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Technical Appendix: The Optimum Quantity of Debt

In this appendix, we describe the numerical methods used to compute an equilibrium

in the economy with an inelastic labor supply and in the economy with an elastic labor

supply (i.e., our benchmark economy). Although the economy with inelastically supplied

labor is a special case of the benchmark economy, the equilibrium in the inelastic labor

supply case is much easier to compute and is therefore treated separately. In each case, we

start with the consumer's problem, assuming the consumer takes prices as given. We then

show how the equilibrium prices are determined. To verify that the methods work well for

our problem, we apply them to some related test problems that have known solutions.

1. The case with inelastically supplied labor

1.1. Computing the consumer's decision functions

The consumer chooses sequences of consumption and asset holdings to maximize ex-

pected utility; i.e.,1

max
f~ct;~at+1g

E
� 1X
t=0

(�(1 + g)1��)t~c1��
t

=(1� �)j~a0; e0
�

(1)

subject to ~ct + (1 + g)~at+1 � (1 + �r)~at + �wet + �; (2)

~at � 0; (3)

with the after-tax interest rate �r, the after-tax wage rate �w, and a lump-sum transfer �

taken as given. The productivity level et is assumed to follow a Markov chain with Eet = 1:

The probability of transiting from state i to state j is given by �i;j , i; j = 1; : : : ;m.

To incorporate the inequality constraints in Eq. (3), we replace the objective in Eq. (1)

with

E

� 1X
t=0

(�(1 + g)1��)t
�
~c1��
t

1� �
+

1

3
�min(~at; 0)

3

�
j~a0; e0

�
; (4)

1 As in the paper, we normalize variables by dividing through by output, and we assume that ~at � 0
is su�ciently restrictive for the parameters that we consider.
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where � is some positive parameter. Note that if ~at is negative, then we subtract ��~a3
t

from the consumer's value function. With this respeci�cation, the optimization problem

is as follows: given �, we choose sequences of consumption and assets that are optimal

for Eq. (4) subject to Eq. (2). The parameter � is set so that Eq. (3) is approximately

satis�ed. In practice, the optimization is done either by iterating over a sequence 1, 10,

102, etc. for �, until the constraints are satis�ed to within the tolerance, or by starting

with a reasonably large value of �.2

Because the decision rules are stationary, we can compute the functions c(x; i) and

�(x; i) that satisfy the following �rst-order conditions for i = 1; : : : ;m and x 2 [0; xmax]:

(1 + g)c(x; i)�� = �(1 + g)1��f
X
j

�i;j (1 + �r)c(x0; j)�� + �min(�(x; i); 0)2g; (5)

c(x; i) + (1 + g)�(x; i) = (1 + �r)x + �we(i) + �; (6)

where x0 = �(x; i) and e(i) is the productivity level in state i. Note that these conditions

assume an interior solution for c(x; i). If we substitute the expression for c(x; i) in (6) into

Eq. (5), we have a functional equation in �. We denote this expression by R(x; i;�); i.e.,

R(x; i;�) = (1 + g)f(1 + �r)x + �we(i) + �� (1 + g)�(x; i)g��

� �(1 + g)1��f
X
j

�i;j f(1 + �r)(1 + �r)�(x; i) + �we(j)

+ � � (1 + g)�
�
�(x; i); j

�
g
�� + �min(�(x; i); 0)2g: (7)

The computational task is, therefore, to �nd an approximation for �(x; i) { say �h(x; i)

{ that implies R(x; i;�h) � 0 for all x and i. We accomplish this task by applying a �nite

element method. In particular, we do the following. We choose some discretization of the

domain of our functions. Since only x is continuous, we need to specify some partition of

[0,xmax] where xmax is such that no x > xmax would be chosen by the consumer. We refer

to each subinterval of x as an element. On each element, we choose a set of basis functions

for approximating �; that is, we assume �h can be represented as a weighted sum of basis

2 See R. Fletcher (1987), Practical Methods of Optimization (New York: Wiley) for a discussion of the
relationship of � to the Lagrange multipliers of the constraints in Eq. (3).
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functions, where the weights and basis functions may be di�erent for each element. In our

case, we choose linear basis functions for all elements; e.g.

�h(x; i) =  i
e
Ne(x) +  i

e+1Ne+1(x); Ne(x) =
xe+1 � x

xe+1 � xe
; Ne+1(x) =

x � xe

xe+1 � xe
;

on the element [xe; xe+1]. This choice is motivated by our test problem (see below). Notice

that �h(xe; i) =  i
e
and �h(xe+1; i) =  i

e+1. If we consider the approximation globally,

we need to compute values for  i
e
for all nodes e (assume there are n) and for all levels of

productivity i. We choose these values for  i
e
by setting the weighted residual to zero; i.e.,

Z
R(x; i;�h)Ne(x)dx = 0; i = 1; : : : ;m; e = 1; : : : n: (8)

In e�ect, we solve a problem of the following form: �nd ~ such that h(~ ) = 0, where ~ 

is the vector of coe�cients that we are searching over and h is the system of equations in

Eq. (8).

There are several practical points worth noting. The �rst point is that, for param-

eterizations in which the no-borrowing constraint binds, the penalty function only serves

to get �(x; i) > ��, where � is small but positive. Thus, if the function is truly equal to

zero for low values of x and i, then the algorithm will not yield a mass point at x = 0.

To deal with this problem, we use a two-step procedure. At the �rst step, we apply the

penalty function method and choose a su�ciently �ne mesh to resolve the kink. The kink

is de�ned as the grid point at which the second derivative is maximized. At the second

step, we use the candidate solution to determine the boundary conditions �h(x; i) = 0,

x < x�, where x� is the grid point at which the second derivative of �h(x; i) is highest.

These boundary constraints are imposed on the solution prior to the �nal run. The second

point concerns the procedure for solving h(~ ) = 0. We solve this system of equations by

applying a Newton method. Therefore, we need to compute the derivative of h(~ ) with

respect to ~ , and we need to invert it. We calculate analytical derivatives because it saves

computing time. With respect to inverting the Jacobian, we can rely on the fact that it is

very sparse. The sparseness is due to the fact that the approximation is done element by

element; thus, the basis functions are nonzero on relatively small subdomains. In practice,
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however, we only use sparse matrix routines if the dimension of the matrix to be inverted

is bigger than 2000 � 2000.

1.2. Computing the distribution of assets

To compute equilibrium prices, we must �rst construct the joint distribution over

assets and productivities. This distribution can be derived from the decision rule for asset

holdings; i.e.,

xt+1 = �(xt; et);

where xt is asset holdings in t and et is the earnings shock in t. We want to compute

the invariant distribution for asset holdings; namely, H(x; i) = Pr(xt < x j et = e(i)). To

compute the distribution, we solve the following functional equation:

H(x; i) =

mX
j=1

�j;iH(��1(x; j); j)I(x � �(0; j)); (9)

where � is the transition matrix for the Markov chain governing earnings and I is an

indicator function (i.e., I(x > y) is equal to one if x > y and is equal to zero otherwise).

The form of the functional equation in (9) is motivated below.

SupposeX1 is a random variable with density function f1. Assume that X2 is a second

random variable that is given by X2 = h(X1) for some function h. In this case, the density

function for X2 is

f2(x2) =

Z 1

�1

f1(x1)�(x2 � h(x1))dx1; (10)

where � is the Dirac delta function. If we integrate the left-hand side of Eq. (10), we get

F2(x2) =

Z
x2

�1

f2(s)ds =

Z
x2

�1

Z 1

�1

f1(x1)�(s � h(x1))dx1ds

=

Z 1

�1

hZ x2

�1

�(s � h(x1))ds
i
f1(x1)dx1ds

=

Z 1

�1

I(h(x1) � x2)f1(x1)dx1

=

Z 1

�1

I(h(x1) � x2)dF1(x1): (11)
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Now assume that h is strictly increasing and, hence, invertible. In this case, we can rewrite

(11) as follows:

F2(x2) =

Z 1

�1

I(h�1(h(x1)) � h�1(x2))dF1(x1)

=

Z 1

�1

I(x1 � h�1(x2))dF1(x1)

=

Z
h
�1(x2)

�1

dF1(x1)

= F1(h
�1(x2)):

In the example with assets, we have � increasing but not strictly. To motivate the

functional equation in Eq. (9), we consider cases in which the borrowing constraints do not

bind and cases in which they do and conclude that both cases imply the same functional

equation for H. First, consider states of the world where the borrowing constraint does

not bind (e.g., values of i such that �(x; i) > 0 for all x � 0). Using (11), we know that

the equation to be solved is

Hn+1(x
0; i) =

mX
j=1

�j;i

Z 1

�1

I(�(x; j) � x0)dHn(x; j); (12)

whereHn is the cumulative distribution function for today's assets, Hn+1 is the cumulative

distribution function for tomorrow's assets, and both Hn and Hn+1 are functions of the

earnings state. If an invariant distribution exists, it is given by the �xed point of Eq. (12);

i.e., H = Hn = Hn+1. In this case, I(�(x; j) � x0) is equal to one for x0 � �(0; j) and is

equal to zero for x0 < �(0; j). Therefore,

Z 1

�1

I(�(x; j) � x0)dHn(x; j) =

�
Hn(�

�1(x0; j); j) if x0 � �(0; j)
0 if x0 < �(0; j),

and (12) can be rewritten as follows:

Hn+1(x
0; i) =

mX
j=1

�j;iHn(�
�1(x0; j); j)I(x0 � �(0; j)): (13)

Second, consider states of the world where the borrowing constraint binds (e.g., values

of i such that �(x; i) = 0 for x 2 [0; x�] where x� > 0). In these cases, if we assume

that ��1(0; j) = x� where x� is the point at which we see a kink, then we again have the
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mapping in (13). If we assume that Hn = Hn+1 at a �xed point, the functional equation

for the invariant distribution is given by Eq. (9).

To compute H, we again apply the �nite element method with linear basis functions.

In this case, the residual is the di�erence between the right- and left-hand sides of Eq. (9).

For this problem, we do not have to worry about inequality constraints directly, but we do

have to deal with them indirectly. If inequality constraints bind in the consumer's problem,

then the decision functions for low productivity levels will be set to zero for some interval

[0; x�]. Thus, there will be a mass point at x = 0 and throughout the distribution at points

traversed prior to reaching the zero-asset position. The mass points in the distribution

imply that the solution to (9) has discontinuities, possibly at a countably in�nite number

of points. Thus, we need to know if the �nite element method, as we implement it, will

yield a good approximation to the distribution H.

1.3. Computing an equilibrium

Assume that we have in place numerical algorithms for computing �(x; i) and H(x; i).

We now describe an algorithm for computing the equilibrium after-tax interest rate. All

other prices and quantities can be determined from the interest rate.

We start with bounds on the interest rate r; that is, we assume that the equilibrium

interest rate is in the interval [rl; ru]. Our inputs are the share of capital in production

�, the government consumption-to-GDP ratio , the debt-to-GDP ratio b, the discount

factor �, the rate of capital depreciation �, the utility parameters � and �, the growth rate

g, the initial bounds on r, the productivity levels e(i), i = 1; : : : ;m, and the transition

probability matrix �. Our initial guess for the equilibrium r is 1
2
(rl + ru). If lump-sum

taxes are assumed, then we set the taxes equal to  + � + (r � g)b. If proportional taxes

are assumed, then we back out the tax rate from the government budget constraint; i.e.,

�y =
 + � + rb � gb

1 + rb � ��=(r + �)
: (14)

With �y and r, we have the after-tax interest rate �r = (1� �y)r. We can also compute the

after-tax wage rate

�w = (1� �y)(1 � �): (15)
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We now have the inputs needed for computing �nite element approximations of � and

H. The next step is to calculate the mean asset holdings E~at. Since our approximation

for H is piecewise linear, an estimate of the mean asset holdings is simply

1

2

X
j

X
i

(Ĥ(i + 1; j)� Ĥ(i; j))(x(i + 1) + x(i));

where x(i) is the ith grid point over asset holdings and Ĥ(i; j) is the �nite element approx-

imation of H(x(i); j). Given this estimate of E~at, we check to see if markets are cleared;

i.e., if

E~at =
�

r + �
+ b: (16)

If the right-hand side of (16) is larger than the left-hand side, then we set rl = r and repeat

the above steps. Otherwise, we set ru = r and repeat. Iterations are made until Eq. (16)

is satis�ed to within some tolerance level.

2. The case with elastically supplied labor

2.1. Computing the consumer's decision functions

The consumer chooses sequences of consumption, asset holdings, and leisure to max-

imize expected utility; i.e.,

max
f~ct;~at+1;`tg

E
� 1X
t=0

(�(1 + g)�(1��))t(~c�
t
`
1��
t

)1��=(1 � �)j~a0; e0
�

(17)

subject to ~ct + (1 + g)~at+1 � (1 + �r)~at + �wet(1� `t) + �; (18)

~at � 0; (19)

`t � 1; (20)

with the after-tax interest rate �r, the after-tax wage rate �w, and a lump-sum transfer �

taken as given. In specifying the optimization problem, we have left out two inequality

constraints; namely, ct � 0 and `t � 0. When we compute the decision functions, these

inequality constraints are ignored, but we check the solution to make sure that they are
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satis�ed. The productivity level et is assumed to follow a Markov chain with Eet = 1: The

probability of transiting from state i to state j is given by �i;j , i; j = 1; : : : ;m.

To incorporate the inequality constraints in equations (19) and (20), we replace (17)

with

E

� 1X
t=0

(�(1 + g)�(1��))t
�
(~c
�

t
`
1��
t

)1��

1� �
+

1

3
�(min(~at; 0)

3 +min(1� `t; 0)
3)

�
j~a0; e0

�
; (21)

where � is some positive parameter. Note that if ~at is less than zero, then we subtract

��~a3
t
from the consumer's value function. If `t is greater than one, then we subtract

��(1� `t)
3. With this respeci�cation, the optimization problem is as follows: given �, we

choose sequences of consumption, asset holdings, and leisure that are optimal for Eq. (21)

subject to Eq. (18). The parameter � is set so that Eq. (19) is approximately satis�ed. In

practice, the optimization is done either by iterating over a sequence 1, 10, 102, etc. for �,

until the constraints are satis�ed to within the tolerance, or by starting with a reasonably

large value of �.

Because the decision rules are stationary, we can compute the functions c(x; i), �(x; i),

and `(x; i) that satisfy the following �rst-order conditions:

�(1 + g)c(x; i)�(1��)�1`(x; i)(1��)(1��) = �(1 + g)�(1��)f
X
j

�i;j �(1 + �r)

� c(x0; j)�(1��)�1`(x0; j)(1��)(1��)+ �min(�(x; i); 0)2g; (22)

(1� �)c(x; i)�(1��)`(x; i)(1��)(1��)�1

= � �we(i)c(x; i)�(1��)�1`(x; i)(1��)(1��)

+ �min(1� `(x; i); 0)2; (23)

c(x; i) + (1 + g)�(x; i) = (1 + �r)x + �we(i)(1 � `(x; i)) + �; (24)

x0 = �(x; i); (25)

for i = 1; : : : ;m and x 2 [0; xmax], where e(i) is the productivity level in state i. Notice

that c(x; i) is a function of x; i; e(i), the parameters, and the function �(�). Therefore,

with a candidate solution for �, we can back out c using (24). This is not the case for
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leisure, however, since (23) is an implicit function of `(x; i) (if we assume that x; i; e(i);

the parameters, �(�), and c(�) are known). However, we can construct a numerical solution

for `(x; i) by applying a Newton method with given values for �, �, �, �r, �w, �, g, x, i, e(i),

and �(x; i). We simply iterate on

`k+1 = `k � f(`k)=J(`k); k = 0; 1; : : : ; (26)

where

f(`) = (1 � �)c(`)�(1��)`(1��)(1��)�1 � �min(1 � `; 0)2

� �we(i)�c(`)�(1��)�1`(1��)(1��);

c(`) = (1 + �r)x + �we(i)(1 � `) + � � (1 + g)�(x; i); (27)

J(`) = �2 �we(i)(1 � �)�(1� �)c(`)�(1��)�1`(1��)(1��)�1

+ (1� �)((1� �)(1� �) � 1)c(`)�(1��)`(1��)(1��)�2

+ �w2e(i)2�(�(1� �)� 1)c(`)�(1��)�2`(1��)(1��)

+ 2�min(1 � `; 0): (28)

The function f is the Euler equation in (23), the function c is consumption derived from

the budget constraint, and the function J is the derivative of f with respect to `. We start

the iterations in Eq. (26) with an initial guess `0, and we stop when j`k+1� `kj is less than

some tolerance parameter.

Let `�(x; i;�) be the solution to Eq. (26). Then we can write the �rst-order conditions

in Eqs. (22)-(25) in terms of one residual; i.e.,

R(x; i;�) = �(1 + g)c(`�(x; i;�))�(1��)�1`�(x; i;�)(1��)(1��)

� �(1 + g)�(1��)f
X
j

�i;j �(1 + �r)c(`�(�(x; i); j;�))�(1��)�1

� `�(�(x; i); j;�)(1��)(1��) + �min(�(x; i); 0)2g;

where c(�) is de�ned in (27). If we ignore the constraint on leisure (i.e., `t � 1), the residual

is given by

R(x; i;�) = �(1 + g)

�
1� �

� �we(i)

�(1��)(1��)

f( �we(i) + (1 + �r)x � (1 + g)�(x; i) + �)�g��
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� �(1 + g)�(1��)
�X

j

�i;j �(1 + �r)

�
1� �

� �we(j)

�(1��)(1��)

f( �we(j)

+ (1 + �r)�(x; i) � (1 + g)�(�(x; i); j) + �)�g�� + �min(�(x; i); 0)2
�
:(29)

We show later that other calculations are also simpli�ed if an interior solution for leisure

is assumed. However, for some parameterizations, we need to impose the constraint on

leisure. Therefore, we describe how to compute the equilibrium assuming the constraint is

violated in some regions of the state space.

As in the inelastic labor case, the computational task is to �nd an approximation

for �(x; i), say �h(x; i), that implies R(x; i;�h) � 0 for all x and i. We follow the same

procedure described for the inelastic labor case (i.e., we apply the �nite element method).

2.2. Computing the distribution of assets

Computation of the cumulative distribution is the same for the elastic and inelastic

labor cases. Therefore, the description in section 1.2 carries over to this case.

2.3. Computing an equilibrium

Assume that we have in place numerical algorithms for computing �(x; i) and H(x; i).

We now describe an algorithm for computing the equilibrium interest rate and aggregate

hours. All other prices and quantities can be determined from these two.

We start with an initial guess for N . With N �xed, we apply a bisection method to

calculate the interest rate that clears the asset market. Assume that the equilibrium r is in

the interval [rl; ru] and that our initial guess for the equilibrium r is 1
2
(rl+ru). If lump-sum

taxes are assumed, then we set the taxes equal to  + � + (r � g)b. If proportional taxes

are assumed, then we back out the tax rate from the government budget constraint. Given

the tax rate and the guess for N , we can determine the after-tax interest rate (1 � �y)r

and the after-tax wage rate (1 � �y)(1 � �)=N . These two rates are used to compute the

�nite element approximation of �. To check to see that the asset market has cleared, we

also compute a �nite element approximation of H. H is used to calculate the mean asset
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holdings E~at. Given this estimate of E~at, we check to see if markets are cleared; i.e., if

E~at =
�

r + �
+ b: (30)

If the right-hand side of (30) is larger than the left-hand side, then we set rl = r; otherwise,

we set ru = r. Iterations are made until Eq. (30) is satis�ed to within some tolerance level.

Once Eq. (30) is satis�ed, we update our guess for N . The updating scheme is simply

Newton-Raphson:

Nk+1 = Nk
� J(Nk)�1f(Nk);

where

f(N) =
X
i

Z
e(i)(1 � `�(x; i;�))dH(x; i) �N; (31)

and J is the derivative of f with respect to N . Note that the �rst term on the right-hand

side of (31) is a function of N because the optimal decision rules depend on it.

3. Test problems

3.1. Computing the consumer's decision functions { a test case

Assume that the household solves

max
fct;at+1g

1X
t=0

�tu(ct)

subject to ct + at+1 = (1 + r)at +w:

This speci�cation assumes that there is no uncertainty (et = 1); therefore, wages are

constant.

The dynamic program for this example involves the following form for Bellman's

equation:

v(x) = max
0�y�Rx+w

fu(Rx+ w � y) + �v(y)g; (32)
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where yt = xt+1 is the asset position next period and R = 1 + r is the gross return. A

conjectured solution is as follows:

8>>>><
>>>>:

y = 0 if x 2 [0;m1],

y =
�m2

1

m2�m1
+ m1

m2�m1
x if x 2 (m1;m2];

y =
(m3m1�m

2
2)

m3�m2
+ m2�m1

m3�m2
x if x 2 (m2;m3];

...

(33)

where mj, j = 1; 2; : : :, will be calculated below. Note that the solution assumes that if

x = mj+1, then y = mj.

The Lagrangian for the maximization in the right-hand side of Eq. (32) is given by

L = u(xR+ w � y) + �v(y) + p(Rx + w � y) + qy;

where p and q are multipliers. The �rst-order conditions for this problem are

� u0(Rx + w � y) + �v0(y) � p+ q = 0;

p � 0; Rx + w � y � 0; p(Rx + w � y) = 0;

q � 0; y � 0; qy = 0: (34)

If we assume that the conjecture above is correct, then when x 2 [0;m1) we have the y � 0

constraint binding. Therefore, if we assume that Rx + w > 0, then it must be true that

y < Rx+ w, p = 0, and

v0(0) =
1

�
u0(Rx + w)�

q

�
�

1

�
u0(Rx + w):

Furthermore, from Bellman's equation, we get

v(x) = u(Rx + w) + �v(0); for x 2 (0;m1) and v(0) =
�

1� �
u(w);

and taking derivatives, we get

v0(x) = Ru0(Rx + w) <
1

�
u0(Rx + w); (35)

since �R < 1.
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Consider next the interval (m1;m2]. The conjectured solution is such that in this

interval, the constraint y � 0 is not binding. If we assume that Rx + w > y, then the

�rst-order conditions imply

v0(y) =
1

�
u0(Rx + w � y): (36)

If y = 0 at x = m1, then

v0(0) =
1

�
u0(Rm1 + w): (37)

Using Eq. (35) evaluated at x = 0 and Eq. (37), we get

u0(Rm1 + w) = �Ru0(w);

which gives us an equation for m1. For example, if u(c) = c1��=(1� �), then

m1 =
w(1� (�R)

1
� )

(�R)
1
�R

;

and y = 0 in the interval [0;m1].

Now we want to compute the asset function for the next interval (m1;m2]. If the

conjecture in Eq. (33) is correct, then Eq. (36) holds, as does

v0(x) = Ru0(Rx + w � g(x)); (38)

which is the derivative of the value function once y is replaced by the optimal policy

y = g(x). The conjecture assumes that y = m1 when x = m2, and by Eq. (36) and

Eq. (38), we have,

u0(Rm2 + w �m1) = �Ru0(Rm1 +w):

Note that this equation can be solved for m2. If we follow the same logic for the remaining

m's, we �nd that, in general,

u0(Rmj+1 + w �mj) = �Ru0(Rmj + w �mj�1); j = 1; : : : ; and m0 = 0: (39)

Thus, given m1 and m2, we can compute m3 and so on.

What we have done is conjectured a solution and derived the functions analytically.

It is easy to show that the solution is, in fact, piecewise linear and that the conjecture is

correct.
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Now we consider the �nite element approximation. Let � = 0.95, w = 1:0, r = 0:02,

u(c) = c1��=(1 � �), and � = 3. We can use the formula in Eq. (39) to derive the exact

solution. In Figure 1a, we plot the true solution and the �nite element approximation

assuming the grid is given by mj, j = 0; : : : ; 14. Notice that the two functions are in very

good agreement. In Figure 1b, we look at exactly the same picture, but we focus on the

corner, where the constraints bind. The �nite element approximation in this case does not

assume any boundary constraints are imposed. Notice that there is a slight deviation of the

approximate and exact solutions because the penalty function ensures only approximate

satisfaction of the inequality constraints. The approximate solution in Figure 1c imposes

that the asset holdings are zero at the �rst two grid points. Notice that the �t is exact.

In Figures 2a-2c, we show the results of a more realistic experiment. In this case, we start

with a grid that is \stretched" exponentially: the intervals get exponentially larger the

farther they are from the origin. To obtain the results of Figure 2a, we use 15 grid points

(n = 15). Notice in Figure 2a that the grid points of the approximate solution do not

line up exactly with the kinks in the exact solution. Notice also that boundary conditions

are not imposed. In Figure 2b, we add two grid points around the value of x where the

decision function becomes positive. The picture is similar to Figure 2a. In Figure 2c, we

impose that asset holdings are zero for the �rst three grid points. Notice how close we get

to the exact solution even though we do not use the best possible discretization. Finally,

in Figure 3, we plot the decision functions for three di�erent sized grids: n = 5, n = 9, and

n = 17. In all three cases, we impose some boundary conditions. If we plot the solutions

for all x, the picture looks like Figure 1a. In Figure 3, we focus on only the corner. Notice

how close the approximate function is to the exact function, even with n = 5.

3.2. Computing the distribution of assets { a test case

Suppose the productivities take on two possible values and the decision functions are

given by

�(x; i) =

�
max(0;�0:25 + x); if i = 1

0:5 + 0:5x; if i = 2,
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with �1;1 = �2;2 = 0:8. In this case,

H(0; 1) = 0:8H(0:25; 1);

H(0; 2) = 0:2H(0:25; 1);

H(0:25; 1) = 0:8H(0:5; 1);

H(0:25; 2) = 0:2H(0:5; 1);

H(0:5; 1) = 0:8H(0:75; 1) + 0:2H(0; 2);

H(0:5; 2) = 0:2H(0:75; 1) + 0:8H(0; 2);

H(0:75; 1) = 0:8H(1:0; 1) + 0:2H(0:5; 2);

H(0:75; 2) = 0:2H(1:0; 1) + 0:8H(0:5; 2);

H(0:875; 1) = 0:8H(1:125; 1) + 0:2H(0:75; 2);

H(0:875; 2) = 0:2H(1:125; 1) + 0:8H(0:75; 2);

H(1:0; 1) = 0:5;

H(1:0; 2) = 0:5:

If we assume that H(x; i) = 0:5 for x > 1, then the above expressions can easily be solved.

We can �rst determine H(0; j), H(0:25; j), H(0:5; j), and H(0:75; j) for j =1,2 by solving

Ax = b, where

A =

2
6666666664

1 �:8 0 0 0 0 0 0
0 1 �:8 0 0 0 0 0
0 0 1 �:8 �:2 0 0 0
0 0 0 1 0 0 �:2 0

0 �:2 0 0 1 0 0 0
0 0 �:2 0 0 1 0 0
0 0 0 �:2 �:8 0 1 0
0 0 0 0 0 0 �:8 1

3
7777777775

b =

2
6666666664

0
0
0

:4

0
0
0

:1

3
7777777775
:

The solution is H(0; 1) = 0:225, H(0:25; 1) = 0:282, H(0:5; 1) = 0:352, H(0:75; 1) = 0:426,

H(0; 2) = 0:056, H(0:25; 2) = 0:070, H(0:5; 2) = 0:130, and H(0:75; 2) = 0:204. Note that

we can back out the other points from these solutions by applying the formula in Eq. (9). In

Figure 4a, we plot the �nite element approximation and the exact solution for a relatively

coarse grid (n = 13) with evenly spaced partitions. Notice that a grid this coarse will not
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resolve the discontinuities. In Figure 4b, we re�ne the grid by doubling the number of

partitions (i.e., n = 25); in this case, they are still evenly spaced. In Figures 4c and 4d, we

recompute with an evenly spaced grid but with �ner partitions (i.e., n = 49 and n = 97).

In both of these cases, it is clear where the discontinuities occur. In Figure 4e, we plot the

�nite element approximation for a grid adapted to better resolve the discontinuities. Note

that we get very good agreement with the above solution.

In Figures 4f and 4g, we focus on regions where jumps occur to illustrate how the

method performs. Although the solution is relatively accurate, there are slight deviations

at the discontinuities due to the fact that the method is essentially \centrally di�erencing."

That is, to determine the solution at x = :5, information is used from above and below this

point. The result is nonmonotonicity near discontinuities. To �x this nonmonotonicity,

we simply adjust the �nal solution as follows. In regions just to the left of large gradients

(i.e., discontinuities), if we see Ĥ(i; j) < Ĥ(i � 1; j), then we set Ĥ(i; j) = Ĥ(i � 1; j).

In regions to the right of discontinuities, if we see Ĥ(i; j) < Ĥ(i � 1; j), then we look at

points k = i+ 1; i+ 2; : : :, until we �nd Ĥ(k; j) � Ĥ(k � 1; j). Once we �nd such a point,

we set Ĥ(l; j) = Ĥ(k � 1; j), l = i� 1; : : : ; k � 1. The solution shown in Figure 4h applies

this \trick." If we compare this solution to Figure 4f, we see that the nonmonotonicity is

eliminated and that the solution is closer to the exact solution.

Finally, we should note that for this example, if values of x greater than one are not

included in the grid, then the approximation is very inaccurate. This inaccuracy is due

to the fact that values of H(x; i), x < 1 are used to construct an estimate of H(x; i),

x > 1. For this example, this extrapolation will lead to the inaccurate approximation

shown in Figure 5. Notice that the approximation in Figure 5 lies above the true solution

and violates the terminal condition that H(x; i) = 0:5.
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Figure 1a. Decision functions for the test case with correct discretization, no
boundary conditions imposed, and n = 15.
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Figure 1b. Decision functions for the test case with correct discretization,
no boundary conditions imposed, and n = 15. (Only x 2 [0; :07] shown.)
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Figure 1c. Decision functions for the test case with correct discretization,
boundary conditions imposed, and n = 15. (Only x 2 [0; :07] shown.)
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Figure 2a. Decision functions for the test case without correct discretiza-
tion, without boundary conditions imposed, and n = 15. (Only x 2 [0; :07]
shown.)

Exact      
Approximate

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 2b. Decision functions for the test case without correct discretiza-

tion, without boundary conditions imposed, and n = 17. (Only x 2 [0; :07]
shown.)
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Figure 2c. Decision functions for the test case without correct discretization,
with boundary conditions imposed, and n = 17. (Only x 2 [0; :07] shown.)
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Figure 3. Decision functions for the test case without correct discretization,
with boundary conditions imposed, and various n. (Only x 2 [0; :09] shown.)
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Figure 4a. Distribution for the test case with evenly spaced mesh and n = 13.
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Figure 4b. Distribution for the test case with evenly spaced mesh and n = 25.
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Figure 4c. Distribution for the test case with evenly spaced mesh and n = 49.
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Figure 4d. Distribution for the test case with evenly spaced mesh and n = 97.
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Figure 4e. Distribution for the test case with an adapted grid and n = 73.
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Figure 4f. Distribution for the test case with an adapted grid. (Only x 2

[0:475; 0:525] shown.)
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Figure 4g. Distribution for the test case with an adapted grid. (Only x 2

[0:84; 1:02] shown.)
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Figure 4h. Distribution for the test case with an adapted grid and nonmono-
tonicities eliminated. (Only x 2 [0:475; 0:525] shown.)
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Figure 5. Inaccurate solution for the distribution.
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