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1 Introduction

Statistical tools based on the generalized method of moments (GMM) procedures outlined
by Hansen (1982) are increasingly being used in the analysis of business cycles. (See, for
example, Backus, Gregory, and Zin 1989; Backus and Kehoe 1992; Backus, Kehoe, and
Kydland 1994; Braun 1994; Braun and Evans 1991,1995; Burnside, Eichenbaum, and Rebelo
1993; Cecchetti, Lam, and Mark 1993; Christiano and Eichenbaum 1992; den Haan 1995;
Fisher 1993; Marshall 1992; and Reynolds 1992.) For the most part, the theory available
for conducting inference with these tools is asymptotic. Recently, efforts have been made
to investigate the finite sample accuracy of the asymptotic theory. Much of this work has
focused on the sampling distribution of statistics used in the empirical analysis of asset pricing
and inventory investment models. Analyses in the context of studies of asset pricing theories
include Burnside (1991); Ferson and Foerster (1991); Kocherlakota (1990); Neely (1993);
and Tauchen (1986). West and Wilcox (1992) and Fuhrer, Moore, and Schuh (1993) conduct
finite sample studies of inference in the context of inventory investment models. Analyses of
the finite sample properties of instrumental variables estimation include Christiano (1989),
Ericsson (1991), and Nelson and Startz (1990).

This paper uses Monte Carlo methods to investigate the finite sample properties of statis-
tics often used in the analysis of business cycles. We are particularly interested in the finite
sample performance of GMM for conducting inference about correlations, standard devia-
tions, and relative standard deviations of data that have been filtered to induce covariance
stationarity. We focus on the two filters most often used in business cycle analysis: the first
difference filter and the Hodrick-Prescott (HP) filter. Statistics based on these filters provide
different information about the data because the filters emphasize different frequencies. We
also examine the finite sample properties of the GMM procedures implemented in Christiano
and Eichenbaum (1992) for testing the null hypothesis that a model’s implications for a set
of second moments correspond with the actual second moment properties of the data.

To calculate the asymptotic standard errors using GMM, one needs to estimate the
zero-frequency spectral density of a particular disturbance process. We estimate this using
the heteroskedasticity and autocorrelation consistent covariance matrix estimators (HAC)
described in Newey and West (1987,1994), Andrews (1991), and Andrews and Monahan
(1992). The estimators differ according to the choice of kernel, the bandwidth parameter,
and the order of prewhitening. One factor that distinguishes our investigation from previous
ones is our analysis of the HP filter. Our statistical environment (chosen for empirical
plausibility) has the property that the HP filter introduces a complicated serial correlation
pattern into the relevant GMM disturbance process. As is well known, persistence puts
zero-frequency spectral density estimators to a severe test.

We begin our analysis by investigating the coverage probabilities of confidence intervals
computed for various second moments. We first discuss these issues thoroughly in the context
of a univariate data generating mechanism (dgm) that has proved useful in the analysis of
several macroeconomic data series. The advantage of this dgm, aside from its empirical
plausibility, is that its simplicity enables one to develop intuition about the reasons that



alternative HAC estimators have different finite sample properties. We then analyze the finite
sample properties of these HAC estimators using artificial data generated by a multivariate
dgm, estimated by fitting a vector autoregression to the set of postwar U.S. macroeconomic
data typically analyzed in business cycle studies.

Next, we evaluate the finite sample properties of the chi-square test implemented in Chris-
tiano and Eichenbaum (1992) for testing the fit of an equilibrium business cycle model. The
test compares a model’s implications for second moments with the actual second moments
estimated in the data. The test takes into account the joint sampling uncertainty in model
parameter estimates and data second moments. Our Monte Carlo study is based on data
generated from the Long and Plosser (1982) model, the solution of which may be obtained
analytically.

The paper is organized as follows. The next section lays out the asymptotic sampling
theory that is relevant to our analysis. Section 3 discusses the different procedures to estimate
the spectral density at frequency zero. Section 4 describes the features of the HP filter that
are relevant to our analysis. Section 5 presents the analysis of inference about second moment
properties. Section 6 analyzes the finite sample properties of the test of an equilibrium model.
Finally, section 7 presents a summary of our main findings and concludes.

2 Generalized Method of Moments

In this section we discuss the use of GMM for the estimation of parameters and for testing
hypotheses. (For textbook treatments, see Davidson and MacKinnon 1993, Hamilton 1994,
and Ogaki 1992.) In the first subsection, we survey the relevant large sample theory. In the
second subsection we discuss hypothesis testing.

2.1 Large Sample Theory

Suppose we wish to estimate an n X 1 vector, 9°, of parameters. To do so using GMM, we
need to first identify an n X 1 vector, u;(%), which is a strictly stationary stochastic process
for each 1eR"™, and which has the property

Eut(¢o) = 07 (1)

where 1/° denotes the true values of the parameters of the underlying data generating mecha-
nism. (For other regularity conditions on u:(1)), see Hansen (1982).) We consider the exactly
identified case only, so that the dimensions of the GMM error, u;, and the parameter vector,
1), coincide. For an analysis of finite sample issues in the over-identified case, see Burnside
and Eichenbaum (1994). In the exactly identified case, the GMM estimator of °, denoted
QZT, is defined by

on(l) = 0,00(0) = 1 3, @)



where T denotes the sample size. According to Hansen (1982), 97 has the following asymp-
totic distribution:

VT(r—9°) ~ N(O,V), 3)
where
V =D'S(D)L. 4)
Here, D is given by 5
D=pPZB ), ), ©)

and / denotes transposition. Also, S is the (positive definite) spectral density at frequency
zero of u;(¢°), defined by

l==—co
and
= E uy(¥) w-1(¥)'- (7)
Since V is unknown, in practme it must be replaced by a consistent sample estimate,
Vir, which is based on replacing D and S in (4) by Dy and Sr. Here, Dy is computed by
replacing the expectation operator in (5) by the sample average operator and %° by 'z/)T
Also, ST is obtained by applying an estimator of the spectral density at frequency zero to
Ut (1/}T) Thus, in practice, inference is conducted based on

Vo = D750 (D)~ (8)

‘We discuss alternative estimators, St, in section 3.

2.2 Hypothesis Testing

To test a hypothesis about the i element of 1°,
asymptotically,

?, we can make use of the fact that,

wz T Ilpo
(Vier/T)

where {/)\,',T is the i*" element of {I;T and Vii,T is the i diagonal element of Vir.

We will also consider tests of joint hypotheses about the elements of ¢°. Let F be a
differentiable function which maps " into the m X 1 zero vector, 0. Then F(3¥°) = O,
represents m hypotheses, each of which potentially involves all elements of ¢°. To test the
null hypothesis, F(4°) = 0,,, we make use of the fact that, if indeed F(¢°) = O, then
asymptotically,

~ N(0,1), (9)

VI F($r) ~ N(Om, Vi), Vr = f@°)VF(¥°), (10)
where the m X m matrix f(1/°) is defined as follows:
N
1) =55 e
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In practice, Vrin (1021 which depends on unknown parameters, is estimated by replacing v°
with ’LﬁT and V with VTZ

Ver = f (@) Ve f (br)'- (11)
We base inference on the asymptotic result:
TF(r) Ver] ' F(r) ~ Xm- (12)

The popular ‘calibration’ procedure of Kydland and Prescott (1982) tests a restriction of
the form F'(3°) = Oy,. The procedure calculates the second moments implied by an economic
model at the estimated values of its parameters and compares these second moments with the
second moments observed in the data. Equation (12) constitutes a formal theory of inference
that can potentially be of assistance in making this comparison. It takes into account the
joint sampling uncertainty in the model parameter estimates and data second moments.

3 Estimation of a Spectral Density at Frequency Zero

This section discusses the computation of Sr, an estimator of the spectral density of u:(¥°)
at frequency zero. This object is central to econometric analyses using GMM. In section 2
we showed that in the exactly identified case, Sy is required for conducting hypothesis tests
on the parameters, 9. In the over-ldentlﬁed case not considered in this paper, Sr also plays
a role in computing the point estimates, 'ng (See Hansen 1982.) In our simulation analysis
we study five zero-frequency spectral dens1ty estimators, St, and these are described below.

It is useful for us to describe our estimators of S by reference to the following baseline class
of nonparametric estimators. (See den Haan and Levin 1994 for an analysis of parametric
estimators.)

T-1
St = Z &(5)C5, (13)
j=—T+1

where x(-) is a weighting function (kernel) to be discussed below and

Gz = F_ Z Ut(’ébfz‘) ’U:t—z(le) 1=0,..,T -1, (14)
t=l+1
where
Cl Cl l,l-—-—— —2 cae "‘T‘l‘l.

In (14), the scalar, n, is included as a finite sample correction. In the first subsection
below, we discuss a perturbation on the above estimator that was described by Andrews
and Monahan (1992) and involves ‘prewhitening’ 'u,t(zlzr_r) In the second two subsections, we
discuss aspects of the problem of choosing the kernel, .



3.1 Prewhitening

Andrews and Monahan (1992) propose and study a modification to the class of estimators
defined by (13), which involves prewhitening ut(z/)T) Their procedure is executed in three
steps. In the prewhitening step, compute 4; (@[zT), the fitted residual from the following 5"
order vector autoregression to uy(¥r):

welr) = 3° Ao (Br) + 8 (B), (15)

r=1

where 4} ('g’b\T) = ut(JT) when b = 0. The second step applies an estimator of the spectral
density at frequency zero to 4} (y7):

T-1

Sr= 3 ()G, (16)

j=—T+1

where 5’; is the j** autocovariance of i (¥r), computed using the analog of (14), and ()
is a real-valued kernel discussed below. Finally, the prewhitened estimator of S, §§1, is

$=(1- ZA SIS - 3 AN (17)
r=1
We define 5% = S5 = Sy when b = 0, where 57 is defined in (13). Andrews and Monahan
(1992) give no advice on the appropriate choice of 5. In their Monte Carlo studies, they
consider b =0 and b = 1, and we consider b =0, 1, 2.

3.2 Alternative Choices of the Kernel, &

We now discuss the choice of the kernel, (). Newey and West (1987) use the Bartlett
kernel, that is,

w) ==, o<l <1, st =018 151, (18)
with 0 = 1. We refer to (17) with the Bartlett kernel as the Bartlett estimator of S, with
bandwidth £ and prewhitening parameter b. An alternative kernel, proposed by Hansen and
Hodrick (1980) and White (1984), is (18) with § = 0. We refer to this as the unweighted,
truncated kernel. An advantage of the Bartlett kernel is that positive definiteness of S is
guaranteed, while this is not the case for the unweighted, truncated kernel. To accommodate
the latter observation, we define the unweighted, truncated estimator of S, with bandwidth &
and prewhitening parameter b, as one which uses the truncated kernel to compute ST in (17)
when S’T is positive definite and the Bartlett estimator otherwise. In the data generating
processes considered in this paper, we found that failure of positive definiteness occurs with
low probability. In particular, in all of our experiments involving artificial data sets of length
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120 observations, the frequency with which positive definiteness fails never exceeds 6% and
is typically closer to 1%. We also considered data sets of length 1000, and in these we never
encountered the problem.

We also consider the QS kernel proposed in Andrews (1991):
k() = kos(i/€); (19)

where . in(673/5)
sin(67z
s () = 12n222 | 67z/5

with kgg(0) = 1. Like the Bartlett kernel, this kernel guarantees a positive definite estimator
of S.

— cos(6mz/5) (20)

3.3 Automatic Bandwidth Selection

In this subsection, we describe data-based (‘automatic’) methods that select bandwidths for
the Bartlett and QS kernels. We denote a bandwidth that is selected as a function of the data
by &r. Andrews (1991) and Newey and West (1994) (Newey-West) each describe methods that
can be used to compute & for the Bartlett, QS, and other kernels. Although when n > 1,
their efficiency criterion guiding the selection of &r differs slightly, the primary difference
between Andrews and Newey-West lies in their strategies for exploiting the information in
the sample autocorrelation function to select a value for {&r. The Andrews procedure, as
implemented by Andrews and Monahan, assumes an AR(1) parametric structure for the
autocovariance function, which enables the analyst to select the truncation parameter based
on just the variance and first order autocovariance. By contrast, Newey and West do not
assume a parametric structure, and so their procedure must select the lag length based on a
longer list of autocorrelations.

Neither method is entirely automatic in the sense that it completely avoids selecting
parameters exogenously. In the case of the Andrews method, a time series model must be
selected for @ (1r). No automatic procedure is offered for doing this, though Andrews and
Monahan (1992) do recommend (on computational tractability grounds, it seems) the AR(1)
model. Similarly, the Newey-West method requires picking a bandwidth parameter (not &
itself!) exogenously, and in their work they use two arbitrarily chosen values for it.

For the kernels discussed in the previous subsection, consistency of ST, ie., plim ST = 5%,
is guaranteed if {& — oo as T — oo, with é7/TY? — 0. (See Andrews (1991) ) And.rews
and Newey-West select {£7} from this class to optimize asymptotic efficiency criteria. The
optimal choice of &7 is

&r = 1.1447[a(1)T)? (21)

for the Bartlett kernel and
¢r = 1.3221[a(2)T]V® (22)

for the QS kernel. (See Andrews and Newey-West and the references they cite.) In practice,
in (21)-(22), a(1) and «(2) must be replaced by sample estimates.
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Under regularity conditions satisfied here, Andrews and Newey and West show that
(21)-(22) with the o’s replaced by particular sample estimates also optimize their respective
efficiency criteria when the underlying parameters, 1, are unknown, and b = 0. (See Andrews
and Monahan (1992) for the b > 0 case, where Ay,.. ., A, must be estimated too.) We turn
now to a description of the details of the Andrews optimal bandwidth selection procedure
and the Newey-West optimal bandwidth selection procedure.

The Andrews Bandwidth Selection Procedure

Andrews proposes estimating the parameters of a time series model for 4} ('g[A)T) and pro-
vides formulas for estimating (1) and «(2) based on the parameter estimates. In practice,
Andrews and Monahan recommend fitting an AR(1) representation to the a*® component
of 4 (¢r), a = 1,...,n. Letting (Pa,@2) denote the associated first order autoregressive and
innovation variance parameters,

2274
ZZ:I waﬂ_“%i)gg(zlg‘w (23)
74

a(1) = ==
2a=1 W=

and o
n 4pto
o=1Ya(i—5,)8

a(2) = )
o’
EZ:]_ Wq (1—ﬁ¢)4

(24)

We follow Andrews and Monahan, who suggest setting w, = 1 for all a.
To summarize, the Andrews bandwidth selection procedure is implemented in the follow-
ing four steps:

1. Obtain a series, us(hr), and compute the fitted residuals, 4} (1br), in (15)if 6 > 1. If
b= 0, then ’&Z (’I/}T) = ’U,t(’l,[)T)

2. Fit scalar AR(1) representations to each of the n elements of @}(1)r). Denote the
resulting parameter estimates by (5,,52),a=1,...,n.

3. Select a set of weights, w,, a =1,...,n, and compute &(1), &(2) using (23)-(24).
4. Evaluate (21)-(22) with a(q) replaced by &(g), ¢ = 1,2.

We refer to the procedure for computing S% which uses the QS kernel and the above
bandwidth selection method as the Andrews (QS) estimator of S, with prewhitening param-
eter b. We refer to the procedure which uses the Bartlett kernel and the above bandwidth
selection method as the Andrews (Bartlett) estimator of S, with prewhitening parameter b.



The Newey-West Bandwidth Selection Procedure

Newey and West’s formulas for &(1) and &(2) are as follows:

R w’_ﬁ'(Q)w
&(q) = [m] , ¢=1,2, (25)
and they make w a vector of 1’s. Here,
i
F@ = 3 |5]°C;, 1 = B(T/100)*°. (26)

j=—1

Newey and West avoid making parametric assumptions about the time series representation
of at(v,Z'T). However, they must choose an exogenous bandwidth parameter, 8. They suggest
doing so by trying alternative values and ‘then exercising some judgment about sensitivity
of results’ (p.7). In practice, they work with values of 3 equal to 4 and 12. In our Monte
Carlo experiments we used § = 4. We found very little differences between setting 8 equal

to 4 or 9. To summarize, the Newey-West bandwidth selection procedure is implemented in
the following four steps:

1. Same as step 1 in the Andrews procedure.
2. Set B and compute F(®, g =0,1,2, using (26).
3. Select a set of weights, w, and compute &(g), ¢ = 1, 2, using (25).

4. Evaluate (21)-(22) with a(q) replaced by &(q), g = 1,2, and retain the integer value of
€r.

We refer to the procedure for computing S’r_}i which uses the Bartlett kernel and the above
bandwidth selection method as the Newey- West (Bartlett) estimator of S, with prewhitening
parameter b. For convenience, the various zero-frequency spectral estimators and their names
are summarized in Table 1.

4 The Hodrick~Prescott Filter

We consider two detrending methods: first differencing and applying the HP filter. We
briefly review properties of the HP filter which are relevant to our analysis.

Suppose we have a partial realization of length T, Y = [Y_1/241, ..., Y70|', of a stochastic
process, {Y;}. Application of the HP filter to this partial realization first involves computing

a T dimensional trend path, T = [T_1/241, . - -, Tr/2) , Wwhich minimizes
T/2 T/2-1
> G-m)P+r Y (ma—nm) — (-1 (27)
=—T/2+1 t=—T[2+2
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with A normally being set to 1600 with quarterly data. The detrended series is Y? =
[Y2r/a11s-- - > YFyol', where Y? = Y; — 7;. As pointed out in Prescott (1986), the solution to
this problem can be represented as follows:

Y= ArY, (28)

where Ar is a T X T matrix with elements that depend upon the values of A and T, but
not upon the data, Y. Thus, the weights in the HP filter, the rows of Az, are a function of
T. The weights are graphed in Figure la for T = 120 and A = 1600. The figure displays
the entries in rows 2, 10, 25, 60, 105, 110, and 118 of A;9. These are the filter weights for
Y2, t = —58,—-50,—35,0, 35, 50, and 58, respectively. The filter weights used to get Y are
essentially the HP filter weights for T' = co. The figure indicates that these weights extend
forward and backward in time a little over 25 periods. For this reason, the 25 and 95"
rows of Ajpp show some (slight) evidence of truncation. For observations on Y;¢ that are less
than 25 periods from the endpoints of the data set, the HP filter weights are significantly
different from their T' = oo values.

There is a simple representation of the HP filter weights for large T. As shown by King
and Rebelo (1993), manipulation of the first order conditions of the above optimization
problem shows that, as T — oo, ¥* — g(L)Y;, where, for A = 1600,

L12(1 — Ly?
(L)R(L)

g(L) = 0.7’794(1 5 , (L) =1—1.7771L + 0.7994L. (29)
This result provides the sense in which, for large T', the HP filter induces covariance station-
arity in processes that require up to fourth differencing to induce stationarity. (Examples
include processes that are integrated of order up to four.) In addition, the preceding discus-
sion suggests that for A = 1600 and finite T° > 40, HP filtered observations in the middle of a
data set virtually coincide with g(L)Y;, a covariance stationary process. These considerations
have lead researchers to conclude that the HP filter, as conventionally applied, is equivalent
to the application of g(L) to the data, together with a particular strategy for dealing with
endpoints. Baxter and King (1994) also discuss the endpoint issue, and they suggest dealing
with it by dropping observations at the beginning and the end of the data set. Although it
is beyond the scope of this paper to do so, it would be of interest to compare the sampling
properties of this strategy for dealing with endpoints with the conventional strategy.

In the introduction we drew attention to the fact that the HP and first difference filters
emphasize different frequencies. (See also Singleton 1988.) This is illustrated in Figure
1b, which shows how the first difference and g(L) filters scale the spectrum of a raw time
series. The horizontal axis reports w, which is frequencies divided by 7, and the vertical axis
reports the transfer function of the filter. Cycle periods are given by 2/w. Since business
cycle analysis is primarily concerned with quarterly data, we think of the period as being
one quarter. As is well known, the first difference filter amplifies the high (quarters 8 and
lower) frequency components of the data, while reducing the lower frequency components.
The HP filter resembles the high-pass filter also displayed in the figure, which eliminates
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cycles of period 32 quarters and greater and leaves shorter cycles untouched. The figure
reveals why some business cycle analysts prefer the HP filter. To them, using first difference
adjusted data to study business cycles is much like using seasonally adjusted data to study the
seasonal cycle. Business cycle frequencies are commonly associated with periods 8 through
32 quarters (i.e., w = 0.063 to 0.25), and the first difference filter dramatically reduces the
relative importance of these.

At the same time, there are reasons that some researchers prefer to work with the first
difference filter. For example, for some researchers the variable of interest may be defined
in terms of the first difference filter because, say, they are interested in the growth rate of
GDP, or inflation, rather than the levels of these variables. In this paper, we simply take it
as given that, for a variety of reasons, some researchers work with the HP filter and others
with the first difference filter. Our task here is to provide information on the small sample
distribution of various statistics computed based on these two filters.

5 Inference About Second Moments

Our Monte Carlo experimental design is motivated by a desire to provide evidence on the
finite sample properties of statistics commonly used in the analysis of business cycles. There-
fore, it is important to us that (i) we study statistics that are actually in use, and (ii) we
employ empirically plausible data generating mechanisms for our experiments. The first
subsection below uses a univariate data generating mechanism often used in the analysis of
macroeconomic data. An advantage of using this model is that its simplicity allows us to
gain intuition into the basic results. In the context of this data generating mechanism, we
study the finite sample performance of a standard deviation estimator. We then proceed
to analyze a multivariate data generating mechanism, obtained by fitting a four variable
vector autoregression to the main macroeconomic data series: consumption, employment,
output, and investment. Here, we analyze the finite sample properties of 23 second moments
commonly studied in the analysis of business cycles. The insights obtained in the univari-
ate environment provide intuition into the qualitatively similar results that we get in our
multivariate setting.

5.1 A Univariate DGM
We suppose the data, z;, are generated by

Ty = T3 + U, (30)

where

Vg = plg—1 + 0&¢, €~ N(O, 1),1; = —T/2 + 1, ...,T/2,

| p|< 1 and o > 0. This data generating mechanism has two advantages. First, its simplicity
is helpful for diagnosing our results. Second, it is a plausible representation for several U.S.
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time series. (Christiano 1992 argues that this is a good representation for log GNP. Cooley
and Hansen 1989 and den Haan 1995 use this to model money growth.)

We consider the problem of estimating the standard deviation of detrended z;, 2¢. Con-
sequently, our parameter vector 9 is composed of a single element (i.e., ¥° = [E(z¢)?]/2, and
n = 1.) It is readily confirmed that, when z¢ is obtained by first differencing, the following
specification of u;(1)) satisfies the conditions discussed in the previous section:

w(¥) = (1) — (). (31)
Note that we commit a slight abuse of notation here, because the value of ¢ depends of
course on the method of detrending. The value of 9° is unambiguous for the case of first

differenced data. However, this is not so when data have been HP filtered. We confront this
first, before reporting the results of our Monte Carlo experiments.

5.1.1 The Standard Deviation of HP Filtered Data

When z¢ is obtained by HP filtering z;, (31) does not exactly satisfy the conditions in
sections 2 and 3. Endpoint effects associated with the filter have the implication that z¢
and, hence, u;(1)) are not strictly stationary. To quantify this, we computed 9 = [E(z)?]%/2
for t = —T/2+1,...,T/2 and T = 120. For comparison, we also computed 0 = [E($)2]V/2
fort =-T/2+1,...,T/2 and T = 120, where Z§ = g(L)z;. We refer to g(L) as the infeasible
HP filter, since it requires having an infinite number (actually, 25 or so will do) of data
points prior to the first observation and after the last observation in the data set. By
contrast, the feasible HP filter requires only the available data. We computed ¢ and 'gl;?
using a Monte Carlo analysis with 100,000 replications, in which p = 0.4 and o = 0.01. For
the experiments with the feasible HP filter, each replication is composed of 220 observations,
with the starting value of z; set to zero and the first 100 observations discarded in order to
randomize initial conditions. The feasible HP filter was then computed using the remaining
120 observations. For the experiments related to the infeasible HP filter, 600 observations
were generated per replication, with the first 100 deleted from the analysis to randomize
initial conditions. To approximate the infeasible HP filter, we applied the feasible HP filter
with Asg to the remaining observations and then kept the middle 120 observations for
analysis. These calculations produced %}, and z¢; for ¢ = —59, ...,60, and ¢ = 1, ..., 100, 000:

0 1 100,000 gl 7o 1 100,000 e
Q/)t = [100’ 000 ; (mt,i) ]27 wt = [W g (mt,i ]27

for £ = -59, ...,60.

These objects are graphed in Figure lc. In addition, we display Plimy_, 'J)T, which is
0.01877 and was computed by inverse-Fourier transforming the spectrum of g(L)z;. Note
the substantial variation in ¢? at the beginning and at the end of the data set, revealing
that (z2)? is not stationary in the mean. (See Baxter and King 1994 for a similar result
using a different data generating mechanism.) By contrast, in the middle 60 observations 39
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is roughly constant and equal to 7,52 , Which in turn essentially coincides with Plimp_, e tr-.
These findings are consistent with the observations about the nature of the HP filter made
in the previous section.

The endpoint effects in z¢ present a problem for us. The asymptotic theory requires
that 9° in the numerator of (9) be the standard deviation of z. But there is no such
number, independent of ¢. There are at least three options. The first is to equate in ¥° with
¥ = [E(2$)?)"/? for observations in the middle of an HP filtered data set. A feature of this
option is that it overstates the degree of variation in 7. For example, the mean value of ¢
for all values of ¢ is 0.01813. A second option is to equate ° with E1r, which is 0.01793 for
T = 120. (This was approximated by averaging over 1000 Monte Carlo replications of v,ZT)
The discussion in the previous paragraph suggests that these two options are asymptotically
equivalent. For example, when T' = 1000, E+r = 0.01864, which is nearly equivalent to
Plimp_,o tr. The third option is to throw away the first and last 25 observations. We
did not implement this option because we are interested in implementing the HP filter as
it is used in practice. We decided to go with the second option for two reasons. First, this
way of selecting 1)° seems closest in spirit to equating ¥° with the ‘“true’ standard deviation
of z¢. Second, this choice is conservative from the point of view of the conclusions of our
analysis. We will show that asymptotic theory does not work well in finite samples. Evidence
presented below suggests that, had we pursued the first option, it would have worked even
worse. For the sake of comparability, we treat 1/° in the case of the first difference filter
analogously.

5.1.2 Results Based on No Prewhitening

Our results for the case b = 0 can be summarized as follows. We show that there is substan-
tial distortion — in terms of fat tails and skewness — in estimated confidence intervals for
the standard deviation of z§. This reflects two features of the sampling distribution of Vi: it
is biased downward and covaries positively with 1. The former is the principal reason for
the fat tails, while the latter accounts for skewness. The downward bias in Vi principally
reflects the persistence in u(%), particularly when the data have been HP filtered. Persis-
tence leads to distortions in part by requiring a large lag bandwidth, which the methods we
implement tend to underestimate, accounting in part for the downward bias in Vi Finally,
the performance of our various estimators is very similar.

These results reflect six observations, based principally on an examination of the b = 0,
p = 04, 0 = 0.01 case. For money and GNP growth, this value of p is the empirically
relevant one. First, for both the HP and first difference filters, there is a substantial amount of
skewness in the {-statistic defined in equation (9) when b = 0 and the number of observations,
T, is 120. (See Table 2a, top panel.) For each variance estimator, the frequency of the
associated t-statistic being in the nominal lower 5% tail is around 19% in the case of the HP
filter and around 10% in the first difference case. We examined the impact on our results
of identifying 1° with Plimir rather than with Etjr, and consistent with the discussion
in section 5.1.1, we found that this exacerbates the skewness problem. For example, the
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BART(11) row in the top left panel of Table 2a becomes 26.0, 33.4, 9.3, and 6.0. Second,
when T = 120 there is also a substantial fat-tail problem in that the sum of the probabilities
of being in the top and bottom 5% tails substantially exceeds 10%, and similarly for the top
and bottom 10% tails. We also investigated the consequences of applying the infeasible HP
filter and found that our results regarding skewness and fat tails are essentially unaffected
by this change. This suggests that these problems do not reflect the endpoint features of the
HP filter.

Third, the finite sample distortions appear to reflect problems with Vir. This can be seen
by noting that there is almost no fat-tail or skewness problem in the row corresponding to
TRUE. This suggests that the distribution of the numerator in (9) is nearly normal and
indicates that the skewness and fat-tail problems arise almost entirely from the sampling
properties of V. Results in column I of Table 3a bear out this view, as it applies to skewness.
They show that the numerator and denominator of (9) are positively correlated. Thus, in
replications when the numerator in (9) is big, the ratio is not big since the denominator is
typically large too. Similarly, the impact on the ratio of a negative, but large in absolute
value, realization in the numerator is typically magnified by a small denominator. Results
in columns II and III of Table 3a identify problems in the sampling distribution of Vi which
may account for the fat-tail problem evident in Table 2. In particular, they show that when
b = 0, the GMM estimator, Vir, is biased downward.. Other things the same, this would be
expected to blow up tail areas.

Fourth, distortions appear to reflect the persistence in u;(1). The literature on small
sample properties of variance estimators notes that high temporal dependence can lead to
coverage probabilities for confidence intervals that are too low, i.e., that lead to excessive
rejections. (See Andrews 1991, Andrews and Monahan 1992, and Ericsson 1991.) The impact
of persistence on our results can be seen in two ways: by comparing results based on the HP
and first difference filters and by comparing results based on p = 0.4 and p = 0.1.

Distortions — in both long and short samples — appear to be substantially lower for
computations based on the first difference filter than for computations based on the HP
filter. And the HP filter leaves substantially more temporal dependence in z¢ than does the
first difference filter. One way to see this can be seen in the results in Figure 1d. That
figure displays four autocorrelation functions for u;(¢r), where u;(¢) is defined in (31).
Each autocorrelation function is based on 100,000 observations of artificial data generated
from (30) and is differentiated according to whether the data have been HP filtered or first
differenced and whether p = 0 or p = 0.4. The lowest two autocorrelation functions are
based on first difference filtering. The higher two are based on HP filtering. From our
perspective, the notable feature of this graph is how high and relatively insensitive to p the
autocorrelation of ut('gZT) is when the underlying data have been HP filtered. (For related
observations, see Cogley and Nason 1995.)

Another way to see that persistence accounts for the distortions we find is to compare
the results for p = 0.1 in Table 2b with those based on p = 0.4 in Table 2a. Note that, with
the drop in p, the coverage probabilities are somewhat closer to their nominal values in the
case of first differenced data, while there is less improvement with HP filtered data. This is
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consistent with the notion that persistence in z? is an important factor underlying the poor
small sample distribution of our test statistic. Recall from Figure 1d that a reduction in p
substantially reduces the persistence in z¢ when data have been first differenced, but not
when data have been HP filtered.

Fifth, high persistence produces a downward bias in Vi in part because our automatic
bandwidth selection procedures are themselves downward biased. To see this, we note first
that the relatively high persistence in u:(1)r) when data have been transformed by the HP
filter implies that a high bandwidth parameter is needed to estimate the zero-frequency
spectral density. Consider the results in Figures 2a and 2b. They graph S(£)/S against
values of the bandwidth parameter, { = 1,...,101. S(£) is (6) with the summation truncated
at [ = §, using the kernel indicated in the figure. These objects were computed using a
single realization of length 1000 generated from (30) with p = 0.4 and ¢ = 0.01. In these
calculations, b = 0 and S is approximated by S(101), computed using the unweighted,
truncated kernel (i.e., (18) with 6 = 0.) This normalization guarantees that all the curves
in Figure 2 eventually converge to unity. The curves marked ‘UNWEIGHTED’ correspond
to the kernel in (18) with § = 0. For the curves market ‘BARTLETT’ we set § = 1. The
curves marked ‘QS’ correspond to the case where the kernel is (20). Figures 2a and 2b report
results based on filtering data using the HP filter and the first difference filter, respectively.

Consistent with the findings in Figure 1d, Figures 2a and 2b suggest that it takes a much
higher value of £ to get a variance estimator to converge for data based on the HP filter
than for data based on the first difference filter. For example, in the case of ‘BARTLETT,’
the variance estimator has 90% converged for £ less than 6 when the data have been first
differenced, while a value of £ in excess of 31 is needed to get comparable convergence when
the data have been HP filtered.

The results in column I of Table 4 indicate that the automatic lag selection procedures
detect the need for a higher bandwidth when data have been HP filtered. The procedures
based on Andrews and Newey-West select average lag lengths of 10 and 5, respectively. The
reason the former selects 10 on average reflects its ‘strategy’ for guessing the lag of the last
significant autocorrelation: it extrapolates the first autocorrelation (0.75, in this case) and
assumes u:(%)) is AR(1). The Newey-West method with 8 = 4 and T = 120 guesses the
lag of the last significant autocorrelation by ‘looking’ at the first four autocorrelations. It is
then not surprising, based on inspection of Figure 1d, that the Newey-West method selects
a lag length of 5 and misses the ‘hump’ in the autocorrelation function at higher lags. The
results in Figure 2a suggest that, particularly for HP filtered data, the chosen bandwidths
are not large enough. As the figure indicates, with too small a bandwidth, one expects the
standard error estimate to be understated and tails to be blown up.

Sixth, results for the various procedures are all very similar. In this example, it makes
little difference how exactly the bandwidth or kernel is picked. For example, even though
the lag lengths picked by the Andrews and Newey-West methods are different, the results in
Figure 2a indicate that the implied estimates of S are not very different.

Finally, the skewness and fat-tail problems are reduced when the number of observations
is increased to 1000 (see the bottom half of Table 2a). This is to be expected, based on large

15



sample theory. But the reduction is surprisingly small, particularly for results based on the
HP filter.

5.1.3 Results Based on Prewhitening

Our results in this subsection can be summarized as follows. We show that first order
prewhitening has a beneficial impact on the fat-tail problem, but relatively less impact on the
skewness problem. The impact on the fat-tail problem reflects that first order prewhitening
reduces the downward bias in Vi that contributes to fat tails when b = 0. An important
objective of a project such as ours is to determine which of the several existing zero spectral
density estimators works best in our setting. And so we initially found it interesting that the
Andrews and Andrews and Monahan zero-frequency spectral density estimator appears to
outperform the Newey and West procedure when b = 1. However, it turns out that this result
does not actually indicate any inherent superiority in the former. These procedures have
a variety of potential sources of bias. In our application the results reflect that the former
procedure is driven by two sources of bias which tend to cancel, while only one of these
sources of bias is present in the Newey-West (NW) procedure. The two sources of bias are
(i) misspecification inherent in the relatively parametric Andrews and Andrews and Monahan
procedure which leads to an underestimate of the bandwidth and (ii) a bias affecting both
procedures which leads to an underestimate of S(£) for any given bandwidth, £. In contrast
with the no prewhitening case, consideration (i) by itself leads to an overestimate of V. This
is because first order prewhitening in our context induces high order negative autocorrelation
in the prewhitened u.(%), u} (). Finally, our results based on second order prewhitening are
somewhat discouraging, since they are essentially identical to the b = 0 results. Moreover,
we are not aware of any algorithm that would lead a researcher to select b = 1. We show
that the AIC criterion invariably leads to a selection of b = 2

These results reflect six observations, with the first five being based on b = 1. First, in
the cases when prewhitening does help, it does so mainly by alleviating the problem of fat
tails and does little to reduce the skewness problem. (Compare the b = 1 rows with the
b = 0 rows in Table 2a.) For example, when T' = 120 and data have been HP filtered, the
sum of the lower and upper 5% tail area probabilities is 28.0 for QS when b = 0 and falls
to 13.3 when b = 1. At the same time, the left tail area exceeds the right by 9.4% when
b = 0 and by 10.7 when b = 1. The favorable impact on the fat-tail problem of increasing
b is consistent with simulation results in Andrews and Monahan (1992). But they do not
analyze skewness. In our example we would clearly overstate the benefits of prewhitening
by abstracting from skewness.

Second, the beneficial impact on the fat-tail problem of first order prewhitening appears
to reflect a rise in the mean of V4. (See column III, Table 3a and 3b. ) This impact appears
to have been greatest for QS and BARTLETT, and not surprisingly, these also exhibit the
smallest fat-tail problem. (See Table 2a and 2b.)

Third, the differences between the automatic bandwidth selection methods are greatest
with b = 1. For b = 1, NW appears to perform worst, at least relative to the fat-tail problem.
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For example, the sum of the upper and lower 5% tail areas is equal to 21.8 for NW and to
13.7 and 13.3 for BARTLETT and QS, respectively. We argue that, ironically, the relatively
poor performance of NW reflects that it is distorted by fewer sources of bias. To see this, we
note first that selecting the bandwidth by the Newey-West procedure delivers about the same
results as the much simpler procedure of simply setting £ exogenously to 11. (Compare the
BART(11) and NW rows in the HP block of columns in Tables 2a and 2b.) This can be seen
in Table 4a, which shows (column I) that the mean value of {7 chosen by NW is roughly the
same as the bandwidth in the BART(11) procedure. In contrast, the BARTLETT procedure
selects a much lower {7 on average.

The reason that, in this example, Newey-West selects much higher &7’s on average than
does Andrews is instructive about the differences between these procedures. When b = 1,
it appears that the autocorrelation function of 4 is positive for the first few lags, after
which it turns sharply negative. This can be seen in Figure 3, which is the exact analog of
Figure 2a, for b = 1. Note the initial rise in ‘UNWEIGHTED,’ followed by a sharp fall, as
the bandwidth increases above £ = 3. To see the implications of this, recall that the two
methods select the bandwidth based on different strategies for extrapolating 4}. The AR(1)
version of the Andrews procedure used here looks at the lag 0 and 1 autocovariances of i}
and extrapolates based on this. When b = 1, Figure 3 shows that this extrapolation is very
misleading. The AR(1) assumption clearly entails specification error, since it completely
misses the oscillatory behavior of the actual autocovariance function. Since, in addition, the
first order autocorrelation is small, the Andrews procedure picks a small bandwidth. Newey-
West looks at more elements in the autocorrelation function, properly detects its complexity,
and therefore sets a much higher value of the bandwidth, on average.

The following simple example illustrates why, in our setting, first order prewhitening
causes the Andrews and Andrews and Monahan lag length selection procedure to understate
the bandwidth, while the Newey-West procedure gets it about right. Let u; = & + &1,
where &; is uncorrelated over time. The autocorrelation function of u;, which is relatively
high at lag one (p = 0.5) and then falls to 0.0, resembles qualitatively the autocorrelation
for HP filtered data exhibited in Figure 1d. The autocorrelation function of the first order
prewhitened process, u} = us—pus_1,1is pf =1/6, p5 = —1/3 and p; =0forj>3atlagsl,?2,
and higher, respectively. The Andrews procedure approximates this autocorrelation function
of u} using an AR(1) functional form and the relatively small p}. Substituting p} = 1/6 into
(23) yields a(1) = 0.12, or, for T' = 120, using (21), & = 2.77. The NW procedure, with
B =4, and T = 120 selects a(1) = 2.25 using (25), or, & = 7.40 using (21). This example
captures the reasons that the Andrews method picks a shorter lag length than Newey-West,
when b = 0. In that case, the Andrews method implies that a(1) = 1.7778 for T' = 120,
and, hence, {7 = 6.8. The Newey-West method implies that a(1) = 0.24, and & = 3.6.
It is interesting that the Newey and West method does not pick a monotonically declining
bandwidth as the order of prewhitening increases.

In view of the apparently superior performance of Newey-West over Andrews in selecting
the bandwidth, it is ironic that Newey-West nevertheless underperforms relative to Andrews
in our Monte Carlo results. The resolution appears to lie in the effects of finite sample
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bias. In particular, we have found that the mean of the finite sample analog of the curves
in Figure 3 lies considerably below those curves. (That is, letting Sr(€) denote an estimator
of S(¢), we found that ESr(£) < S(¢) for various values of £ and various kernels.) Given
the nature of the hump near the origin, methods which select a small bandwidth, in effect,
overcome this small sample bias. Thus, the superior performance of the AR(l) Andrews
procedure appears to reflect the offsetting effect of specification error on bias. The Newey-
West procedure does relatively poorly because it also suffers from bias, but does not enjoy
the compensating effects of specification error. Clearly, this result is specific to the data
generating mechanism we have assumed. Still, it illustrates the kind of factors that impact
on the small sample performance of alternative zero-frequency spectral density estimators.

Fourth, consider the effects of second order prewhitening, i.e., & = 2. Andrews and
Monshan (1992) and Newey and West (1994) do not consider this case, but they give no
motivation for only considering first order prewhitening. (For a further analysis, see den Haan
and Levin 1994.) We had expected second order prewhitening to improve the performance
of our test statistic, given the complex behavior of the autocorrelation function when b = 1.
Also, with an AIC selection criterion the AR(2) was chosen 939 times out of 1000 data
over an AR(1) to model u;(¢r), for the case with p = 0.4, HP filtered data and T = 120.
To our surprise, performance actually deteriorated and closely resembles the b = 0 case.
Presumably, this reflects that, as in the b = 0 case, specification error (i-e., choosing too low
a value of &7 - see Figure 4) and bias (for any fT, Sr(&r) underestimates 5(€)) both work
in the same direction, towards underestimating V. This accounts for the reappearance of the
fat-tail problem when b = 2.

5.2 A Multivariate DGM

We estimated a data generating mechanism for log consumption, c;, log GNP, y;, log gross
investment, %, and log hours, n;. For this, we use the quarterly postwar U.S. data described
in Christiano (1988). We impose that c;,y:,%; are each integrated of order 1 and that y; —
Ct, Ys — 14, ¢ are each covariance stationary. Define

Ayt .
V,= | BTG | 32
¢ Yt — U ( )
Ty

We estimated a VAR for Y; for the period 1957:1-1984:1, and used this to simulate 500
artificial data sets, each of length 115 observations. We did this in two ways: one by
a Monte Carlo procedure of drawing the disturbances from the normal distribution with
variance estimated from the data (the rows marked ‘N’ in Tables 5a and 5b) and the other
by bootstrapping the actual fitted residuals (the rows marked ‘B’ in Tables 5a and 5b). We
implement these two procedures as a check on the robustness of our results.

In each artificial data set, we computed (9) for 23 statistics. For each statistic, we recorded
the frequency of times, across data sets, that (9) was less than the nominal 5% critical value
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and the frequency of times that (9) exceeded the 95% critical value. Our 23 statistics are
standard in the business cycle literature. They include oy, oc/0y, 0:/0y, On/Ty, Ow /oy,
Ow/0n, Where o, denotes the standard deviation of the detrended variable z = Y,C, %, N, W
and w denotes labor productivity, that is, w = y—n. In addition, they include 17 correlations:
Pyz(T), T = —1,0,1, for z = ¢,i,n,w; pyy(7),7 = —1,1; and pyn(7), T = —1,0, 1. Our analysis
was done for each of the two detrending methods. The results are similar to what we found
in the univariate analysis in the previous section.

Consider Table 5a, which reports findings for o,,. Standard error estimates, \/V—ip, were
based on three measures of the zero-frequency spectral density: BART(11), BARTLETT,
and NW. Recall that the choice of kernel for all three procedures is the Bartlett kernel, but
that the choice of bandwidth differs across these three estimators. There are three results
we would like to emphasize. First, results are very similar for the experiments with Normal
and with bootstrapped errors. Second, for both detrending methods there is a skewness
and fat-tail problem when the data have not been prewhitened. The problem is less severe
for data that have been first differenced. These findings closely resemble those reported for
the analysis in the previous section. If anything, the skewness and fat-tail problem is more
severe here. Third, when detrending is by HP filter, prewhitening helps the fat-tail problem
a great deal, but has little impact on the skewness problem. For example, the average of the
left and right tail areas is 16.6 for BART(11) when there is no prewhitening and 5.6 when
there is first order prewhitening. The latter is very close to the asymptotically correct value
of 5.0. At the same time, the difference between the left and right tail areas is 10.0 in each
case. Prewhitening helps little when the underlying data have been first differenced. Here,
too, the results closely resemble what we found in the previous subsection.

Table 5b contains a summary of the findings for the other statistics. The full set of
results, available on request, are too numerous to reproduce here. In any case, the message
from these results is fairly simple and corresponds closely to our findings in the previous
subsection.

The left panel of Table 5b reports results based on HP filtering the data, while the right
panel is based on first differencing. The columns labelled ‘I’ report the absolute deviation
from 10% of the sum of the two tail areas, averaged over all 23 statistics. This average does
not indicate the typical sign of the deviation, and so we also present columns labelled ‘II,’
which indicate the number of times, out of 23, that the deviation was positive. A positive
deviation indicates a ‘fat-tail’ problem. Columns labelled ‘III’ report the absolute value of
the difference between the left and right tail areas, averaged over the 23 statistics. This
is a measure of skewness, although the absolute value operator destroys information about
whether the skewness is to the left or right. Columns labelled ‘IV’ provide information on
that, by reporting the number of times that the skewness is to the left, i.e., the number of
times that the deviation is positive.

Consider columns I and II. With no prewhitening (b = 0) almost all statistics display a
substantial fat-tail problem, which averages from about 14 to 20%, depending upon the exact
statistical procedure used. The problem is considerably less severe when data have been first
differenced, although it is still substantial, being on the order of from 5 to 10%. Here, as
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in the example in the previous subsection, prewhitening reduces the fat-tail problem by a
substantial amount when the underlying data have been HP filtered and very little when the
data have been first differenced.

Columns labelled III and IV indicate that, with no prewhitening, there is a skewness
problem on the order of from 4 to 7% for results based on HP filtered data. The problem
is less severe when the data have been first differenced. Here, as in the previous subsection,
prewhitening has little impact on the skewness problem. Column IV indicates that there is
little consistency among the underlying results on the direction of skewness. In fact, some
statistics do not suffer from a skewness problem.

A subset of the results are represented in Figure 5. For each statistic, for BARTLETT
and NW, and for b=0, 1 we display the probability of a statistic exceeding the 95% (height
of gray bar) critical value and of being less than the 5% (black bar) critical value. Results are
reported for each of our 23 statistics, and the numbering code for these statistics (#1-#23) is
explained in the note to the figure. Also, the normal distribution was used in simulating the
dgm. The fact that there is no pattern in the direction of skewness is evident. In addition,
the beneficial impact on the fat-tail problem of raising b from 0 to 1 is also evident.

Finally, whether we use the bootstrap or Normal distribution in simulating our dgm
makes little difference to the results. This is consistent with the underlying asymptotic
theory.

6 A Wald-Test Example

In this section we study the finite sample properties of the Wald-type statistics proposed by
Christiano and Eichenbaum (1992) for testing the null hypothesis that a model’s implications
for the second moment properties of a set of variables coincide with the second moment
properties of those variables in the data. We pursue this in a simple example.

This Wald test provides a statistic to evaluate a model’s goodness of fit and overcomes
an important weakness of the ‘calibration’ approach. The ‘calibration’ approach consists of
two steps. In the first step the model’s structural parameters, 97, and some data second
moments, 105, are estimated. The economic model implies a relation between the structural
parameters and the second moments. We denote this relation by 1, = g(¢1), or F() = 0.
The second step consists of comparing the estimated second moments, 1, 7, with the ones
implied by the economic model, g(# 7). Singleton (1988) points out that a disadvantage of
the ‘calibration’ approach is that the metric of evaluating the difference between 7:1;2,2" and
g(?fl,T) is not made explicit. In section 2, we showed how standard asymptotic theory can
be used to construct a formal metric of the difference between the two sets of moments.

An alternative estimation and testing strategy imposes' the restriction F'(y) = 0 during
estimation. For example, the vector 9 could be estimated by designating ; as the free
parameters and setting s = g(¢1). This estimation strategy would typically require the
use of a nonlinear search algorithm to optimize the estimation criterion, and this would
typically involve evaluating g(1/1) hundreds, perhaps thousands, of times. A difficulty with
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this strategy is that for many interesting models, it is computationally costly to calculate
9(11) for a particular value of %;. An advantage of the Wald procedure studied here is
that it involves estimating 1 without imposing the restrictions of the model. Then, for
testing purposes, all that is required is the derivative of g(-), and numerical procedures to
approximate this only require evaluating g(3/;) a small number of times.

6.1 The Brock-Mirman Model

We use the Brock-Mirman version of the neoclassical growth model, which has log-utility
and complete depreciation. As demonstrated in Long and Plosser (1982), this model has the
advantage that its analytic solution is known. The finite sample properties of test statistics
are, therefore, not affected by approximation error in the model solution. Den Haan and
Marcet (1994) show that small numerical errors can be important for the distribution of the
test statistics. More complicated examples are analyzed in Burnside (1991) and Burnside
and Eichenbaum (1994).

According to the model, a planner selects contingent plans for consumption, c;, and
capital, k¢y1, to maximize Eg 320, 8% log(c;) subject to the resource constraint, c; + keyy =
kg exp(2:); the exogenous technology shock process, Az = pAz;_1 +0€;; and the given initial
conditions, ko > 0, 20, z_1. Here, 8 =0.99,0 = 0.01, o = 0.3, and &; ~ N(0,1). We consider
two different values for p. These are p = 0.1 and p = 0.5. As is well known, the contingency
plan that solves this problem is ki3 = afy;, where ¥, is output and y; = kg exp(2;). Some
simple algebra shows that Alog k. is an AR(2) with parameters equal to a+p and —ap. If
p = 0.1, then the law of motion for Alogk:, is not very different from the simple example
discussed in section 5.1. If p = 0.5, then the law of motion for Alogk:y; is much more
persistent.

6.2 The Wald Test

We simulated 1000 artificial data sets for this economy, of length 120, 1000, and 5000 ob-
servations each. We performed two different experiments. To simplify the Monte Carlo
exercise we only estimate one model parameter, o or p, and estimate one second moment,
the standard deviation of detrended capital. In the first experiment we take the values of
the structural parameters p, 8, and « as given and the value of ¢ as unknown. In the second
experiment we take the values of o, B, and o as given and the value of p as unknown. We
now describe the first experiment.
In each data set, we estimated a 2 X 1 vector, 1, where

~(2)-(2)

or = [B(f)"]"/? (34)

and
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and z§ denotes detrended log(k;). As before, z¥ is alternatively the first difference of log(k;)
or HP filtered log(k:). We specified the following 2 x 1 GMM error vector:

_ (Azt - PAzt—1)2 - (1/’1)2
'U,t(":b) - ( (a:;i)z _ (¢2)2 ) . (35)

It is easily established that, when detrending is accomplished by first differencing, Fu;(4°) =
0 and u; satisfies the other conditions in section 2. As before, under HP filtering, u;(1)) does
not satisfy the conditions of section 2 exactly, due to the influence of endpoint effects in
the application of the HP filter. However, we proceed as though the asymptotic results in
section 2 are valid anyway.

Given a value of o and of the other model parameters, it is possible to compute the
model’s implied variance of zf. Denote this by g(11). In the case of the HP filter, g(-) is
obtained by first applying the inverse-Fourier transform to the spectral density of the HP
filtered series and then taking the square root of the result. When the data are detrended
by first differencing, then z¢ is an AR(2) and we can calculate g(-) analytically. Then

F(y°) = (¥5)" — g(¥1) = 0. (36)

We computed F (JT) in the artificial data and compared the small sample distribution of
the test statistic in (12) with the chi-square distribution with one degree of freedom. We
will refer to this experiment as experiment 1. In experiment 2, the value of o is considered
known and the value p is estimated. Here equation (35) is replaced by

_ [ (Az—1Az1)Az_1 — (0)?
Ut(¢) = ( (m;l)z _ (¢2)2 ) . (37)
The simple nature of this example prevents us from estimating ¢ and p simultaneously and
still have a meaningful Wald test. It is not hard to show that in that case the variance of
F(ir) would be singular.

The results for experiments 1 and 2 are presented in Tables 6 and 7, respectively. In
section 5.1, we found that results are not very sensitive to whether the Bartlett or quadratic
spectral (QS) kernel is used. As a result, we only report results based on the Bartlett kernel
in this section. We used the Andrews and Newey-West methods to calculate the optimal
bandwidth. Consistent with the notation in section 5, here we refer to the variance estimators
(VT) based on the first and second procedure as BARTLETT and NW, respectively (see Table
1). The structure of Tables 6 and 7 is similar to that of Tables 3a and 3b in section 5. The
first two columns indicate the frequency of times that the test statistic is less than the 5%
and 10% critical values of the x2-distribution, respectively. The third and fourth columns
indicate the frequency of times that the test statistic is greater than the 90% and 95% critical
values. The fifth column contains the average value of the selected optimal bandwidth, &r.

6.2.1 Experiment 1: Innovation Variance Estimated

Our results are generally consistent with the findings of section 5. Five observations are
worth emphasizing. First, small sample coverage probabilities are closer to their asymptotic
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values when there is little persistence, i.e., p = 0.1, than when p = 0.5. Also, as in section 5,
the coverage probabilities are closer to their nominal values when data have been filtered by
first differencing, rather than when they are HP filtered. In fact, the results are surprisingly
good for the first difference filter, even with 7" = 120. For this reason, to save space we only
report the results based on BARTLETT for the first difference filter.

Second, we found substantial skewness in the distribution of our test statistic. Moreover,
this skewness primarily reflects a rightward shift relative to the chi-square distribution. This
is a problem because in practice one is only interested in one-sided tests.

The third observation is that first order prewhitening increases the values of ?F,T, es-
pecially at low values of the bandwidth. This helps reduce the fat-tail problem. In this
experiment, first order prewhitening also helps to reduce the skewness problem. Here, as in
the example in section 5.1, second order prewhitening does not help. Although first order
prewhitening helps, it only does so very little when data are HP filtered. The frequency of
falsely rejecting the null hypothesis at the 5 or 10% levels is around twice what it should
be in a sample of size 120. Fourth, as in the section 5.1 example, first order prewhitening
has a bigger effect on the fat tail with BARTLETT than with NW. Fifth, as expected, the

asymptotic theory is validated when the number of observations becomes large.

6.2.2 Experiment 2: Autocorrelation Estimated

The results of experiment 2, reported in Tables 7a and 7b, are similar to those of exper-
iment 1. Here, too, NW exhibits fatter tails relative to BARTLETT when there is first
order prewhitening. For example, in Table 7a (T" = 120), the sum of the two 5% tail area
probabilities is 17.5 percent for NW versus 11.3 for BARTLETT.

The reason for the poor performance of NW relative to BARTLETT when there is first
order prewhitening appears to reflect that there are offsetting biases in the latter, as in the
Monte Carlo analysis in section 5.1. To see this, consider first Figure 6. This figure exhibits
V70,000 @s a function of the bandwidth used in the underlying zero-frequency spectral density
calculation. Note how first order prewhitening leads to values of Vi 70,000 that are very high
at low values of the bandwidth. For example, with the Bartlett kernel and first order
prewhitening, a bandwidth of around 3 results in V= being overestimated by a factor of
around 2.8. In addition, in results not reported here, we find that estimates of Vgt are
downward biased for every fixed bandwidth.

For reasons like those reported in section 5.1, the Andrews optimal bandwidth selection
method computes a low value for the bandwidth (see Tables 7a and b). In a large sample,
this would lead to an upward bias in VF,T. However, when T' = 120, the upward bias roughly
cancels the downward bias, allowing Andrews to turn in a tolerable performance. At the
same time NW, which accurately recognizes that a much larger bandwidth is needed, does
poorly. Here, as in section 5.1, the problem is that NW does not have an upward bias
to cancel the downward bias in estimating VF,T. This is why NW produces fatter tail area
probabilities.

Thus, BARTLETT’s good performance relative to NW is a Pyrrhic victory. While it is
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nice that BARTLETT performed well, the manner in which this was accomplished — by the
offsetting effects of two biases — is cause for discomfort. There would of course be no problem
if in practice the two biases in BARTLETT were perfectly correlated across applications.
But that this is not the case is suggested by the results based on 7" = 1000 and T = 5000 in
Tables 7a and 7b. There we see that BARTLETT with first order prewhitening has thin tails.
For example, in Table 7a, the upper 5% tail area is equal to 2.2 for BARTLETT and equal to
7.8 for NW when T = 1000. When T' = 5000, these numbers for BARTLETT and NW are
respectively 2.6 and 5.2. The presence of thin tails reflects that the bandwidth parameter
increases quite slowly as the number of observations increases. For example, for T = 1000
observations, Table 7a indicates that the bandwidth parameter is only 10.7 for BARTLETT.
Figure 6 indicates that a bandwidth parameter of 10.7 could still produce a 30% overestimate
of VFT At the same time, the downward bias in estimates of VFT disappears in a sample
of 5000. Then the only source of bias that remains is the upward bias stemming from the
overly short bandwidth parameter. This example suggests that the upward and downward
sources of bias in this model are not perfectly correlated.

7 Summary and Conclusion

It is common in business cycle analysis to characterize the business cycle in terms of a
set of second moment properties of detrended data. Researchers then focus on constructing
models that can account for these moments. Recently, a number of researchers have employed
versions of the GMM sampling theory developed by Hansen (1982) to assist them in this
process. Although the sampling theory is known to be valid in arbitrarily large data sets,
little is known about how well it works in realistic settings. Our purpose in this paper is to
investigate this.

The results are disappointing. The asymptotic theory appears to provide a poor ap-
proximation in finite samples, particularly when the data have been HP filtered. These
conclusions are based on a Monte Carlo study of two types of statistics. First, we examine
second moment statistics like correlations and standard deviations. We study the coverage
probabilities of confidence intervals computed for these statistics. Second, we study the size
properties of a statistic proposed in Christiano and Eichenbaum (1992) for the purpose of
testing model fit.

Consider first our analysis of second moment statistics. We study these in the context of
two dgm’s: a univariate time series model often used in the analysis of macroeconomic data
and a four variable vector autoregression estimated for the basic macroeconomic variables
using postwar U.S. data. Our objective in selecting these dgm’s was to build confidence
that our Monte Carlo results provide a reasonable indication of statistical performance in
actual research applications. In our analysis of confidence intervals we consider two issues:
(i) how frequently the ‘true’ value of the second moment lies outside computed confidence
intervals and (ii) how often the true statistic lies to the left or to the right of the confidence
interval. When the statistic lies outside the confidence interval more often than predicted
by the (asymptotic) sampling theory, we say it exhibits a ‘fat-tail’ problem. Also, if it lies
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on one side of the confidence interval more often than on the other side, then we say the
statistic exhibits a ‘skewness’ problem. We examine a number of different ways of estimating
confidence intervals and find that, for the 23 statistics examined, there is almost always a
substantial skewness problem. Unfortunately, there is no clear pattern in the direction of
this skewness problem. To a somewhat lesser extent, we also encountered a fat-tail problem.

We use our univariate dgm to conduct a thorough diagnosis of the causes of the skewness
and fat tails. We find that these problems are most severe when the underlying detrended
data exhibit substantial persistence. This is because our procedures for computing confidence
intervals require an estimate of the zero-frequency spectral density of the ‘GMM error pro-
cess,” which is a particular function of the detrended data. As is well known, zero-frequency
spectral density estimators show considerable imprecision when the data are persistent.

That persistence is an important element of the problem is consistent with our finding
that the distortions are greater when we consider statistics based on data transformed using
the HP filter, rather than the first difference filter. In our statistical environment, HP filtered
data exhibit more persistence than first difference filtered data for two reasons: (i) the data
have the property that there is more persistence in the business cycle frequencies than there is
in the higher frequencies, and (ii) the HP filter emphasizes the former and the first difference
filter, the latter. Among the various procedures we used, we found none that satisfactorily
resolves the persistence problem. For example, there is a zero-frequency spectral density
estimator designed specifically to accommodate persistence: the prewhitening procedure of
Andrews (1991) and Andrews and Monshan (1992). However, we had only limited success
with it. We did find that prewhitening can reduce (without eliminating) the fat-tail problem,
but that this depends very sensitively on precisely how the degree of prewhitening is selected.
In particular, we find that with first order prewhitening, the fat-tail problem is definitely
alleviated relative to the situation when there is no prewhitening. However, this is only
of limited interest: in any given empirical application, one does not know what the correct
degree of prewhitening is, and some means must be found to estimate it. In our Monte Carlo
analysis, we found that when the degree is selected using the AIC criterion, then second
order prewhitening was most often indicated. The trouble is that second order prewhitening
generates roughly the same results as no prewhitening at all. In addition, although there is
some evidence that prewhitening can alleviate the fat-tail problem, it seems to have relatively
little impact on skewness.

An important question addressed by our work is, What procedure for computing con-
fidence intervals works best? Although we tried several procedures, none turned out to
uniformly dominate the rest. The ones we tried are differentiated according to how the
zero-frequency spectral density of the GMM error process is estimated. In each case, we
consider the non-parametric approach, which involves computing a weighted average of au-
tocovariances up to some finite lag length. In terms of sampling performance, the differences
among the various procedures studied came down to how the lag length was chosen. One
lag selection procedure, due to Andrews (1991) and Andrews and Monahan (1992), places
structure on the autocovariances and computes the lag length based on an examination of the
lag-one autocovariance. The other lag selection procedure, due to Newey and West (1994),
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examines a longer list of autocovariances. Not surprisingly, we found that the Newey and
West (1994) lag-selection procedure works best when the autocovariance function exhibits a
complicated pattern, and the first order autoregressive assumption underlying the Andrews
(1991) and Andrews and Monahan (1992) procedure is misspecified. We expected, therefore,
that confidence intervals computed based on the Newey and West procedure would exhibit
fewer distortions. We particularly expected this when there is first order prewhitening, since
we found in our application that this produces an exotically shaped autocovariance function
that is completely unlike the autocovariance function of a first order autoregression. It was
to our initial great surprise, therefore, that with first order prewhitening the Andrews and
Andrews and Monahan procedure actually dominates the Newey and West procedure. The
reason for this is that small sample biases in the estimation of autocovariances also matter, in
addition to misspecification, in determining finite sample performance. In our environment,
the impact of these two factors roughly cancel. Since Andrews and Andrews and Monahan
suffers from both problems and Newey and West only from only one, this explains why the
former does better. Given the reason that the former dominated the latter in this case, we
thought this experiment did not constitute a clear basis for preferring the Andrews and An-
drews and Monahan procedure. This and other experiments left us with conflicting evidence
on whether one or the other of these two procedures dominates.

Our basic findings for the univariate dgm extend to the multivariate dgm. In particular,
for virtually all of the statistics examined, there is a skewness problem. Also, researchers
who somehow know that first order prewhitening is appropriate, can alleviate the fat-tail
problems somewhat. Moreover, the direction of skewness is not consistent across the 23
statistics examined.

Finally, we considered a statistic for testing the null hypothesis that a model’s second
moment implications correspond to the actual second moment properties of the data. We
found that this statistic, which according to asymptotic sampling theory has a chi-square
distribution, rejects the null hypothesis far too often, even when it is true. Again, the
problem is more severe when the second moments are based on HP filtered data.

The results reported in this paper are a clear indication that a more reliable sampling
theory is required for the statistics used in the analysis of business cycles. The need is less
pressing for analysts who use the first difference filter. However, this is little comfort for
researchers interested in the frequencies emphasized by the HP filter.
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FIGURE la: FILTER WEIGHTS, HP FILTER
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NOTES: The figure displays the HP filter weights used to compute the i-th observation on the detrended
variable, as indicated in the header. The sample length is equal to 120 observations.



FIGURE 1b: TRANSFER FUNCTIONS, ALTERNATIVE FILTERS
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FIGURE 1c: STANDARD DEVIATION OF HP FILTERED DATA
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FIGURE 1d: AUTOCORRELATION COEFFICIENTS OF (xlfz )
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FIGURE 2a: S(§) divided by .S, HP filter and 5 = 0.
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Notes: S(€) is the spectral density of the GMM residual associated with data detrended by the indicated
filter, using the indicated kernel and bandwidth &. S is equal to S(&) as & — «. The dgm is equation (30)
with p = 0.4 and ¢ = 0.01. See Table 1 for definitions of the spectral estimators.

FIGURE 2b: S(§) divided by S, first difference filter and 5 =0.
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FIGURE 3: S(&) divided by S, HP filter and 5 = 1.
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FIGURE 4: S(&) divided by S, HP filter and & = 2.
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FIGURE 5: COVERAGE PROBABILITIES FOR VARIOUS STATISTICS (MULTIVARIATE DGM)
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FIGURE 6: S(&) divided by S, Wald Test, experiment 2 and the HP filter.

3

05 . BARTLETT, b =1

BARTLETT,b=0

15+ UNWEIGHTED, b=0

BANDWIDTH, &

Notes: S(€) is the spectral density of the GMM residuals in experiment 2, using the indicated kernel and
bandwidth £. S is equal to S(&) as T~ co. For details see section 6.2.2, and see Table 1 for definitions of
the spectral estimators.



TABLE 1: ZERO-FREQUENCY SPECTRAL DENSITY ESTIMATORS

NAME KERNEL BANDWIDTH

UW(11) UNWEIGHTED (EQUATION (18) WITH 6 = 0) 11

BART(11) BARTLETT (EQUATION (18) WITH 8 = 1) 11

BARTLETT BARTLETT (EQUATION (18) WITH 6 = 1) ANDREWS, AUTOMATIC

Qs Qs (EQUATION (19) AND (20) ) ANDREWS, AUTOMATIC

NW BARTLETT (EQUATION (18) WITH 6 = 1) NEWEY-WEST, AUTOMATIC



TABLE 2a: COVERAGE PROBABILITIES

DGM: Axy = 0.4 Ax¢y + 0.01s, gy ~ N(0,1)
HP ' A

SPECTRAL b 5% 10% 90% 95% 5% 10% 90% 95%
ESTIMATCR

T = 120
TRUE 3.6 9.2 10.6 6.6 4.7 9.5 10.0 4.8
UW(11) 0 18.7 23.8 15.2 10.8 12.6 17.7 13.0 8.1
BART(11) 8] 19.3 23.6 16.7 10.3 11.0 16.1 10.8 5.5
BARTLETT 0 19.0 23.2 16.4 9.8 9.5 14.7 9.9 4.6
Qs 0 18.6 22.9 15.0 9.4 9.5 14.4 9.3 4.2
NW 0 20.9 24.4 18.0 11.7 10.0 15.1 10.7 5.4
UW(11) 1 19.6 23.9 16.0 11.0 13.1 17.8 13.4 8.1
BART (11) 1 16.5 21.1 9.9 5.8 10.9 16.0 10.3 5.1
BARTLETT 1 12.1 17.5 5.5 1.6 8.5 13.7 8.1 3.2
Qs 1 12.0 17.3 5.0 1.3 8.8 14.0 8.2 3.4
NW 1 16.7 20.5 9.3 5.1 9.0 14.1 9.5 4.4
Uw(11) 2 19.1 24.0 15.8 10.8 13.3 17.7 13.4 8.3
BART(11) 2 18.6 22.8 15.8 9.8 11.1 15.8 10.5 5.5
BARTLETT 2 18.8 22.3 15.5 9.6 9.5 14.1 8.8 4.0
Qs 2 18.8 22.2 15.7 9.7 9.7 14.2 8.9 4.1
NW 2 18.8 22.1 15.5 9.6 9.7 14.5 9.1 S.1

T = 1000
TRUE 4.5 9.1 10.7 5.5 4.9 10.0 9.7 5.3
UWw(11) 0 8.8 15.7 13.3 7.7 7.8 13.3 10.6 5.2
BART(11) 0 11.1 17.4 15.4 9.4 7.8 13.3 10.3 5.5
BARTLETT 0 9.0 15.5 13.0 7.1 7.8 13.6 10.3 5.9
Qs 0 8.6 15.4 12.6 6.8 7.7 13.4 10.0 5.6
NW 0 11.1 17.7 15.2 9.0 7.9 13.5 10.3 6.2
Uw(11) 1 9.6 16.2 13.2 8.4 7.9 13.4 10.6 5.3
BART(11) 1 7.4 13.0 10.0 4.9 7.7 13.1 9.8 5.3
BARTLETT 1 5.7 10.7 7.7 3.9 7.2 13.1 9.5 5.2
Qs 1 5.0 9.3 6.8 3.1 7.1 13.1 9.5 5.2
NW 1 7.5 13.6 11.1 5.3 7.0 12.9 9.6 5.3
Uw(i11) 2 9.0 15.8 13.1 7.5 7.9 13.4 10.6 5.3
BART(11) 2 10.0 17.2 14.8 8.6 7.5 13.1 10.1 5.2
BARTLETT 2 10.8 17.4 15.0 9.2 7.4 13.1 9.5 5.4
Qs 2 10.8 17.3 15.1 9.1 7.4 13.1 9.5 5.4
NW 2 10.7 17.3 15.0 9.1 7.0 12.9 9.6 5.3
NOTES: The  5%(95%) and 10%(90%) columns report the frequency the t-statistic
is less (higher) than the lower (upper) S% and 10% critical value. The row
true uses the Monte Carlo standard deviation of the parameter estimate to
calculate the standard error. b indicates the order of prewhitening. For
definitions of the spectral estimators see Table 1. HP (A) refers to
Hodrick-Prescott detrending (first-differencing). Based on 1,000

independently simulated data sets, each of length T.



TABLE 2b:

DGM: Axy

SPECTRAL
ESTIMATOR

TRUE

Uw(i1)
BART(11)
BARTLETT
Qs

NW

UW(11)
BART(11)
BARTLETT
as

NW

Uw(11)
BART(11)
BARTLETT
Qs

NW

TRUE

uw(11)
BART(11)
BARTLETT
Qs

NW

uw(1i1)
BART(11)
BARTLETT
Qs

NW

UW(11)
BART(11)
BARTLETT
Qs

NW

For notes see Table 2a.
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TABLE 3a: DIAGNOSING FAT-TAIL AND SKEWNESS PROBLEM IN TABLE 2a
DGM: AXt 0.4 AXt_1 0.0181;, ¢ ~ N(O,l)
HP A
SPECTRAL b I II III I1
ESTIMATOR
. T 120
uw(1l) o .50 .0026% .001870 .34 000827
BART(11} 0 .62 = .001790 A7 =
BARTLETT 0 .61 = .001810 .54 =
Qs 0 .59 = . 001867 .53 =
NW 0] .65 = . 001687 .49 =
Uw(11) 1 .33 = .001973 .32 =
BART(11) 1 .48 = .002277 .47 =
BARTLETT 1 .56 = . 002829 .52 =
Qs 1 .57 = . 002867 .52 =
NW 1 47 = . 002346 .47 =
uw(11) 2 .48 = .001867 .33
BART(11) 2 .59 = .001862 .45 =
BARLETT 2 .62 = .001871 .46 =
Qs 2 .62 = .001864 .46 =
NW 2 .62 = .001869 .45 =
T 1000
uw(il) 0 .46 . 000959 .000819 .37 .000299
BART(11) 0 .55 = .000741 .47 =
BARTLETT 0 .49 = . 000826 .53 =
Qs 0 .50 = . 000835 .53 =
NW 0 .48 = . 000751 .41 =
Uw(11) 1 .36 = .00080% .36 =
BART(11) 1 .59 = .000911 .47 =
BARTLETT 1 .58 = .000987 .55 =
Qs 1 .58 = .001045 .55 =
NW 1 .45 = . 000898 .48 =
UWw(ll) 2 .46 = . 000820 .36 =
BART(11) 2 .53 = . 000771 .46 =
BARTLETT 2 .54 = .000755 .51 =
Qs 2 .54 = .000755 .51 =
NW 2 .58 = .000760 A7 =
For notes see Table 2a and
" > 172
I: the correlation between Yr and [V7]1™ .
II: the Monte-Carlo sd of Y.
5 . 1/2
III: the Monte-Carlo mean of [Vl .

III

.000680
.000725
. 000761
.000772
.000740

.000680
.000738
.0008083
.000805
.000782

.000678
.000735
.000793
.000789
.000781

.000280
.000278
.000276
.000279
.000274

.000280
.000282
. 000285
.00028s5
.000284

.000280
.000282
. 000285
.000284
.000283



TABLE 3b: DIAGNOSING FAT-TAIL AND SKEWNESS PROBLEMS IN TABLE 2b

DGM: Axy = 0.1 Axy.y + 0.01lg,, g¢ ~ N(0,1)
HP A
SPECTRAL b I II III I II III
ESTIMATOR
T = 120
Uw(11) 0 .49 .00175 .001249 .24 .000663 .000559
BART(11) 0 .61 = .001217 .39 = .000601
BARTLETT 0 .63 = .001210 .56 = .000642
Qs 0 .63 = .001243 .55 = .000641
NW 0 .61 = .001140 .44 = .000622
uw(i1) 1 .43 = .001251 .24 = .000558
BART(11) 1 .62 = .001358 .39 = .000602
BARTLETT 1 .66 = .001561 .50 = . 000644
Qs 1 .66 = .001574 .50 = .000641
NW 1 .63 = .001413 .41 = .000623
Uw(11) 2 .46 = .001241 .24 = .000555
BART(11) 2 .60 = .001278 .37 = .000600
BARLETT 2 .65 = .001324 .42 = .000636
QS 2 .65 = .001318 .42 = .000634
NW 2 .64 = .001315 .38 = .000622
T = 1000
Uw(1i1) 0 .47 .000628 .000541 .31 .000238 .000223
BART(11) 0 .56 = . 000496 .43 = .000224
BARTLETT 0 .53 = . 000523 .53 = .000226
Qs 0 .54 = . 000520 .52 = .000226
NW 0 .47 = .000494 .44 = .000225
UW(11) 1 .45 = . 000539 .31 = .000223
BART(11) 1 .59 = . 000546 .42 = .000225
BARTLETT 1 .63 = .000599 .49 = .000227
Qs 1 .63 = . 000607 .49 = .000227
NW 1 .56 = .000555 .43 = .000225
Uw(11) 2 .47 = .000541 .31 = .000223
BART(11) 2 .55 = . 000523 .41 = . 000224
BARTLETT 2 .58 = .000527 .45 = .000226
Qs 2 .58 = .000527 .45 = . 000226
NW 2 .56 = .000521 .41 = .000225

For notes see Table 2a and
N » 5 ,1/72
I: the correlation between ¥t and [Vl 7.

II: the Monte-Carlo sd of Yr. _ 1/2
IXI: the Monte-Carlo mean of [Vt] .



TABLE 4a: SAMPLING PROPERTIES OF BANDWIDTHS

DGM: AXt =

0.4 Axt._‘[ +

SPECTRAL ESTIMATOR

BARTLETT

Qs
NW

BARTLETT

Qs
NW

BARLETT

Qs
NW

BARTLETT

Qs
NW

BARTLETT

Qs
NW

BARTLETT

Qs
NW

For notes see Table 2a and

I:
I1:

the Monte-Cario mean of &7.
the Monte-Carlo sd of &7.

0.01ey,

NNN

T

N W

24.
17.
11.

noo
OO

€t

.26

.05

.71
.95
.18

26
30
79

.91
.67
.70

.74
.98
.86

~

HP

[EEN

IT

.85
.21
.74

.84
.45
10.

11

.44
.40
.84

.11
.76
.64

.83
.48
14.

86

.43
.37
.09

T = 120

> NN

T = 1000

(WA

.41
.29
.42

.46
.72
.00

.32
.98
.45

.30
.76
.63

.45
.72
.75

.17
.39
.68

s

I1

.31
.03
.96

.36
.34
.85

.26
.27
.47

.08
.60
.41

.25
.26
.76

.13
.18
.66



TABLE 4b: SAMPLING PROPERTIES OF BANDWIDTHS

DGM: Axy = 0.1 Axi_, +

SPECTRAL ESTIMATOR

BARTLETT
Qs
NW

BARTLETT
Qs
NW

BARLETT
Qs
NW

BARTLETT
Qs
NW

BARTLETT
Qs
NW

BARTLETT
Qs
NW

For notes see Table 2a and
I: the Monte-Carlo mean of &rt.
II: the Monte-Carlo sd of &r.

0.01856¢,,

16.
10.
10.

€t

.14
.37
.44

.52
.62
.74

.41
.67
.87

26
93
31

.84
.38
.10

.41
.68
.50

~

HP

=

=

N(0,1)

II

.03
.98
.03

.85
.67
.30

.30
.30
.43

.62
.21
.91

.81
.48
.21

.24
.26
.22

T

= 120

T = 1000

=

s

.47
.49
.10

.31
.57
.08

.30
.56
.73

.31
.52
.68

.15
.37
.69

.15
.37
.71

II

.78
.56
.94

.23
.25
.72

.21
.23
.14

.80
.54
.84

.12
.17
.82

.11
.16
.78



TABLE Sa: COVERAGE PROABILITIES FOR o

DGM: US VAR

HP A
SPECTRAL b DGM 5% 95% 5% 95%
ESTIMATOR
BART(11) 0 N 21.6 11.6 15.4 7.8
BART(11) 0 B 20.6 9.8 11.8 6.2
BARTLETT 0 N 22.2 11.0 14.0 7.2
BARTLETT 0 B 21.0 9.4 11.6 5.4
NW 0 N 25.6 16.0 14. 4 8.2
NW 0 B 23.4 14.2 12.0 6.2
BART(11) 1 N 10.6 0.6 15.2 7.8
BART(11) 1 B 9.8 0.2 11.6 4.8
BARTLETT 1 N 12.2 0.6 13.8 7.2
BARTLETT 1 B 11.2 0.4 11.4 4.2
NW 1 N 14.0 1.6 13.8 7.2
NW 1 B 11.2 1.0 11.4 4.2
NOTES: The 5% (95%) column reports the frequency the t-statistic is
less (higher) than the lower (upper) 5% critical value. The value of b
indicates the order of prewhitening. The DGM is a VAR described in the test.
The generated errors are either normal (DGM = N} or bootstrapped (DGM = B).
For definitions of the spectral estimators see Table 1. HP refers to

Hodrick-Prescott detrending and A refers to first-differencing.



TABLE Sb: COVARAGE PROBABILITES FOR VARIOUS STATISTICS, SUMMARY RESULTS

DGM: US VAR

SPECTRAL
ESTIMATOR

BART(11)
BART (11)
BARTLETT
BARTLETT
NW
NW

BART(11)
BART (11)
BARTLETT
BARTLETT
NW
NW

b DGM

[eNeoNoNeoNoNe]
Z2om=2w=

PR
W2w=w=

Notes: See Table Sa, and

I: the average

of the

HP

I II ITI
18.1 23 7.5
15.9 23 6.2
14.8 21 6.0
13.6 20 5.1
20.7 20 5.9
19.3 20 5.3
10.1 23 5.6
9.0 22 4.5
8.7 19 4.8
7.7 19 3.8
12.2 19 4.8
11.2 19 3.7

absolute deviation

areas minus 10% across all 23 statistics.

II: The number of times the sum of the two 5% tail areas is larger than 10%.

III: the average

lower 5% tail areas.

IV: the number
tail area.

of

absolute

times

value of

the

lower

the

5%

difference

tail

Iv

O = 00 00 O ~

10
11
10
11

between

area

OO 0oy NN
GOUW~NONW

~N QOO
O OOUNOWON

the sum

is

between

bigger

II

20
20
16
17
16
17

21
20
17
17
17
17

III

NONWWW
O 00U

NWNWWW
0= 00 N

of the two 5%

the

than

upper and

the wupper

v

11
10
14

13
12
10
12

10
12

tail

the

S%



TABLE 6a: COVERAGE PROBABILITIES FOR WALD TEST EXAMPLE: EXPERIMENT 1

p=0.1 HP FILTERED DATA
SPECTRAL T b 5% 10% 90% 95% AVE(&7)
ESTIMATOR
TRUE 120 - 4.6 8.8 10.2 4.8 -
BARTLETT 120 0 3.5 6.9 28.5 20.5 10.4
NW 120 0 4.3 7.7 24.1 16.4 5.2
BARTLETT 120 1 5.0 10.6 17.7 11.9 3.2
NW 120 1 5.3 9.5 21.1 15.5 9.9
BARTLETT 120 2 3.8 7.0 26.3 19.8 .81
NW 120 2 4.2 8.0 26.0 17.9 3.1
TRUE 1000 - 5.3 9.0 10.1 5.6 -
BARTLETT 1000 0 4.7 8.3 16.6 11.0 23.3
NW 1000 0 3.6 6.9 16.2 10.0 12.8
BARTLETT 1000 1 5.5 9.6 11.3 7.0 7.0
NW 1000 1 3.8 8.3 12.3 7.6 29.7
BARTLETT 1000 2 4.8 8.0 17.6 11.7 .86
NW 1000 2 3.5 7.1 16.2 10.1 6.44
TRUE 5000 - 3.7 9.1 10.0 4.7 -
BARTLETT 5000 0 3.6 8.2 12.7 6.7 40.3
NW 5000 0 4.0 . 8.9 11.9 7.0 28.4
BARTLETT 5000 1 3.7 8.7 11.8 S.9 12.0
NW 5000 1 4.3 9.2 10.2 5.7 39.0
BARTLETT 5000 2 3.2 7.7 16.8 9.3 1.04
NW 5000 2 3.8 8.4 13.3 8.1 19.3
FIRST DIFFERENCED DATA
SPECTRAL T b 5% 10% 90% 95% AVE(&+)
ESTIMATOR
TRUE 120 - 4.5 9.4 9.9 4.9 -
BARTLETT : 120 0 3.7 9.1 11.2 6.1 2.3
BARTLETT 120 1 4.3 9.3 11.4 6.3 0.5
TRUE 1000 - 4.6 11.0 8.5 5.3 -
BARTLETT 1000 0 4.6 10.8 11.3 6.0 4.7
BARTLETT 1000 1 4.7 10.9 10.2 5.6 0.4
TRUE 5000 - 5.3 9.8 10.4 4.5 -
BARTLETT 5000 0 5.2 9.3 10.9 5.7 8.2
BARTLETT 5000 1 5.3 9.6 10.8 5.6 0.4
NOTES: The 5%(95%) and 10% (90%) columns report the frequency the
X —statistic is less(higher) than the lower (upper) S% and 10% critical value.
The value of b indicates the order of prewhitening. For definitions of
spectral estimators see Table 1. HP refers to Hodrick-Prescott detrending
and A refers to first-differencing. AVE(ET) is the Monte Carle mean of the

bandwidth parameter.

10



TABLE 6b: COVERAGE PROBABILITIES FOR WALD TEST EXAMPLE: EXPERIMENT 1

p=20.5

SPECTRAL
ESTIMATOR

TRUE
BARTLETT
NW
BARTLETT
NW
BARTLETT
NW

TRUE
BARTLETT
NW
BARTLETT
NW
BARTLETT
NW

TRUE
BARTLETT
NW
BARTLETT
NW
BARTLETT
NW

SPECTRAL
ESTIMATOR

TRUE
BARTLETT
BARTLETT

TRUE
BARTLETT
BARTLETT

TRUE
BARTLETT

BARTLETT

120
120
120
120
120
120
120

1000
1000
1000
1000
1000
1000
1000

5000
5000
5000
5000
5000
5000
5000

120
120
120

1000
1000
1000

5000
5000
5000

For notes see Table 6a.

NNPEeP2, OO | NMNNERL P, 00

NNFP = OO

[l ] = O

= O

HP FILTERED DATA

3%

WWUUWWe
Y IO W

W OB

Wb VON B

WWWOWH U
B0 O U RO U

FIRST

5%

o
0 wWw

11

~N N0V NWYWO

10%

=
NU1TO O oo
WO WOWDN

WL oooouUon

00 OV O W 00 0 W

~N 00 U1 WO 00 O

30.
27.
19.
22.
30.
31.

10.
15.
17.
10.
14.
23.
18.

10.
12.
12.

22.
12.

O O 00— 00 i W

WO NI-

90%

0O 0o ~O0

DIFFERENCED

10%

90%

10.
14.
11.

10.
11.

wamN N we

ey

95%

23.
20.
13.
17.
24.
23.

~
= O - 1O NN wOawg

ey
N O 3O i

WO B NND B

DATA

i O O
J

AVE(&r)

15.7
5.79

6.0
15.4
1.86
3.14

34.7
13.6
12.8
96.0
4.01
13.2

59.9
29.9
22.1
116.6
6.97
33.5

AVE(&7)

-
W - O
onN o=

NN
[



TABLE 7a: COVERAGE PROBABILITIES FOR WALD TEST EXAMPLE: EXPERIMENT 2

SPECTRAL
ESTIMATOR

TRUE
BARTLETT
NW
BARTLETT
NW
BARTLETT
NW

TRUE
BARTLETT
NW
BARTLETT
NW
BARTLETT
NW

TRUE
BARTLETT
NW
BARTLETT
NW
BARTLETT
NW

120
120
120
120
120
120
120

1000
1000
1000
1000
1000
1000
1000

5000
5000
5000
5000
5000
5000
5000

For notes see Table 6a.
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TABLE 7b: COVERAGE PROBABILITIES FOR WALD TEST EXAMPLE: EXPERIMENT 2

SPECTRAL
ESTIMATOR

TRUE
BARTLETT
NwW
BARTLETT
NW
BARTLETT
NW

TRUE
BARTLETT
NW
BARTLETT
NW
BARTLETT
NW

TRUE
BARTLETT
NW
BARTLETT
NW
BARTLETT
NW

120
120
120
120
120
120
120

1000
1000
1000
1000
1000
1000
1000

5000
5000
5000
5000
5000
5000
5000

For notes see Table 6a.
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