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1.  Introduction

Subjective uncertainty is a central concept in economic theory and applied economics.

In economic theory, subjective uncertainty characterizes the beliefs of economic agents

about the state of their environment.  In applied economics, subjective uncertainty describes

the situation of investigators who assess competing models based on their implications for

what might be observed and the circumstances of decision makers who must act given

limited information.  With the application of the expected utility paradigm in increasingly

richer environments, explicit distributional assumptions have become common, but closed

form analytical expressions for the distribution of observables are typically unobtainable.

In this environment, simulation methods—the representation of probability distributions

by related finite samples—have become important tools in economic theory.

In applied economics, the possibility of proceeding strictly analytically is also remote.

Even in the simplest typical situation, the investigator or decision maker must proceed

knowing the observables which are random variables in models of behavior but not

knowing the specification of tastes and technology that the theorist takes as fixed.

Bayesian inference formalizes the applied economics problem in exactly this way: given a

distribution over competing models and the prediction of each model for observables, the

distribution of competing models conditional on the observables is well defined.  But the

technical tasks in moving from even such well-specified models and data to the conditional

distribution over models are more daunting than those found in economic theory.  In the

past decade, very substantial progress has been made in the development of simulation

methods suited to this task.  Section 2 of this paper reviews the conditional distributions of

interest to the investigator or decision maker.  Section 3 describes how modern simulation

methods permit access to these distributions and uses some simple examples and publicly

available software to illustrate the methods.

A central issue in any kind of inference, whether or not it is Bayesian or even explicitly

based on probability theory of any kind, is that the simple paradigm of theory before

measurement is oversimplified.  The set of models which theorists and investigators have

before them is constantly changing.  Some models become fully developed with explicit

predictions, others are no more than incomplete notions, and many are somewhere between

these two extremes.  The process by which some models become more fully developed,

other models receive little attention and still other models are abandoned is driven in large

part by data.  Section 4 of this paper sets forth recently developed numerical procedures for

the explicit comparison of fully developed models.  Section 5 turns to the practical but more

difficult problem of the interaction between data and the development of models.  This
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section advances the thesis that the process of model development is inherently Bayesian.

Section 5 shows that this process can be implemented in a practical way by using two new

concepts—the incomplete model and limited information marginal likelihood.  This model

development process is illustrated in worked examples that use public domain software.

The rigor of conditioning on what is known and working through the implications of

explicit assumptions for what is unknown has both a rich yield and a substantial cost.  The

rich yield is the exact distribution of unobservables conditional on the data.  In the approach

taken in this paper, that distribution is rendered accessible by simulation methods.  The cost

is that models must provide the joint distribution of observables and unobservables

explicitly.  In part, this cost is the real effort expended in formulating this explicit

distribution.  Perhaps a greater concern is that decision makers may not share in all the

distributional assumptions that an investigator makes in this process.  In Bayesian

inference, this concern has focused on the development of prior distributions of

parameters, but usually the more serious problem is the restrictions on observables inherent

in the parameterization of the model—a problem faced by Bayesians, non-Bayesians, and

those who would abandon formal probability theory altogether in inference.

The last section of the paper takes up simple, effective ways of simultaneously

realizing the rich promise of explicitly Bayesian methods and dealing with the desire of

decision makers to change investigators’ assumptions at low cost.  These procedures are

intimately related to simulation methods and rapid movement of large information sets over

the Internet.  The procedures are illustrated for some simple but realistic examples that use

publicly available software.

2.  Bayesian Inference

This section provides a brief overview of Bayesian inference with reference to its

application in economics.  The purpose of this section is to set the contribution of

simulation methods in an explicit context of concepts and notation.  Every attempt has been

made to distill a large literature in statistics to what is essential to Bayesian inference as it is

usually applied to economic problems.  If this endeavor has been successful, then this

section also provides a sufficient introduction for econometricians with little or no

grounding in Bayesian methods to appreciate some of the contributions, both realized and

potential, of simulation methods to economic science.

Most of the material here is standard, reflecting much more comprehensive treatments

including Jeffreys (1939, 1961), Zellner (1971), Berger (1985), Bernardo and Smith
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(1994), and Poirier (1995).  At two junctures, the exposition departs from the usual

development.  One deviation is the concept of a complete model (Section 2.1), which is the

specification of a proper predictive distribution over an explicit class of events.  This

concept can be a clarifying analytical device.  This concept also sets the foundation for the

concept of an incomplete model (Section 5.2) which provides a proper Bayesian

interpretation of the work of economists in improving their models and formulating new

ones.

The other deviation from the standard treatment is the decomposition of the marginal

likelihood in terms of predictive densities (Section 2.3).  This development was first

provided explicitly by Geisel (1975) but has largely been ignored in the subsequent

literature.  The decomposition is the quantitative expression of the fact that predictive power

is the scientifically relevant test of the validity of a hypothesis (Jeffreys, 1939; Friedman,

1953).

This review concentrates entirely on exact, finite sample methods.  As is the case in

non-Bayesian statistics, given suitable regularity conditions, there exist useful asymptotic

approximations to the exact, finite sample results.  Bernardo and Smith (1994, Section 5.3)

provide an accessible introduction to these results.  Asymptotic methods are complementary

to, rather than a prerequisite for, the posterior simulation methods taken up subsequently in

Section 3.

2.1  Basic concepts and notation

Bayesian inference takes place in the context of one or more parametric econometric
models.  Let yt  denote a p ×1 vector of observable random vectors  over a sequence of

discrete time units   t = 1 2, ,K .  The history of the sequence yt{ } at time t  is given by

Y yt s s

t

t= { } ∈
=1

Ψ ; Y0 = ∅{ }.  A model , A , specifies a corresponding sequence of

probability density functions (p.d.f.’s) p , ,y Yt t A−( )1 θ  in which θ  is a k ×1 vector of

unknown parameters, θ ∈ ⊆ ℜΘ k , and A denotes the model.1   This section conditions on

a single model, but subsequently, Section 2.3 entertains several models simultaneously.

The p.d.f. of YT , conditional on the model A  and parameter vector θ , is

p , p , ,Y y YT t tt

T
A Aθ θ( ) = ( )−=∏ 11

.  Conditional on observed YT , the likelihood function is

any function L ; , p ,θ θY YT TA A( ) ∝ ( ).  If the model specifies that the vectors

  yt t T=( )1, ,K  are independent and identically distributed (i.i.d.), then p , ,y Yt t A−( )1 θ

1Throughout, p ⋅( )  denotes a generic p.d.f. with respect to a measure dν ⋅( ) , and P ⋅( )  is a generic

cumulative distribution function (c.d.f.).  The conditioning set makes clear the specific distribution or
density intended.  The measure dν ⋅( )  permits continuous, discrete, and mixed random variables.
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= ( )p ,yt Aθ  and p , p ,Y yT tt

T
A Aθ θ( ) = ( )=∏ 1

.  More generally, the index t  may pertain to

cross sections, to time series, or both, but time series notation is used here for specificity.

If, in addition, the model A also provides the distribution of θ , then A also provides
the joint distribution of θ  and YT .  In particular, if p θ A( ) denotes the prior density, then

(2.1.1) p , p p , , p p ,Y y Y YT t tt

T

TA A A A Aθ θ θ θ θ( ) = ( ) ( ) = ( ) ( )−=∏ 11
.

But it is also the case that

(2.1.2) p , p , pY Y YT T TA A Aθ θ( ) = ( ) ( ) ,

in which

(2.1.3) p p , pY YT TA A A d( ) = ( ) ( ) ( )∫ θ θ ν θ
Θ

is the marginal likelihood2 of model A and

 p , p , p p p , pθ θ θ θ θY Y Y YT T T TA A A A A A( ) = ( ) ( ) ( ) ∝ ( ) ( )
is the posterior density of θ  in model A so long as

(2.1.4)   p , pYT A A dθ θ ν θ( ) ( ) ( )∫Θ

is absolutely convergent.  This last condition is typically, but not necessarily, satisfied and
easy to verify.  For example, boundedness of the likelihood function p ,YT Aθ( )  in θ   is

sufficient, since p θ ν θA d( ) ( ) =∫Θ
1. But if the likelihood function is unbounded, it is vital

to confirm the absolute convergence of (2.1.4).  Expressions (2.1.1) and (2.1.2) are

central, either explicitly or implicitly, to scientific learning.  The former is used to express

the reduction of reality to θ  inherent in the model A, and the latter is used to learn about

reality from the perspective of this particular simplification.  This section outlines the basic

principles of the explicit, or Bayesian, approach to learning.
In addition to the data density p ,YT Aθ( ) and the prior density p θ A( ), a model also

specifies a density p , ,ω θYT A( )  for a vector of interest   ω ∈ ⊆ ℜΩ l .  This vector

represents entities the model is intended to describe.  Whereas θ  is specific to A , ω
remains the same across models.  For example, suppose one model specifies a Cobb-

Douglas production function θ θ θ
2 1 2

11 1y yt t
−( )  for two inputs y t1  and y t2 .  Then the technical rate

of substitution, ω , is ω θ θ= −( )1 11 .  If a second model specifies a constant elasticity of

substitution (CES) production function θ θ θθ θ θ
1 2 1 3 2

1
4 4 4+ +( )y yt t , then the same technical rate

of substitution,  ω , is ω θ θ θθ= ( ) ( )−( )
4 1 2

1

2 3
4y yt t .  In each case, the mapping from θ  to ω

is deterministic: p , ,ω θYT A( )  puts unit mass on a single value of ω .

2This terminology dates at least to Raiffa and Schlaifer (1961, Section 2.1) which also treats these topics.
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As a second example, suppose that one model specifies a first-order stationary

autoregressive process for yt , y yt t t−( ) = −( ) +θ θ θ ε1 2 1  with ε θt

IID

~ N ,0 3( ) .  If

′ = ( )+ +ω y yT T1 2, , the first two post-sample observations, then p , ,ω θ YT A( )  is a bivariate

normal density with mean and variance

θ θ θ
θ θ θ

1 2 1

1 2
2

1

+ −( )
+ −( )











y

y
T

T

  and  θ
θ

θ θ3
2
2

2
2

2
2

1

1 +








,

respectively.  If a second model specifies a second-order stationary autoregressive process

for yt , y y yt t t t−( ) = −( ) + −( ) +− −θ θ θ θ θ ε1 2 1 1 3 2 1  with ε θt

IID

~ N ,0 4( ), then p , ,ω θ YT A( )  is

again a bivariate normal density, but with mean and variance

θ θ θ θ θ
θ θ θ θ θ θ θ θ

1 2 1 3 1 1

1 2 3 2 1 2 3 1 11 1

+ −( ) + −( )
+( ) + +( ) −( ) + −( )











−

−

y y

y y
T T

T T

  and  θ
θ

θ θ4
2
2

2
2

2
2

1

1 +








 ,

respectively.

Since p , ,ω θYT A( )  implies marginal distributions for subvectors of ω , one need not

explicitly elaborate all of ω .  Indeed, much scientific discourse can be interpreted as
specification of ω .  A complete model consists of three components: p ,YT Aθ( ), p Aθ( ),

and p , ,ω θYT A( ) .

Without loss of generality, let the objective of inference when there is one model be

(2.1.5) E h ,ω( )[ ]YT A

for suitably chosen h ⋅( ) .  This formulation includes several special cases of interest.  The

posterior probability that the hypothesis θ ∈Θ0  is true is E h ,ω( )[ ] =YT A P ,θ ∈( )Θ0 YT A ,

where h ω χ θ( ) = ( )Θ0
.3  To illustrate, consider the hypothesis that the technical rate of

substitution exceeds one when y yt t1 2=  in the first example.  For the Cobb-Douglas

production function, take Θ0 1 1 0 5= >{ }θ θ: . , and for the CES production function take

Θ0 2 3 4 4 2 3 1= >{ }θ θ θ θ θ θ, , : .   Note that in each case, there is a nuisance parameter: θ2  for

Cobb-Douglas and θ1 for CES.  Here, and in general, nuisance parameters pose no

particular difficulties.

Another important class of cases arises from prediction problems,

  
′ = ( )+ +ω y yT T f1, ,K .  Through the appropriate choice of h ω( ), this category includes

expected values, turning point probabilities, and predictive intervals.  In the time series

example just set forth, suppose that y y yT T T− −< <2 1 .  If a turning point at time t is said to

occur if y y y y yt t t t t− − + +< < > >2 1 1 2 , then a turning point at time T is the set of events

3Here and throughout, χ S z( )  is the indicator function χ S z z S( ) = ∈1 if  and χ S z z S( ) = ∉0 if .
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Ω* := < <{ }ω ω ω2 1 yT .  Hence, for h *ω χ ω( ) = ( )Ω
, E h ,ω( )[ ]YT A  is the probability of a

turning point at time T, where T is the end of the sample.
Yet another useful class of functions is h L , L ,ω ω ω( ) = ( ) − ( )a a1 2 , in which L ,a ω( )

denotes the loss incurred if action a is taken, and then the realization of the vector of
interest is ω  .  To examine a specific case, suppose that in the second example yt  is the

logarithm of tax revenue at time t.  A policy maker must either commit ( a1) or not commit

( a2) to a program which utilizes tax revenues ω1  at time T + 1 and ω2  at time T + 2.  Then

the policy maker’s loss function L ,a ω( )  might be monotone decreasing in ω ω1 2+  for

a a= 1 and monotone increasing in ω ω1 2+  for a a= 2 , and consequently, h ω( ) is

monotone decreasing in ω ω1 2+ .  The solution of the decision problem is to commit to the

project if E h ,ω( )[ ] <YT A 0 and not commit if E h ,ω( )[ ] >YT A 0.

The posterior moment (2.1.5) can be expressed as

(2.1.6) E h , h p , , p ,ω ω ω θ θ ν ω ν θ( )[ ] = ( ) ( ) ( ) ( ) ( )∫∫Y Y YT T TA A A d d
ΩΘ

     = ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫h p , , p , p ,* *ω ω θ θ ν ω ν θ θ ν θY Y YT T TA A d d A d
ΩΘ Θ

,

where p , p , p A p ,* θ θ θ θY Y YT T TA A A( ) ∝ ( ) ∝ ( ) ( )  is any posterior density kernel for θ .4

It clearly matters not which posterior kernel is used.  However, the problem of evaluating

integrals—one in the numerator, the other in the denominator—remains paramount.

The importance of verifying the absolute convergence of the integral in the

denominator of the right side of (2.1.6) has already been noted.  It is, of course, equally

important to verify the absolute convergence of the numerator of (2.1.6).  Together, both

conditions are equivalent to the existence of the posterior moment (2.1.5).  It is

straightforward to verify these convergence conditions in the examples discussed above.

Many of these ideas can be illustrated in the standard linear model.  For an observable

T ×1 vector of dependent variables y and T k×  matrix of fixed covariates5 X,

(2.1.7) y X= +β ε ;   ε X ~ N 0, h−1IT( ) ;   rank X( ) = k .

The parameter h is the precision of the i.i.d. disturbances,   ε ε1, ,K T ; h is the inverse of

var ε t( ) = σ 2 .6   Consider the independent prior distributions for β  and h,

(2.1.8) β ~ N β , H−1( ),

4More generally, any nonnegative function proportional to a probability density is a density kernel.
5 If instead X  is random with p.d.f. p Xη( ) , p , , p , pβ η β ηh A h A A( ) = ( ) ( ) and p , , , ,ω β ηy X h( )
= ( )p , , ,ω βy X h , then X is ancillary and the analysis that follows still pertains.  For further discussion of

ancillarity, see Bernardo and Smith (1994, Section 5.1.4).  The condition of weak exogeneity in the
econometrics literature (Engle, Hendry, and Richard, 1983; Steel and Richard, 1991) is closely related.
6More generally, the precision of any random variable is the inverse of its variance.
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and

(2.1.9) s2h ~ χ 2 ν( ) ,

where H  is a fixed precision matrix, β  is a fixed mean vector, and s2  and ν  are fixed

scalars.  In any given application, the combination of (2.1.8) and (2.1.9) is not necessarily

an adequate expression of prior beliefs.7  However, the specification in (2.1.8) and (2.1.9)

has attractive analytical properties that will become clear in due course.  Moreover, in many

cases, it is straightforward to modify the posterior distribution implied by the prior

distributions (2.1.8) and (2.1.9) to express the posterior distributions corresponding to

(2.1.7) and alternative prior distributions by using simple numerical methods described in

Section 6.

From (2.1.8),

(2.1.10) p expβ π β β β β( ) = ( ) −( ) −( )′ −( )





−2 1 22 1 2k H H ,

and from (2.1.9),

(2.1.11) p h( ) = 2ν 2 Γ ν 2( )[ ]−1
s2( )ν 2

h ν −2( ) 2 exp −s2h 2( ).

Since (2.1.7) is equivalent to the conditional data density

(2.1.12) p , , expyX y X y Xβ π β βh h hT T( ) = ( ) −( ) −( )′ −( )





−2 22 2 ,

a posterior density kernel is the product of (2.1.10), (2.1.11), and (2.1.12), which is

(2.1.13a) 2π( )− T +k( ) 2 2ν 2 Γ ν 2( )[ ]−1

(2.1.13b) ⋅H 1 2 s2( )ν 2

(2.1.13c) ⋅h T + ν −2( ) 2 exp −s2h 2( )
(2.1.13d) ⋅ −( ) −( )′ −( ) + −( )′ −( )













exp 1 2 β β β β β βH y X y Xh .

To simplify this expression, complete the square in β  of the term in brackets in

(2.1.13d), which yields

β − β( )′H β − β( ) + h y − Xβ( )′ y − Xβ( ) = β − β( )′ H β − β( ) + Q ,

where

(2.1.14) H = H + h ′X X,

(2.1.15) β = H−1 Hβ + h ′X y( ) = H−1 Hβ + h ′X Xb( ) ,

and

7Nor is (2.1.7), necessarily.  Sections 2.3 and 4 return to this important question in greater depth.
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(2.1.16) Q h= ′ + ′ − ′y y H Hβ β β β

     = + −( )′ ′ −( ) + −( )′ −( )h s hν β β β β β β2 b X X b H .

The term b  denotes the coefficients in the ordinary least squares fit of y  to X ,

b = ′X X( )−1 ′X y ; s2 = −( )′ −( )y Xb y Xb ν  and ν = −T k .  If (2.1.13) is interpreted as a

function of β  only, that function must be a posterior density kernel for β  conditional on h,

and the completion of the square in (2.1.13d) shows that p , ,β h y X( )
∝ −( ) −( )′ −( )








exp 1 2 β β β βH .  Consequently,

(2.1.17) β h,y,X( ) ~ N β , H−1( ) .

Interpreting (2.1.13) as a function of  h  alone, one obtains

p , , exph h s hTβ β βνy X y X y X( ) ∝ −( ) + −( )′ −( )













+ −( )2 2 21 2 ,

and consequently,

(2.1.18) s2 + y − Xβ( )′ y − Xβ( )




h β ,y,X( ) ~ χ 2 T + ν( ) .

The distributions in (2.1.8) and (2.1.9) are special cases of conditionally conjugate

priors (to be defined shortly).  These priors are attractive because they lead to the tractable

results (2.1.17) and (2.1.18).  Yet these results are not directly useful, because they do not

provide distributions conditional only on the data and prior information.  However, these

results form the basis of an attractive simulation method discussed in Section 3.3.

In any application of the standard linear model, the vector of interest ω  is likely to

include an as yet unobserved T * ×1 vector y* arising in a situation in which it is

hypothesized that y X X 0 I* * * * *, ~ N , *= + ( )−β ε ε h
T

1 .  If ε  and ε * are conditionally

independent given X X, , ,* β h( ), then y X y X X I* * *, , , , ~ N , *β βh h
T( ) ( )−1 , and it is

straightforward to show y X y X X X H X I* * * * *, , , ~ N , *h h
T( ) ′ +( )− −β 1 1 .

2.2  Conjugate and improper prior distributions
The prior distribution p θ A( ) is a representation of belief in the context of model A.  In

selecting a prior or data distribution, the richer the class of functional forms from which to

choose, the more adequate the representation of prior beliefs possible.  Yet the choice is

constrained by the tractability of the posterior density p , p p ,θ θ θY YT TA A A( ) ∝ ( ) ( ), which

is jointly determined by the choice of functional forms for the data density and prior

density.  The search for rich tractable classes of prior distributions may be formalized by
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considering classes of prior densities, p p ,θ θ γA A( ) = ( ), where γ  is a parameter vector

that indexes prior beliefs.  For example, in the linear model the prior distribution

β ~ N β , H−1( ) is indexed by β and H .

Suppose the model p ,YT Aθ( ) has a sufficient statistic 
  
s YT T T r T Ts s= ( ) ( )( )′ = ( )1

, , sK ,

r is fixed as T varies, and sT( )1
= T .  Then the conjugate family of prior densities with

respect to p ,YT Aθ( ) is p , ,θ γ γA( ) ∈{ }Γ ,  where

p ,θ γ A( )  
  
∝ ( ) = =( )[ ]p , , ,s j r A

j jγ γ θ
1

2 K

and

 
  
Γ

Θ
= ( ) = =( )[ ] < ∞{ }∫γ γ θ θγ: p , , ,s j r A d

j j1
2 K .

The kernel of any conjugate prior density may be interpreted as a likelihood function that
corresponds to a data set Zγ 1

 with a sufficient statistic   ′ = ( )sγ γ γ
1 2, ,K r .  To the extent one

can represent prior beliefs arising from notional data with the same probability density

functional form as the actual data, a conjugate prior distribution will provide a good
representation of belief.  By construction, p , p ,*Y sT TA Aθ θ( ) ∝ ( ) and p p ,*θ γ θA A( ) ∝ ( ) ,

where the proportionality is in θ , and p ,* sT Aθ( ) and p ,* γ θ A( ) have exactly the same

functional form in θ .  Hence, p ,θ YT A( ) ∝ ( ) ( )p , p ,* *sT A Aθ γ θ .  It is often the case that

the functional form of p ,θ YT A( ) is the same as that of p ,* sT Aθ( ), and it is this feature that

makes the posterior density tractable.8

To extend this idea, let ′θ = ′θ1, ′θ2( ) and fix θ2 = θ2
0 .  Suppose the model

p , ,YT Aθ θ θ1 2 2
0=( ) has a sufficient statistic s YT

r
T T

* *

*

s
×

= ( )
1

, r* is fixed, and s TT
*( ) =

1
.  Then

the conditionally conjugate family of prior densities with respect to p , ,YT Aθ θ θ1 2 2
0=( )

is p , ,* * *θ γ γ1 A( ) ∈{ }Γ , with 
  
Γ

Θ

* * * * *: p , , , ,= ( ) = =( ) =[ ] < ∞{ }∫γ γ θ θ θ θγs j r A d
j j1

1

2 1 2 2
0

1K

and 
  
p , p , , , ,* * * *θ γ γ θ θ θγ1 1 2 2

0

1
2A s j r A

j j( ) ∝ ( ) = =( ) =[ ]K .

The prior distributions (2.1.8) and (2.1.9) are conditionally conjugate, but they are not
conjugate in the linear model (2.1.7).  In this example, the prior density for ′θ = ′β ,h( )  is

indexed by γ = β ,H,s2 ,ν{ } .  In the linear model, because

(2.2.1) p , , expyX b X X bβ ν β βh h h sT( ) ∝ −( ) + −( )′ ′ −( )













2 22 ,

8Indeed, one can begin with this property as the definition of conjugate.  (See Berger (1985, Section 4.2.2)
and Poirier (1995, Section 6.7).)  The definition here is that used by Bernardo and Smith (1994, Section
5.2.1) and Zellner (1971, Section 2.3).  For the exponential family of distributions (which includes the
standard linear model), the two are equivalent.  (See Bernardo and Smith (1994, Proposition 5.4).)
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the vector sT = T,b,s2 , ′X X[ ] is a sufficient statistic.9  Conditioning on h = h0 , one finds

that

p , expyX b X X bβ β β( ) ∝ −( ) −( )′ ′ −( )





1 2 0h .

Since p expβ β β β β( ) ∝ −( ) −( )′ −( )





1 2 H , the prior density (2.1.10) is conditionally

conjugate.  Likewise, conditioning on β = β0 , one obtains

p y X,h( ) ∝ hT 2 exp −s 2h 2( ) ,

where s 2 = νs2 + β0 − b( )′ ′X X β0 − b( ).  Hence, the prior density (2.1.11) is conditionally

conjugate.

In many instances, posterior moments (2.1.5) continue to be well-defined as a
mathematical formality, even if p* θ A( )  is not the kernel of any p.d.f.  Particular interest

focuses on the case in which p* θ θA( ) ≥ ∀ ∈0 Θ , but p* θ ν θA d( ) ( )∫Θ
 is divergent.  Such

a function is said to be the density kernel of an improper prior distribution.  The kernel
p* θ A( )  may often be constructed by considering a sequence of models   A A1 2, ,K that

differ only in the specification of the prior density p θ Aj( )  and not in the data density or in

the conditional distribution of the vector of interest. Suppose the limit of kernels of prior

density functions, p* θ Aj( ), has the property

lim h p , , p , p ,* *
j T T j T jA A d d A d→∞ ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫ω ω θ θ ν ω ν θ θ ν θY Y Y

ΩΘ Θ

(2.2.2)      = ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫h p , , p , p ,* *ω ω θ θ ν ω ν θ θ ν θY Y YT T TA A d d A d
ΩΘ Θ

.

In the last expression, if the denominator and numerator are absolutely convergent, then

lim E h , E h ,j T j TA A→∞ ( )[ ] = ( )[ ]ω ωY Y  may be interpreted as the posterior expectation of

h ω( ) in a complete model with data density p ,YT A θ( ) and improper prior density with

kernel p* θ A( ) .  Verifying the absolute convergence conditions can be substantially more

difficult for improper priors than for proper priors: in particular, a bounded likelihood

function no longer suffices for absolute convergence of the integrals in the denominator of

(2.2.2).

As an example in the context of the standard linear model, consider the sequence of

prior distributions 
  
β βA j jj ~ N , , ,H−( ) =( )1 1 2 K  conditional on a known value of the

disturbance precision h .  A corresponding sequence of kernels is

9This follows from the Neyman factorization criterion (Bernardo and Smith, 1994, Section 4.5.2).  Less
formally, from (2.2.1), it is clear that one only needs to know sT  to write the likelihood function for β  and
h.
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p exp* β β β β βA jj( ) = −( ) −( )′ −( )





−1 2 1H ; lim p p* *
j jA A→∞ ( ) = ( ) = ∀β β β1 .  The

corresponding sequence of posterior distributions is β βY HT j jA, ~ N ,( ) ( )[ ]−1
, with

H X X Hj h j= ′ + −1 , β βj j h j= ′ +[ ]− −H X Xb H1 1 .  Hence,

p , , , exp

exp p , , , p , , , p .*

β β β β β

β β β β β

y X H

b X X b yX yX

h A

h h A h A A

j j j j( ) ∝ −( ) −( )′ −( )





→ −( ) −( )′ ′ −( )





∝ ( ) = ( ) ( )

1 2

1 2

The last line shows that the limiting posterior distribution could also have been achieved by
carrying out a formal analysis using the improper prior density kernel p* β A( ).

It is important to note that while posterior moments (2.1.5) may continue to be defined

equivalently as mathematical formalities and as the limit of posterior moments under a

sequence of prior distributions, an improper prior distribution and a data density do not

together provide a joint distribution of parameters and data.  In particular, under a sequence

of proper prior distributions p θ Aj( )  converging to the improper prior distribution,

lim pj T jA→∞ ( )Y  is undefined.  To see this important point intuitively, note that if p θ A( ) is

a proper density, one can work out the implications of the model for the data through
simulation: first, draw θ θ~ p A( ), and then Y YT T A~ p ,θ( ) .  If p θ A( ) is improper, this

cannot be done.10

2.3  Model comparison and combination
Often one has under consideration several complete models, say   A AJ1, ,K :

  
p , p , , p , , , ,θ θ θ ω θj j j j T j j T j jA A A j J( ) ∈( ) ( ) ( ) =( )Θ Y Y 1 K .

The numbers of parameters in the models need not be the same, and various models may or

may not nest one another.  If prior probabilities 
  
P , ,A j Jj( ) =( )1 K  are assigned to the

respective models, with P Ajj

J ( ) =
=∑ 1

1, then there is a complete probability structure for

Aj j j

J
,θ{ } =1

, YT , and ω .  There is no essential conceptual distinction between model and

prior, since one could just as well regard the entire collection as the model, with

P , pA Aj j j j
j

J( ) ( ){ }
=

θ
1
 as the characterization of the prior distribution.  At an operational

level, the distinction is usually clear and useful in that one may undertake the essential

computations one model at a time.

10We return to this use of a proper prior distribution in Section 5.2.
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Suppose that the posterior moment (2.1.5) is ultimately of interest.  The formal

solution is

(2.3.1) E h E h , Pω ω( )[ ] = ( )[ ] ( )=∑Y Y YT T j j Tj

J
A A

1
,

known as model averaging.  Clearly, E h ,ω( )[ ]YT jA  is given by (2.1.6) with A Aj= .

There is nothing new in this part of (2.3.1).  From Bayes’ rule,

(2.3.2)

P P p P p

P p , p P p

P p , p

A A A A A

A A A d A A

A A A d

j T j T j j T jj

J

j T j j j j j j T jj

J

j T j j j j j

j

j

Y Y Y

Y Y

Y

( ) = ( ) ( ) ( ) ( )
= ( ) ( ) ( ) ( ) ( ) ( )
∝ ( ) ( ) ( ) ( )

=

=

∑
∫ ∑

1

1
θ θ ν θ

θ θ ν θ

Θ

Θ∫∫ = ( ) ( )P p ,A Aj T jY

where p p , pY YT j T j j j j jA A A d
j

( ) = ( ) ( ) ( )∫ θ θ ν θ
Θ

 is the marginal likelihood of model j ,

which is consistent with the definition in (2.1.3) in Section 2.1.  Notice it is important that

the properly normalized prior and properly normalized data density, and not arbitrary

kernels of these densities, be used in forming the marginal likelihood.

Model averaging thus involves three steps.  First, obtain the posterior moments

(2.1.6) corresponding to each model.  Second, obtain the relative values of P Aj TY( ) from

(2.3.2).  Finally, obtain the posterior moment by using (2.3.1) which now only involves

simple arithmetic, recognizing that P Aj Tj

J
Y( ) =

=∑ 1
1.  Variation of the prior model

probabilities P Aj( )  is a trivial step, as is the revision of the posterior moment following the

introduction of a new model or deletion of an old one from the conditioning set of models.

On the other hand, the questions of whether to introduce new models and how to formulate

new models are more difficult.  Section 5 returns to these points.
From (2.3.2), for any pair of models A Aj k and ,

(2.3.3) P P P P p pA A A A A Aj T k T j k T j T kY Y Y Y( ) ( ) = ( ) ( )[ ]⋅ ( ) ( )[ ].
This ratio of probabilities is the posterior odds ratio in favor of model j  versus model k .

The ratio is invariant with respect to the addition and deletion of models from the set

Aj j

J{ } =1
 under consideration so long as the prior probabilities P Aj

j

J( ){ }
=1

 are changed in a

logically consistent fashion—that is, ratios P PA Aj k( ) ( )  remain unchanged for all included

models.11  The posterior odds ratio is expressed in (2.3.3) as the product of the prior odds

ratio in favor of model j  versus model k , P PA Aj k( ) ( ) , and the Bayes factor in favor of

model j  versus model k , p pY YT j T kA A( ) ( ) .

11This property is analogous to the independence of irrelevant alternatives in the qualitative choice
literature.  See Poirier (1997).
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In the case of the standard linear model, it is straightforward to work out the marginal

likelihood and Bayes factors if h is fixed.  The product of the properly normalized prior and

data densities is

(2.3.4)

p p , ,

exp .

β β π

β β β β β β

( ) ( ) = ( )

⋅ −( ) −( )′ −( ) + −( )′ −( )













− +( )yX H

y X y X H

h h

h

T k T2

1 2

2 2 1 2

The term in brackets may be expressed as

(2.3.5) β − β( )′ H β − β( ) + Q,

with β , H , and Q as defined in (2.1.14)–(2.1.16).  Substituting (2.3.5) in (2.3.4), one

finds that the marginal likelihood is

p p , ,

exp

exp

R

β β β

π β β β β β

π

( ) ( )

= ( ) −( ) − ′ − +







= ( ) −( )

ℜ

− +( ) 



























− −

∫

∫

yX

H H

H H

h d

h Q d

h Q

k

k

T k T

T T

2 1 2

2 2

2 2 1 2

2 2 1 2 1 2

(2.3.6)            

= ( ) ( )
⋅ −( ) + −( )′ ′ −( ) + −( )′ −( )













−2

1 2

2 2
1 2

2

π

ν β β β β β β

T Th

h s h

H H

b X X b Hexp .

From the last expression, it is apparent that the marginal likelihood of a linear model

depends on more than the least squares fit of y to X, which is measured by the sum of

squared residuals νs2 .  This marginal likelihood also depends on the squared distance

between the least squares fit b and the posterior mean β  under the data-based norm h ′X X ,

the squared distance between the prior mean β  and the posterior mean β  under the prior-

based norm H, and the fraction of posterior precision accounted for by prior precision as

measured by H H .

Expression (2.3.2) shows that the marginal likelihood of model j, p YT jA( ) , is the

measure of how well model Aj  predicted the observed data YT  that is relevant for the

comparison of model j with any other models.  In fact, there is a more formal link between

the marginal likelihood of a model and the adequacy of the model’s predictions that

underscores the predictive interpretation of p YT jA( ) .12  To establish this link, first

consider the distribution of   y yu t+1, ,K  conditional on Yu  and model j,

12The formal demonstration that follows dates at least from Geisel (1975), but the more recent literature
has largely ignored Geisel’s result.  (Thanks to Jacek Osiewalski for bringing Geisel’s thesis to my
attention.)
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(2.3.7)
  
p , , , p , p , ,y y Y Y y Yu t u j j u j s s j js u

t

jA A A d
j

+ −= +( ) = ( ) ( ) ( )∏∫1 11
K θ θ ν θ

Θ
.

As a function of   y yu t+1, ,K , after Yu  is observed and before   y yu t+1, ,K  is observed,

expression (2.3.7) is the predictive density of   y yu t+1, ,K  conditional on Yu  and model

Aj .  After observing   y yu t+1, ,K , one finds that (2.3.7) is a real number known as the

predictive likelihood of   y yu t+1, ,K  conditional on Yu  and model Aj .  Note that

  
p , , ,y y Y1 0K t jA( ) = ( )p Yt jA , since Y0 = ∅{ }.  Substituting for the posterior density in

(2.3.7), one finds that

  

p , , ,

p p , ,

p p , ,
p , ,

y y Y

y Y

y Y
y Y

u t u j

j j s s j js

u

j j s s j j js

u s s j j js

A

A A

A A d
A d

j

j

+

−=

−=

−=

( )

=
( ) ( )

( ) ( ) ( )











( ) ( )∏

∏∫∫

1

11

11

1

K

θ θ

θ θ ν θ
θ ν θ

Θ
Θ uu

t

+∏ 1

          =
( ) ( ) ( )
( ) ( ) ( ) =

( )
( )

−=

−=

∏∫
∏∫

p p , ,

p p , ,

p

p

θ θ ν θ

θ θ ν θ

j j s s j j js

t

j j s s j j js

u

t j

u j

A A d

A A d

A

A
j

j

y Y

y Y

Y

Y

11

11

Θ

Θ

.

 Hence, for any   0 0 1≤ = < < < =u s s s tqK , it is the case that

(2.3.8)  

  

p , , ,
p

p

p

p

p

p

p , , , .

y y Y
Y

Y

Y

Y

Y

Y

y y Y

u t u j

s j

s j

s j

s j

s j

s j

s s s j

q

A
A

A

A

A

A

A

A

q

q

+

+=

( ) =
( )
( ) ⋅

( )
( ) ⋅ ⋅

( )
( )

= ( )
−

− −∏

1

11

1

0

2

1 1

1 1

K K

K
τ τ ττ

This decomposition shows that the marginal likelihood (u = 0, t = T ) summarizes the out-

of-sample prediction record of the model as expressed in the predictive likelihoods

  
p p , , ,Y y y YT j s s s j

q
A A( ) = ( )− −+=∏ τ τ ττ 1 111

K .  In the sense made precise by (2.3.8) and the use

of p YT jA( )  in posterior model probability and model averaging, there is no distinction

between a model’s adequacy and its out-of-sample prediction record.13

Hypothesis testing is the problem of choosing one model from several.  In the context

of model combination, this problem is somewhat artificial, but nonetheless, it may be cast

as a formal Bayesian decision problem.  With no real loss of generality, assume there are

only two models in the choice set.  If one treats model choice as a Bayes action and

supposes that the loss incurred in choosing model i  depends only on which model is true,

13The decomposition (2.3.8) may be interpreted as a formal expression of Milton Friedman’s well-known
identification of a model’s evaluation with its predictive performance: “Theory is to be judged by its
predictive power .... The only relevant test of the validity of a hypothesis is comparison of its predictions
with experience” (Friedman, 1953, 8–9; emphasis in original).  There are striking similarities between
Friedman (1953) and Jeffreys (1939, 1961).  The third edition (Jeffreys, 1961) contains, in Chapter 1,
essentially the results presented here for the very special case of deterministic dichotomous outcomes.
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then this loss may be denoted L i j( ).  Further, suppose that L i i( ) = 0 and

L i j( ) > 0 j ≠ i( ) .  Then given the data YT , the expected posterior loss from choosing

model i  is P LA i j j ij TY( ) ( ) ≠( ).  Hence, the Bayes action, based on the criterion of

minimizing expected posterior loss, is to choose Model 1 if

(2.3.9)
P

P

P p

P p

L

L

A

A

A A

A A
T

T

T

T

1

2

1 1

2 2

12

21

Y

Y

Y

Y
( )
( ) =

( ) ( )
( ) ( ) > ( )

( ) .

The value L 12( ) L 21( )  is known as the Bayes critical value.  One chooses Model 1 if the

posterior odds ratio in favor of it exceeds the Bayes critical value.  For reasons of

economy, an investigator may therefore report only the marginal likelihood, leaving it to

her clients—that is, the users of the investigator’s research—to provide their own prior

model probabilities and loss functions.  The steps of simply reporting marginal likelihoods

and Bayes factors are sometimes called hypothesis testing as well.  The Bayes factor itself

can be seen to serve as a test statistic by rearranging (2.3.9) as
p

p

L P

L P

Y

Y
T

T

A

A

A

A
1

2

2

1

1 2

2 1

( )
( ) > ( ) ( )

( ) ( ) .

That is, the Bayes action can be viewed as choosing Model 1 if the sample evidence in its

favor (as measured by the Bayes factor) is greater than the prior expected loss associated

with its choice.

It is instructive to consider briefly the choice between two models given a sequence of

prior distributions p θ1 1Aj( ) in Model 1 in which lim pj
jA→∞ ( ) = ∀ ∈θ θ1 1 1 10 Θ , but

p ,YT
jAθ1 1( )  is the same for all j.  It was seen in Section 2.2 that limiting posterior moments

in Model 1 can be well-defined in this case and may be found conveniently by using a

corresponding sequence of convergent prior density kernels.  If the likelihood function

satisfies a mild regularity condition, like θ θ1 1 1: p ,YT
jA c( ) >{ } is a compact set of finite

dν θ1( ) measure for all c > 0 , then lim pj T
jA→∞ ( ) =Y 1 0.  This condition ensures

lim pj
j

TA→∞ ( ) =1 0Y .  Therefore, if the prior distribution in Model 1 is improper, whereas

that in Model 2 is proper, then the hypothesis test cannot conclude in favor of Model 1.

This result is widely known as Lindley's paradox; see Lindley (1957) and Bartlett (1957).

It can be observed explicitly in the linear model with h fixed, for which the marginal
likelihood is (2.3.3).  If β  is fixed but H 0→ , then p β βA( ) → ∀0  and

p p , , ,β β βA h A d
k

( ) ( ) →
ℜ∫ yX 0  as well.
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2.4  Hierarchical priors and latent variables

A hierarchical prior distribution expresses the prior in two or more steps.  The two-

step case specifies a model

(2.4.1) p , ,1( )( )YT Aθ λ
with a prior density for θ ∈Θ  conditional on a vector of hyperparametersφ ∈Φ,

(2.4.2) p ,2( )( )θ φ A ,

and a prior density for φ  and λ ∈Λ ,

(2.4.3) p ,3( )( )φ λ A ,

it being understood in (2.4.1) that  p , , p , , ,1( )( ) = ( )Y YT TA Aθ λ θ λ φ .

The full prior density for all parameters and hyperparmeters is

(2.4.4) p , , p , p ,θ φ λ φ λ θ φA A A( ) = ( ) ( )( ) ( )3 2 .

There is no fundamental difference between this prior density and the one described in

Section 2.1, since

p , p , p ,θ λ θ φ φ λ ν φ( ) = ( ) ( ) ( )( ) ( )∫ 2 3A A d
Φ

.

However, the hierarchical formulation is often so convenient as to render fairly simple the

analysis of posterior densities that would otherwise be quite difficult.  Given a hierarchical

prior, one may express the full posterior density as

(2.4.5) p , , , p , , p , p ,θ λ φ θ λ θ φ φ λY YT TA A A A( ) ∝ ( ) ( ) ( )( ) ( ) ( )1 2 3 .

A latent variable model expresses the likelihood function in two or more steps.  In

the two-step case, the likelihood function may be written as

(2.4.6) p , ,*1( )( )Y ZT T Aλ ,

where Z ZT T
* ˜∈  is a matrix of latent variables and λ ∈Λ .  The model for ZT

*  is

(2.4.7) p ,*2( )( )ZT Aφ ,

and the prior density for φ ∈Φ and λ  is

(2.4.8) p ,3( )( )φ λ A .

The full prior density for all parameters and unobservable variables is

(2.4.9) p , , p , p ,* *Z ZT TA A Aλ φ φ λ φ( ) = ( ) ( )( ) ( )3 2 ,

and the full posterior density is

(2.4.10) p , , , p , , p , p ,* * *Z Y Y Z ZT T T T TA A A Aλ φ λ φ φ λ( ) ∝ ( ) ( ) ( )( ) ( ) ( )1 2 3 .

 Comparing (2.4.1)–(2.4.5) with (2.4.6)–(2.4.10), one sees that the latent variable

model is formally identical to a model with a two-stage hierarchical prior and, in particular,

that the latent variables correspond to the intermediate level of the hierarchy.  With
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appropriate marginalization of (2.4.10), one may obtain p ,*Z YT T A( ), which fully reflects

uncertainty about the parameters.  If one is interested only in λ φ and , these distributions

may also be obtained by marginalization of (2.4.10).  Marginalization requires integration

over ZT
* , which is possible analytically only in special cases.  If the problem is approached

by using the simulation methods described beginning in the next section, then this

integration simply amounts to discarding simulated values of ZT
* .

A simple example of a latent variable model is provided by the textbook probit model,

(2.4.11)  y X* = +β ε ,   ε X 0 I~ N , T( ) ,   rank X( ) = k ,   d yt t= ( )∞[ )χ 0,
* ,

in which the T k×  matrix of covariates   X x x= ′ ′[ ]′1, ,K T  and  decision vector

  ′ = ( )d d dT1, ,K  are observed, but   ′ = ( )y * * *, ,y yT1 K  is latent.  To complete the model, take

(2.4.12) β β~ N , H−( )1 .

In the equivalent formulation of this model with a hierarchical prior, the parameter vector is

y*,β( ).  The first level of the hierarchical prior is β β~ N , H−( )1 , corresponding to p 3( )

with φ β= .  The second level is y X X I* , ~ N ,β β( ) ( ), with θ = y* in the hierarchical prior

interpretation and Z yT
* *=   in the latent variable interpretation.  (There is no analog of λ  in

this example.)  The data distribution is

p *
,

*
,

*dy( ) = ( ) + ( ) −( )[ ]∞[ ) −∞( )=∏ χ χ0 01
1y d y dt t t tt

T
.

Either formulation leads to the same joint distribution for β, *y , and d,

(2.4.13) p , , exp*β π β β β βy dX H H( ) = ( ) −( ) −( )′ −( )





− +( )2 1 22 1 2T k

     ⋅ −( ) − ′( )[ ]⋅ ( ) + ( ) −( )[ ]∞[ ) −∞( )=∏ exp *
,

*
,

*1 2 1
2

0 01
y y d y dt t t t t tt

T β χ χx .

The main conceptual point is that since Bayesian inference conditions on the observables

d X,( ), parameters and latent variables have the same standing as unknown entities whose

joint distribution with the observables is given by the model.  Section 3.3 shows that this

formulation provides a basis for computations as well.

3.  Posterior Simulation Methods

The objective of inference in a single model,

E h , h p , , p ,ω ω ω θ θ ν ω ν θ( )[ ] = ( ) ( ) ( ) ( ) ( )∫∫Y Y YT T TA A A d d
ΩΘ

,



18

can be evaluated analytically only in a few specific simple cases.  This section describes

simulation methods for obtaining a sequence of strongly consistent approximations to

E h ,ω( )[ ]YT A , and the following section will take up the process of model averaging.  In

most applications, it is generally straightforward to find a function g ,YT θ( ) , possibly

random, with the property

(3.0.1) E g , , , E h , , h p , ,Y Y Y YT T T TA A A d gθ θ ω θ ω ω θ ω( )[ ] = ( )[ ] = ( ) ( ) =∫Ω
.

Finding this function is trivial if h , ,ω θ( )( )YT A  is deterministic.14  This was the case in the

production function examples discussed in Section 2.1.  If h ω( ) is random, then it is often

straightforward to take ω ω θ~ p , ,YT A( ) , and then g , hYT θ ω( ) = ( ) .  This was the case in

the tax revenue forecasting example in Section 2.1.

More generally, one may be able to find a function satisfying (3.0.1), but for which

(3.0.2) var g , , ,Y YT T Aθ θ( )[ ] < ( )[ ]var h , ,ω θYT A .

The turning point example of Section 2.1 provides an illustration.  Recall that in this

example, the objective of evaluating P y y yT T T T+ +< <( )2 1 Y  was accomplised by defining

′ = ( )+ +ω y yT T1 2, .  One could draw ω θYT ,( ) and use the random function

g , h *YT θ ω χ ω( ) = ( ) = ( )Ω
.  Alternatively, one could draw only ω θ1 YT ,( )  and use the

random function g , P ,Y YT Tθ ω ω θ( ) = <( )2 1 , which requires only the ability to evaluate the

univariate standard normal c.d.f.  Yet a third alternative is to employ the deterministic

function g , P ,Y YT T Tyθ ω ω θ( ) = < <( )2 1  using bivariate quadrature.  In each case,

E g , , P ,Y Y YT T T T T Ty y yθ θ θ( )[ ] = < <( )+ +2 1 , but var g , ,Y YT Tθ θ( )[ ] is greatest in the first

alternative, less in the second, and zero in the third.15

The notation g ,YT θ( )  is used throughout, it always being implicit that (3.0.1) is

satisfied.

If one could also make a sequence of independent draws θ m( ){ } from the posterior

distribution, then by choosing ω ω θm
T

m A( ) ( )( )~ p , ,Y , one could guarantee

M Am

m

M a s
T

− ( )
= ( )  → ( )[ ]∑1

1
h E h ,. .ω ω Y .   But direct simulation from the posterior

distribution is rarely possible.  This section describes methods for obtaining a sequence

θ m

m

( )
=

∞{ }
1
 and an associated weighting function w θ( ) with the property that if

E h E h , ,ω θ ω θm m
T

m A( ) ( ) ( )( )[ ] = ( )[ ]Y  for a corresponding sequence ω m

m

( )
=

∞{ }
1
, then

14The evaluation of g ,YT θ( ) may not be trivial at all.  For example, Bajari (1997) has functions of interest

whose evaluation requires the solution of a system of nonlinear differential equations.
15In some cases, the left side of (3.0.2) can be made quite small indeed, and asymptotically it may be made
to approach zero (Geweke, 1988).
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w h w E h ,. .θ ω θ ωm m

m

M m

m

M a s
T A( ) ( )

=
( )

=( ) ( ) ( )  → ( )[ ]∑ ∑1 1
Y .

The ability to generate such sequences has improved greatly in the past ten years, due

in large part to the development of Markov chain Monte Carlo (MCMC) methods and the

dramatic decrease in the cost of computing.  This section begins by reviewing two more

established methods, acceptance and importance sampling, and then moves on to describe

the two leading examples of MCMC—the Gibbs sampler and the Hastings-Metropolis

algorithm.  This description is followed by a more abstract development of MCMC theory,

a description of some of the hybrid procedures that make MCMC a powerful tool for

posterior simulation, and a discussion of the evaluation of approximation error.  The

section concludes with a description of some public domain software for posterior

simulation and two simple examples.  The emphasis here is on concepts and practicality.

With one exception, only references to proofs of theorems are given.  A more general and

extensive introduction is provided by Gelman et al. (1995).  A concise presentation of the

relevant continuous state space Markov chain theory that underlies MCMC procedures is

Tierney (1994).

A word of caution

Sections 2.1 and 2.2 emphasized the importance of verifying the absolute convergence

of integrals in the denominator and numerator in the generic expression (2.1.6) for the

posterior expectation of a function of interest.  If either condition is violated, then the

simulation methods discussed below in this section have absolutely no justification,

because the posterior expectation allegedly being approximated does not exist.  In this

circumstance, there is often no indication of difficulty in the output of the posterior

simulator, which may appear reasonable.  Absolute convergence of integrals must be

verified analytically before using a posterior simulator.  This verification is often quite
simple: for example, if the likelihood function p ,YT Aθ( ) is bounded and the prior

distribution is proper, then the denominator of (2.1.6) is absolutely convergent; and if, in
addition, the prior expectation E h ω( )[ ]A  exists, then the numerator of (2.1.6) is absolutely

convergent.  If the prior is improper, the likelihood function is unbounded, or the prior

expectation does not exist, then the extra effort to verify existence of the posterior

expectation at hand must be expended before proceeding with posterior simulations.

3.1  Acceptance sampling

 Acceptance sampling is the algorithm that underlies the generation of random variables

from most familiar univariate distributions like the normal and the gamma (Press et al.,
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1992).  The idea behind acceptance sampling is to generate a random vector16 from a

distribution that is similar, in an appropriate sense, to the posterior distribution and then to

accept that drawing with a probability that depends on the drawn value of the vector.  If this

acceptance probability function is chosen correctly, then the accepted values will have the

desired distribution.

Theorem 3.1.1.  Suppose that p ,* θ YT A( )  is any kernel of the posterior density

p ,θ YT A( ).  Let s* θ( ) be a source density kernel with respect to the same measure dν θ( ) as

p θ A( ), with support S and the property

(3.1.1) 0 ≤ ( ) ( ) ≤ < ∞∀ ∈p , s* *θ θ θYT A a Θ.

Suppose that the sequence θ m( ){ } is generated as follows:

(a)  Set m = 1;
(b)  Generate u ~ U 0, 1( );

(c)  Generate θ̃  from the source density;

(d)  If u A aT> ( ) ( )[ ]p ˜ , s ˜* *θ θY , go to (b);  otherwise,

(e)  θ m( ) = θ̃ ;

(f)  Increment m and go to (b).

Then θ θm
IID

T A( ) ( )~ p ,Y .

Proof.  Given θ̃  from (c), the probability of proceeding directly from step (d) to step

(e) is p ˜ , s ˜* *θ θYT A a( ) ( ) .  To obtain the unconditional probability of proceeding directly

from step (d) to step (e), integrate the product of this expression and the source density of

θ̃ ,

(3.1.2)  p , s s s* * * *θ θ θ ν θ θ ν θYT S
A a d d( ) ( )[ ] ( ) ( ) ( ) ( )∫ ∫Θ

      = ( ) ( ) ( ) ( )∫ ∫p , s* *θ ν θ θ ν θYT S
A d a d

Θ
.

The unconditional probability of proceeding from step (d) to step (e) with θ ∈Θ1 ⊆ Θ is

(3.1.3) p , s s s* * * *θ θ θ ν θ θ ν θYT S
A a d d( ) ( )[ ] ( ) ( ) ( ) ( )∫ ∫Θ1

      = ( ) ( ) ( ) ( )∫ ∫p , s* *θ ν θ θ ν θYT S
A d a d

Θ1

.

The probability that θ ∈Θ1 ⊆ Θ, conditional on arriving at step (e), is the ratio of (3.1.3)

to (3.1.2), which is

p p P* *θ ν θ θ ν θ θY Y YT T Td d( ) ( ) ( ) ( ) = ∈( )∫ ∫Θ Θ
Θ

1
1 . ##

16We ignore the distinction between the mathematical properties of a sequence of random variables and the
properties of (what is properly called) a pseudo-random variable sequence created using a computer.  For a
discussion of these issues, see Geweke (1996) and references therein.
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A successful application of acceptance sampling has three requirements.  First, there

must be a source density corresponding to a distribution from which it is efficient and

convenient to make i.i.d. draws.  Second, there must be a known upper bound on the ratio

of the posterior density to the source density.  Finally, the frequency of rejection (moving

to step (b) from step (d)) must not be so great that the whole algorithm is impractical.  The

upper bound must be established analytically, whereas efficiency can be evaluated through

experimentation.  Notice that draws from the source density may (and usually do) involve

acceptance sampling: for example, if the source density is a normal or gamma density, the

software used to draw from this density very likely employs acceptance sampling, a fact

typically transparent to the software user.

Acceptance sampling produces an i.i.d. sequence θ m( ){ }.  Given (3.0.1), it follows

from the strong law of large numbers that g M gM T
m

m

M a s= ( )  →− ( )
=∑1

1
g , . .Y θ .  If, in

addition, σ θ2 = ( )[ ]var g , ,Y YT T A  exists, then from the Lindberg-Levy central limit

theorem, M gT
m d1 2 20g , N ,Y θ σ( )( ) −[ ]  → ( ) , and a second application of the strong law of

large numbers yields ˆ g , . .σ θ σ2 1
2

1

2= ( ) −[ ]  →− ( )
=∑M gT

m
Mm

M a sY .  Thus, if the posterior

variance of the function of interest exists, a central limit theorem may be used in the usual

way to assess the numerical accuracy of the approximation of E h ,ω( )[ ]YT A  by

M T
m

m

M− ( )
= ( )∑1

1
g ,Y θ .

3.2  Importance sampling

Rather than accept only a fraction of the draws from the source density, it is possible

to retain all of them and consistently approximate the posterior moment by appropriately

weighting the draws.  The probability density function of the source distribution is then

called the importance sampling density, a term due to Hammersly and Handscomb

(1964), who were among the first to propose the method.  Importance sampling appears to

have been introduced to the econometrics literature by Kloek and van Dijk (1978).  To help

distinguish between acceptance and importance sampling, denote the importance sampling
distribution by its density j θ( ) with respect to the same measure dν θ( ) as the prior density

p θ A( ).  Let j* θ( ) be any kernel of j θ( ), and let p ,* θ YT A( )  be any kernel of p ,θ YT A( ).

Theorem 3.2.1.  Suppose E g , ,Y YT T Aθ( )[ ] exists, and the support of j θ( ) includes

Θ .  Then

g A gM T
m m

m

M m

m

M a s
T T= ( ) ( ) ( )  → ( )[ ] =( ) ( )

=
( )

=∑ ∑g , w w E g , ,. .Y Y Yθ θ θ θ
1 1

,
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where w p , j* *θ θ θ( ) = ( ) ( )YT A  is the corresponding weighting function.  If, in addition,

both E w , w p ,θ θ θ ν θ( )[ ] = ( ) ( ) ( )∫Y YT TA A d
Θ

 and var g , ,Y YT T Aθ( )[ ] exist, then

(3.2.1) M g gM
d1 2 20−( )  → ( )N ,σ ,

and

(3.2.2) ˆ g , w w . .σ θ θ θ σM T
m

M
m

m

M m

m

M a sM g2
2 2

1 1

2
2= ( ) −[ ] ( ) ( )[ ]  →( ) ( )

=
( )

=∑ ∑Y .

Proof.  See Geweke (1989b, Theorems 1 and 2). ##

This result provides a practical way to assess approximation error and also indicates

conditions in which the method of importance sampling will work well.  Small variance in
w θ( ) , perhaps reflecting close upper and lower bounds on w θ( ) , will lead to small values

of σ 2  relative to var g , ,Y YT T Aθ( )[ ].  Of course, the existence of E w ,θ( )[ ]YT A  and

var g , ,Y YT T Aθ( )[ ] must be verified analytically.  The following implication of Theorem

3.2.1 is often useful in the latter undertaking.

Corollary 3.2.2.   If var g , ,Y YT T Aθ( )[ ] exists and the weighting function

w p , j* *θ θ θ( ) = ( ) ( )YT A  is bounded, then (3.2.1) and (3.2.2) are true. ##

The hypothetical special case j p ,θ θ( ) ∝ ( )YT A  corresponds to i.i.d. sampling from the

posterior distribution, since the weighting function is then constant.  In this case,

σ θ2 = ( )[ ]var g , ,Y YT T A , which can serve as a benchmark in evaluating the adequacy of

j θ( ) in all other cases.  The ratio var g , ,θ σY YT T A( )[ ] 2  has been termed the relative

numerical efficiency (RNE) of the importance sampling approximation to

E g , ,Y YT T Aθ( )[ ] (Geweke, 1989b): it indicates the ratio of iterations using p ,θ YT A( ) itself

as the importance sampling density, to the number using j θ( ), required to achieve the same

accuracy of approximation of g .  Since both the numerator and denominator of the ratio

var g , ,θ σY YT T A( )[ ] 2  can be approximated consistently as the number of draws M

increases, this is a practical indication of the computational efficiency of importance

sampling.  An RNE much less than 1.0 (less than 0.1, certainly less than 0.01) indicates

poor imitation of p ,θ YT A( ) by j θ( ), possibly the existence of a better importance sampling

distribution or the failure of the underlying convergence conditions for (3.2.2).

Acceptance and importance sampling are closely related.  If (3.1.1) is satisfied, then

the source density used in acceptance sampling can be an importance sampling density in
importance sampling and the weighting function w θ( ) will be bounded as assumed in
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Corollary 3.2.2.  Which procedure should be used depends on computation time and the

acceptance probability in acceptance sampling.  If drawing θ m( )  and evaluating the relevant
densities is expensive relative to evaluation of the functions g ,YT θ( )and if acceptance

probability is low, then importance sampling is more attractive, and conversely.

Importance sampling is an important useful tool in modifying prior distributions.

Suppose that models A1  and A2  are distinguished only by their prior densities

p , ,θ A jj( ) = 1 2.  Suppose that one has available an i.i.d. sample from the posterior density

p ,θ YT A1( ) ∝ ( ) ( )p p ,θ θA AT1 1Y .  If p pθ θA A2 1( ) ( ) is bounded above, then p ,θ YT A1( ) is

an importance sampling density for p ,θ YT A2( ) that satisfies the conditions of Corollary

3.2.2.  The weighting function is w p pθ θ θ( ) = ( ) ( )A A2 1 .  Thus, one may change the prior

distribution without reworking the entire problem.  The ability to do so makes conditionally

conjugate prior distributions—of the kind discussed in Section 2 in conjunction with the

standard linear model—attractive as reporting devices because an investigator’s results,

which are produced with such priors, may be modified by a client with different priors.

This idea will be developed more fully in Section 6.

3.3  The Gibbs sampler

The Gibbs sampler is an algorithm that has been used with noted success in many

econometric models.  This algorithm is one example of a wider class of MCMC procedures

in which the idea is to construct a Markov chain with state space Θ  and unique invariant

distribution p ,θ YT A( ).  One uses simulated values from the chain to approximate

E g , ,Y YT T Aθ( )[ ] after discarding values from an initial transient or burn-in phase.

Markov chain methods have a history in mathematical physics dating back to the

algorithm of Metropolis et al. (1953).  This method, which is described in Hammersly and

Handscomb (1964, Section 9.3) and Ripley (1987, Section 4.7), was generalized by

Hastings (1970), who focused on statistical problems, and was further explored by Peskun

(1973).  A version particularly suited to image reconstruction and problems in spatial

statistics was introduced by Geman and Geman (1984).  This version was subsequently

shown to have great potential for Bayesian computation by Gelfand and Smith (1990).

Their work, combined with data augmentation methods (Tanner and Wong, 1987), has

proven very successful in the treatment of latent variables in econometrics.  Since 1990,

application of MCMC methods has grown rapidly  (Chib and Greenberg, 1996).

This section and the next concentrate on a heuristic development of two widely used

variants of these methods, the Gibbs sampler and the Hastings-Metropolis algorithm.  The

general theory of convergence is taken up in Section 3.5.   Section 3.6 details some useful
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specific variants and combinations of these methods.  Section 3.7 turns to the assessment

of numerical accuracy.

The Gibbs sampler begins with a partition, or blocking, of
  
θ θ θ θ, , ,′ = ′ ′( )( ) ( )1 K B .  In

applications, the blocking is chosen so that it is possible to draw from each of the

conditional p.d.f.’s,  p , , ,θ θ θb T a aa b a b A( ) ( ) ( )<( ) >( )( )Y .  This blocking can arise

naturally if the prior distributions for the θ b( )  are independent and each is conditionally

conjugate.  To motivate the key idea underlying the Gibbs sampler, suppose—contrary to

fact—that there existed a single drawing 
  
θ 0( ), ′θ 0( ) = ′θ 1( )

0( ),K, ′θ B( )
0( )( ), from p ,θ YT A( ).

Successively make drawings from the conditional distributions as follows:

(3.3.1)

  

θ θ θ

θ θ θ θ

θ θ θ θ

1
1

2
0 0

2
1

1
1

3
0 0

1
1
1

1
1

1
0

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

−( )
( )

+( )

⋅( )
⋅( )

⋅

~ p , , , ,

~ p , , , , ,

~ p , , , ,

Y

Y

Y

T B

T B

b T b b

A

A

K

K

M

K (( )
( )
( )

( )
( )

( )
( )

−( )
( )

( )

⋅( )

, , ,

~ p , , , , .

K

M

K

θ

θ θ θ

B

B T B

A

A

0

1
1
1

1
1Y

This defines a transition process from 
  

′θ 0( ) to ′θ 1( ) = ′θ 1( )
1( ),K, ′θ B( )

1( )( ).  Since

θ θ0( ) ( )~ p , ,YT A

 
  
θ θ θ θ θ θ1

1
1

1 1
1

0 0
( )
( )

−( )
( )

( )
( )

+( )
( )

( )
( )( ) ( ), , , , , , ~ p ,K Kb b b B T AY

at each step in (3.3.1) by definition of the conditional density.  In particular,

θ θ1( ) ( )~ p ,YT A .

Iteration of this algorithm produces a sequence   θ θ θ0 1( ) ( ) ( ), , , ,K Km , which is a

realization of a Markov chain with a probability density function kernel for the transition

from point θ m( )  to point θ m+1( )  given by

(3.3.2) K , p , , ,G
m m

b
m

T a
m

a
m

b

B
a b a b Aθ θ θ θ θ( ) +( )

( )
+( )

( )
( )

( )
+( )

=( ) = >( ) <( )[ ]∏1 1 1

1
Y .

Any single iterate θ m( )  retains the property that it is drawn from the posterior distribution.

For the Gibbs sampler to be practical, it is essential that the blocking be chosen in such a

way that one can make the drawings in an efficient manner.  In econometrics, the blocking

is often natural and the conditional distributions familiar.  In making the drawings (3.3.1),

acceptance sampling is often useful.

The appeal of the Gibbs sampler is easy to illustrate with the standard linear model
(2.1.7)–(2.1.9):  the results (2.1.17) and (2.1.18) indicate that the blocking θ β1( ) = ,

θ 2( ) = h  meets the criterion that drawings can be made in an efficient manner.  The probit
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model introduced in Section 2.4 is a further example, as noted in Albert and Chib (1993).

From (2.4.11) and (2.4.12), it is evident that conditional on the vector of latent variables

y*, the distribution of β  is given by (2.1.17) if h = 1 and y* is used in place of y .

Examination of the kernel of (2.4.13) in y* shows that given β  and X,  the yt
* are

conditionally independent, with yt t
* ~ N ,′( )β x 1  truncated to 0,∞[ ) if dt = 1 and truncated

to −∞( ),0  if dt = 0.  An efficient algorithm for drawing from truncated normal

distributions is given in Geweke (1991).  In both cases, given drawings for the parameters,

it is straightforward to produce numerical approximations to E h ,ω( )[ ]YT A , as indicated at

the start of this section.  And as discussed in Section 2.1, the evaluation of E h ,ω( )[ ]YT A

subsumes most of the uses to which these models are put.

Of course, if it really were possible to make an initial draw from the posterior

distribution, then independence Monte Carlo would also be possible.  An important

remaining task is to elucidate conditions for the distribution of θ m( )  to converge to the

posterior for any θ 0( ) ∈Θ .  This is not trivial, because even if θ 0( ) were drawn from

p ,θ YT A( ), the argument just given establishes only that any single θ m( )  is also drawn from

the posterior distribution.  This argument does not establish that a single sequence

θ m( ){ }
m=1

∞
 is representative of the posterior distribution.  For example, if Θ  consists of two

disjoint subsets Θ1  and Θ2  with θ1 > θ2 ∀ θ j ∈Θ j , then a Gibbs sampler that begins in

Θ1  will never visit Θ2  and vice versa. (See Figure 3.3.1.)  This situation clearly does not

arise in the Gibbs samplers for the standard linear and probit models just described, but

evidently a careful development of conditions under which θ m( ){ } converges in distribution

to the posterior distribution is needed.  Section 3.5 outlines these developments.

3.4  The Hastings-Metropolis algorithm

The Hastings-Metropolis algorithm specifies an arbitrary transition probability density
function q x,y( ) indexed by x ∈Θ  and with density argument y ∈Θ .  The algorithm

begins with an arbitrary starting value θ 0( ) ∈Θ .  The random vector θ * generated from

q θ m( ),θ *( ) is a candidate value for θ m+1( ) .  The algorithm actually sets θ m+1( ) = θ *  with

probability

(3.4.1)  α θ θ
θ θ θ

θ θ θ
θ θ θ

θ θ θ
m T

m

m
T

m

T
m

m
T

m

A

A

A

A
( )

( )

( ) ( )

( )

( ) ( )( ) =
( ) ( )

( ) ( )











=

( ) ( )
( ) ( )












, min

p , q ,

p , q ,
, min

p , q ,

p , q ,
,*

* *

*

* *

*

Y

Y

Y

Y
1 1


;

otherwise, the algorithm sets θ m+1( ) = θ m( ) .  This defines a Markov chain with a generally

mixed continuous-discrete transition probability from θ m( )  to θ m+1( )  given by
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K ,
q , ,

q , ,
H

m m

m m m m m m

m m m md
θ θ

θ θ α θ θ θ θ

θ θ α θ θ ν θ θ θ
( ) +( )

( ) +( ) ( ) +( ) +( ) ( )

( ) ( ) +( ) ( )( ) =
( ) ( ) ≠

− ( ) ( ) ( ) =





 ∫
1

1 1 1

11

 if 

  if 
Θ

.

This form of the algorithm is due to Hastings (1970).  The Metropolis et al. (1953)

form takes q θ m( ),θ *( ) = q θ *,θ m( )( ).  A simple variant that is often useful is the

independence chain (Tierney, 1994), whereby q , k* *θ θ θm( )( ) = ( ) .  Then

α θ θ
θ θ
θ θ

θ
θ

m T
m

m
T

m

A

A
( )

( )

( ) ( )( ) =
( ) ( )
( ) ( )












= ( )

( )











, min

p , k

p , k
, min

w

w
,*

*

*

*Y

Y
1 1 ,

where w p , kθ θ θ( ) = ( ) ( )YT A .  The independence chain is closely related to acceptance

sampling and importance sampling.  In acceptance sampling, if the posterior density is low

(high) relative to the source density, then the probability of acceptance is low (high).  In

importance sampling, if the posterior density is low (high) relative to the importance

sampling density, then the weight assigned to the draw is low (high).  In the independence

chain, to the extent the posterior density is lower (higher) relative to the proposal than was

the case in the previously accepted draw, the probability of accepting the proposed vector is

lower (one).

There is a simple two-step argument that motivates the convergence of the sequence

θ m( ){ } generated by the Hastings-Metropolis algorithm to the posterior.  (This approach is

due to Chib and Greenberg, 1995.)  First, observe that if the transition probability function

p θ m( ), θ m+1( )( ) satisfies the reversibility condition

(3.4.2) p θ m( )( )p θ m( ), θ m+1( )( ) = p θ m+1( )( )p θ m+1( ), θ m( )( ) ,

for stated p ⋅( ), then it has p ⋅( ) as an invariant distribution.  To see this, note that if

(3.4.1) holds, then

p p , p p ,

p p , p .

θ θ θ ν θ θ θ θ ν θ

θ θ θ ν θ θ

m m m m m m m m

m m m m m

d d

d

( ) ( ) +( ) ( ) +( ) +( ) ( ) ( )

+( ) +( ) ( ) ( ) +( )

( ) ( ) ( ) = ( ) ( ) ( )
= ( ) ( ) ( ) = ( )

∫ ∫
∫

1 1 1

1 1 1

Θ Θ

Θ

Second, establish that the Hastings-Metropolis algorithm satisfies the reversibility

condition.  For θ θm m+( ) ( )=1 , (3.4.2) is satisfied trivially.  For θ θm m+( ) ( )≠1 , suppose

without loss of generality that p q , p q ,θ θ θ θ θ θm m m m m m+( ) ( ) +( ) ( ) +( ) ( )( ) ( ) > ( ) ( )1 1 1 .  Then

p , q ,θ θ θ θm m m m( ) +( ) ( ) +( )( ) = ( )1 1

and

p , q ,
p q ,

p q ,
p q , pθ θ θ θ

θ θ θ
θ θ θ

θ θ θ θm m m m

m m m

m m m

m m m m+( ) ( ) +( ) ( )
( ) +( ) ( )

+( ) ( ) +( )
( ) ( ) +( ) +( )( ) = ( ) ⋅

( ) ( )
( ) ( ) = ( ) ( ) ( )1 1

1

1 1

1 1 ,

whence (3.4.2) is satisfied.
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In implementing the Hastings-Metropolis algorithm, the transition probability density

function must share two important properties.  First, it must be possible to generate θ *

efficiently from q θ m( ),θ *( ).  A second key characteristic of a satisfactory transition process

is that the unconditional acceptance rate not be so low that the time required to generate a

sufficient number of distinct θ m( )  is too great.

In the case of the independence chain, the Hastings-Metropolis algorithm will be

efficient under essentially the same conditions that the corresponding importance sampling
algorithm with the same j θ( )  will be efficient.  If there are values of θ  for which

p , j* θ θYT A( ) ( ) is very much greater than at other values, then the importance sampling

algorithm will place very high weights on these values, which are drawn infrequently

relative to p ,* θ YT A( ) .  The Hastings-Metropolis independence chain will tend to remain at

such values for many successive iterations.  In either case, the RNE will, as a

consequence, be low.

Another variant of the Hastings-Metropolis  algorithm is the random walk chain, in

which q , f f* * *θ θ θ θ θ θm m m( ) ( ) ( )( ) = −( ) = −( ).  For example, f could be multivariate

normal, with mean zero and a constant variance matrix.  If the variance matrix is chosen to

reflect the shape of p ,* θ YT A( )  at least roughly, then this algorithm can be quite efficient.

3.5  Some MCMC theory

Much of the treatment here draws heavily on the work of Tierney (1994), who first

used the theory of general state space Markov chains to demonstrate convergence, and

Roberts and Smith (1994), who elucidated sufficient conditions for convergence that turn

out to be applicable in a wide variety of problems in econometrics.

Let θ m( ){ }
m=0

∞
 be a Markov chain defined on Θ ⊆ ℜk  with transition density

K:Θ × Θ → ℜ+  such that, for all ν -measurable Θ Θ0 ⊆ ,

P K , rθ θ θ θ ν θ θ χ θm m m m md( ) −( ) −( ) −( ) −( )∈( ) = ( ) ( ) + ( ) ( )∫Θ ΘΘ0
1 1 1 1

0
0

,

where

r K ,θ θ θ ν θm m d−( ) −( )( ) = − ( ) ( )∫1 11
Θ

.

The transition density K is substochastic: it defines only the distribution of accepted
candidates.  Assume that K has no absorbing states so that r θ( ) < 1 ∀θ ∈Θ.  The

corresponding substochastic kernel over m steps is then defined iteratively,

K , K , K ,

K , r r K , .

m m m m

m m m
m

m

d( ) ( ) ( ) −( ) ( ) ( )

−( ) ( ) ( ) ( ) ( ) − ( ) ( )

( ) = ( ) ( ) ( )

+ ( ) ( ) + ( )[ ] ( )
∫θ θ θ θ θ θ ν θ

θ θ θ θ θ θ

0 1 0

1 0 0
1

0

Θ
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This describes all m-step transitions that involve at least one accepted move.  As a function

of θ m( ) , K ,m( ) ( ) ⋅( )θ 0  is the p.d.f. with respect to ν  of θ m( ) , excluding realizations with

  θ θn n m( ) ( )= ∀ =0 1, ,K .  For any ν -measurable Θ0 , let P ,m( ) ( )( )θ 0
0Θ  denote the m’th

iterate of P,

P , K , rm m
m

d( ) ( ) ( ) ( ) ( ) ( )( ) = ( ) ( ) + ( )[ ] ( )∫θ θ θ ν θ θ χ θ0
0

0 0 0

0
0

Θ
Θ Θ .

An invariant distribution of the transition density K is a function p θ( ) that satisfies

P p P p

K , r p* *

Θ Θ
Θ Θ

ΘΘΘ

0 0
1

0

0
0

( ) = ( ) ( ) = ∈ =( ) ( ) ( )

= ( ) ( ) + ( ) ( ){ } ( ) ( )

∫ ∫

∫∫

( ) −( )θ ν θ θ θ θ θ ν θ

θ θ ν θ θ χ θ θ ν θ

d d

d d

m m

for all ν -measurable Θ0 .  Let Θ* = θ ∈Θ:p θ( ) > 0{ }.  The density K  is p-irreducible if

for all θ 0
0 0( ) ∈ ( ) >Θ Θ*, P  implies that P ,m( ) ( )( ) >θ 0

0 0Θ  for some m ≥ 1.  Return to Figure

3.3.1, where the support is disconnected and the Markov chain is the Gibbs sampler.  Note

that if θ 0( ) ∈Θ̃i , it is impossible that θ m( ) ∈Θ̃ j j ≠ i,  any m > 0( ).  Thus, the transition

density is not irreducible in this case.  There are two invariant distributions, one for Θ̃1

(reached if θ 0( ) ∈Θ̃1) and one for Θ̃2  (reached if θ 0( ) ∈Θ̃2 ).

 The transition density K  is aperiodic if there exists no ν -measurable partition

  
Θ = Θ̃ss=0

r −1

U r ≥ 2( )  such that

P ˜ ˜
modθ θm

m r m( )
( )

( )∈ ∈( ) = ∀Θ Θ0
0 1 .

It is Harris recurrent if P θ θm( ) ( )∈[ ] =Θ0 1 i.o. 0  for all ν -measurable Θ0  with

p θ ν θ( ) ( ) >∫ d
Θ0

0 and all θ 0( ) ∈Θ .17  It follows directly that if a kernel is Harris recurrent,

then it is p-irreducible.  A kernel whose invariant distribution is proper, and that is both

aperiodic and Harris recurrent, is ergodic by definition (Tierney, 1994, 1712–1713).

A useful metric in what follows is the total variation norm for signed and bounded
measures µ  defined over the field of all ν -measurable sets Sν  on Θ :

µ µ µ
ν ν

= ( ) − ( )∈ ∈sup infΘ ΘΘ Θ
0 00 0S S .

Theorem 3.5.1.  Convergence of continuous state Markov chains.  Suppose

p ,θ YT A( ) is an invariant distribution of the transition density K θ,θ *( ) .

(A) If K is p ,θ YT A( )-irreducible, then p ,θ YT A( ) is the unique invariant distribution.

17The expression i.o. in P θ θm( ) ( )∈[ ] =Θ0 1 i.o. 0  means infinitely often.  The condition is that

lim PM
m

m

M
L L→∞

( )
= ( ) ≤[ ] = ∀∑ χ θΘ01

0 .
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(B) If K is p ,θ YT A( )-irreducible and aperiodic, then except possibly for θ 0( )  in a set

of posterior probability zero, P , P ,m
T A( ) ( ) ⋅( ) − ⋅( ) →θ 0 0Y .

 If K is ergodic (that is, it is also Harris recurrent), then this occurs for all θ 0( ).

(C) If K is ergodic with invariant distribution p ,θ YT A( ), then for all g ,YT θ( )
absolutely integrable with respect to p ,θ YT A( ) and for all θ 0( ) ∈Θ ,

M dT
m

m

M a s
T T

− ( )
= ( )  → ( ) ( ) ( )∑ ∫1

1
g , g , p ,. .Y Y Yθ θ θ θ ν θ

Θ
.

Proof.  (A) and (B) follow immediately from Theorem 1 and (C) from Theorem 3 in

Tierney (1994).  ##

For the Gibbs sampling algorithm, Section 3.3 argues informally that p ,θ YT A( ) is an

invariant distribution.  More formally, (3.3.2) implies that for the blocking ′θ = ′θ 1( ), ′θ 2( )( ),

K , p , p , , p , , p ,

p , , p , , p ,

* * * *

* * *

G T T T T

T T T

A d A A A d

A A A

θ θ θ ν θ θ θ θ θ θ ν θ

θ θ θ θ θ

( ) ( ) ( ) = ( ) ( ) ( ) ( )

= ( ) ( ) (
∫ ∫ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Y Y Y Y

Y Y Y

Θ Θ 1 2 2 1

2 1 1 2 )) ( )

= ( ) ( ) = ( )
∫

( ) ( ) ( )

d

A A AT T T

ν θ

θ θ θ θ

Θ

p , , p , p , .* * * *
2 1 1Y Y Y

The general result for more than two blocks follows by induction.  Thus, it is the

uniqueness of the invariant state that is at issue in establishing convergence of the Gibbs

sampler.  The following result is immediate and is often easy to apply.

Corollary 3.5.2.  A first sufficient condition for convergence of the Gibbs sampler.
Suppose that for every point θ * ∈Θ  and every Θ Θ0 ⊆  with the property

P ,θ ∈( ) >Θ0 0YT A , it is the case that P , ,*
G

m
T

m Aθ θ θ+( ) ( )∈ =( ) >1
0 0Θ Y , where PG ⋅( )  is

the probability measure induced by the Gibbs sampler.  Then the Gibbs transition kernel is

ergodic. 
Proof.  The conditions ensure that PG  is aperiodic and absolutely continuous with

respect to p ,θ YT A( ).  The result follows from Corollary 1 of Tierney (1994). ##

A complement to Corollary 3.5.2 is provided by Roberts and Smith (1994).

Theorem 3.5.3.  A second sufficient condition for convergence of the Gibbs

s a m p l e r .   Suppose that p ,θ YT A( ) is lower semicontinuous1 8  at zero and

18A function h x( )  is lower semicontinuous at zero if, for all x with h x( ) > 0, there exists an open

neighborhood Nx x  and ⊃ >ε 0 such that for all y yx∈ ( ) ≥ >N , h ε 0 .
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p θ ν θYT
b

b
d( ) ( )( )∫ ( )

Θ
 is locally bounded   b B=( )1, ,K .  Suppose also that Θ  is connected.

Then the Gibbs transition kernel is ergodic. ##

Theorem 3.5.3 rules out situations like the one shown in Figure 3.5.1, where the

posterior density is uniform on a closed set.  For any point θ  on the boundary, there is no

open neighborhood Nθ  such that for all θ θ
* ∈N , p ,*θ YT A( )  is bounded away from zero.

The point A is absorbing.  Tierney (1994) discusses weaker conditions for convergence of

the Gibbs sampler.  However, the conditions of Corollary 3.5.2 or Theorem 3.5.3 are

satisfied for a very wide range of problems in econometrics and are easier to verify.

Tierney (1994) and Roberts and Smith (1994) show that the convergence properties of
the Hastings-Metropolis algorithm are inherited from those of q θ,θ *( ): if q is aperiodic and

p ,θ YT A( )-irreducible, then so is the Hastings-Metropolis algorithm.  This feature leads to

a sufficient condition for convergence analogous to Corollary 3.5.2.

Theorem 3.5.4.  A first sufficient condition for convergence of the Hastings-
Metropolis algorithm.  Suppose that for every point θ * ∈Θ  and every Θ Θ0 ⊆  with the

property P ,θ ∈( ) >Θ0 0YT A , it is the case that q , , r* * *θ θ α θ θ ν θ θ χ θ( ) ( ) ( ) + ( ) ( ) >∫ d
Θ Θ

0
0

0 .

Then the Hastings-Metropolis density K , q , ,* * *θ θ θ θ α θ θ( ) = ( ) ( ) is ergodic.

Proof.  The conditions ensure that the transition kernel is aperiodic and p ,*θ YT A( )-

irreducible.  Thus, by Corollary 2 of Tierney (1994), the Hastings-Metropolis density is

Harris recurrent.  Since the kernel is both aperiodic and Harris recurrent, it is ergodic. ##

A complementary sufficient condition for convergence of Hastings-Metropolis chains

is provided by the following result, which is analogous to Theorem 3.5.3 for the Gibbs

sampler.

Theorem 3.5.5.  A second sufficient condition for convergence of the Hastings-

Metropolis algorithm.  Suppose that for every θ ∈Θ, p ,θ YT A( ) > 0 , and for all pairs

θ θm m( ) +( )( ) ∈ ×, 1 Θ Θ , p ,θ m
T A( )( )Y  and q ,θ θm m( ) +( )( )1  are positive and continuous.  Then

the Hastings-Metropolis kernel KH  is ergodic.

Proof.  See Chib and Greenberg (1995) or Mengersen and Tweedie (1993). ##

Once again, the conditions are sufficient but not necessary, but weaker conditions are

typically more difficult to verify.  On weaker conditions, see Tierney (1994).
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3.6  Variants

There are many variations on these methods, and alone or in combination with each

other they provide a powerful source of flexibility that can be drawn upon in construction

of posterior simulators.  This section briefly reviews two variations.  Further discussion

can be found in Tierney (1994) and Gelman et al. (1995).

Mixtures and combinations

Suppose 
  
K , , ,j m m j J( ) ( ) +( )( ) =( )θ θ 1 1 K  are Markov chain kernels, each with unique

invariant distribution p ,θ YT A( ).  In a mixture, positive probabilities   γ γ1, ,K J  with

γ jj

J

=∑ =
1

1 are specified, and at each step, one of the kernels is selected accordingly.  The

candidate θ *  is drawn from the transition probability density selected, and the acceptance
probability (3.4.1) is based upon the q ,⋅ ⋅( ) of the kernel selected.  Observe that if one of

the kernels in a mixture is Harris recurrent, then so is the mixture, and if one of the kernels

in the mixture is aperiodic, then so is the mixture.  Hence, if one of the kernels in a mixture

is ergodic, then so is the mixture kernel.

A combination is a variant on this strategy: construct a single transition density

q , q ,* *θ θ γ θ θ( ) = ( )( )
=∑ j

j

j

J

1
, where each q , *j( )( )θ θ  is a probability density function in θ * ,

  γ j j J> =( )0 1, ,K  and γ jj

J

=∑ =
1

1.  If a single transition density q , *j( )( )θ θ  is ergodic,

then so is the combination.

The use of mixtures or combinations is often key in successful applications of the

Hastings-Metropolis algorithm.  For example, if the log likelihood function and its first two

derivatives can be evaluated in closed form, then generic versions of the Hastings-

Metropolis algorithm can be constructed that work well in a wide variety of applications.

The idea is that a candidate can be chosen from one of several distributions: for example,

the mixture could include a normal or Student-t distribution fit to the global posterior mode;

a similar random walk component, with location vector equal to the current value and scale

matrix determined from the Hessian of the log posterior at the current value; and the prior

distribution.  Local components of the mixture, like the random walk, adjusted to the local

shape of the posterior, tend to concentrate candidate draws in regions where acceptance is

likely.  Global components of the transition, like the prior, have lower acceptance

probability but cause the algorithm to explore distant regions of the parameter space sooner

than would otherwise be the case.  As a specific example, in the case of the probit model, it

is straightforward to integrate the latent variables explicitly and write the posterior density

kernel in standard form,
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(3.6.1)
2 1 2

1 1

2 1 2

1

π β β β β

β β

β β( ) −( ) −( )′ −( )





⋅ ′( ) + −( ) − ′( )[ ]{ }

−

=∏

k

t t t tt

T
d d

H

x x

exp

.

Η

Φ Φ

The gradient and Hessian of the log posterior density kernel are easily derived (see

Greene (1997, Section 19.4) for the relevant portions from the likelihood), and a Hastings-

Metropolis algorithm for this model is straightforward to implement.  Section 3.9 returns to

a comparison of the Gibbs sampler and Hastings-Metropolis algorithm for this model.

Metropolis within Gibbs

Another variant in MCMC is to use conditioning and then apply a more basic strategy

to the conditional distribution.  For example, draws from a multivariate transition density

entail both conditioning and acceptance sampling, although this process is transparent in

most software (Geweke, 1996, Section 2).  Another such strategy that is quite useful in

Bayesian econometrics is the Metropolis within Gibbs algorithm (Zeger and Karim, 1991;

Chib and Greenberg, 1996).  In a two-block Gibbs sampler, suppose that it is

straightforward to sample from p , ,θ θ1 2( ) ( )( )YT A , but the distribution corresponding to

p , ,θ θ2 1( ) ( )( )YT A  is intractable.  The Hastings-Metropolis algorithm can be used in these

circumstances, and it often provides an efficient solution to the problem.  In what has

become known as the Metropolis-within-Gibbs procedure, at the (m+1)’th iteration first

draw θ 2( )
*  from a proposal density q θ 2( )

m( ),θ 2( )
* θ 1( )

m+1( )( ).  Accept this draw with probability

min
p , , q ,

p , , q ,
,

* *

*

θ θ θ θ θ

θ θ θ θ θ
1

1
2 2 2 1

1

1
1

2 2 2 1
1

1
( )

+( )
( ) ( )

( )
( ) ( )

+( )

( )
+( )

( )
( )

( ) ( )
( )

( )
+( )

( ) ( )
( ) ( )













m
T

m m

m m
T

m m

A

A

Y

Y
.

If θ 2( )
*  is accepted, then θ 2( )

m+1( ) = θ 2( )
*  and if not, then θ 2( )

m+1( ) = θ 2( )
m( ) .  The extension of this

procedure to multi-block Gibbs samplers with a Hastings-Metropolis algorithm used at

some (or even all) of the blocks is clear.  For further discussion, see Chib and Greenberg

(1995), and for a proof that the posterior distribution is an invariant state of this Markov

chain, see Chib and Greenberg (1996).

3 . 7 Assessing numerical accuracy in Markov chain Monte Carlo
In any practical application, one is concerned with the discrepancy gM − g .  A leading

analytical tool for assessing this discrepancy is a central limit theorem, if one can be

obtained.  This was accomplished in Section 3.1 for i.i.d. sampling from the posterior

distribution and in Section 3.2 for importance sampling.  The assumption of independence,
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key to those results, does not apply in MCMC.  The weaker assumption of uniform

ergodicity yields a central limit theorem, however.  Let P ,m( ) ( )( )θ 0
0Θ  denote

P θ θm( ) ( )∈( )Θ0
0  for any θ 0( ) ∈Θ  and for any Θ Θ0 ⊆  for which P ,θ ∈( )Θ0 YT A  is

defined.  The Markov chain is uniformly ergodic if sup P , P ,θ θ∈
( ) ⋅( ) − ⋅( ) ≤Θ
m

T
mA MrY

for some M > 0 and some positive r < 1.

Tierney (1994, 1714) demonstrates two results that are quite useful in establishing

uniform ergodicity.  First, an independence Metropolis kernel with bounded weighting

function w θ( ) = p θ YT( ) j θ( )  is uniformly ergodic.  (This result is not surprising in view

of Corollary 3.5.3 and the similarity between the independence Metropolis kernel and

importance sampling.)  Second, if one kernel in a mixture of kernels is uniformly ergodic,

then the mixture kernel itself is uniformly ergodic.

The interest in uniform ergodicity stems from the following central limit theorem.

Note how close this result is to Corollary 3.2.2.

Theorem 3.7.1.  A central limit theorem for MCMC.  Suppose θ m( ){ } is uniformly

ergodic with equilibrium distribution p ,θ YT A( ).  Suppose further that

E g , ,Y YT T A gθ( )[ ] =  and var g , ,Y YT T Aθ( )[ ] exist and are finite, and let

g MM T
m

m

M
= ( )− ( )

=∑1

1
g ,Y θ .  Then there exists finite σ 2  such that

(3.7.1) M g gM
d1 2 20−( )  → ( )N , σ .

Proof.  See Tierney (1994, Theorem 5), which is attributed to Cogburn (1972,

Corollary 4.2(ii)). ##

Thus, for any Markov chain θ m( ){ } with invariant distribution p ,θ YT A( ), one can

guarantee (3.7.1) by mixing the chain with an independence Metropolis kernel with a

bounded weighting function so long as the posterior mean and variance are known to exist.

If the likelihood function is bounded, then the prior distribution itself will provide such an

independence transition kernel.

Nevertheless, some practical concerns remain.  One difficulty is that useful conditions

sufficient for approximation of the unknown constant σ 2  have not yet been developed.

That is, there is no σ̂M
2  for which σ̂M

2 → σ 2 as there is for independence and importance

sampling.  A second difficulty is assessing the sensitivity of θ m( )  to the initial condition

θ 0( ).  For example, consider the Gibbs sampler in the case of a multimodal posterior

density.  In the limiting case of Figure 3.3.1, the Markov chain is reducible.  As that case is

approached, sensitivity to the initial condition increases, as does serial correlation, since the
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probability that θ m( )  will be in one region conditional on θ m−1( ) being in the other goes to

zero.  Assessing convergence given the possibility of such problems is clearly nontrivial.

There is an extensive literature on this problem.  A good introduction is provided by

the papers of Gelman and Rubin (1992) and Geyer (1992) and their discussants.  Geweke

(1992) developed a consistent estimator of σ 2  in (3.7.1) under the strong condition that

conventional time series mixing conditions (for example, Hannan, 1970, 207–210) apply

to θ m( ){ }.  There is no analytical foundation for this assumption, but these methods are

now widely used and have proven reliable in the sense that they predict well the behavior of

the Markov chain when it is restarted with a new initial condition in econometric models.

In practice, some robustness to initial conditions is achieved by discarding initial

iterations: 10% to 20% is common.  By drawing θ 0( ) from the prior distribution using a

random number generator with a fresh seed each time, several runs may provide some

indication of whether the results are sensitive to initial conditions as they might be, for

example, given near-reducibility of the kind that may arise from severe multimodality.  A

formal test for sensitivity to initial conditions was developed by Gelman and Rubin (1992)

and is described in Section 3.8.  For other tests for sensitivity to initial conditions, see

Geweke (1992) and Zellner and Min (1995).

3.8  Software

Posterior simulation software for some econometric models is publicly available at  the

Web site http://www.econ.umn.edu/~bacc.  This Web site also provides software

that facilitates the approximation of the investigator’s posterior moments (described here),

the approximation of marginal likelihoods (described in Section 4.5), the approximation of

moments not recorded by the investigator (Section 6.2), modification of the investigator’s

prior distribution (Section 6.2), and other computations based on posterior simulator

output.  Posterior simulation software is available as Fortran source code and DOS

executable files.  All other software is available in six languages: Fortran, c, Gauss,

Matlab, Mathematica, and Splus.19

All the software is organized around the creation and subsequent use of posterior

simulator files.  A posterior simulator file is initially the output of a posterior simulator

designed for a particular econometric model.  For each iteration, the file contains, at a

minimum, the full parameter vector.  In general, every s’th iteration of a posterior simulator

is recorded.

19Complete documentation for all software is provided at the Web site.  Since this software will continue
to be developed and improved, some details provided in this article will become outdated.  Users should rely
on the Web site documentation for actual use rather than the descriptions in this paper, which are intended
to provide  concrete examples of how Bayesian inference, development, and communication can proceed.
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The initial record of a posterior simulator file consists of two integers: the first is the

number of iterations, and the second is the number of entries in the vector written in each

iteration.

For each iteration, two records are written.  The first record is an integer followed by

three real constants.  The integer is the iteration number; it reflects the number of skips (s-

1), if any, between iterations.  (This integer is only for convenience in examining the

posterior simulator file and is not used in any way by any of the software.)  The first real

constant is the logarithm of the weighting function, that is, the log ratio of posterior density

kernel to importance sampling kernel; for many MCMC methods, this value is zero.  The

second real constant is the logarithm of the prior density (not merely the kernel),
log p θ A( ), at the parameter vector for the iteration.  The third real constant is the logarithm

of the data density (not merely the kernel), log p ,YT Aθ( ), at the parameter vector for the

iteration.

The second record for each iteration is a vector of parameters and (perhaps) functions

of these parameters, which is written with five entries per line and in general occupies

multiple lines.  The organization of this vector is specific to the particular application, and it

is necessary to know how the vector has been set up in order to make sense of the posterior

simulator file.

The program moment calculates posterior means and posterior standard deviations,

assesses the numerical accuracy of the posterior means, and optionally writes a machine

readable file for subsequent use by the program apm described below.20  Each column of
the posterior simulator matrix corresponds to a function of interest g ,θ YT( ) .  For each

column indicated, moment computes a numerical approximation to the posterior mean of

this function that ignores the first r iterations of the M posterior simulations and uses only

the last M r− .

The numerical approximation of the posterior mean of the function of interest is

˜ w g , wg m
T

m

m r

M m

m r

M
= ( ) ( ) ( )( ) ( )

= +
( )

= +∑ ∑θ θ θY
1 1

,

where g ,YT
mθ ( )( ) is the evaluation of g ,YT θ( )  in the m’th iteration.

The numerical approximation of the posterior standard deviation of the function of

interest is

w g , ˜ wθ θ θm
T

m

m r

M m

m r

M
g( ) ( )

= +
( )

= +( ) ( ) −[ ] ( ){ }∑ ∑Y
2

1 1

1 2

.

20The structure of inputs to this and all other programs is specific to the language in which the program is
written.  Technical details are provided at the Web site.
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Four variants of a numerical standard error (NSE) for the accuracy of the

approximation of the true posterior moment E g , ,Y YT T Aθ( )[ ] by the numerical

approximation g̃  a r e  p rov ided .   To  desc r ibe  these ,  l e t

n M rM
m m

Tm r

M
= −( ) ( ) ( )− ( )

= +∑1

1
w g ,θ θ Y  denote the numerator of g̃  and let

d M rM
m

m r

M
= −( ) ( )−

= +∑1

1
w θ  denote the denominator of g̃ .  Using the conventional

asymptotic expansion (delta method), one gets

var
var cov ,

cov , var
n d d n d

n n d

d n d

d

n dM M M M M
M M M

M M M

M

M M

( ) ≈ −[ ] ( ) ( )
( ) ( )









 −











− −
−

−
1 2

1

2
.

The four variants of the NSE, s.e. varn d n dM M M M( ) = ( )[ ]1 2
, are based on different

approximations of var , cov ,n n dM M M( ) ( ), and var dM( ) .

The first method assumes no serial correlation in θ m( ){ } and is appropriate for

independence or importance sampling.  Following Geweke (1989b), this assumption

implies

var w g , ˜ wn d gM M
m m

Tm r

M m

m r

M( ) ≈ ( ) ( ) −[ ] ( )[ ]( ) ( )
= +

( )
= +∑ ∑θ θ θ

2 2

1 1

2

Y .

(The square root of the value on the right side is reported by moment.)
In the other three methods, var , cov ,n n dM M M( ) ( ), and var dM( )  are approximated using

conventional time series methods for a wide sense stationary process similar to those
described in Geweke (1992).  In the case of var dM( ) ,

(3.8.1) var cd M r L s L sM s L

L( ) ≈ −( ) −( )[ ] ( )−

=− +

−∑1

1

1
,

where for s ≥ 0, c c w ws s M r d dm
Mm r s

M m s
M( ) = −( ) = −( ) ( ) −[ ] ( ) −[ ]− ( )

= + +
−( )∑1

1
θ θ .  For

var nM( ), the approximation is the right side of (3.8.1) but with

c c g w g ws s M r n nm m
Mm r s

M m s m s
M( ) = −( ) = −( ) ( ) ( ) −[ ] ( ) ( ) −[ ]− ( ) ( )

= + +
−( ) −( )∑1

1
θ θ θ θ ,

where s ≥ 0.  For cov ,n dM M( ), the approximation is the right side of (3.8.1) but with

c g w w
max ,

min ,
s M r n dm m

Mm r r s

M M s m s
M( ) = −( ) ( ) ( ) −[ ] ( ) −[ ]− ( ) ( )

= + + +( )

−( ) −( )∑1

1 1
θ θ θ .

The three variants differ in the value of L chosen.  In the first, L M r= −( )0 04. ; in the

second, L M r= −( )0 08. ; and in the third, L M r= −( )0 15. .2 1

The program apm combines posterior moments from two or more machine-readable

moment output files.  This program provides NSEs and conventional test statistics for the

equality of these moments, under the assumption that the posterior simulations from which

21Small values of L assume a more rapid rate of decay in the autocovariance function of g ,YT
mθ ( )( ){ }.  In

practice, results are usually about the same for the three values.  Substantial differences indicate that serial
correlation may persist across a substantial fraction of the iterations, and a longer simulation may be
warranted.
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the moment output files were created, are independent of one another.  The user specifies

the number of machine-readable output files created by moment, the number of moments

in each file, and the names of the machine-readable moment output files.  The number of

moments must be the same in each file.

The program apm produces these results four different times, which correspond to the

four variants of the NSE for the posterior moment just discussed.  If there are J moment

output files, the combined posterior moment approximation is ˜ ˜g v g vj jj

J

jj

J
=

= =∑ ∑1 1
,

where g̃j  is the moment in the j’th file and vj  is the inverse square of its NSE.  The

program apm provides the conventional chi-square test of   ̃ ˜g gJ1 = =K  (in four variants)

and the marginal significance level of this test statistic.  If the J moment output files were

created using J independent initial conditions for the same posterior simulator, then this test

is essentially the convergence test proposed by Gelman and Rubin (1992).

Evidence of different values of the moments from different files is an indication that

there may be sensitivity to starting values or—almost equivalently—that an insufficient

number of burn-in iterations were taken in approximating the moments.

3.9  Examples

Two examples illustrate the use of these methods and will be used in subsequent

portions of this paper as well.22  The first example is based on the hedonic model of

residential real-estate prices discussed by Anglin and Gencay (1996).  Their baseline model

is a linear regression of the logarithm of sales prices on an intercept and eleven attributes.

The attributes are indicated in the leftmost column of Table 3.1.  All variables beginning

with “#” are positive integers, log(lot size) is continuous, and all other variables are

dichotomous (1 if present and 0 if not).  The data consist of 546 transactions during July,

August, and September 1987 in metropolitan Windsor, Ontario, Canada.  The least squares

estimates match those reported in Anglin and Gencay (1996).

The form of the prior distribution is the one discussed in Section 2.1 for the normal

linear model.  The normal distribution for the coefficient vector has mean zero, the

precision matrix is diagonal, and standard deviations are chosen to allow reasonable values

of the coefficients.  The prior distribution of the precision parameter is 0 12 32. ~h χ ( ) so

that h has prior mean 25 and standard deviation about 20.  The posterior simulator is the

Gibbs sampling algorithm described in Section 3.3, which is based on the conditional

distributions (2.1.17) and (2.1.18).  The posterior simulator file was created using the

22Data for both examples are available at http://www.econ.umn.edu/~geweke/papers.html.
Data for the first example are also available at the Web site http://qed.econ.queensu.ca:
80/jae/1996-v11.6/anglin-gencay.
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program uvr1, which is available at the indicated Web site both as an executable DOS file

and as portable Fortran code.  Creation of 10,000 records in the posterior simulator file

required 69 seconds.23  The last four columns of Table 3.1 report results from moment

using this posterior simulator file, discarding the first 1,000 iterations.  Initial values here,

and in all other examples discussed in this paper, were drawn from the prior distribution,

and in every case, the first 1,000 draws were discarded.  The moment computations took

27 seconds.  Posterior means and standard deviations are close to the least squares values,

reflecting the lack of information in the prior relative to the data set.  The NSE of each

posterior mean is given for L M r= −( )0 08.  as described in the previous section.24  The

NSEs imply accuracy of more than two figures past the decimal in the posterior means, and

the RNE indicates that numerical accuracy is comparable to what would have been achieved

with i.i.d. drawings directly from the posterior distribution.

The second example is a probit model of women’s labor force participation, which is

based on the one presented in Geweke and Keane (1998).  The data consist of 1,555

observations of women in the 1987 Panel Survey of Income Dynamics.  The choice

variable is 1 if a woman reports positive hours of work for 1987.  The covariates are

indicated in the left column of Table 3.2.  “Black,” “Married,” and “Kids” are

dichotomous.  “Age” is measured in years and interacted with Married and its negation.

“Education” is years of completed schooling.  “Spouse$” is husband’s income, and

“Family$” is unearned household income, in dollars for the year 1987.  Work experience

(“WorkExp”) is measured in cumulative hours since the woman became a household head

or spouse.  For each unmarried woman with children, “AFDC” is the monthly cash support

she would receive if she did not work.  “Food$” is the monthly food stamp allotment to

which a woman’s household would be entitled if she did not work.  The last two variables

differ according to the state of residence.  The prior distributions of the coefficients are

independent normal, each with mean zero and standard deviation chosen to permit large but

reasonable values to be within two standard deviations of zero.  Details of sample

screening, variable descriptions, and prior construction are given in Geweke and Keane

(1998).

Conventional maximum likelihood estimates, the posterior mode, and approximate

posterior standard deviations based in the usual way on the Hessian of the log-posterior at

23All execution times are given for a Sun Ultra 200 Sparcstation 20.  This machine is about twice as fast
as the fastest Pentium processors.
24This value of L is used to report the NSE and the RNE in all other examples in this paper as well.
Results using other values of L are similar.
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the mode25 are presented in Table 3.2.  Computation of these values using analytical

gradient and Hessian required 9 seconds.  It is clear from Table 3.2 that the prior

distribution is informative, relative to the data: prior standard deviations of six of the

thirteen coefficients are smaller than the corresponding maximum likelihood asymptotic

standard errors.  Posterior standard deviations are smaller than asymptotic standard errors

in every case, and for several coefficients the posterior mode is closer to the prior mode

than to the likelihood mode.

Two alternative posterior simulation algorithms were used to construct posterior

simulator files.  The first is the Gibbs sampler for the probit model developed in Albert and

Chib (1993) and described in Section 3.7 and is available as program pbt1 at the Web

site.  Creation of a posterior simulator file with 10,000 records required 680 seconds.

Posterior means, standard deviations, and measures of numerical accuracy, based on the

last 9,000 records, are presented in the left half of Table 3.3.  The posterior moments are

quite close to the approximation at the posterior mode, very likely reflecting a posterior

distribution that is close to multivariate normal.  The average RNE for the coefficients

indicates that the same accuracy could have been achieved with about 35% the number of

iterations had an i.i.d. sample been drawn directly from the posterior distribution.

The second posterior simulator is a Hastings-Metropolis algorithm when a transition

density is constructed as the combination of two densities as described in Section 3.6.  The

first density is the prior, with a weight of 0.2.  The second density is a multivariate

Student-t distribution centered at the posterior mode with 10 degrees of freedom and scale

matrix set to the Hessian of the log posterior at the mode and a weight of 0.8.  Out of

10,000 iterations, 1,977 candidates were drawn from the prior, of which 1 was accepted,

and 8,023 candidates were drawn from the multivariate Student-t, of which 5,767 were

accepted.  As indicated in Table 3.3, numerical accuracy is comparable to the Gibbs

sampler with the same number of draws.  Execution time was 572 seconds, which is about

15% faster than the Gibbs sampler.

The two sets of results in Table 3.3 provide an opportunity to check on the adequacy

of the assumptions underlying the implicit use of a central limit theorem in evaluating

numerical accuracy.  The last column of that table provides the conventional “t” statistic for

equality of posterior means by using the reported NSEs.  The values obtained are

consistent with the joint assumptions that the invariant distribution of the Markov chain was

reached by the 1,000’th iteration and that the central limit approximation described in

Section 3.7 is valid.

25For details and the asymptotic justification for this approximation, see Bernardo and Smith (1994,
Section 5.3) and references given therein.
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4.  Model Comparison

Section 2.3 demonstrated that given prior probabilities over models and prior

probability distributions for parameter vectors within models, there is a complete theory of

model combination and model comparison.  The central technical task in implementing the

theory is calculation of the marginal likelihood p p , p AY YT TA A d( ) = ( ) ( ) ( )∫ θ θ ν θ
Θ

.   The

marginal likelihood cannot, in general, be cast in the form of a posterior moment (2.1.5),

and therefore, the posterior simulation methods of Section 3, which have proven useful in

obtaining posterior moments in a single model, are not directly applicable to this problem.

A decade ago, there were essentially no methods developed for the numerical

approximation of marginal likelihoods or Bayes factors, and results were limited to a

handful of cases for which there were analytical results or asymptotic approximations.

Now it is possible to attain good and generic approximations to marginal likelihoods in

most cases; however, some models with large numbers of latent variables remain

troublesome.

This section provides several approaches to the approximation of marginal likelihoods,

with an emphasis on generic methods that are consistent as the number of simulations

increases.  Generic methods exclude those that are ingenious but specific to particular

situations as well as methods that rely on asymptotic approximations rather than simulation.

Many of these methods are discussed in a comprehensive review article by Kass and

Raftery (1995).  This section discusses a method that works well with importance sampling

and the Hastings-Metropolis algorithm, a method specific to the Gibbs sampler, and a

generic method that works well with most posterior simulators regardless of the algorithm

employed. For the last method, this section describes publicly available software designed

to work with the most commonly used computing platforms in econometrics.  Some

examples illustrate the numerical accuracy that can be attained and provide comparisons of

some of the different methods of approximating marginal likelihoods.

4.1  Importance sampling and the Hastings-Metropolis algorithm
Suppose that j θ( ), with support Θ , is the probability density function (not just a

kernel) with respect to the measure dν θ( ) of an importance sampling distribution for the

posterior density p , p p ,θ θ θY YT TA A A( ) ∝ ( ) ( ), where p θ A( ) is the properly normalized

prior density and p ,YT Aθ( ) is the properly normalized data density.  Define the weighting

function w p p , jθ θ θ θ( ) = ( ) ( ) ( )A ATY .
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Corollary 4.1.1.  Let j θ( )  be the importance sampling density in an importance

sampling algorithm.  Suppose the support of j θ( )  includes Θ .  Then

w M d A A d AM
m

m

M a s
T T= ( )  → ( ) ( ) ( ) = ( ) ( ) ( ) = ( )− ( )

=∑ ∫ ∫1

1
w w j p p , p. .θ θ θ ν θ θ θ ν θ

Θ Θ
Y Y .

If w θ( )  is bounded above, then

M w A M wM T
d m

Mm

M a s1 2 2 1
2

1

20− ( )[ ]  → ( ) ( ) −[ ]  →− ( )
=∑p N , , w . .Y σ θ σ .

Proof.  Immediate from Theorem 3.2.1 and Corollary 3.2.2. ##

The first application of this idea is Geweke (1989a); see also Gelfand and Dey (1994)

and Raftery (1995).  Since w θ m( )( )  must be computed during each iteration of the

importance sampling algorithm in any event and the normalizing constant for j θ( ) is

usually known, this simulation-consistent approximation of p YT A( ) may be obtained at

essentially no additional cost.

In the case of the Hastings-Metropolis algorithm, there is a similar result.  To motivate

this result, let q , *θ θm( )( ) be the transition probability density function, and denote the

candidate draw on the m ’th iteration by θ * m( ) .  Define  w , *θ θm m( ) ( )( )
= ( ) ( ) ( )( ) ( ) ( ) ( )p p , q ,* * *θ θ θ θm

T
m m mA AY .  If the support of q , *θ θm( )( ) is Θ  for all θ m( ) , then

E w , p p , p* * * *θ θ θ θ θ ν θm m m
T TA A d A( ) ( ) ( )( )[ ] = ( ) ( ) ( ) = ( )∫ Y Y

Θ
.  This motivates the following

result.

Theorem 4.1.2.  Let q , *θ θm( )( ) be the transition probability density function for θ *

given θ m( )  in a Hastings-Metropolis algorithm, and let θ * m( )  denote the proposal drawn on

the m’th iteration.  Suppose the support of q , *θ θm( )( ) is Θ  for all θ m( )  and that the

Hastings-Metropolis Markov chain θ m( ){ } is ergodic.  Define the weighting function

w , *θ θm m( ) ( )( )  = ( ) ( ) ( )( ) ( ) ( ) ( )p p , q ,* * *θ θ θ θm
T

m m mA AY .  Then

w M A A d AM
m m

m

M a s
T T= ( )  → ( ) ( ) ( ) = ( )− ( )

=∑ ∫1

1
w , p p , p* . .θ θ θ θ ν θY Y

Θ
.

If θ m( ){ } is uniformly ergodic and w , *θ θ( ) is uniformly bounded above, then

M w AM T
d1 2 20− ( )[ ]  → ( )p N ,Y σ .

Proof.  See Geweke (1998). ##

The conditions of Theorem  4.1.2 are not as strong as they might appear.  Recall from

Section 3.6 that if one kernel in a mixture of kernels is uniformly ergodic, then the mixture

kernel itself is uniformly ergodic.  If the likelihood function is bounded above and one of



42

the kernels in the mixture (or a combination) is the prior distribution, then all the conditions

of Theorem 4.1.2 will be met, and moreover, there will be a central limit theorem.  This

result is remarkably similar to the central limit theorem in Corollary 4.1.1 for importance

sampling.  In each case, boundedness of the ratio of the posterior to candidate generating

density leads to a strong result on approximation of the marginal likelihood.

4.2  The Gibbs sampler

In the case of the Gibbs sampler, there is a different procedure due to Chib (1995) that

provides accurate evaluations of the marginal likelihood, at the cost of additional

simulations.  Suppose that the output from the blocking 
  

′ = ′ ′( )( ) ( )θ θ θ1 , ,K B  is available and

that the conditional p.d.f.’s p , ,θ θ
j i Ti j A( ) ( ) ≠( )( )Y  can be evaluated in closed form for all

j .  (This latter requirement is generally satisfied.)

From (2.1.1) and (2.1.2),

(4.2.1) p p ˜ p ˜, p ˜ ,Y Y YT T TA A A A( ) = ( ) ( ) ( )θ θ θ

for any θ̃ ∈Θ .  Typically, p ˜, p ˜YT A Aθ θ( ) ( ) and  can be evaluated in closed form but

p ˜ ,θ YT A( ) cannot.  A marginal/conditional decomposition of p ˜ ,θ YT A( ) is
(4.2.2)

  
p ˜ , p ˜ , p ˜ , ˜ , p ˜ , ˜ , , ˜ ,θ θ θ θ θ θ θY Y Y YT T T B T BA A A A( ) = ( ) ( ) ⋅ ⋅ ( )( ) ( ) ( ) ( ) ( ) −( )1 2 1 1 1K K .

The first term in the product of B  terms can be approximated from the output of the

posterior simulator because

  
M A AT

m
B
m

m

M a s
T

−
( ) ( )

( )
( )
( )

= ( )( )  → ( )∑1
1 21 1p ˜ , , , , p ˜ ,. .θ θ θ θY YK .

To approximate 
  
p ˜ , ˜ , , ˜ ,θ θ θb T b A( ) ( ) −( )( )Y 1 1K , execute the Gibbs sampler with the parameters

in the first b − 1 blocks fixed at the indicated values, which produces a sequence

  
θ θb b

m
b B
m

( ) +( )
( )

( ) ( )
( ){ }, ,, ,1 K  from the conditional posterior.  Then

  
M A Ab T b b b

m
b B
m

m

M a s
b T b

−
( ) −( ) ( ) +( )

( )
( ) ( )
( )

= ( ) ( ) −( )( )  → ( )∑1
1 1 11 1 1p ˜ , ˜ , , ˜ , , , , p ˜ , ˜ , , ˜ ,, ,

. .θ θ θ θ θ θ θ θY YK K K .

These approximations are then used in (4.2.1) and (4.2.2) to obtain the approximation

to the marginal likelihood.  In general, this method is more efficient the greater is

p ˜ ,θ YT A( ), so in many applications, it is natural to choose θ̃  near the posterior mode.  It is

straightforward to apply the methods of Section 3.7 to evaluate the numerical accuracy of

the final approximation to the marginal likelihood by using standard delta methods.  See

Chib (1995) on these and other important practical details.



43

4.3  Modified harmonic mean
Gelfand and Dey (1994)  observe that for any p.d.f. f θ( )  whose support is contained

in Θ ,

(4.3.1)

E
f

p p ,
,

f
p p ,

p ,

f
p p ,

p p ,

p p ,

θ
θ θ

θ
θ θ

θ ν θ

θ
θ θ

θ θ
θ θ ν θ

( )
( ) ( )













= ( )
( ) ( ) ( ) ( )

= ( )
( ) ( ) ⋅ ( ) ( )

( ) ( ) ( )

∫

∫ ∫

A A
A

A A
A d

A A

A A

A A d

T
T

T
T

T

T

T

Y
Y

Y
Y

Y

Y

Y

Θ

Θ
Θ

dd

d

A A d
A

T

T

ν θ

θ ν θ

θ θ ν θ

( )

=
( ) ( )

( ) ( ) ( )
= ( )∫

∫
−f

p p ,
p .Θ

Θ
Y

Y
1

The posterior mean in (4.3.1)is a candidate for approximation by a posterior simulator.  If
f p p ,θ θ θ( ) ( ) ( )A ATY  is bounded above, then the approximation is simulation consistent

and the rate of convergence is likely to be practical.

It is not difficult to guarantee the boundedness condition in (4.3.1).  Consider the case

in which Θ = ℜk .  From the output of the posterior simulator, define26

 ˆ w wθ θ θ θM
m m

m

M m

m

M
= ( ) ( )( ) ( )

=
( )

=∑ ∑1 1

and

ˆ w ˆ ˆ wΣM
m m

M
m

Mm

M m

m

M
= ( ) −( ) −( )′ ( )( ) ( ) ( )

=
( )

=∑ ∑θ θ θ θ θ θ
1 1

.

(It is not essential that the posterior mean and variance of θ  exist.)  Then for some

p ∈ 0,1( ) , define ˆ : ˆ ˆ ˆΘ ΣM M M M p k= −( )′ −( ) ≤ ( )







−
−θ θ θ θ θ χ1

1
2  and take

(4.3.2) f ˆ exp ˆ ˆ ˆ
ˆθ π θ θ θ θ χ θ( ) = ( ) −( ) −( )′ −( )







 ( )− − −

−p k
M M M M

M

1 2 1 2
12 1 2Σ Σ

Θ
.

If the posterior density is uniformly bounded away from zero on every compact subset of

Θ , then the function f p p ,θ θ θ( ) ( ) ( )A ATY  possesses posterior moments of all orders.

For a wide range of regular problems, this function will be approximately constant on Θ̂M ,

which is nearly ideal.  In most situations, smaller values of p will result in better behavior

of f p p ,θ θ θ( ) ( ) ( )A ATY  over the domain Θ̂M , but greater simulation error due to a smaller

number of θ m
M

( ) ∈Θ̂ ; there is almost no incremental cost in carrying out the computations

for several values of p rather than a single value of p.

26The weighting function w θ( )  is defined in Theorem 3.2.1 in the case of importance sampling.  For

MCMC algorithms, w θ( ) = 1.
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So long as Θ̂ ΘM ⊆ , f
ˆ

θ ν θ( ) ( ) =∫ d
MΘ

1.  If not, the domain of integration must be

redefined to be Θ̂ ΘM ∩ .  In this case, a new normalizing constant for f θ( )  can be well

approximated by taking a sequence of i.i.d. draws 
  
θ l( ){ } from the original distribution

(4.3.2) with domain Θ̂M  and then by averaging 
  
χ θΘ

l( )( ).

Frequently, the behavior of f p p ,θ θ θ( ) ( ) ( )A ATY  can be improved by

reparameterization of θ  to ζ θ= ( )h , where h is a one-to-one function.  Of course, the prior

density must then be adjusted by the Jacobian of transformation.  If the support Z of

p Aζ( ) is ℜk , then f ζ ν ζ( ) ( ) =∫ d
Ζ

1 for f constructed as indicated in (4.3.2).  For example,

if this method is used to approximate the marginal likelihood in the standard linear model

(2.1.7)–(2.1.9), transformation of h to log h( )  guarantees the support condition and

generally results in more accurate approximation of p YT A( ).

The numerical accuracy of the approximation can be evaluated by using the methods of

Section 3.8, as detailed below in Section 4.5.

4.4  Improving numerical approximations

In many instances,  a portion of the marginal l ikelihood

P p p ,Y YT TA A A d( ) = ( ) ( ) ( )∫ θ θ ν θ
Θ

 may be evaluated analytically.  Suppose

   p p , p , p , , rθ θ ν θ θ θ θ θ ν θ ν θ θ ν θA A d A A d d dT T( ) ( ) ( ) = ( ) ( ) ( ) ( ) = ( ) ( )∫ ∫∫ ∫Y Y
Θ ΘΘ Θ1 2 1 2 2 1 1 1

21 1

,

where r p , p , ,θ θ θ θ θ ν θ1 1 2 1 2 2
2

( ) = ( ) ( ) ( )∫ A A dTY
Θ

  can be evaluated analytically.  Then the

modified harmonic mean method can be applied directly to the simulated values θ1
m( )  by

using r θ1
m( )( )  in lieu of p p ,θ θm

T
mA A( ) ( )( ) ( )Y  and by tailoring f θ( )  to r θ( ) rather than to

p p ,θ θA AT( ) ( )Y .  Similar adjustments can be made for importance sampling.  Because the

dimension of integration is lower, the resulting approximation will typically be more

accurate.  In the case of the method employing the Gibbs sampler described in Section 4.2,

this preliminary evaluation will eliminate at least one of the blocks for which the auxiliary

simulations must be undertaken.

An example of this procedure is provided by earlier results for the standard linear

model.  The entire posterior kernel in standard form is (2.1.13).  But Section 2.3 derived

the marginal likelihood conditional on h, (2.3.6).  The latter expression is a function of a

single unknown parameter, whereas the former is a function of k + 1 unknown parameters.

The probit model described in Section 2.4 provides a second example.  In this case,

there are T k+  unknown parameters (T latent variables and k coefficients).  The modified

harmonic mean method in this case is completely unwieldy, since it would require the
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storage of a very large amount of posterior simulator output, and generation of the requisite

T k+  truncated normal random variables would require the factorization of a matrix of the

same order.  In this case, integration of the T latent variables is straightforward and leads to

the product of the prior density for the coefficients and the likelihood function as typically

written,

2 1 2 1 12 1 2

1
π β β β β β ββ β( ) −( ) −( )′ −( )





′( ) + −( ) − ′( )[ ]{ }−

=∏k
t t t tt

T
d dH x xexp Η Φ Φ .

More generally, in models with latent variables, accurate evaluation of the marginal

likelihood requires that it be possible to perform the integration over the space of latent

variables analytically.

4.5  Software

The program  m l i k e , available in six languages at the Web site

http://www.econ.umn.edu/~bacc, provides approximations of the log marginal

likelihood using the modified harmonic mean posterior simulation method, given a
posterior simulator file.  The program renormalizes the density f θ( )  if the condition

Θ̂ ΘM ⊆  is violated, as described in Section 4.3.  The program uses the values

  p = 0 9 0 8 0 1. , . , , .K in (4.3.2).  For each of these, the program computes

w w f p p ,θ θ θ θ θm

m

M m m

m

M m
T

mA A( )
=

−
( ) ( )

=
( ) ( )( )[ ] ( ) ( ) ( ) ( )[ ]∑ ∑1

1

1
Y ,

and then it reports minus the logarithm of this value.  However, there are two features of

mlike that are specific to the model: first, the position of model parameters within the

posterior simulator file must be communicated to mlike; second, any reparameterization
of the model from θ  to ζ θ= ( )h  must also be communicated to mlike .  This is

accomplished through three auxiliary procedures.

The procedure repar0 sets any parameters required by repar, which are needed to

organize the parameter vector.  For example, in a multivariate regression model, the

number of equations and covariates is not evident from the number of columns in the

posterior simulator matrix.  In this case, procedure repar0 sets up the requisite pointers

to indicate which columns are the coefficients and which columns are the elements of the

disturbance variance matrix.

The procedure repar accomplishes the reparameterization by mapping the parameters

of the posterior simulator file into the transformed parameters for mlike and by modifying

the prior density by the appropriate Jacobian of transformation.  For example, in the

standard linear model, the disturbance precision is replaced by its logarithm.  The Jacobian

of transformation is evaluated, and then the prior density is modified by this value.
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The procedure lrange indicates whether or not a given parameter vector is within the

support of the prior distribution.  If ΘA
k= ℜ , this is always the case, lrange

communicates this through a logical variable lall with value true, and mlike then

does not undertake the simulations to appropriately adjust the normalization constant of
f θ( ) .  If lall is set to false, then this procedure must determine whether the parameter

vector is within the support of the prior and then communicate lrange=true if it is and

lrange=false if it is not.

The mlike output file provides no direct information on the accuracy of the numerical

approximation of the log marginal likelihood.  (There is some indirect information provided

by looking at the differences in the nine alternative computations of the log marginal

likelihood provided.)  To find the NSE of the approximation, it is necessary to create an

mlike posterior simulator file.  The posterior simulator file created by mlike contains a

pair of records for each simulation used in the approximation of the log marginal

likelihood.  The first record in each pair specifies the iteration number, the log of the

weighting function, and two dummy entries each zero (to make the structure match that of

all posterior simulator files).  The second record in each pair has nine entries, which

correspond to the values of f p p ,θ θ θm m
T

mA A( ) ( ) ( )( ) ( ) ( )Y  for each of the nine values of p in

(4.3.2).  These values will have been normalized by the constant given in the mlike

output file to prevent exponent overflow or underflow.  The mlike posterior simulator

file, used as input to moment, will then provide the posterior means and the NSEs of the
normalized f p p ,θ θ θ( ) ( ) ( )A ATY .  The NSE of the corresponding log marginal likelihood

is this NSE divided by the posterior mean in this application of moment to the mlike

posterior simulator file.

4.6  Examples

For the regression model described in Section 3.9, the marginal likelihood was

approximated by using mlike, which is available with uvr1 at the Web site.  The

software incorporates a reparameterization of the precision from h to logh .  After this

reparameterization, ΘA
k= ℜ , and for this case, mlike  execution time is roughly

proportional to the number of records in the posterior simulator file, about 8 seconds in the

examples discussed here.  Computation of NSE with moment takes another 4 seconds.

The top panel of Table 4.1 provides results using p = 0 9. , 0.5, and 0.1 in expression

(4.3.2).  Computation with p = 0 9.  provides the most accurate assessment.  In view of the

good approximation of the posterior by a multivariate normal distribution, it is not
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surprising that a more inclusive f θ( )  yields more accurate results.  Differences in

approximations for different values of p are consistent with the NSEs.

To illustrate the use of the approximated marginal likelihood in the construction of

Bayes factors, two variants on the model set forth in Section 3.9 were constructed by

making two changes in the prior distribution.  In the first change, the mean of the prior

distributions of all slope coefficients is shifted to the value of the standard deviation, which
in turn is unchanged: that is, the prior distribution is changed from N , .0 0 12( )  to

N . , .0 1 0 12( )  for all covariates except log(lot size) for which the prior distribution is shifted

from N , .0 0 32( ) to N . , .0 3 0 32( ) .  Log marginal likelihood approximations for this model

are given in the middle panel of Table 4.1.  Finally, the standard deviations in these priors
are reduced by one-half: now all priors are N . , .0 1 0 052( ) except for log(lot size) which is

N . , .0 3 0 152( ) .  Log marginal likelihoods for this model are shown in the lower panel of

Table 4.1.

Using the approximation based on p = 0 9. , one finds that the log Bayes factor in favor

of the last model, versus the first, is approximately 10.285 and the associated NSE is

0.005.  Thus, the Bayes factor is almost certainly (based on the NSE ×3) between 28,853

and 29,733.

In the probit model example, for both the Gibbs sampler and the Hastings-Metropolis

algorithm, the marginal likelihood can be approximated by using the modified harmonic

mean method implemented in mlike.  In the case of the Gibbs sampler, the evaluation of

the likelihood function for the probit model discussed at the end of Section 4.4 is used.

These results are shown in the top two panels of Table 4.2.  For the same reasons as in the

regression model, the approximation is quite accurate and is better for larger values of p.

For the probit model Hastings-Metropolis algorithm, the marginal likelihood can also be

approximated by using Theorem 4.1.2.  This approximation, given in the last line of Table

4.2, is consistent with the other assessments (as measured by the NSE) and is as accurate

as the most accurate of the harmonic mean approximations.

5.  Model Development

In the preceding sections, it has been assumed that a collection of complete models

  A AJ1, ,K  is available, each model specifying a parametric data density p ,YT j jAθ( ), a prior

distribution for parameters p θ j jA( ) , and a conditional distribution of a vector of

substantive variables of interest, p , ,ω θYT j jA( ) .  In addition, there is a probability P Aj( )
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associated with each model, and P Ajj

J ( ) =
=∑ 1

1.  The specification of p ,YT j jAθ( ) and

p , ,ω θYT j jA( )  are familiar tasks to economists.  This section takes up some ways in which

simulation methods can assist in what may be less familiar, and often less formal, aspects

of model development: expression of prior distributions for parameters and specification of
a set of models   A AJ1, ,K  adequate to the task at hand.

5.1  Prior elicitation and specification

Any complete model A implies a prior, or predictive, distribution

p p , , p , pω ω θ θ ν θ ν θA A A d A dT T T
T

( ) = ( ) ( ) ( ) ( ) ( )∫∫ Y Y Y
ΨΘ

.

Generally, it will not be possible to access p ω A( )  analytically.  On the other hand, i.i.d

sampling from p θ A( ), p ,YT Aθ( ), and p , ,ω θYT A( )  will generally be straightforward.

These tasks may be trivial.  For example, in the probit model taken up initially at the end of

Section 2.4, suppose that one is interested in the effect of a change in some covariate on the
probability of the outcome dt = 1.  Given the complete probit model specification in Section

2.4, sampling from the prior density p β A( ) entails drawing from a multivariate normal

distribution; sampling from p ,YT Aβ( ) amounts to drawing the latent variables y* defined

in (2.4.11) from univariate normal distributions, followed by mapping yt
* ≥ 0  into dt = 1

and yt
* < 0  into dt = 0; and the vector ω β= =( )P , ,d At t1x  can be computed directly.  On

the other hand, these tasks need not be trivial. For example, simulating YT Aθ,( )  may

require solution of a model that cannot be carried out in closed form,27 and simulating

ω θYT A, ,( ) may demand ingenious forecasting algorithms.  In Bajari (1997), YT  includes

bids submitted under conditions of asymmetric information, draws from p ,YT Aθ( ) involve

solution of a system of nonlinear differential equations, and the vector ω  includes revenue

realized by an auctioneer.  But these sorts of exercises are routinely carried out by

economists.  In general, model simulation is much simpler than posterior simulation.
While a complete model demands p θ A( ), it is often difficult to elicit (that is, to think

about) a prior distribution of a parameter vector θ  directly.  But unless this task is taken

seriously, the claim to an exact evaluation of E h ,ω( )[ ]YT A  is not secure.  In the

comparison or averaging of models, careless development of p θ A( ) will more often than

not lead to posterior odds ratios that reflect the relative plausibility of two arbitrary prior

distributions in different models.  The outcome may simply convey the information that

some models have absurd prior distributions and others do not and may not convey the

27For methods and extensive references, see Amman, Kendrick, and Rust (1996).
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relative plausibility of the models with more carefully considered prior distributions of

parameters.

It is typically easier to elicit prior distributions about ω  than about θ .  For example, in

an earnings model involving high order polynomials in age and education, it is natural to

consider reasonable ranges for earnings ratios at different age and education levels and

nearly impossible to think about individual coefficients of the polynomial (Geweke and

Keane, 1997).  Moreover, formulation of prior distributions over the substantive, model

invariant elements of ω  provides considerable discipline in developing prior distributions

p θ j jA( )  that are at least reasonably consistent across models.

In some cases, it may be possible to obtain p θ A( ) analytically from p ω A( ) .  In

general, however, the relationship between θ  and ω  will be sufficiently complicated that
such an analytical derivation is precluded.  But if simulation from p ω A( )  is cheap, then

p θ A( ) that approximates prior beliefs about ω  may be obtained through trial and error.

This process may reveal that for some functions h ω( ), p h ω( )[ ]A  cannot be well

approximated by any choice of p θ A( ).  This indicates that the data distribution p ,YT Aθ( )
is incapable of expressing p ω( ), and in this case, the model A should be discarded a priori

from consideration.  If no model Aj  conveys p ω Aj( ) by approximating prior beliefs, then

it is necessary to develop other models.  Of course, no formal procedure will indicate what

such a model will entail, but results obtained for p ω Aj( ) over the models   A AJ1, ,K  may

provide nutritious food for thought.

Comparison of h ω( ) A  with h ,ω( )( )YT A  can reveal important ways in which the data

YT  change prior beliefs about h ω( ).  At one extreme, the function h ω( ) may not be

identified by the data, in which case the prior and posterior density functions are equivalent:

that is, p h , p hω ω( )[ ] = ( )[ ]YT A A  for some YT T∈Ψ .28  For these YT T∈Ψ , the data do not

change prior beliefs about h ω( ) at all because of weakness in the data with regard to h ω( ).
A classic example is the standard linear model (2.1.7)–(2.1.9) with Xc = 0 for some

vector c , and h ω β( ) = ′c .  An overplot of p h ,ω( )[ ]YT A   and p h ω( )[ ]A , or of

P h ,ω( )[ ]YT A  and P h ω( )[ ]A , will exhibit curves that differ only by simulation noise, and a

plot of P P h ,− ( )[ ]{ }1 ω YT A A  will differ from a 45-degree line only by simulation noise.

At another extreme, no set of data can change prior beliefs about h ω( ) because prior

beliefs about h ω( ) are dogmatic.  A classic example is the population first order

28This definition coincides with the classical treatment of identification (for example, Poirier, 1995, 256).
An alternative, weaker definition of identification is that the posterior distribution of h ω( )  exists (Richard,

1973, 3–9).  In a complete model, h ω( )  is always identified under the weaker definition.
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autocorrelation of the disturbances ε t  in the standard linear model.  Since the disturbances

are dogmatically i.i.d., E , , , var , , ,ε ε β ε βt t th A h A−( ) ( ) ≡1 0X X .  Overplotting of

p h ,ω( )[ ]YT A   and p h ω( )[ ]A , or of P h ,ω( )[ ]YT A  and P h ω( )[ ]A , will show vertical lines

at zero.  In this situation, the sample counterpart will be even more revealing: let

b X X X y= ′( ) ′−1 , u yt t t= − ′b x , and h ω( ) = −= =∑ ∑u u ut tt

T

tt

T

12

2

1
.  Then the prior

distribution of h ω( ) will be concentrated near zero.  (Informally, the latter situation

suggests that another model might be preferred to the standard linear model, and Box

(1980) suggests this approach.  Section 5.2 returns to further consideration of this

possibility.)

Intermediate cases include those in which the data contribute strongly to knowledge of

h ω( ) in a manner consistent with the model: p h ,ω( )[ ]YT A  is more concentrated than

p h ω( )[ ]A  and is well within the support of p h ω( )[ ]A .  For example, a prior distribution

for the standard linear model (2.1.7) might specify p ,β χ βj j( ) = ( )[ ]0 1 , and the posterior

distribution of β j  is concentrated almost entirely between 0.75 and 0.76.  A second

intermediate case is one in which the data contribute strongly to knowledge of h ω( ), but

p h ,ω( )[ ]YT A  is not well within the support of p h ω( )[ ]A .  In the context of the previous

example, the posterior distribution of β j  might be nearly collapsed about the left side of

β j = 1, and in this case, the prior and posterior distributions of h ω( ) = bj  will differ

markedly.

5.2  Incomplete models and partial information inference

Model development is costly.  A new complete model can easily require years to

create; millions of dollars and careers may be devoted to the effort.  The process of

scientific investigation entails working with a limited array of complete models and

incompletely formed ideas about alternative models, developing the latter only when there

is substantial evidence that these alternative models might be preferred to the complete

models.29

Examining the ways in which a model represents observed data poorly is a standard

part of sound scientific practice, often going under the name diagnostic checking in the

statistics literature or misspecification testing in econometrics.  There are divergent but

well established approaches to this task.  At one extreme, classical pure significance testing

identifies poor representation with a function of the data that is greater or smaller than what

might have occurred.  At the other extreme, formal Bayesian model comparison requires

29On a grand scale, this familiar process is spelled out in the classic work of Kuhn (1970).  This is an
intentionally Bayesian statement of part of Kuhn’s thesis.
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the formulation of all models that are plausible.  In practice, it would be too costly even if

conceptually possible to formulate the complete set of plausible models, but on the other

hand, there are at least vague ideas of what other models might be, and those ideas affect

the choice of the data function in pure significance testing.  A thorough and still timely

discussion of these issues is Box (1980) and the accompanying discussion.  A portion of

Box’s article argues that non-Bayesian methods are required for diagnostic checking of a

set of models.  Some of the discussants, including Barnard, Bernardo, and Dawid in Box

(1980) argue for a Bayesian interpretation of Box’s argument.  The procedures set forth

here may be viewed as an explicit implementation of Barnard’s ideas.

To formalize the notion of incompletely formed ideas about other models, return to the
environment described in Section 2.1.  Let f :YT

pT q( ) ℜ → ℜ  be a function of the

observable data, where q is a small integer (often q = 1).  An incomplete model Ã  is a

specification p f ˜YT A( )[ ].  The model Ã  is incomplete because it does not state the

predictive distribution p ˜YT A( ) and because it takes no stand on the definition or

distribution of any vector of substantive variables ω .  The model Ã  is simply a formal

statement of what a certain aspect of the observable data might look like, given models not

as yet articulated.

A complete model A and an incomplete model Ã  can be compared through their
common prediction of the observable f YT( ) :

p f p p p f , p f ,

p ˜ f p ˜ p f ˜ p f .

A A A A d

A A A

T T T

T T T

Y Y Y

Y Y Y

( )[ ] = ( ) ( ) ( )[ ] ( ) ( )[ ]
( )[ ] = ( ) ( )[ ] ( )[ ]

∫ θ θ ν θ
Θ

The partial information Bayes factor in favor of A versus Ã  is thus

p f

p f ˜

p p f ,

p f ˜
.

Y

Y

Y

Y

T

T

T

T

A

A

A A d

A

( )[ ]
( )[ ] =

( ) ( )[ ] ( )

( )[ ]
∫ θ θ ν θ

Θ

In this definition, partial information refers to the fact that conditioning is on f YT( )  rather

than on all of the observed data YT .  Since Ã  only predicts f YT( ) , this conditioning is as it

must be: models can be compared only on the basis of their common predictions.

Correspondingly, p f YT A( )[ ] is the partial information marginal likelihood (PIML) of the

complete model and p f ˜YT A( )[ ] is the PIML of the incomplete model.

Typically, p f ˜YT A( )[ ] is specified directly and its evaluation is no problem.  Evaluation

of p f YT A( )[ ], if undertaken along the lines described in Sections 3 and 4, could be

arduous.  With rare exception, a new posterior simulator for the parameter vector θ  would

be required, and the marginal likelihood would then have to be evaluated.  On the other
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hand, it is straightforward to make multiple, i.i.d. drawings θ m( )  from the prior distribution

p Aθ( ), draw Y YT
m

T
m A( ) ( )( )~ p ,θ , and form f YT

m( )( ) .  If q is small, and in particular if

q = 1 so that f YT( )  is a scalar, then p f YT A( )[ ] can be approximated by standard kernel

smoothing methods from f YT
m

m

M( )
=

( ){ }
1
.  The relative ease of this procedure  has significant

implications for the conduct of research.  One can compare complete and incomplete

models by constructing partial information Bayes factors before either developing posterior

simulators of other procedures for formal Bayesian inference in the complete models or

further developing the incomplete models into complete models.   Thus, both the

conceptual effort of fully articulating complete models and the technical work of formal

Bayesian inference can be concentrated on those models that will ultimately have

nonnegligible posterior probability.30

Some familiar examples in the standard linear model (2.1.7)–(2.1.9) will illustrate this

approach.  In any given situation, this model alone hardly constitutes a reasonably
representative set of models   A AJ1, ,K .  Other models might, for example, replace the

normal distributional assumption for the disturbance term with a distribution having

different third or fourth moments.  Consider the functions

 f 1 1 2 3

1

2

1

3 2
( )

= =( ) = [ ]∑ ∑YT tt

T

tt

T
T u u ,  f 2 4

1

2

1

2

3( )
= =( ) = [ ] −∑ ∑YT tt

T

tt

T
T u u ,

the skewness and excess kurtosis based on the ordinary least squares residuals.  Given

β βm
IID( ) −( )~ N , H 1 , let

y X Im m m
Th( ) ( ) ( ) −( )[ ]~ N ,β

1
, b X X X ym m( ) − ( )= ′( ) ′1 , u y Xbm m m( ) ( ) ( )= − .

Then the PIML p f 1( )( )[ ]YT A  may be approximated by a kernel density estimate applied to

T u ut
m

t

T

t
m

t

T

m

M
1 2 3

1

2

1

3 2

1

( )
=

( )
=

=
( ) ( )[ ]

∑ ∑ , evaluated at the point T u utt

T

tt

T1 2 3

1

2

1

3 2

( ) ( )[ ]= =∑ ∑ ,

where u y Xb= − .  If the skewness coefficient is about 0.5 and there are several hundred

observations, then p f 1 1210( ) −( )[ ] <YT A .  If p f ˜ ~ N ,1 20( )( )[ ] ( )YT A τ , then for τ  in the range

of (say) 0.2 to 104 , the partial information Bayes factor against the standard linear model is
over 1,000.  Similar calculations may be made for f 2( )( )YT .

The technical steps involved in computing a PIML are superficially similar to
bootstrapping a sampling theoretic test statistic.  First, find a function f YT( )  for which the

30The emphasis here is on what can be done before construction and execution of a posterior simulator as
well as before the completion of other models.  Given a set of complete models, one of which is nested by
all the others, one may save considerable time by constructing and executing a posterior simulator for the
nested model and using score function (Lagrange multiplier) approximations to Bayes factors.  For
discussion on this approach, see Poirier (1988b, 1996).
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predictive distribution under the complete and incomplete models are not the same.

Second, use simulation methods to evaluate the PIML in the complete model.  The first step

is superficially similar to finding a test statistic with good power properties, the second to

bootstrapping a critical value.  It should be clear, however, that the procedure described

here conditions on the observed data, the known properties of the (as yet) incomplete

model, and the prediction held in common by the complete and incomplete models.  This

procedure is consistent with the likelihood principle and is entirely Bayesian given the

assumptions about the information at hand.
In the example given, there are many functions f YT( )  that could be considered, and

this will generally be the case.  The usual non-Bayesian list of alternative hypotheses and

corresponding test statistics is a rich group of candidates.  If the incomplete models
specified the joint distribution of several such functions f YT( ) , then the partial information

Bayes factor could be modified accordingly with the appropriate multivariate f YT( ) .  But

there are several reasons why this modification is not likely to be worth pursuing.  First,
specification of joint predictive distributions of the f YT( )  moves one rapidly toward the

specification of a complete model, if for no other reason than to maintain logical

consistency.  The procedures of Sections 2.3 and 4 then apply.  Second, if kernel

smoothing methods are to be employed in the evaluation of p f TY( )[ ]A , then the number of

draws YT
m A( )  increases exponentially in the dimension of f YT( )  for reliable evaluation.

This is strictly a technical problem, but it is serious.  Third, evaluation of p f TY( )[ ]A

separately for specific unidimensional f YT( )  is likely to provide informal as well as formal

guidance in the elaboration of incomplete into complete models.

5.3  Examples

To provide an illustration of how the comparison of a complete model with incomplete

models might work in practice, return again to the hedonic price regression example

introduced in Section 3.9.  Several functions of the least squares residuals u and the
explanatory variables X, f ,u X( ) , were evaluated.  Next, 1,000 draws  β βm( ) ( )~ p  and

h hm( ) ( )~ p  were made, each followed by y X Im m m
Th( ) ( ) ( )−( )~ N ,β 1 , by computation of

u y X X X X ym m( ) − ( )= − ′( ) ′1 , and by evaluation of f ,u Xm( )( ).  (This required about 20

seconds.)  Finally, standard kernel smoothing methods were used to approximate the

predictive density at the value of  f ,u X( )  computed by using the data, which is the PIML

of the complete model.

The results of this exercise are displayed in Table 5.1.  For each function f ,u X( ) , the

approximate 0.05 and 0.95 quantiles of the predictive distribution are given, followed by
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the data value, and finally by the approximate predictive density evaluated at the data value.

The function “skewness + kurtosis” is the sum of the squared skewness coefficient and

one-fourth of the squared kurtosis coefficient.31  The “nonlinear regression” functions are

the simple correlation of the least squares residuals u and the squared values of the

indicated regressors.  The “conditional heteroscedasticity” functions are the simple

correlation coefficients of the squared least squares residuals and the square of the indicated

explanatory variables.32

To make sense of the PIMLs for the regression model (the complete model) reported in

the last column of Table 5.1, it is necessary to think about what that value might be under

other models not yet formulated (incomplete models).  In the case of skewness, one might

proceed as follows using as a reference the chi-squared distribution which is skewed and

has a shape familiar to most econometricians.  Suppose that the predictive distribution for

the skewness coefficient conditional on the set of incomplete models is symmetric about

zero and that conditional on being positive the predictive distribution for the skewness

coefficient is a mixture of chi-squared distributions, where the mixing distribution is

Uniform (2,8) on the degrees of freedom parameter.  Then standard calculations show that

the implied density at a skewness of –0.184 is then about 2.0, or roughly twice that for the

regression model.  Similarly, if one contemplates a predictive distribution for excess

kurtosis equivalent to that in the Student-t distribution with a uniform prior on degrees of

freedom in the interval (4,10), then the implied density at 0.517 is about 0.85, almost five

times greater than the predictive density of 0.177 under the standard linear model.  In these

cases, the partial information Bayes factor against the linear model is approximately 2 and

5, respectively.

Similar methods may be used to interpret other values in Table 5.1.  For example, one

could think about other models in which the precision of the disturbances depends on the

dichotomous air-conditioning variable.  Let the ratio of precisions with and without central

air-conditioning be c, and suppose log ~ N , log .c( ) ( )[ ]( )0 1 5
2

.  Using the fact that 31.6% of

the sample has central air-conditioning, one finds tht the correlation coefficient –0.075

corresponds to a value c = 1 25. .  Standard methods show that the implied marginal

likelihood of the correlation coefficient –0.075, under the presumed predictive distribution,

31This function is motivated by the classical test against normality developed in Kiefer and Salmon (1983).
32The table demonstrates the difference between what is proposed in Section 5.2 and the “predictive
distribution of checking functions” advanced by Box (1980).  Box compares the function of the observed
data with the distribution of that function conditional on the model A and concludes against the model if the
function of the observed data lies in the tails of the predictive distribution.  This comparison can be done
with the information in Table 5.1, if by tails one means 5%.
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is 4.66, which implies a partial information Bayes factor of almost 6 against the linear

model.

Comparison of the probit model with alternative incomplete models can proceed in

similar fashion.  In this example, a natural set of predictive statistics is based on the

maximum likelihood estimate β̂  of β , the predictive probabilities ˆ ˆpt t= ′( )Φ β x  associated

with this estimate, and the residuals dt t− ′( )Φ β̂ x .  These statistics were formed from the

data set.  To approximate the predictive intervals of the complete probit model, β  was

drawn from the prior distribution, corresponding choices were formed for each x t , the

maximum likelihood estimate was computed, and the predictive statistics were formed.

(For 1,000 replications, this required about 70 minutes.)  Standard kernel smoothing

methods were again used to approximate the PIMLs.

Evaluation of the PIMLs and associated quantities are given in Table 5.2.  “Fraction

choosing” is the fraction of the sample that participates in the labor force.  Since the data

p.d.f. of the probit model can generate any such fraction, evaluating the PIML for this

function amounts to a check that the prior distribution of β  does not dogmatically declare

all women in the sample to be labor force (non)participants.  The value of the PIML,

0.279, reflects the fact that all women would (not) participate is reasonable under the prior,

but so are all rates of participation between 0 and 1.

The “fraction in” functions measure the fraction of women participating in the labor
force, for whom the predictive probability based on the maximum likelihood estimate, p̂t ,

was between p1 and p2 .  Ten combinations of p1 and p2  are chosen in Table 5.2.  While

the notion that these functions might be reasonable indications of actual participation

probability motivates the construction of these statistics, its (in)adequacy as a predictor is

irrelevant to the evaluation of the PIML.  What matters is the predictive density for the
actual proportion of women participating for whom p̂t  is between p1 and p2 , evaluated at

the proportion observed in the sample; the support of this predictive density is 0 1,[ ] and

not p p1 2,[ ].  This is nicely illustrated for the first case, p1 0=  and p2 0 1= . .  The

predictive distribution for the fraction of women participating is concentrated at the low end
of this interval, reflecting the fact that for most women for whom ˆ .pt < 0 1, p̂t  is in fact

very low.  But in the data, the observed fraction is 0.222: there were nine women for
whom ˆ .pt < 0 1, and two of these were in fact labor force participants.  This outcome is

nearly impossible in the complete probit model set forth in Section 3.2.  For the other

combinations of p1 and p2 , the PIML is not substantially lower than one would expect

under alternative, incomplete models with the possible exception of p1 0 4= . , p2 0 5= . .
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The correlation of the squared residuals, d pt t−( )ˆ 2
, with the squared covariates, xit

2 , is

a means of comparing this complete probit model with alternative incomplete models for

which the functional relation between the covariate and labor force participation probability

is different.  The results for education, number of children, and work experience suggest

that elaboration of the probit model allowing for nonlinearity or conditional

heteroscedasticity in those variables might be worth pursuing.

6.  Bayesian Communication

For a subjective Bayesian decision maker, the computation of the posterior

moments E h ,ω( )[ ]YT A  for suitable models, priors, and functions of interest is typically the

final objective of inference.  For an investigator reporting results for other potential

decision makers, however, the situation is different.  In the language of Hildreth (1963),

these decision makers are remote clients, whose priors and functions of interest are not

known to the investigator.

What should the investigator report?  Traditionally, published papers report a few

posterior moments, and more rarely some indication of sensitivity to prior distributions and

alternative data densities may be given.  Such information is generally much too limited.  At

the other extreme, the investigator may simply report some likelihood functions, but this

leaves most of the work to the client.  Investigators almost never report marginal

likelihoods, thereby leaving unrealized the promise inherent in model averaging.

6.1  Posterior reweighting

An investigator will have carried through formal inference for a set of models

  A AJ1, ,K .  This collection will reflect the process of model development, and a public

report of the investigator’s work should at least summarize this process.  In the ideal

situation described by Poirier (1988a), clients have agreed to disagree in terms of the prior.

Since the set of models that exists in any meaningful sense is the set publicly reported,

collectively, investigators will have provided the grand model in which variation of the

prior is the basis of formal discourse in normal science.33

Suppose that corresponding to each model   A AJ1, ,K  included in an investigation,

there is a posterior simulator file of the form described in Section 3.8.  Then it is a simple

33The term normal science is used here as in Kuhn (1970).  In this framework, revolutionary science
may be interpreted as the search for new models in the light of limited information Bayes factors in favor of
incomplete models.  (See Section 5.2.)
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matter to make these files available at an FTP or Web site and for any client to obtain them

for the purpose of the manipulations described here.

Given the posterior simulator file, a client can immediately compute numerical

approximations to posterior moments not reported or even considered by the investigator.

Specifically, suppose a client wishes to know E h ,ω( )[ ]YT A , where ω ω~ p ,TY A( )  is

specified by the client and p ,YT Aθ( ) and p θ A( ) have been specified by the investigator.

Corresponding to each θ m( )  reported in the posterior simulator file, the client forms

g ,YT
mθ ( )( ) with the property E g , , , E h , ,Y Y YT T TA Aθ θ ω θ( )[ ] = ( )[ ] and then computes

gM
m m

m

M m

m

M
= ( ) ( ) ( )( ) ( )

=
( )

=∑ ∑w g wθ θ θ
1 1

.  If the investigator’s posterior simulator is

ergodic, then g g AM
a s

T
. . E h , → = ( )[ ]ω Y , and if it is uniformly ergodic, then

M g gM
d1 2 20−( )  → ( )N ,σ .  For simple functions h ω( ), computation of gM  amounts to

spreadsheet arithmetic.  More elaborate functions of interest may involve simulations, but

in all cases, these computations are precisely those which economists undertake as a routine

matter when investigating the implications of a model.

For example, a client reading a research report might be skeptical that the investigator’s

model, prior, and data set provide much information about the effects of an interesting

change in a policy variable on the outcome in question.  If the simulator output matrix is

available electronically, the client can obtain the exact (up to the numerical approximation

error, which can also be evaluated) answer to his query without arising from his office

chair in considerably less time than required to read the research report.

The social contribution of the investigator in this context is clear.  She enables clients

to incorporate the effects of uncertainty about parameters in a specified model consisting of
p ,YT Aθ( ) and p θ A( ), in reaching conclusions or decisions of the client’s choosing, that

can be addressed by the model.  This contribution extends in an obvious way to uncertainty

about models so long as a posterior simulator matrix has been provided by an investigator

for each model considered.

With a small amount of additional effort, the client can modify many of the

investigator’s assumptions.  Suppose the client wishes to evaluate E h , *ω( )[ ]YT A , where

the model A* differs from the model A only in the specification of the prior distribution

p p*θ θA A( ) ≠ ( ); that is, p , p , *Y YT TA Aθ θ( ) = ( ) .  Suppose further that the support of the

investigator’s prior distribution includes the support of the client’s prior.  Then the

investigator’s posterior density may be regarded as an importance sampling density for the

client’s posterior density.  The client reweights the investigator’s θ m

m

M( )
={ }

1
 using the

function
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w ;
p ,

p ,

p p ,

p p ,

p

p
*

* * * *

θ
θ
θ

θ θ
θ θ

θ
θ

A
A

A

A A

A A

A

A
T

T

T

T

( ) =
( )
( ) =

( ) ( )
( ) ( ) =

( )
( )

Y

Y

Y

Y
.

The client then approximates his posterior moment E g , *θ( )[ ]YT A  by

   g
A

A
A gM

m m
T

m

m

M

m m

m

M
a s

T T

*
*

*

. . * *w ; w g ,

w ; w
E g , ,=

( ) ( ) ( )
( ) ( )  → ( )[ ] =

( ) ( ) ( )
=

( ) ( )
=

∑
∑

θ θ θ

θ θ
θ

Y
Y Y1

1

.

If the investigator has employed importance sampling, this result is simply Theorem 3.2.1.

For the case in which the investigator has employed MCMC, the result can be formalized as

follows.

Theorem  6.1.1.  Let p , p , *Y YT TA Aθ θ( ) = ( ) .  Suppose that θ m( ){ } is ergodic with

invariant distribution p ,θ ν θYT A d( ) ( ), and E g , , *Y YT T Aθ( )[ ] exists and is finite. Suppose

the support of p θ A( ) includes the support of p *θ A( ) , and let w ; p p* *θ θ θA A A( )= ( ) ( ) .

Then for all θ 0( ) ∈Θ ,

g A A A d gM T
m m

m

M m

m

M a s
T T

* * * . . * *
g , w ; w ; g , p ,

*
= ( ) ( ) ( )  → ( ) ( ) =( ) ( )

=
( )

=∑ ∑ ∫Y Y Yθ θ θ θ θ θ
1 1 Θ

.

Proof.  Since p θ YT A, *( )  is integrable with respect to dν θ( ), w ; *θ A( )  is integrable

with respect to p ,θ ν θYT A d( ) ( ).  From Theorem 3.5.1(C),

  
M A A A

A A A d A A d

m

m

M a s
T

T T

− ( )
= ( )  → ( )[ ]

= ( ) ( )[ ] ( ) ( ) = ( ) ( ) ( )

∑
∫∫

1

1
w ; E w ; ,

p p p , p p ,

* . . *

* *
**

θ θ

θ θ θ ν θ θ θ ν θ

Y

Y Y
ΘΘ

and

        M A A A dm
T

m

m

M a s
T T

− ( ) ( )
= ( ) ( )  → ( ) ( ) ( ) ( )∑ ∫1

1
w ; g , g , p p ,* . . *

*
θ θ θ θ θ ν θY Y Y

Θ
. ##

Obviously, this result is true if p *θ A( )  and p θ A( ) are kernels rather than densities; they

need not employ the same factor of proportionality.  But as discussed in Section 2.3, if

p *θ A( )  and p θ A( ) are the properly normalized prior densities, then M Am

m

M− ( )
= ( )∑1

1
w ; *θ

is a consistent approximation of the Bayes factor in favor of the client’s model in

comparison with the investigator’s model.  This fraction, together with the marginal

likelihood of the investigator’s model, provides the marginal likelihood of the client’s

model.

In Theorem 3.7.1, uniform ergodicity was one of the sufficient conditions for a central

limit theorem.  If the investigator’s algorithm produces uniformly ergodic θ m( ){ } and if the

ratio of the client’s prior to the investigator’s prior is bounded, then there is a central limit

theorem under the client’s prior as well so long as the client’s function of interest has finite
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posterior variance using his prior.  This condition is strikingly similar to the sufficient

conditions for a central limit theorem for importance sampling in Corollary 3.2.2.  This is

not surprising: the client is using the investigator’s posterior as his importance sampling

distribution.

Theorem 6.1.2.  Given the notation and assumptions of Theorem 6.1.1, suppose also

that θ m( ){ } is uniformly ergodic and that var g , ,Y YT T Aθ( )[ ] exists and is finite, and

w ; * *θ θA w( ) ≤ < ∞ ∀ ∈Θ .  Then there exists σ 2 > 0 such that

M g gM
d1 2 20

* *
N ,−( )  → ( )σ .

Proof.  The vector v Yθ θ θ θ( )′ = ( ) ( ) ( )[ ]( ) ( ) ( )w ; g , , w ;* *m
T

m mA A  is uniformly ergodic,

with ′ = ( )′  → ( )[ ][ ] = ′− ( )
=∑v v Y Y v

1M
m

m

M a s
T TM c A c1 θ θ. . *E g , , , .  From Cogburn (1972,

Corollary 4.2(ii)), there exists a positive definite matrix Σ  such that
M M

d1 2 v v 0−( )  → ( )N , Σ .  A standard application of the delta method yields the result.##

Efficiency of the reweighting scheme requires some similarity of p *θ A( )  and p θ A( ),

as illustrated subsequently in Section 6.3.  In particular, both reasonable convergence rates

and the use of a central limit theorem to assess numerical accuracy essentially require that

p p*θ θA A( ) ( )  be bounded.  Across a set of diverse clients, this condition is more likely to

be satisfied the more diffuse is p θ A( ) and is trivially satisfied for the (possibly improper)

prior p θ χ θA( ) ∝ ( )Θ  if the client’s prior is bounded.  In the latter case, the reweighting

scheme will be efficient so long as the client’s prior is uninformative relative to the

likelihood function.  This condition is stated precisely in Theorem 2 of Geweke (1989b).

The RNE will indicate situations in which the reweighting scheme is inefficient.  If the

investigator chooses to use an improper prior for reporting, it is of course incumbent on her

to verify the existence of the posterior distribution and convergence of her posterior

simulator.

Including p θ m A( )( )  in the standard posterior simulator file avoids the need for every

client who wishes to impose his own priors to reevaluate the investigator’s prior.  Of

course, p *θ A( )  need not be the client’s subjective prior and may instead simply be a device

by which the client, functioning as another investigator, explores robustness of results with

respect to alternative reasonable priors.

The reweighting scheme permits some updating of the investigator’s results at

relatively low cost.  If observations   T T f+ +1, ,K  beyond the T  originally used have

become available, then
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p , p p , p p , p , ,θ θ θ θ θ θY Y Y y YT f T f T s ss T

T f
A A A A A A+ + −= +

+( ) ∝ ( ) ( ) = ( ) ( ) ( )∏ 11

∝ ( ) ( )−= +

+∏p , p , ,θ θY y YT s ss T

T f
A A11

.

The client, therefore, forms the approximation to the updated posterior moment

E g , ,Y YT f T f A+ +( )[ ]θ ,

g A gM

m
T f

m
T f

m

m

M

m
T f

m

m

M
a s

T f

* . . *w ; w g ,

w ; w
E g ,=

( ) ( ) ( )
( ) ( )  → ( )[ ] =

( )
+

( )
+

( )
=

( )
+

( )
=

+
∑

∑
θ θ θ

θ θ
θ

Y Y

Y
Y1

1

,

with w ; p , ,θ θY y YT f s ss T

T f
A+ −= +

+( ) = ( )∏ 11
.  If f is small relative to T  and there is no major

change in the data generating process between T  and T f+ , then the new approximation

will be efficient.  But as f grows, efficiency diminishes and at some point the

approximation g
*
 becomes too inaccurate to be useful.  This process also requires

evaluation of the likelihood function, which usually involves more technical difficulties

than evaluation of priors or functions of interest.

6.2  Software

The program reweight transforms the parameter vectors in a posterior simulator

file, and/or modifies the weights associated with each iteration, and then writes another

posterior simulator file incorporating these changes.  By transforming the parameter

vectors, the program can be used to examine posterior moments other than those

corresponding to the posterior expectations of the parameters or functions of interest in the

original posterior simulator file, through subsequent use of moment.  By changing the

weights, the program can be used to change the original prior distribution and then examine

the effect of the change on posterior moments, through subsequent use of moment.

The actual transformation and changing of the weighting function is accomplished

through an auxiliary procedure called client.  (The exact form of this procedure depends

on the programming language.)  This procedure takes as input a parameter vector read from

the old posterior simulator file and the corresponding log prior density and log weight.

This procedure returns as output the new parameter vector, new log prior density, and new

log weight.

6.3  Examples

Return to the regression model of hedonic pricing introduced in Section 3.9.  Suppose

that an investigator wishes to provide a posterior simulator file with the intention that clients

will impose their own priors by reweighting the output.  To this end, the investigator

should use a prior distribution that is uninformative relative to the data.  To illustrate what
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such an investigator might do, choose prior distributions N ,0 12( )  for all slope coefficients

except N ,0 32( ) for log(lot size), and 0 04 12. ~h χ ( ) for precision.  Create a posterior

simulator file with 10,000 replications.  To mimic what a client might do, choose the
tightest of the three prior distributions described in Section 4.6: N . , .0 1 0 052( ) for all slope

coefficients except N . , .0 3 0 152( )  for log(lot size), and 0 12 32. ~h χ ( ) for precision.  Use

reweight to create a posterior simulator file with the corresponding weights; this requires

less than 2 seconds.  Then use moment to obtain posterior moments for the coefficients;

this requires 28 seconds.

The results of this exercise are displayed in Table 6.1.  The left panel provides the

results that would have been obtained had the client directly executed the posterior

simulator corresponding to his prior.  The accuracy of the numerical approximation of the

posterior moments is similar to that exhibited for the less informative prior in Table 3.1.

The right panel displays the results the client obtains by reweighting the investigator’s

simulator output.  The “t” statistics (last column) that compare the posterior means

approximated in these two different ways indicate no difficulties with the assessment of

numerical accuracy through the NSEs.  The RNEs for the coefficient posterior means range

from 0.18 to 0.60: overall, the client obtains the same numerical accuracy he would have

achieved executing the simulator directly with about 3,000 iterations.  This would have

required 21 seconds and the uvr1 software, whereas the reweighting took 2 seconds and

the simpler reweight software.  Reweighting of the simulator output succeeds, in this

example, because both the investigator’s and the client’s prior are uninformative relative to

the sample and their posterior distributions are, therefore, similar.

A similar exercise was conducted for the probit example introduced in Section 3.9.  To

mimic what an investigator might do, a posterior simulator file for the posterior distribution

with a prior distribution in which all standard deviations were ten times larger than those

indicated in Table 3.2 was created.  This simulator output was then reweighted to reflect the

prior distribution in Table 3.2.  This attempt failed completely—a single draw received

more than 99.99% of the total weight.  To appreciate the reason for this failure, recall that

the prior distribution used in Section 3.9 is highly informative relative to the sample.  This

is evident from inspection of Table 3.2.

To complete this example, the investigator was recast in the role of a client—that is,

the client now has the priors indicated in Table 3.2 except that the standard deviations are

ten times larger than shown there.  Imagine an investigator who uses a prior distribution

with standard deviations ten times larger yet—that is, the standard deviations are 100 times

those shown for the prior distribution in Table 3.2.  This client’s reweighting of this
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investigator’s simulator output yields the results displayed in the right half of Table 6.2.

The “t” statistic for comparison of the posterior means again indicates no problem with the

NSEs.  The RNEs show that the investigator’s simulator output with 10,000 records

provides about the same information the client would have obtained with 1,000 records

directly from simulator output for his posterior.  This would have required the pbt1

software and about 70 seconds of execution time, whereas the reweighting required 2

seconds and much simpler software.  (Notice that the posterior means in Table 6.2 are

much closer to the maximum  likelihood statistics in Table 3.2 than are the posterior means

in the same table which correspond to the previous more informative prior.)

These examples underscore both the potential efficiency of Bayesian communication

through posterior reweighting and its limitations.  The efficiency comes about because

reweighting software is simple and generic, whereas posterior simulators are model

specific and impose greater computational demands.  (This advantage increases

dramatically in more complex models.)   The limitations arise from the need for some

similarity of the investigator’s and client’s posterior distributions.  As argued and illustrated

here, the investigator should use a prior distribution that is uninformative relative to the

sample.  In this situation, a client’s reweighting will be successful for priors that are

moderately, but not greatly, informative relative to the sample.
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Table 3.1

Regression model: Posterior moments

                             Ordinary least squares      Prior                                      Posterior

Coefficient                Estimate        s.e.     Mean      s.d.            Mean        s.d.       NSE        RNE

Intercept 7.745 .216 0 11 7.726 .217 .0015 2.09

Driveway .110 .028 0 .1 .104 .027 .0002 1.59

Recreation room .058 .026 0 .1 .058 .025 .0003 1.05

Finished basement .104 .021 0 .1 .103 .021 .0002 0.96

Gas hot water .179 .043 0 .1 .149 .040 .0004 0.97

Central air .166 .021 0 .1 .159 .020 .0001 2.16

#Garage stalls .048 .011 0 .1 .049 .011 .0001 1.49

Good nbhd .132 .023 0 .1 .127 .022 .0002 1.04

log(lot size) .303 .027 0 .3 .307 .027 .0002 1.98

#Bedrooms .034 .014 0 .1 .036 .014 .0001 1.14

#Full bathrooms .166 .020 0 .1 .161 .020 .0002 1.34

#Stories .092 .013 0 .1 .093 .013 .0001 2.07

Table 3.2

Probit model: Likelihood mode, prior, and posterior mode

                        Maximum likelihood                     Prior                              Posterior

Coefficient     Mode     Asymptotic s.e.      Mean     Stan. dev.           Mode      Approx. s.d.

Intercept 1.22 .520 0 4 1.21 .177

Black .109 .105 0 .125 .0151 .0773

Age-Single –.0611 .0132 0 .00417 –.0102 .00381

Age-Married –.0874 .0128 0 .03333 –.0279 .00652

Education .113 .0274 0 .00417 .00228 .00411

Married .682 .522 0 .125 .180 .118

Kids –.488 .171 0 .250 –.365 .131

#Kids –.0505 .0552 0 .125 –.151 .0441

Spouse$ –1.78 × −10 5 3.46 × −10 6 0 3.57 × −10 6 –7.18 × −10 6 2.28 × −10 6

Family$ 1.86 × −10 6 7.25 × −10 6 0 3.57 × −10 6 –9.51 × −10 7 2.92 × −10 6

AFDC –5.02 × −10 4 3.85 × −10 4 0 6.25 × −10 4 –5.68 × −10 4 3.05 × −10 4

Food$ –.00211 6.94 × −10 4 0 6.25 × −10 4 –.00121 4.35 × −10 4

WorkExp 1.36 × −10 4 9.50 × −10 6 0 6.25 × −10 5 1.16 × −10 4 8.28 × −10 6



Table 3.3

Probit model: Posterior moments

                                 Posterior (Gibbs)                                                               Posterior (Hastings-Metropolis)

Coefficient       Mean              Stan. dev.        NSE                RNE           Mean                Stan. dev.       NSE               RNE          “t”

Intercept 1.2114 .174 .0025 .533 1.2194 .176 .0035 .285 –1.86

Black .01387 .0767 .00135 .358 .01445 .0792 .00165 .254 –.27

Age-Single –.010323 .00373 5.94 × −10 5 .440 –.010365 .00382 5.41 × −10 5 .554 .52

Age-Married –.028064 .00648 1.27 × −10 4 .289 –.028037 .00643 1.11 × −10 4 .372 –.16

Education .0023627 .00410 3.75 × −10 5 1.330 .0021866 .00416 4.99 × −10 5 .774 2.82

Married .18227 .119 .00123 1.030 .17997 .115 .00171 .504 1.09

Kids –.36985 .133 .00285 .242 –.37198 .130 .00218 .398 .59

#Kids –.15142 .0444 7.24 × −10 4 .418 –.15165 .0438 8.01 × −10 4 .333 .21

Spouse$ –7.2693 × −10 6 2.28 × −10 6 5.06 × −10 8 .224 –7.2936 × −10 6 2.27 × −10 6 3.05 × −10 8 .614 .41

Family$ –1.0994 × −10 6 2.90 × −10 6 4.99 × −10 8 .376 –1.1187 × −10 6 2.98 × −10 6 4.99 × −10 8 .395 .27

AFDC –5.6986 × −10 4 3.11 × −10 4 5.93 × −10 6 .306 –5.6895 × −10 4 3.09 × −10 4 6.55 × −10 6 .247 –.10

Food$ –.0012122 4.40 × −10 4 5.08 × −10 6 .831 –.0012110 4.34 × −10 4 7.66 × −10 6 .356 –.13

WorkExp 1.1747 × −10 4 8.19 × −10 6 3.12 × −10 7 .077 1.1720 × −10 4 8.28 × −10 6 1.26 × −10 7 .478 .80



Table 4.1

Regression model:  Marginal likelihoods

                                                                           Log marginal likelihood        NSE

First prior (Zero center)

p = .9 46.077 .003

p = .5 46.069 .011

p = .1 46.063 .047

Second prior (Nonzero center)

p = .9 52.145 .004

p = .5 52.132 .012

p = .1 52.122 .029

Third prior (Nonzero center, higher precision)

p = .9 56.362 .004

p = .5 56.372 .011

p = .1 56.383 .036

Table 4.2

Probit model:  Marginal likelihoods

                                                                           Log marginal likelihood        NSE

Gibbs algorithm based on Gelfand-Dey

p = .9 –564.72 .0053

p = .5 –564.72 .0151

p = .1 –564.69 .0393

Hastings-Metropolis algorithm based on Gelfand-Dey

p = .9 –564.72 .0070

p = .5 –564.71 .0185

p = .1 –564.68 .0544

Hastings-Metropolis algorithm based on weights –564.69 .0054



Table 5.1

Regression model: Partial information marginal likelihood

                                                    Predictive c.d.f.                                 Limited information

Data function                              .05                  .95                Data         marginal likelihood

Skewness –.160 .175 –.184 1.17

Excess kurtosis –.319 .340 .517 .177

Skewness + excess kurtosis .0009 .074 .101 *

Kolmogorov-Smirnov .024 .238 .044 7.24

Nonlinear regression

   #Garage stalls –.0235 .0235 –.0349 2.534

   log(lot size) –.00216 .00221 –.00141 185.4

   #Bedrooms –.0123 .0125 –.0074 29.103

   #Full bathrooms –.0135 .0131 –.0023 36.8

   #Stories –.0143 .0144 .0020 47.8

Conditional heteroscedasticity

   Driveway –.070 .067 –.009 8.33

   Recreation room –.071 .066 –.011 8.49

   Finished basement –.072 .070 .015 8.86

   Gas hot water –.070 .069 .059 2.27

   Central air –.075 .069 –.075 .81

   #Garage stalls –.067 .072 .082 1.15

   Good nbhd –.071 .066 –.113 *

   log(lot size) –.065 .073 –.017 8.82

   #Bedrooms –.074 .065 .067 1.89

   #Full bathrooms –.071 .070 –.027 9.48

   #Stories –.070 .073 –.044 5.76

*Value too small to be approximated reliably by kernel smoothing methods.



Table 5.2

Probit model: Partial information marginal likelihood

                                                    Predictive c.d.f.                                 Limited information

Data function                              .05                  .95                Data         marginal likelihood

Fraction choosing .000 1.000 .803 .279

Fraction in:

   .00  -.10 .000 .037 .222 *

.10  - .25 .000 .222 .208 1.088

.25  - .40 .000 .400 .338 3.942

.40  - .50 .273 .571 .362 .321

.50  - .60 .454 .667 .557 1.74

.60  - .75 .571 1.000 .663 4.675

.75  - .90 .772 .941 .830 11.43

.90  - .95 .900 1.000 .953 1.564

.95  - .99 .960 1.000 .983 4.204

.99  -1.00 .995 1.000 .990 5.657

Correlation of squared residual with squared covariate:

   Black –.958 .116 .022 6.57

   Age-Single –.206 .226 –.252 6.52

   Age-Married –.254 .242 .038 2.15

   Education –.095 .070 –.154 .244

   Married –.269 .236 .028 5.66

   Kids –.131 .105 .213 .098

   #Kids –.102 .169 .163 .701

   Spouse$ –.078 .061 .024 3.22

   Family$ –.030 .006 –.012 16.9

   AFDC –.108 .177 .079 2.19

   Food$ –.104 .190 .092 1.07

   WorkExp –.202 .238 –.264 .318

*Value too small to be approximated reliably by kernel smoothing methods.



Table 6.1

Regression model: Comparison of direct MCMC with client’s reweighting

                             Posterior (Tightest prior, direct Gibbs)                 Posterior (Reweighting of MCMC from more diffuse prior)

Coefficient      Mean             Stan. dev.         NSE            RNE                 Mean            Stan. dev.        NSE               RNE                “t”

Intercept 7.7280 .2100 .0018 1.526 7.7170 .2079 .0038 .327 2.61

Driveway .10774 .02484 .00030 .775 .10747 .02442 .00046 .312 .49

Rec room .068375 .02265 .00045 .949 .068712 .023079 .00039 .379 –.57

Fin basement .10335 .01962 .00021 .952 .10338 .01951 .00042 .239 –.06

Gas hot water .14335 .03329 .00046 .571 .14319 .03266 .00066 .270 .20

Central air .15407 .01943 .00014 2.177 .15407 .01933 .00039 .280 .00

#Garage stalls .052000 .01117 .00011 1.234 .052095 .011402 .00026 .217 –.34

Good nbhd .12585 .02064 .00022 1.003 .12561 .020970 .00052 .180 .43

log(lot size) .30468 .02574 .00024 1.292 .30609 .025485 .00051 .286 –2.50

#Bedrooms .040620 .013536 .00017 .698 .040376 .013362 .00025 .313 .81

#Full baths .15545 .018749 .00019 1.064 .15523 .018589 .00041 .227 .49

#Stories .093635 .012025 .00010 1.530 .093804 .012037 .00016 .595 –.90



Table 6.2

Probit model: Comparison of direct MCMC with client’s reweighting

                                  Posterior (Gibbs, direct MCMC)                   Posterior (Reweighting of MCMC from more diffuse prior)

Coefficient      Mean             Stan. dev.         NSE            RNE               Mean             Stan. dev.       NSE             RNE                 “t”

Intercept 1.548 .4640 .0068 .517 1.606 .4712 .0138 .129 –3.77

Black .1077 .1051 .0028 .160 .1043 .1056 .0037 .088 .73

Age-Single –.05702 .01227 .00022 .356 –.05752 .01217 .00035 .131 1.21

Age-Married –.08360 .01212 .00021 .361 –.08375 .01201 .00037 .119 .35

Education .07898 .02240 .00042 .316 .07581 .02277 .00074 .106 3.73

Married .6570 .4694 .0068 .528 .6439 .4832 .0164 .096 .74

Kids –.5093 .1652 .0052 .112 –.5249 .1667 .0054 .107 2.08

#Kids –.05441 .05453 .00129 .231 –.05433 .05353 .00180 .098 –.04

Spouse$ –1.687 × −10 5 3.455 × −10 6 7.52 × −10 8 .235 –1.662 × −10 5 3.407 × −10 6 1.09 × −10 7 .108 –2.18

Family$ 8.975 × −10 7 6.246 × −10 6 9.93 × −10 8 .440 9.052 × −10 7 6.240 × −10 6 2.12 × −10 7 .096 –.02

AFDC –5.397 × −10 4 3.836 × −10 4 6.81 × −10 6 .352 –5.252 × −10 4 3.731 × −10 4 1.07 × −10 5 .135 –1.14

Food$ –.002196 6.845 × −10 4 1.14 × −10 5 .400 –.002190 6.719 × −10 4 2.13 × −10 5 .110 .25

WorkExp 1.367 × −10 4 9.543 × −10 6 4.37 × −10 7 .053 1.376 × −10 4 9.072 × −10 6 3.89 × −10 7 .060 1.54
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Figure 3.3.1  The support of the posterior distribution is the set Θ Θ Θ= ∪1 2 , which is
disconnected.
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Figure 3.5.1  The support of the posterior distribution is the closed set shown.


