �yt is

�yt+1 = Ao�yt; Ao = �Ay + �Az
��� �Az

�	 �F � �By
�F = �

�
1
2 (Â� B̂F): (B:21)

Therefore, the derivative of Ao with respect to a parameter � is given by

@Ao

@�
= �

�
1
2 (
@Â

@�
� @B̂

@�
F � B̂

@F

@�
): (B:22)

To calculate @Ao

@�
requires several steps. First, we need the derivatives of Â, B̂, and F with

respect to �:

@Â

@�
=
@Ay

@�
+
@Az

@�
�+Az

@�

@�
(B:23)

@B̂

@�
=
@By

@�
+
@Az

@�
	+Az

@	

@�
(B:24)

@F

@�
= ��R+B

0

yPBy +B
0

yPAz	
��1�@R

@�
+
@By

@�

0

PBy

+B
0

y

@P

@�
By +B

0

yP
@By

@�
+
@By

@�

0

PAz	

+B
0

y

@P

@�
Az	+B

0

yP
@Az

@�
	+B

0

yPAz

@	

@�

�
F

+
�
R+B

0

yPBy +B
0

yPAz	
��1�@By

@�

0

PAy +B
0

y

@P

@�
Ay +B

0

yP
@Ay

@�

+
@By

@�

0

PAz�+B
0

y

@P

@�
Az�+B

0

yP
@Az

@�
�+B

0

yPAz

@�

@�

�

=
�
R+B

0

yPB̂
��1��@R

@�
F +

@By

@�

0

P (Â� B̂F)

+B
0

y

@P

@�
(Â� B̂F) +B

0

yP (
@Ay

@�
� @By

@�
F)

+B
0

yP
@Az

@�
(��	F) +B

0

yPAz(
@�

@�
� @	

@�
F)
�
: (B:25)

59

Note that these derivatives are functions of of @R
@�
,
@By

@�
,
@Ay

@�
, @Az

@�
, @�
@�
, @	
@�
, and @P

@�
. The

derivative of R is given since R = �R. The derivatives for By, Ay, Az, �, and 	 follow from

their de�nitions above, e.g.,

@By

@�
=
p
�
@ �By

@�
; (B:26)

@Ay

@�
=
p
�(
@ �Ay

@�
� @ �By

@�

�R�1 �W 0

y +
�By

�R�1 @
�R

@�

�R�1 �W 0

y � �By
�R�1 @

�Wy

@�

0

); (B:27)

@Az

@�
=
p
�(
@ �Az

@�
� @ �By

@�

�R�1 �W 0

z +
�By

�R�1 @
�R

@�

�R�1 �W 0

z � �By
�R�1 @

�Wz

@�

0

); (B:28)

@�

@�
= �(I + �	 �R�1 �W 0

z)
�1
�@ �	
@�

�R�1 �W 0

z�� �	 �R�1@
�R

@�

�R�1 �W 0

z�

+ �	 �R�1 @
�Wz

@�

0

�� @ ��

@�
+
@ �	

@�

�R�1 �W 0

z � �	 �R�1@
�R

@�

�R�1 �W 0

z

+ �	 �R�1 @
�Wz

@�

0�
; (B:29)

@	

@�
= �(I + �	 �R�1 �W 0

z)
�1
�@ �	
@�

�R�1 �W 0

z	� �	 �R�1@
�R

@�

�R�1 �W 0

z	

+ �	 �R�1 @
�Wz

@�

0

	� @ �	

@�

�
: (B:30)

The derivative for P is given by

@P

@�
=
p
� ~A0o

@P

@�
Ao +

@Q̂

@�
+
p
�
�@ ~A
@�

0

� ~F 0
@By

@�

�
PAo

+ ~A0oP
�@Â
@�

� @B̂

@�
F
�
+ ~F 0

@R

@�
F; (B:31)

where ~F = (R+B
0
yPB̂)

�1
B̂P

0 ~A, ~Ao = ~A�By
~F , and

@Q̂

@�
=
@Qy

@�
+
@Qz

@�
�+Qz

@�

@�
(B:32)

@ ~A

@�
=
@Ay

@�
� @By

@�
R
�1	0

Q
0

z +ByR
�1 @R

@�
R
�1	0

Q
0

z

�ByR
�1 @	

@�

0

Q
0

z �ByR
�1	0

@Qz

@�

0

: (B:33)

The last two derivatives needed are
@Qy

@�
and @Qz

@�
:

@Qy

@�
=
@ �Qy

@�
� @ �Wy

@�

�R�1 �W 0

y +
�Wy

�R�1 @
�R

@�

�R�1 �W 0

y � �Wy
�R�1@

�Wy

@�

0

; (B:34)

@Qz

@�
=
@ �Qz

@�
� @ �Wy

@�

�R�1 �W 0

z +
�Wy

�R�1 @
�R

@�

�R�1 �W 0

z � �Wy
�R�1@

�Wz

@�

0

: (B:35)

We now have everything that we need to compute the derivatives of the matrices in the

decision rule and the law of motion for the state vector. To avoid iterating on Eq. (B:31)

for @P
@�
, we instead take the gradient, e.g.,

r�P = (I �
p
�A

0

o
 ~A0o)
�1
�r�Q̂+ (I
 ~A0oP

0)r�Â

+
p
�(A0oP

0
 I)r� ~A0 � (F 0
 ~A0oP
0)r�B̂

�
p
�(A0oP

0
 ~F 0)r�B0

y + (F 0
 ~F 0)r�R: (B:36)

60

Thus the gradient of F is given by

r�F = (I
RB0

yP)r�Ay +
�
(��	F 0)
RB0

yP
�r�Az

� (F 0
RB0

yP)r�By +
p
�(A0oP

0
R)r�B0

y

+
p
�(A0o
RB0

y)r�P � (F 0
R0)r�R
+ (I
RB0

yPAz)r��� (F 0
RB0

yPAz)r�	; (B:37)

where R = (R+B0
yPB̂)

�1. In terms of the computer code, we start with Eqs. (B:26)-(B:30)

and Eqs. (B:34)-(B:35), which relate the derivatives of the original problem to those of the

problem without discounting or cross-product terms. To compute the gradients of these

objects in terms of our inputs, we use the fact that vec(ABC) = (C 0
 A)vec(B) for any

matrices A, B, and C with the appropriate dimensions such that ABC exists. We next

compute the derivatives for Â, B̂, Q̂, and ~A which appear in Eqs. (B:23), (B:24), (B:32),

and (B:33). Finally, we compute r�P in Eq. (B:36), r�F in Eq. (B:37), and

r�Ao = �
�
1
2 (r�Â� (F 0
 I)r�B̂ � (I
 B̂)r�F):

61

15. References

Anderson, B.D.O (1978). `Second-order Convergent Algorithms for the Steady-

state Riccati Equation'. International Journal of Control, Vol. 28, pp.

295{306.

Anderson, B.D.O. and J.B. Moore (1979). Optimal Filtering. Englewood

Cli�s: Prentice Hall.

Anderson, E.W. (1995). `Computing Equilibria in Linear-Quadratic Dynamic

Games and Models with Distortions'. Mimeo. University of Chicago.

Ansley, C.F. and R. Kohn (1985). `Estimation, Filtering, and Smoothing in

State-Space Models with Incompletely Speci�ed Initial Conditions'. An-

nals of Statistics, Vol. 13, pp. 1286{1316.

Bai, Z. and J.W. Demmel (1993). `On Swapping Diagonal Blocks in Real

Schur Form'. Linear Algebra and its Applications, Vol. 186, pp. 73{95.

Bartels, R.H. and G.W. Stewart (1972). `Algorithm 432 Solution of the Ma-

trix Equation AX+XB = C'. Communications of the ACM, Vol. 15, pp.

820{826.

Becker, G.S. and K.M. Murphy (1988). `A Theory of Rational Addiction'.

Journal of Political Economy, Vol. 96, pp. 675{700.

Bierman, G.J. (1984). Computational Aspects of the Matrix Sign Function

Solution to the ARE. Proceedings 23rd IEEE Conference on Decision Con-

trol,. pp. 514{519.

Byers, R. (1987). `Solving the Algebraic Riccati Equation with the Matrix

Sign Function'. Linear Algebra and its Applications, Vol. 85, pp. 267{279.

Caines, P.E. (1988). Linear Stochastic Systems. New York: John Wiley &

Sons, Inc.

Caines, P.E. and D.Q. Mayne (1970). `On the Discrete Time Matrix Riccati

Equation of Optimal Control'. International Journal of Control, Vol. 12,

No. 5, pp. 785{794.

Caines, P.E. and D.Q. Mayne (1971). `Correspondence: \On the Discrete

Time Matrix Riccati Equation of Optimal Control-a Correction"'. Inter-

national Journal of Control, Vol. 14, No. 1, pp. 205{207.

Chan, S.W., G.C. Goodwin, and K.S. Sin (1984). `Convergence Properties

of the Riccati Di�erence Equation in Optimal Filtering of Nonstabilizable

Systems'. IEEE Transactions on Automatic Control, Vol. AC-29, No. 2,

pp. 110-118.

Denman, E.D. and A.N. Beavers (1976). `The Matrix Sign Function and

Computations in Systems'. Applications of Mathematical Computations,

Vol. 2, pp. 63{94.

Doan, T., R. Litterman, and C. Sims (1984). `Forecasting and Conditional

Projection Using Realistic Prior Distributions'. Econometric Reviews,

Vol. 3, No. 1, pp. 1{100.

Economic and Statistics Administration, and Bureau of the Census (1993).

The American Almanac 1993-1994. Austin: The Reference Press.

Flavin, M.A. (1981). `The Adjustment of Consumption to Changing Expec-

tations About Future Income'. Journal of Political Economy, Vol. 89,

975{1009.

Fletcher, R. (1987). Practical Methods of Optimization. New York: John

Wiley & Sons.

Gardiner, J.D. and A.J. Laub (1986). `A Generalization of the Matrix-Sign-

Function Solution for Algebraic Riccati Equations'. International Journal

of Control, Vol. 44, pp. 823{832.

62

Gardiner, J.D., M.R. Wette, A.J. Laub, J.J Amato, and C.B. Moler (1992).

`A FORTRAN-77 Software Package for Solving the Sylvester Matrix Equa-

tion AXB
T+CXD

T = E'. ACMTransactions on Mathematical Software,

Vol. 18, pp. 232{238.

Golub, G.H., S. Nash, and C. Van Loan (1979). `A Hessenberg-Schur Method

for the Matrix Problem AX+XB = C'. IEEE Transactions on Automatic

Control, Vol. AC-24, pp. 909{913.

Golub, G.H and C. Van Loan (1989). Matrix Computations. Baltimore:

Johns Hopkins University Press.

Golub, G.H. and J.H. Wilkinson (1976). `Ill-conditioned Eigensystems and

the Computation of the Jordan Canonical Form'. SIAM Review, Vol. 18,

pp. 578{619.

Gudmundsson, T., C. Kenney, and A.J. Laub (1992). `Scaling of the Discrete-

Time Algebraic Riccati Equation to Enhance Stability of the Schur Method'.

IEEE Transactions on Automatic Control, Vol. 37, pp. 513{518.

Hall, R.E. (1978). `Stochastic Implications of the Life Cycle-Permanent In-

come Hypothesis: Theory and Evidence'. Journal of Political Economy,

Vol. 86, 971{987.

Hamilton, James D. (1994). Time Series Analysis. Princeton, NJ: Princeton

University Press.

Hammarling, S.J. (1982). `Numerical Solution of the Stable Nonnegative

Lyapunov Equation'. IMA Journal of Numerical Analysis, Vol. 2, pp.

303{323.

Hansen, L.P. (1987). `Calculating Asset Prices in Three Exchange Economies'.

Advances in Econometrics, Fifth World Congress, Cambridge: Cambridge

University Press.

Hansen, L.P., J. Heaton, and T.J. Sargent (1991). `Faster Methods for Solv-

ing Continuous Time Recursive Linear Models of Dynamic Economies'.

Rational Expectations Econometrics, pp. 177{208.

Hansen, L.P. and T.J. Sargent (1994). `Recursive Linear Models of Dynamic

Economies'. Mimeo. University of Chicago.

Heaton, J. (1993). `The Interaction Between Time-Nonseparable Preferences

and Time Aggregation'. Econometrica, Vol. 61, No. 2, pp. 353{385.

Hitz, K.L. and B.D.O. Anderson (1972). `Iterative Method of Computing

the Limiting Solution of the Matrix Riccati Di�erential Equation'. Proc.

IEEE, Vol. 60, pp. 1402{1406.

K�agstr�om, B. and P. Poromaa (1994). `Computing Eigenspaces with Speci�ed

Eigenvalues of a Regular Matrix Pair (A;B) and Condition Estimation:

Theory, Algorithms and Software'. Mimeo. LAPACK Working Note 87.

Kashyap, R.L. (1970). `Maximum Likelihood Identi�cation of Stochastic Lin-

ear Systems'. IEEE Transactions on Automatic Control, Vol. AC-15, pp.

25{34.

Kenney, C.S., A.J. Laub, and P.M. Papadopoulos (1993). `A Newton-Squaring

Algorithm for Computing the Negative Invariant subspace of a Matrix'.

IEEE Transactions on Automatic Control, Vol. 38, pp. 1284{1289.

Kimura, M. (1988). `Convergence of the Doubling Algorithm for the Discrete-

Time Algebraic Riccati Equation'. Int. J. Systems Sci., Vol. 19, No. 5,

pp. 701{711.

Kimura, M. (1989). `Doubling Algorithm for Continuous-Time Algebraic Ric-

cati Equation'. Int. J. Systems Sci., Vol. 20, No. 2, pp. 191{202.

Kwakernaak, H. and R. Sivan (1972). Linear Optimal Control Systems. New

York: Wiley Interscience.

63

Kydland, F. and E.C. Prescott (1982). `Time to Build and Aggregate Fluc-

tuations'. Econometrica, Vol. 50, pp. 1345{1370.

Laub, A.J. (1979). `A Schur Method for Solving Algebraic Riccati Equations'.

IEEE Trans. Auto. Control, Vol. AC-24, pp. 913{921.

Laub, A.J. (1991). `Invariant Subspace Methods for the Numerical Solution

of Riccati Equations'. In S. Bittanti, A.J. Laub and J.C. Willems (eds.),

The Riccati Equation. Springer Verlag. pp. 163{196.

Lu, L. and W. Lin (1993). `An Iterative Algorithm for Solution of the

Discrete-Time Algebraic Riccati Equation'. Linear Algebra and Its Appli-

cations, Vol. 188, 189, pp. 465-488.

MacFarlane, A.G.J. (1963). `An Eigenvector Solution of the Optimal Linear

Regulator Problem'. J. Electron. Contr., Vol. 14, pp. 643{654.

McGrattan, E. (1994). `A Note on Computing Competitive Equilibria in

Linear Models'. Journal of Economic Dynamics and Control, Vol. 18, pp.

149{160.

McGrattan, E., R. Rogerson, and R. Wright (1995). `An EquilibriumModel of

the Business Cycle with Household Production and Fiscal Policy'. Mimeo.

Sta� Report 166, Federal Reserve Bank of Minneapolis.

Pappas, T., A.J. Laub, and N.R. Sandell, Jr. (1980). `On the Numerical Solu-

tion of the Discrete-Time Algebraic Riccati Equation'. IEEE Transactions

on Automatic Control, Vol. AC-25, No. 4, pp. 631{641.

Petkov, P. Jr., N.D. Christov, and M.M. Konstantinov (1991). Computational

Methods for Linear Control Systems. Englewood Cli�s: Prentice Hall.

Potter, J.E. (1966). `Matrix Quadratic Solutions'. SIAM J. Appl. Math.,

Vol. 14, pp. 496{501.

Roberts, J.D. (1980). `Linear Model Reduction and Solution of the Algebraic

Equation by Use of the Sign Function'. International Journal of Control,

Vol. 32, pp. 677-687. (reprint of Technical Report No. TR-13, CUED/B-

Control, Cambridge University, Engineering Department, 1971)

Rosen, S., K.M. Murphy, and J.A. Scheinkman (1994). `Cattle Cycles'. Jour-

nal of Political Economy, Vol. 102, No. 3, pp. 468{492.

Sargent, T.J. (1987). Macroeconomic Theory. 2nd ed. New York: Academic

Press.

Sims, C.A. (1980). `Macroeconomics and Reality'. Econometrica, Vol. 48,

No. 1, pp. 1{48.

Siow, A. (1984). `Occupational Choice Under Uncertainty'. Econometrica,

Vol. 52, No. 3, pp. 631{645.

Stewart, G.W. (1972). `On the Sensitivity of the Eigenvalue Problem Ax =

�Bx'. SIAM Journal Numer Anal, Vol. 9, pp. 669{668.

Stewart, G.W. (1976). `Algorithm 506 - HQR3 and EXCHNG: Subroutines

for Calculating and Ordering the Eigenvalues of a Real Upper Hessenberg

Matrix'. ACM Trans. Math Software, Vol. 2, pp. 275{280.

United States, Bureau of the Census (1975). Historical Statistics of the United

States, Colonial Times to 1970. Washington, D.C.: U.S. Department of

Commerce.

United States, Bureau of the Census (1989). Agricultural Statistics. Wash-

ington, D.C.: U.S. Department of Commerce.

Van Dooren, P. (1981). `A Generalized Eigenvalue Approach for Solving

Riccati Equations'. SIAM J. Sci. Stat. Comput., Vol. 2, pp. 121{135.

Van Dooren, P. (1982). `Algorithm 590-DSUBSP and EXCHQZ: FORTRAN

Subroutines for Computing Deating Subspaces with Speci�ed Spectrum'.

ACM Trans. Math. Software, Vol. 8, pp. 376{382.

64

Vaughan, D.R. (1970). `A Nonrecursive Algebraic Solution for the Discrete

Riccati Equation'. IEEE Transactions on Automatic Control, Vol. AC-15,

No. 5, pp. 597{599.

Wilson, D.A. and A. Kumar (1982). `Derivative Computations for the Log

Likelihood Function'. IEEE Transactions on Automatic Control, Vol. AC-

27, pp. 230{232.

Zadrozny, Peter (1988). `Analytic Derivatives for Estimation of Discrete-

Time, Linear Quadratic, Dynamic, Optimization Models'. Econometrica,

Vol. 56, pp. 467{472.

Zadrozny, P.A. (1989). `Analytic Derivatives for Estimation of Linear Dy-

namic Models'. Computers and Mathematics with Applications, Vol. 18:

pp. 539{553.

Zadrozny, P.A. (1992). `Errata to Analytic Derivatives for Estimation of

Linear Dynamic Models'. Computers and Mathematics with Applications,

Vol. 24: pp. 289{290.

65

