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Abstract

A dynamic linear demand schedule for labor is estimated and
tested. The hypothesis of rational expectations and assumptions about
the orders of the Markov processes governing technology impose over-
identifying restrictions on a vector autoregression for straight-time
employment, overtime employment, and the real wage. The model is estimated
by the full information maximum likelihood method. The model is used as a
vehicle for re-examining some of the paradoxical cyclical behavior

of real wages described in the famous Dunlop-Tarshis-Keynes exchange.
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Both Keynes and various classical writers asserted that real
wages would move countercyclically as employers moved along downward
sloping demand schedules relating the employment-capital ratio to the

real wage. Dunlop [1938] and Tarshis [1939] described evidence which
| they interpreted as failing to confirm a countercyclical pattern of réal
wage movements. That and much subsequent evidence on the question,
which is reviewed and extended by Bodkin [1969], consisted mostly of
simple contemporaneous regressions between real wages and some measure
of the stage of the business cycle. By and large that evidence was
regarded as rejecting the view that the data can be described as obser—
vations falling along an aggregate demand schedule for employment. This
view of the evidence in large measure stimulated attempts to describe
aggregate employment and real wages by "disequilibrium models," the work
of Barro and Grossman [1971] and Solow and Stiglitz [1968] being two
prominent examples.

.This paper aims to provide a framework for reexamining some of
this evidence within the context of a stochastic and dynamic aggregate
demand schedule for labor. The old evidence is simply not decisive
because the view that the aggregate data lie along the type of demand
schedule considered in this paper places no restrictions on the simple
contemporaneous regressions in the studies summarized by Bodkin [1969];
however, under certain conditions, that view does place restrictions on
aggregate real waées and employment as a vector stochastic process. The
plan of this paper is to extract and test these implications.

This paper starts from the findings of the recent paper by
Salih Neftci [1977], which computed long two-sided distributed lags between

aggregate employment and real wages for post-World War II data for the
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U.S. Neftci found that there were complicated and economically significant
dynamic interactions between real wages and employment and that there
was much stronger evidence for Granger [1969] causality flowing from
real wages to employment than for Granger causality in the reverse
direction. Further, the influence of real wages on employment was
predominantly negative.

To represent Neftci's findings in a slightly different form
than he did, Table 1 reports estimates of a fourth-order bivariate
autoregression for quarterly aggregate measures of real wages w and
employment n, both seasonally unadjusted. The theory of vector auto-
regressions and moving averages is reviewed briefly in the appendix.

The data are a straight-time wage index in manufacturing divided by the
consumer price index measured in 1967 dollars, and number of employees on
nonagricultural payrolls, measured in millions of men. The data are
described more in Section 3 below. The F-statistic pertinent for test-
ing the null hypothesis that lagged real wages have zero coefficients in
the vector autoregression for employment has a marginal significance
level of .091. The F-statistic pertinenp for testing the hypothesis
that lagged levels of employment have zero coefficients in the vector
auforegression for the real wage has a marginal significance level of
.869.l/ This pattern is consistent with Nefteci's finding much stronéer
evidence of Granger causality extending from real wages to employment
than in the other direction.

Table 2 reports estimates of the moving average representation
implied by the autoregressions in Table 1. Table 2 depicts the matrix

of responses to one standard deviation innovations in the real wage and

employment, respectively. A one standard deviation innovation in employment
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leads to a strong, sustained increase in employment and a small (relative
to the response to its own innovation) sustained decrease in the real
wage. A one standard deviation innovation in the real wage leads to a
sustained and sizable decrease in employment and a sustained and sizable
increase in the real wage. The response of employment to the real wage
innovation is of the same order of magnitude as it is to its own innovation,
in contrast to the response of the real.wage to the employment innovation.
The magnitude of the estimated response of employment to real wage
_innovations seems of substantial economic significance. Notice how,
qualitatively, the real wage innovation acts like a disturbance to labor
supply while the employment innovation acts as we would expect an innova-
tion to the demand for labor to act.

Tables 3 and 4 report two alternative decompositions of the
variances of the k-step ahead forecast errors qf the (nl, w) process
into parts attributable to variance in the "orthogonalized innovations"
in employment and the real wage. As indicated in the appendix, these
decompositions are not unique, which accounts for the two tables.
However, since the innovations in employment and the real wage in Table 1
have only a moderate correlation of .2442, the differences between the
decompositions in Tables 2 and 3 are bound to be modest, as they are.

The tables reveal that a substantial percentage (40 or 48) of the 35-
quarter ahead forecast error variance in employment (which approximates
the steady-state variance in the indeterministic part of employment) 1is
accounted for by innovations in the real wage. Only a small percentage
(1 or 6) of the 35-quarter ahead forecast error variance in the real
wage 1s accounted for by the innovation in employment.

Two characteristiés of these results are particularly important

for purposes of this study. First, there do appear to be some complicated
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dynamic interactions between aggregate employment and these real wage
data that might be susceptible to analysis with a dynamic model of the
demand for employment. Second, these data seem to be consistent with
the assumption that the real wage is not Granger-caused by employment.
This assumption, which will be imposed below, substantially simplifies
the modeling task.
| The plan of this paper is to estimate a dynamic aggregative
démand schedule for employment for postwar U.S. data. While the demand
model makes employment depend inversely on the appropriate real wage, as
does the static theory, a potentially rich dynamic structure is intro-
duced into that dependence because firms are assumed to face costs of
rapidly adjusting their labor force and so find it optimal to take into
account future expected values of the real wage in determining their
current employment. The model imposes overidentifying restrictions on a
vector of stochastic processes composed of employment, a measure of
overtime employment, and the real wage. The aim is to test the adequacy
of these overidentifying restrictions.

The model is formed by blending the costly adjustment model of
Lucas [1967], Treadway [1969], and Gould [1968] with Lucas's static
model of overtime work and capacity [1970]. The model is formulated so
that it delivers linear decision rules relating the demand for straight-
time employment and overtime employment each to the real wage process.
The model imposes the rational expectations hypothesis, since firms are
supposedbto use the true moments of the real wage process in forming
forecasts. The rational expectations hypothesis is a main source of the
overidentifying restrictions imposed by the model.

In addition hopefully to providing some new evidence in

the Dunlop-Tarshis tradition, this paper illustrates a technology for
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maximum likelihood estimation of decision rules under the hypothesis

that expectations are rational. That technology potentially has a

2/

variety of applications.=



1. The Demand for Employment

The model is formed by taking Lucas's model of overtime work
and capacity [1970] and amending it to permit potentially different
adjustment costs to be associated with rapidly changing straight-time
and overtime labor.éj It is widely asserted that it is much cheaper to
adjust the overtime labor force quickly than it is to adjust the straight-—
time labor force; consequently, it is alleged that overtime labor responds
rapidly to the market signals that the firm receives, while the straight-
time labor force responds more sluggishly. The model is designed to
represent this phenomenon and to provide a framework for estimating its
dimensions and testing it;

I shall work with a representative firm, although as I shall
remark below, the model can handle certain kinds of diversity across
firms. Following Lucas, suppose that the representati?e firm faces the

instantaneous production function

y(t+1) = f(n(t+r),k(t+1)), fn, f £ >0; £ , £ <0

k> T"nk nn kk

t=0, 1, 2, 3, ...
- 1el0,1).

Here y(t+T) is the rate of output per unit time at instant t+T, n(t+T)
is the number of.empldyees at instant t+T, and k(t+T) is the stock of
capital at t+T. The length of the "day" is 1, so that t indexes days
and T indexes moments within the day. The ﬁirm is assumed to have a

constant capital stock over the day so that

k(t+t) = k(ﬁ) = kt for 1[0,1).



The firm is assumed to be able to hire workers for a straight-time shift
of fixed length hl < 1 at the real wage W during day t. During the
overtime shift of length h2 =1 - hl’ the firm can hire all the labor it
wants during day t at the real wage BW,, where p 1.5 is an overtime
premium. Thus, for the first hl moments of day t the firm must pay
workers LA while for the remaining h2 moments it must pay Pw, . Con~
fronted with these market opportunities it is optimal for the firm to
choose to set n(t+T1) = n; . for Te[O,hl] and n(t+t) = n,. for Te(hl,l).
That is, it is optimal for the firm to choose a single level of straight-
time employment n, . during t and a single level of overtime employment
of n,. during the day't.

The firm's output over the "day" is then
vy, = fly(t+T)dT
t 0
= hlf(nlt’kt) + hzf(nzt’kt)'

I take several steps to specialize this setup further. First,
to simplify things, I assume that capital is constant over time so that
kt can be dropped as an argument from £(+,+). (In the econometric work
below, steps are taken to detrend the data prior to estimation partly in
order to minimize the damage caused by this approximation.) Sécond, I
assume a quadratic prodqétion function and write instantaneous

output on the first and second shifts as

£ o2
£(ny k) = (fytay Iy - 57050
£, 2

flny k) = (fgta, Iny =~ 5 Toe



where fo, fl > 0, and where alt and a2t are exogenous stochastic processes

affecting productivity of straight-time and overtime employment. I

assume that Ealt = Ea2t = 0. The stochastic processes a1, and a,s, will

be required to satisfy certain regularity conditions to be specified

below.

The firm is assumed to bear daily costs of adjusting its

d
straight-time labor force of E(nlt~nlt—l)2 and to bear daily costs of

adjusting its overtime labor force of-%(nzt—nzt_l)z. It is widely

believed that it is substantially more expensive to adjust the straight-
time labor force so that d >> e. The firm faces an exogenous stochastic
process for ‘the real wage of {wt}. The firm's straight~time and overtime

wage bills are, respectively, wthlnlt and pwthznzt.

The firm chooses contingency plans for ny . and N, to maximize

its expected real present valueé/

o £
(1) v =Et£b3[(fo+a .. .) L 02

t 5% Lot Vet P1%1ed) T 2 PP Le

d 2
- z(n ) +(f0+a

L+ Mle+j-1 2t+7 PV )h2n2t+j

fl 2 e( 2

Ty 5Ty ]

fo, fl, d, e>0, P>1, 0<b <1

where n; _, and n, _; @ well as the stochastic processes for w, a;, and

a, are given to the firm. Here b is a real discount factor that lies

between zero and one. The operator Et is defined by Etx = Ex[Qt where

x is a random variable, E is the mathematical expectation operator, and Qt is an

information set available to the firm at time t. I assume that Qt

includes at least {nlt—l’n2t—l’alt’alt—l""’aZt’aZt—l""’wt’wt—l""}'



The firm is assumed to maximize (1) by choosing stochastic processes for
n; and n, from the set of stochastic processes that are (nonanticipative)
functions of the information set Qt- (Below, I will further restrict
the class of stochastic processes over which the optimization is carried
out.) I assume that the stochasﬁic proéesses Wes 8.5 and a,  are of

exponential order less tﬁan (%), which means that for some K > 0 and some x
such that 1 < x < 1/b,

- j+t
lEt:Wt+j | < k@)
+t
B sl < K(x)?
j+t
Eiagey| <K@

for all t and all j > 0. I further assume that all random variables have
finite first- and second-order moments.
First-order necessary conditions for the maximization of (1)

consist of a set of "Euler equations" and a pair of transversality

5
conditions.—/ The Euler equations for {nlt} and {nZt} are

PPeas™ergal ¥ 1Moty T Pletio1 T T Very21ea o)

j=0, 1, 2, ...

(2)
~ h,
PPeasoetstr © P2M2eey * M2eago1 T @ PV 005 7Ep)
j=0, 1, 2, ...
where
£.h
11
¢ = ~CF= + (1+b))
(3)
£2ha

-
[\
it

- (=== + (1))
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The transversality conditions are

. T e na T, -
(4) lim b Etnlt+T = 1lim b htn2t+T
Trco T+

0.

To solve the Euler equations for the optimum contingency plans, first

obtain the factorizations

)

(5) 1+ Eiz + %«;2) = (1-8,2) (1-8,2)
%2, .12 _ q

(6) (1 + T2 + bz ) = ( —ulz)(l-uzz).

Given the assumptions about the signs and magnitudes of the parameters

composing b, ¢l, and ¢2, it follows that factorizations exist with

O<5l<l<—l-<52and0<u <1<%

<
b 1 b oM

2° It then follows that
solutions of the Euler equations that satisfy the transversality con-

6
ditions and the initial conditions are given by 2/

8 T 1 s
@ myp = %nye1 T d iEO(IS‘;) EtOepim@1ery7 o)
(7N
W h, @ .
] 12 T L -
() nyp = M1 T e izo(“z) v yim39er17F0)

It can be verified directly that these solutions satisfy the Euler

equations and the transversality conditioms. The polynomiél equation (5)
f.h
implicitly defines 51 and 52 as functions of ﬁ L By studying this
7/

polynomial,~ it is possible to show that 51 is a decreasing function of
f.h

L1 and that 2= bS.,. It follows that &, and L both increase with

d 62 1 . 1 62

increases in the adjustment cost parameter d. Reference to equation (7a)

then shows that increases in the adjustment cost parameter d, by increasing

61 and %—, decrease the speed with which the firm responds to the real
2

- 1
wage and productivity signals that it receives. Similarly, 4 and a—'

f.h 2
are decreasing functions of and %—'= by, -

2
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Equations (7) are decision rules for setting n1t and n as

2t

linear functions of nlt—l’ nZt—l’ and the conditional expectations

E E , and Eta i=0, 1, 2, ... . However, in general,

41 TelleHi 2t+i’

these conditional expectations are nonlinear functions of the informa-

tion in Q- Given particular stochastic processes for Wes 3705 and a

1t 2t?

equations (7) can be solved for decision rules expressing nlt and n2t

as, in general, nonlinear functions of Qt.

For the purposes of empirical work, it is convenient to restrict
ourselves to the class of decision rules that are linear functions of
Qt. The optimal linear decision rules can be obtained by replacing the
conditional mathematical expectations in (7) with the corresponding
linearlleast squares projections on the information set Qt. Accordingly,
henceforth, in all forecasting formulas, I will replace the mathematical

-~ 8/

expectation operator E by the linear least squares projection operator E.—~

To derive from (7) explicit decision rules for n . and n, as

functions of Qt, it is necessary further to restrict the stochastic

. m —
processes Ve 3505 and 2, I assume that a. and a5 are each first

1

order Markov processes for which

-~

E ia i>0

P121¢

t21e+

(8)

A

E i>0

t22e+i - P22ac

1 1
<g eyl <5

generated by the stochastic processes

That is, I assume that a and a are

where |pl| 1t 2t

21e T P1?1e-1 T G

9

Byp T Poloe gt &y
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where . and EZt are least squares residuals with finite variances and
i

~

Egltlgt—l = EEZtth—l = 0. Although (9) permits Elt and th to be

arbitrarily correlated contemporaneously, it does in effect rule out

correlation between them at any nonzero lags., I assume that w,_ is an
th

n~  —-order Markov process

(10) W, = v + ViVl + v + ... + V¥ n + £

t-2 3t

~

where E3t is a least squares disturbance that satisfies Et—lg

1

3t

~

E£3t[9t_l = 0. The condition that EgBtlﬂ

uncorrelated and that W, is not caused in Granger's [1969] sense, by ng

oT n,. That the lack of Granger causality from n, or n

1 9 to w is a
workable approximation for the data to be studied here is supported by
the empirical results of Neftci [1977] which are summarized above. It

is convenient to represent the nth-order process (10) as the (ntl)-

vector first-order Markov process

t t-1 t
whefe

Y E3¢
Wt—l 0

Xe T 1 Y2 € =10

0

wt—n
Ll 0

t-1 = 0 means that €3t is serially
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1 V2 e v v

0 0...0 0 1

We can write

Xepp T AFe Tt Bppg

2
A X, + e

>
il

+ Ag

t+2 t+1

3
A xt + gt + A

i-1
bt AEL g e AT

»
If

Since E_ €

= >
€ etk 0 for k > 1, we have

~

= aJ
Etxt+j A xt.
Assume that the eigenvalues of A are distinct so that A can be written

as

A =prpt

where the columns of P are the eigenvectors of A and A is the diagonal

matrix whose elements are the eigenvalues of A;g/ Then we have

A

E 1

= ppdp
txt+j PA'P X, .
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Finally, let c be the 1lx(nt+l) row vector (1,0,0,...,0) so that w, = CX .

We thus have that

= cPAJP_lx .

(1) Wit t

Substituting from (8) and (11) into (7a) givesl‘—(—)-/

6hy = 4 i
n = §,n - CPZ(—A)PX
1t 171t-1 d 120 62 t
. 51h1( £o - 61h1( L.

d 1 a 0. 81"

1 - = 1

%2 L,

2

Let )\i be the iith element of A. Since 52 = S—ig, we have that IB_;:l =
Ikiélbl < 1 by virtue of the assumption that L is of exponential order

less than %, i.e., that |)\i~b] < 1. Then the infinite sum above con-

verges and we can write

S.h
171 1 -1
(12) npe = 890901 T Ta Pl Ai]iiP Xy
l — —
Sy
. Glhl( fo - 61h1( 1,
d I d 0721t
1 - 1
2
1 Mo th
where [__—x_]ii is a diagonal matrix with (1 - 'g'") * as the i~ diagonal
1- gi 2
2
element.
Let us write (12) asij-“'/
(13) Npp = Oqfqpoy T T oWy Teee oW i %
§.h, f
l 0 ]
+ 5 —) + aje

1-§ lb
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where

Syhy Ly pl

cP| -
d l—kiﬁlb ii

(14) (a19a2"' "’an’ao) = -

oo 51h1( 1.
1t~ 7d (Top,8.p %1t

a

Proceeding in the same way, we can write the decision rule for n

2t as
(15) Dop = Hylpe g T ByWe * 8wy Feee® BWe_ 0 * B
ush f
1 2( 0 ) + a!
e l—ulb 2t
where
u,h
_ 12 1 -1
(16) (81382,"'38n380) = —-Pp e \—P[l_)\.u b]P
i"l
S i P S
= (- .
2t e 1 pzulb 2t

Equations (14) and (16) succinctly summarize how the distributed lag
coefficients, the a's and B's, reflect the combination of forecasting
(through the parameters of P and A) and optimization (through the para-
meters d, §, and W) elements. Clearly, the decision rules (13) and (15)
are not invariant with respect to changes in the stochastic process for real wages
(10), a general characteristic of optimum decision rules whose far réaching
implications for econometric policy evaluation have been stressed by
Robert E. Lucas, Jr., [1976].
Since I will fit the model to data that are deviations from
means and trends, I shall henceforth drop the constants‘from (13), (15),

and (10). Substitute (10) for w, and subtract plait_l from both sides

t
of (13) to get
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(17) nye = (Spredng g - eg8yny o * (aptayvymasp v,

+ (g,+0,v,~0

g0 V0P Wy Fet (ot

1Vn-1"%-1°1) Yo+l

- v 1
+(ogv ma e dw o+ [oggg +(ag —pjag, ()]

From our earlier assumptions, Et—l[al€3t

- =
+(alt plait—l)] O, so that

(17) is the (vector) autoregression for n,. . In particular, we have
1t

(18) Bigye = Ogtepng, g = 0y8imy o + (agtoagvy-a,0 0w, o

+o(agtagvo=a,p dw, o teeed (oo g 10w

+ (alvn—anpl)wt—n'
Similarly, we have for n,.
(19) noe = GupFpdny g = ey o F (BB VB0V

+ (B3+81V2‘8202)Wt_2 to. ot (Bn+Ban—l_Bn—lOZ)wt—n+l

(B VBV, F (BB T (ag 002y, 1) ]
1l n n t 1

We can now write the complete three-variate vector autoregression

for n, , n

1t , W, as

2e” Ve
(a) n, = (5l+pl)nlt_l —‘plalnlt_2 + (a2+alv2-azpl)wt_l
T (agtogVomagp I,y oot ooV g=o, 1090W, 4
+ (oclvn—cxnpl)wt_n + Up,
(200 (®) myp = (uHepdnye g = Polygeg + BptBpvyByPv
* (By¥Byvy=Ba0wy_p teot BBV i-B 100w

+ (Blvn—BnDZ)Wt—n + u2t



(c) W,
where

Y

Here u, is th

from past information.

w w

£-17 **°

Ny 1 and Doy o9 each of which appears once.

the model are £

e

t—n
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vlwt—l + vzwt_2 +...+ Vnwt—n u3t
B N B 1 — 1 n
Uit 0 &g, (ay ~Pyag_q)
= v _ 1 =
Upe | F | Bibaet(aymepas, 1)
Use &3¢

vector of innovations, i.e., errors in predicting (n

l’

d, e,

parameters to be estimated.

for n>1.

pl’ p2’ vl!

, each of which appear three times, and n

~

0 e Ee1Pie

-

Mo B 1™t

~

Ve Eel1ve

-

There are (3n+4) regressors in (20), i.e.,

lt’nZt’Wt>

1t-1° Mig-2°

The free parameters of

+s V., SO that there are (n+5)

As it turns out,

the model is overidentified

Collecting the equations that summarize the restrictions that

the model imposes on the vector autoregression (20), we have

/’

(

(21) 9 (

el

%

1

1

[

f.h

=

+ (1+b))

+ (1+b))

= (l-dlz)(l—ézz)

(l‘UlZ)(l'UZZ)

]

S

h

171 1
¢P[ 1,.P
d 1 Aiélb ii
puth“P[ -
e l—xiulb ii

-1

P—l
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Estimates of the free parameters 6 = (fl,d,e,pl,pz,vl,...,vn) are obtained

by using the method of maximum likelihood to estimate the vector autore-

gression (20), subject to (21);;2/

Let u, = (u a a 'b e sample
et u, (ult’uZt’UBt) e the samp
residual vector associated with the parameter values 9. Under the

assumption that u, is a trivariate normal vector with Eu ué = V, the

likelihood function of a sample of observations on the residuals extending
over t=1, ..., T is

1 T

23T ~1n

T
2 1 ¢~
(v] “exp(- —LzluLV ut).

(22) L(®) = (2w

As shown by Wilson [1973] and Bard [1974], maximum likelihood estimates
of © with V unknown can be obtained by minimizing ]GI with respect to 9,

A
where V is the sample covariance matrix of ups

AA'
u u .

v =
et

I t~13

i
Te

The matrix ¥ is the maximum likelihood estimator of V (see Wilson [1973]

or Bard [1974], (p. 62—66)).l§/ The value of the likelihood function turns

oﬁt.to be
log L(8) = =(1/2)mT log (21) - (1/2)T {log|V|+m}

where m is the number of variates, equal to three in the present model.

Now consider the unconstrained vergion of the vector autoregression
(20) in which each of the (3n+4) regressors has its own free parameter.
Let Lu be the value of the likelihood function at its unrestricted
maximum, i.e., the maximum obtained by permitting each of the (3n+4)
regressors to have its own free parameter. Let Lr be the value of the
likelihood under the restrictions (21). Then -2 loge(Lr/Lu) is asymp-
totically distributed as xz(q) where q = (3n+4) - (n+5) is the number of
restrictions imposed by the theory. High values of the likelihood ratio
lead to rejection of the restrictions that the theory imposes on the
vector autoregression. Using the calculations of Wilson [1573, p. 80]

or Bard [1974], it can be shown that the likelihood ratio is equal to
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T{loge]Vrl—loge]Vu|}

~ ~

where Vr and Vu are the restricted and unrestricted estimates of V,
respectively. |

I also used a likelihood ratio statistic to test the constrained
vector autoregression (20) against a second and even less constrained
alternative, namely, an unconstrained trivariate vector autoregression
with n lagged values of Ny, Do, and w on the right side of each equation.
Let Gu be the estimated sample covariance matrix of the residuals in
the unrestricted vector autoregression. Then the appropriate likelihood
ratio statistic is given by T{logeIQrI—logelgul}. Since the unconstrained
éarameterization now has 9n free parameters, the likelihood ratio is
asymptotically distributed as chi-square with {9n-(n+5)} degrees of

freedomn.
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2. Alternative Estimation Strategies

It should be stressed that the vector autoregression (20)
which builds in the cross—equation restrictions implied by the model has
been obtained under the assumption (8) that the productivity shocks a;

t

and a, are first-order Markov processes. The forms of the vector

t

autoregressions (20) would be altered had we assumed other forms for the
ay . and a,  processes, as the reader can verify by calculations parallel-
ing those above.

An alternative estimation strategy is available that avoids
the necessity to make specific assumptions about the forms of the sto-
chastic processes for the disturbances ai and Ay only requiring that
these processes be covariance stationary. The alternative estimator
requires instead that the W, process be strictly econometrically exog-
enous with respect to Ny, and Ny in particular requiring that Ewtals =
EwtaZS = 0 for all ¢t and s. Under that assumption, the model (7a) and
(7b) can readily be shown to place restrictions on the projections of
0. and Ny respectively, on the entire {ws} process. The structure of
those restrictions parallels those worked out by Sargent [1978a] for a
consumption function example. An asymptotically effiéient estimator
such as "Hannan's efficient estimator," which allows for complicated
serial correlation patterns in the disturbances, could then be applied
to estimating the projections with and without the restrictions imposed
by the model.

This alternative estimation strategy gets along with much

weaker assumptions about the serial correlation properties of the dis~

turbance processes {alt} and {aZt} at the cost of making somewhat more
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- stringent assumptions about the exogeneity of W i.e., about the

correlation between W, and the ajs's. The original estimator proposed
that operates on (20) does assume that {wt} is a process that is not
' . .
caused in Granger's [1969] sense by Ny, OF Do, i.e., that E[thwt—l’wt—Z’
= 1
""nlt—l,nlt—Z’""nZt-l’nZt-Z""] E[thwt-l’wt-Z""]' Now Sims

[1972] theorems assure us that if L is not Granger-caused by n,,_ or

1t
Ny.» then there exists a statistical representation in which W is
strictly econometrically exogenous with respect to Ry, OT n, . However,
this statistical representation need not correspond with the appropriate
economic behavioral relationship. It is possible for n

or n to

1t 2t

fail to cause w.» and yet for "instantaneous causality" to flow from ny,
or n,. to w,. so that W, is not strictly exogenous in the appropriate

model. See Sargent [1977a] for an example of this phenomenon within the
context of Cagan's model of hyperinflation. The "autoregressive estimator"
based on (20) permits arbitrary correlation between the innovations to

0y, OF N, and W and makes no assumption about which pattern of instan-
taneous causality explains those correlations. On the other hand, the
alternative '"projection estimator" attributes all of those correlations to
the workings of the demand schedules for ny, and N, (7a) and (7b).

For the present application, I prefer the estimator that makes the
weaker,aseumption about the correlations between innovations to employ-
ment and the real wage.

The reader by now will have understood that optimizing, ratiomal
expectations models do not entirely eliminate the need for side assump-
tions not grounded in economic theory. Some arbitrary assumptions about
the nature of the serial correlation structure of the disturbances
and/or about strict econometric exogeneity are necessary in order to

proceed with estimation.
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Perhaps I should conclude this section by pointing to another
source of arbitrariness, namely the latitude at our disposal in specify-

ing the firm's optimization problem. For example, adding terms like

d
- Eg(nlt—l_nlt—Z)z to the firm's daily profits would lead to Euler

equations that are fourth~order stochastic difference equations and
would lead to decision rules that depend on two lagged values of employ-
ment. Such specifications would seem plausible and would lead to mate-
rially different restrictions than those above on vector autoregressions
(or projections of n on w, as the case may be). There are clearly
limits set by the requirements of econometric identification on our
ability to estimate such complicated adjustment cost parameterizations.
Identification problems in such models have as yet received little
attention at a general level.

The general theme of this section has been to issue a warning
that rational expectations, optimizing models will not be able to save
us entirely from the ad hoc assumptions and interpretations made in
applied work. However, this is not to deny that the rational expecta-
tions hypothesis seems promising as a device for organizing restrictions

on parameterizations of econometric models.
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3. Parameter Estimates

The model was estimated using quarterly data on total civilian
employment and a straight—time real wage index, with the period of
observation extending from 19471 through 19721V, of which n observations
at the beginning of the sample are lost when the order of the wage

autoregression is set at n. The variable n, was in the first instance

measured by the seasonally adjusted BLS series "Employees on Nonagri-~

cultural Payrolls, Private and Government." To get a measure of By

the following procedure was used. I defined the variable E; to be
average weekly hours, a series measured by the seasonally adjusted BLS
series "Average Weekly Hours in Manufacturing." I then estimated total

manhours by E&n Finally, I measured n,. by

it’

- by, -hyny

2t h2

14/

where h1 and h2 were set a priori at 37 and 17, respectively.=— The

real wage w, was measured by deflating the seasonally unadjusted BLS
series "Average Hourly Earnings: Straight-time Manufacturing Production
Workers" by the seasonally unadjusted Consumer Price Index (1967-100).

I also created seasonally unadjusted measures of Dy and N,

by taking as a measure of n the seasonally unadjusted BLS series

1t

"Employees on Private Nonagricultural Payrolls" and then using the

preceding procedure to create estimates of n ¢ by using the seasonally

2
unadjusted average weekly hours series. The data are quarterly averages
of monthly data. Notice that h1 and h2 are constants that are independent
of time.

For reasons developed in Sargent [1978b], I would argue that

seasonally unadjusted data are the ones that ought to be used. Briefly,
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this view follows from the assumption that agents are themselves observing
and responding to the seasonally unadjusted variates, so that the cross-
equation restrictions delivered by the model pertain to the seasonally
unadjusted data. Seasonal adjustment of the data could cause rejection

of the cross—equation rational expectations restrictions when they are

in fact true. However, arguments have been made against this position

in advocacy of seasonally adjusted data in exactly the present context
(see Sims [1976]). For this reason, I report some results for both
seasonally adjusted and unadjusted data.

I begin by degcribing the estimates obtained using the seasonally
adjusted employment series together with the seasonally unadjusted real
wage serieé. (Later I will describe the results obtained with the
seasonally unadjusted series for all variables.) Before estiméting the
model, the data on n . and n,. were each detrended by regressing them
on a constant, linear trend, and trend squared, and then using the
residuals from those regressions as the data for estimating the model.lé/
The data on W, were formed as the residuals from a regression on a
constant, linear trend, trend squared, and three seasonal dummies. Two
reasons can be given for detrending in this way prior to fitting the
model. First, the model ignores the effects of capital on employment,
except to the extent that these can be captured by the productivity
processes a, . and an- Second, the tﬁeory predicts that any determin-
istic components of the employment and real wage processes will not be
related by the same distributed lag model és are their indeterministic
parts. Detrending prior to estimation is a device designed to isolate

the indeterministic components. The real wage is measured in 1967

dollars, while employment is measured in millions of men.
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Table 5 reports estimates of the model for n=4 for the seasonally
adjusted data. The free parameters were El, d, e, P1s Po> Vis Vos Vg,
and A with b being fixed at .95, hl at 37, h2 at 17, and the premium p
at 1.5. Since n=4, for the more constrained of our two alternative
hypotheses, ;he likelihood ratio statistic is asymptotically
digtributed as chi-square with gq=(3n+4)-(nt5)=7 degrees of freedom. The
1ikelihood ratio is 9.33 which has a "marginal confidence level of
.783. The marginal confidence level is defined as follows. Let X be a
chi-square random variable with q degrees of freedom. Let x be the
value of the likelihood ratio statistic. Then the marginal confidence
level is defined as Prob{X<x} under the null hypothesis. High values of
the confidence level lead to rejecting the hypothesis. The likelihood
ratio statistic in this case indicates that the hypothesis can't be
rejected at marginal significance levels below .20. However, versus the
less constrained alternative hypothesis, :the marg;nal confidence level
is .9864, which indicates that the data do contain substantial evidence

against the hypothesis. Notice tgg
different lag shapes and the magnitudes of the distributed lag coefficients
of straight-time employment and overtime employment in the real wage,
the os and Bs, respectively. Overtime employment is estimated to be
more responsive to the real wage. Further, the straight-time adjustment
cost parameter d is estimated to be much larger than the overtime adjust-
ment cost parameter e. That is why n . depends more strongly on LEPY
than n,. does on N, 1> i.e., why 61 is estimated to exceed My

Since the likelihood ratio test assumes that the u's are
serially uncorrelated, Table 5 also reports three statistics KS(nl),
KS(nz), and KS(w) which are Kolmogorov-Smirnov statistics from the
cumulated periodograms for Ups Uy, and u3, that is, for the estimated

innovations for Ny gy and w, respectively, implied by the vector

autoregression constrained by the model. The Kolmogorov-Smirnov statistic
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recorded is the maximum absolute deviation of the cumulated periodogram
of the disturbance from its theoretical value under the assumption that
the disturbances are serially uncorrelated. Durbin [1969] reports
tables for the distribution of this statistic, though they are not
applicable where lagged dependent variables are included as regressors,
as in the present case. It is nevertheless of some éomfort that the
Kolmogorov-Smirnov statistics in Table 5 and in subsequent tables do not
signal dangerous levels of serial correlation. Notice that the Kolmogorov
statistics are greater for the ny and n, innovations than for the w
innovation. This is symptomatic of the fact that the model fits an nth—
order Markov process in w but only permits two lagged own-values to

enter the autoregressions for ny and n,, thereby leaving it more likely

that the model will neglect some higher-order serial correlation for n

1

and n,. This pattern for the Kolmogorov-Smirnov statistics repeats
itself in the subsequent tables.,
Table 5 also reports the estimated covariance matrix of the

innovations V = Eutué. Recall that

-7 — . — o
ult 1 0 al glt
u2t = 0 1 Bl gzt = Bgt
u 0 0 1 £
i 3t | i i L 3t |

- —_ ) = 1 - ]
where £, = aj, ~ P21, 15 8¢ T 3pp T Ppipp.pr 2nd where

p— T — -—
B = O 1 Bl ’ Et = Ezt
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Then, since Et = B-lu
- - t -1 —l' . .
Lrom h;tgt = BA VB ,» an estimate of which is also reported in Table 5.

e the covariance matrix of St can be estimated
The correlation between the innovations to ait and to aét, i.e., glt and
£2t’ is estimated to be .748. The correlation between the innovations

14

to ay . and Wy l.e., glt and €3t is .3061, while that between €2t

and g3t is .1700. I had expected glt and th to be even more highly
correlated than they are.

As it happens; the estimates reported in Table 5 correspond
to the higher of two local maxima of the likelihood function which I
found. The parameter estimates associated with the lower of these two
local maxima are reported‘in Table 6. In view of the form of the vector
autoregression (20), it is not at all surprising that the likelihood
function should exhibit multiple maxima. 1In particular, notice that the
coefficients in (20) on ny 4> By 5 Py _4» By _, are, respectively,

(Gl+pl)’ =8,01 (ul+pz), and -p;p,. 1f it were not for the constraints

across u; and the B's and across §; and the a's and the appearance of p,
and Py elsewhere on the right side of (20), the parameters 61, Py Up»

and Py would not be identified, since it would be impossible to distinguish
the effects of 61 from Py and the effects of My from Pye The presence

of lagged w's on the right side of (20) and the aforementioned constraints
resolve this identification problem but léave a vestige of it in the

form of probable multiple peaks in the likelihood function with small
samples. Comparing the parameter estimates in Tables 5 and 6 shows that
Table 5 is a high (pl,pz) - low (Sl,pl) solution, while Table 6 reports

the high (él,ul) - low (pl,pz) solution. WNotice that for the Table 6
estimates, Py + 61 = 1.528 and plél = .555, while for the Table 5 estimates,

py + 6, = 1.526 while p §; = .552.

l=
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Figures 1 and 2 depict two views of the likelihood surface as
a function of 61 and Py- The likelihood surface has a ridge and is
characterized by two local maxima. Figure 3 depicts iso-likelihood
contours in the (51, pl) of the identification of (61, pl) and of

(ui, P,
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The presence of multiple maxima of the likelihood function
means that caution is called for in interpreting the test statistics
reported, since the asymptotic distribution on which the test is com-
puted does not predict multiple maxima for the likelihood function and
so does not provide a very good approximatidn for the sample size that
we are studying. The presence of multiple maxima of the likelihood
function also argues for starting the nonlinear estimation from several
different initial parameter estimates. T followed this practice in each
case reported below.

Table 7 reports the estimates for the seasonally unadjusted
data with n=4. The estimates indicate d >> e and are qualitatively
similar to those described above. For testing the model versus the more
constrained of the two alternative  hypotheses, the marginal confidence
level is .53. Versus the less constrained alternative, the marginal
confidence level is .68. These results indicate that the sample does
not contain strong evidence against the hypothesis.

Table 8 reports estimates of the model for the seasonally
unadjusted data with n=8. The likelihood ratio statistic for testing

' against the more constrained alternative hypothesis is now dis-

tributed asymptotically as chi-square with fifteen degrees of freedom
under the null hypothesis that the model is correct. Once again, both
likelihood ratios indicate tﬁat the sample doesn't contain much evidence
against the model. For the seasonally unadjusted data with n=8, Table 9
reports the maximum likelihood estimates of the vector autoregression
(20), both unconstrained and constrained by the restrictions of the
model (21). The constrained and unconstrained estimates are close

except in one respect: the model-constrained vector autoregressions for
n, and n, have coefficients on lagged w's that are generally much smaller

1

in absolute value than their unconstrained counterparts. This pattern

is also reflected in Tables 10 through 14. Table 10 shows the vector
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moving average representation implied by the model-constrained estimates
while Table 11 shows a decomposition of variance of the 35-quarter ahead
forecast error variances. Tables 12 and 13 show the corresponding
moving average representation and decomposition of variance for the
unconstrained estimates that are reported in Table 9. Comparison of
Tables lO'and 12, on the one hand, and Tables 11 and 13, on the other
hand, indicates that while the constrained model captures the same
response of ny and n, to theilr own innovations that is depicted in the.
unconstrained estimates, the constrained model substantially underesti-~
mates the responses of ny and n, to innovations in w. The moving average
representation implied by the model-constrained estimates have one
standard deviation wage innovations giving rise to much smaller move-
ments in ny and n, than are those associated with one standard deviation
own-innovations in ny and n,. Contrast this with the relatively sizable
responses of ny and n, to real wage innovations in the unconstrained
estimates. The decompositions of variance in Tables 11 and 13 indicate
the extent to which the constrained model attributes less of a role to

real wage innovations in driving n, and n,.

1 2

Notice how both Tables 10 and 12 show n, responding more

quickly to an own-innovation than does n,.
The estimates in Tables 10-13 came from the data that are
residuals from regressions on constant, trend, trend-squared, and three
seasonal dummies. Table 14 is the counterpért of Table 13 where trend-
squared has been omitted. The effect of dropping trend-squared is to
increase somewhat the percentage of the variance of the 35-quarter ahead

prediction error in n, or m, that is explained by innovations in the
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real wage. The results in Table 14 are presented to form a bridge to
the estimates of Neftci and those summarized in the introduction, which
included trend but not trend-squared terms.

The vector autoregresions summarized in Tables 9-14 all impose
the extensive zero restrictions incorporated in (20), e.g., lagged n,'s

2

don't appear in the autoregression for n Tables 15 and 16 report

1
summary statistics for fourth-order vector autoregressions with no such
zero restrictions built in, i.e., four lags of each variable appear in.
the autoregression for each of 0, Do, and w. A constant, trend, and
three seasonal dummies are also included in the regressions. Table 15
reports marginal significance levels appropriate for testing the null
hypothesis that n, or m, O W fails to Granger—cause each of the other
variables. These F-statistics are consistent with Neftci's results and
indicate stronger evidence for Granger causality flowing from w to n

1

and n, than from n, or n, to w. However, the statistics also indicate

Granger—-causality from n, to n, and from n, to n,, patterns which are
ruled out by the model (20) and (21). The data indicate dynamic inter-
actions between nl and n,

account for. The decompositions of variance of 35-~quarter ahead fore-

that the model in its present form cannot

cast errors in Table 16 once again reinforce Neftci's findings in confirming
that substantial percentages of the variance in employment forecasting
errors are attributable to innovations in the real wage.

In summary, while the model usually passes the likelihood ratio tests
I have calculated, it does seem to do violence to two aspects of the
data. First, the model generates estimates that seem to understate the
magnitude of the inverse influence exerted by the real wage on employ-

ment. Second, a priori the model neglects dynamic interactions between
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nl and n, that seem to be there. On the first point, the maximum
likelihood estimates of the parameters d and e, which also influence the
response to w of n, and n,, respectively, seem mainly to have been

chosen to permit the model to capture the response of n, and n. to their

1 2
own innovations, As a by-product, this involved understating the responses
of n, and n, to w, which seems less costly in terms of fhe likelihood
function than misstating the response to own innovations. Perhaps a
richer specification of the Markov processes for alt and a,.» say per-
mitting them to be second-order processes would permit enough flexibility
to remedy this feature. Permitting the Markov processes for alt and

a,, to depend on lagged cross terms a, and ajs respectively, would

provide one way to remedy the second deficiency of the model, for it

would potentially permit dynamic interactions between ny and n,

kind revealed by Table 15. Another way to account for those dynamic

of the

interactions would be to let costs of adjustment for n depend on the
level of 0y, and vice versa. This could be done while remaining within
the linear-quadratic framework of this paper. However,; extensions in
each of these directioﬁs, while feasible, are costly both in the sense
that they reduce the degree of overidentification of the model and iﬁ

the sense that they make maximum likelihood estimation more expensive.
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Conclusions

The simple contemporaneous correlations that formed the evidence
in the original Dunlop-Tarshis-Keynes exchange, and also in much of the
follow-up empirical work done to date, are not sufficient to rule on the
question of whether the time series are compatible with a model in which’
firms are always on their demand schedules for employment. This is true
according to virtually any dynamic and stochastic theory of the demand
for employment. In this paper, I have tried to.indicate one way in
which the time series evidence can be brought to bear on the question in
the context of a simple dynamic, stochastic model. The empirical results
are moderately comforting to the view that the employment-real wage
observations lie along a demand schedule for employment. It is important
to emphasize that this view has content‘(i.e., imposes overidentifying
restrictions) because I have a priori imposed restrictions on the orders
of the adjustment cost processes and on the Markov processes governing
disturbances. At a general level without such restrictions, it is

doubtful whether .the equilibrium view has content.
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Footnotes

*Work on this paper was supported by the Federal Reserve Bank
of Minneapolis, which is not responsible for the conclusions. Robert
Litterman very ably performed the rather involved calculations reported
in this paper. Helpful comments from a referee are gratefully acknowledged.

l-/For data on the left-side variable extending from 1951I-
19721V, which more closely matches Neftci's period than mine, the marginal
significance level for testing the null hypothesis that real wages don't
Granger—cause employmenﬁ is .0745, and for the null hypothesis that
employment doesn't Granger-cause the real wage is .5012. These auto-
regressions included constant, trend, and three seasonal dummies.

2/

~"Applications of related methods are contained in Sargent

{1977a, 1978]. John Taylor [1978] uses a minimum distance estimator to

estimate a macroeconomic model subject to rational expectations

¢

restrictions.

3/

2/Restrictions on the production function required to permit
Lucas's static model to account for the cyclical behavior of labor
productivity and real average hourly earnings were discussed by Sargent
and Wallace [1974]. Adding differential costs for adjusting straight-—
time and overtime labor would widen the class oé production functions
that could lead to procyclical movements of average hourly earnings and
labor productivity.

éjOptimization problems of this form are discussed by Holt,
Modigliani, Muth, and Simon [1960], Graves and Telser [1971], and
Kwakernaak and Sivan [1972]. The treatment here closely follows that of
Sargent [1977b]. 1t would be straightforward fo carry along n firms,
each facing the same wage process and operating under the same functional

form for its objective function (1), yet each having different values

for the parameters fo, fl’ d,‘and e. It would then be straightforward
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to aggregate the Euler equations and their solutions (7). Thus, assuming
a representative firm is only a convenience, as the model admits a tidy

theory of aggregation.

§/See Sargent [1977b], Chapters IX and XIV.

E/See Sargent [1977b].

Z-/See Sargent [1977b]. The solution (7) clearly exhibits the
certainty—equivalen;e or separation property. That is, the same solution
for 0. and n,. would emerge if we maximized the criterion formed by

replacing (a E .) and dropping

lt+j’a2t+j’wt+j) by (Etalt+j’Eta2t+j’ tVe+j

the operator Et from outside the sum in (1).

8/

— In the statistical literature the linear least squares projection

operator E is often referred to as the "wide sense expectation" operator.

9/

= The assumption that wt is of exponential order less than

(%9 implies that the max [Ail < (%D where A, is the ith element of A,

i
é—Q-/Here I am using that ( z (l~91pl)a = ———l;——?lt since
NP ) 1" 71le 0
i=0 "2 1
1 - —
L and L 5o that the infinit 2
|p1] < 3 an ]u2| > $» so tha e infinite sum converges.
11/

— Engineers directly obtain solutions of the form (13) by
solving matrix Ricatti equations, e.g., see Kwakernaak and Sivan [1972].
In thelr jargon, our system is not "controllable" but is "stabilizable"
and '"detectable'" so that convergence of iterations on the Ricatti equation
is assured. The stabilizability of our system depends on {alt}, {aZt}’
and {Wt} being of exponential order less thank(%).

12/

— The parameters fo and VO are dropped because the data are

in the form of deviations from means and trend terms. The parameters b,
P, hl’ and h2 will be fixed a priori.
13/

— The likelihood function was maximized by using a derivative-

free hill climbing method with a Davidon-Fletcher-Powell algorithm for
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updating the Hessian. The complicated nature of the restrictions (21)

led me to opt for a derivative-free method over an algorithm that required
even analytical first deviatives. My attempts numerically to calculate
asymptotic standard errors from the inverse of the information matrix
were unsuccessful as one or two diagonal elements turned out to be

negative,

lﬁ/That these values for hl and h2 do not add to unity, as in

the theoretical presentation of the model, amounts only to a harmless

renormalization. I guessed at these values for h, and h2. The guess

1

for hl measured in hours per week seemed reasonable after having inspected
the time series for average weekly hours. For purposes of constructing

the data on N, the choice of both hl and h2 matters. For the purpose

of estimating the demand functions, given the data on oy and n,, only

the ratio of hl to h2 matters as proportional changes in d and e can

cancel the effects of proportionate increases in hl and h

2
lé—/With the seasonally unadjusted employment data, I first

regressed each of Ny By and w,_ against a constant, trend, trend

t

squared, and three seasonal dummies and used the residuals from those

regressions as the data.
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Appendix on Vector Autoregressions and Moving Averages
Let X, be an (nxl) vector jointly covariance stationary,

e s . th
linearly indeterministic stochastic process. The m order vector

autoregression for this process is

m

- m
(a) X, at 21 %63 te,

where s? is an (nxl) vector of least squares disturbances. Here o is an
(nx1) vector and the Aj's are nxn matrices that under mild regularity
conditions are uniquely determined by the population orthogonality conditions
Eet 0 and Eg xt j = Onxn’ j=1, 2, ..., m. The a process is termed

the process of innovations, the parts of L that can't be predicted

linearly from m lagged xt's; e? is the process of one-~step ahead predic-

tion errors. If m=w, the orthogonality conditions imply that Eetat s =
0 for s#0, having the practical implication that if m is taken to be
big enough, as we shéll assume, the gt vector is serially uncorrelated.
If we solve the vector difference equation (g) for X, backwards in terms

of the ¢ process and ignore transient terms, we get the vector moving

average representation
(b) X, =q' + C.e
] Cyen

where o' is an (nxl) vector of constants, where Cj is an (nxn) matrix
and Cy=L. The matrix Fourier transforms of the Aj's and Cj's are related
by (I—Ale_iw—...—Am —1wm § . The (nxl) vector process e?
is composed of disturbances that are mutually orthogonal at all nonzero .

lags and leads (by the orthogonality conditiomns), but Es e —z is not in

general diagonal. To illustrate how to construct a moving average representation
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with a disturbance process that is orthogonal contemporaneously as well

as at all lags, let n=2 and consider the transformation

[
}—l
(@]
[

€1t

€

1
©
[

2t Yot

where p=Ee /Ee . Here we are choosing ult 1t and are decomposing

1t 2t

€o¢ by the least squares projection equation 82t=pelt+u2t where the

least squares orthogonality condition Euztelt=0 implies that p=Ee

1t82¢/

2 .
Eelt. Here Uy, is the part of €o¢ that is orthogonal to €lee By
construction, Uy and‘u2t are orthogonal. Therefore, a new moving
average representation in terms of mutually orthogonal disturbances at

all lags is given by

x =a'+ Z C.,F

t (R

=o' + Z D.u
jojt—j

where Dj—CjF 0f course, there is more than such one choice of u
processes that does the job. For example, in the n=2 example, we could
have selected ult=€2t and then chosen u,,. as the part of elt

In the text, for the n=2 case, I have calculated

that is
orthogonal to €ope
moving average representations for both of the ways of choosing.ut
discussed above. More generally any choice of ut=F—lst that makes

Eutué=F- ZF'—l a diagonal matrix can be used to deliver a moving average
representation in terms of a u process that is orthogonal contemporaneously
as well as at all leads and lags.

In the n=2 case, the first mentioned way of defining u, is

equivalent with changing the form the vector autoregression (a) by
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adding current X to the right side of the autoregression for Xy and
then solving the vector difference equation for a moving average repre-
sentation in terms of the vector of residuals from this pair of auto-

regressions. The second mentioned way of defining u_ amounts to changing

t

the form of the vector autoregression (a) by adding current Xy, tO the

right side of the autoregression for X1¢ (leaving current X excluded

from the autoregression for x2t) and calculating the moving average in

terms of the residuals from these equatiomns.

The k-step ahead error in forecasting X linearly from its own

past is given by

~

I Y T TR W s |

Dout + ... *+ Dk—lut—k+l

where Et-kxt is the linear least squares forecast of X, given X 1o
X g1’ "°°° From the extensive orthogonality conditions built in we

have that the covariance matrix of k-step ahead prediction errors is

_A __A T = 1 1
E(xt Et—kxt)(xt Et—kxt) D.Eu u'D! + ...

\ \ ]
oFu 4 Do <+ Dk—lEu u'D

tt k-1"

By calculating the diagonal terms in this formula, we achieve a decomposition
of the variance k-step ahead prediction error into the parts attributable
to variance in the n components of up- For every choice of u_ process,
there is such a decomposition of variance.

Under certain regularity conditions, least squares estimates
of the vector gutoregression (a) are known to be statistically consistent
(Anderson and Taylor [1976] and Ljung [1976]). For a more extensive dis-
cussion of vector stochastic processes and some macroeconomic applicatiomns,

see Sargent [1977b].
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Table 1

Vector Autoregressions for Seasonally Unadjusted Data
(19481-19721V)*

Dependent var: n; . Dependent var: L

Coefficient Standard Error Coefficient Standard Error

Constant 7.7038 2.7640 .17353 L1124
Trend .0506 .0168 .00103 .0006
Fourth Quarter

Dummy .5780 .4250 .02149 0172
First Quarter

Dummy -.9797 .3163 .03616 .0128
Second Quarter

Dummy 1,9887 .3883 .00646 .0158
oy g 1.5946 .1075 -.00343 .0043
N9 -.9403 .2006 .00402 .0081
Ny 3 L4128 .2001 ~-.00315 .0081
Ny 4 -.1604 . 1049 .00163 .0042
LA ~1.5407 2.5467 .97586 .1036
LA 2.0531 3.5659 -.02126 L1451
We_3 -4,5508 3.5039 .09912 .1426
LA 1.4698 2.5500 -.13212 .1037
R .9969 .99790
d.w. 1.9835 2.04370
s.e. .3677 .01500
Marginal Significance

level on lagged

n's .0000 .00000
Marginal Significance

level on lagged

w's .0910 .86900

*Observation period on left-side variables,
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Table 2

Vector Moving Average Representation of Real Wage and
Aggregate Employment
(19481-19721V)*

(L (2) (3) (4)
Lag
0 . 3697 0 0 .0150
i . 5897 -.00126 -.0231 0146
2 .5946 -.00177 ~-.0287 .0140
3 .5464 -.00253 -.0840 .0149
4 .5025 -.00329 -.1553 .0139
5 G444 -.00359 -.2103 .0130
6 3741 -.00370 -.2580 .0123
7 .3080 -.00371 -.2983 .0115
8 .2520 ~.00359 -.3262 .0108
9 .2048 ~.00339 ~.3426 .0102
10 .1661 -.00316 -.3493 .0096
11 .1357 -.00291 -.3480. .0091
12 .1125 -.00266 -.3406 .0086
13 .0950 -.00243 -.3285 .0081
14 .0820 -.00221 ~-.3135 .0076
15 0724 -.00202 ~.2966 .0071
16 .0652 -.00184 -.2789 .0067
17 .0597 -.00169 -.2611 .0063
18 .0554 -.00155 ~.2436 .0059
19 .0519 -.00143 -.2269 .0055
20 .0488 -.00132 -,2110 .0051
21 .0460 -.00123 -.1962 .0048
22 .0434 -.00114 -.1824 .0045
23 .0410 -.00106 ~.1696 .0042
Column (1): Response of employment to one standard deviation

innovation in employment.

Column (2): Response of real wage to one standard deviation
innovation in employment.

Column (3): Response of employment to one standard deviation
innovation in real wage.

Column (4): Response of real wage to one standard deviation
innovation in real wage.

Correlation of innovations in employment and real wage is .2442,

*Observation period for left-hand side variables. For method of
construction of vector moving average, see appendix.
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Table 3

Decompositions of Variance of Forecast Errors¥®

Employment
Percent of variance in K-step
Varlance of ahead forecast error explained by
K-Step Ahead orthogonalized innovation in:
Forecast Error Employment Real Wage
K
K= 1. .1367 94.03 5.96
K= 2. .4783 95.24 4.75
K= 3, .8244 95.59 4.40
K= 4, 1.1076 96.50 3.49
K= 5, 1.3462 97.04 2.95
K= 6. 1.5423 96.74 3.25
K= 7, 1.7017 95.41 4.58
K= 8. 1.8407 93.06 6.93
K= 9, 1.9705 89.96 10.03
K = 10. 2,0956 86.47 13.52
K= 11, 2.2169 82.91 17.08
K= 12, 2.3334 79.51 20.48
K = 20. 2.9620 64.14 35.85
K = 35. 3.2381 59.18 40.81
Real Wage
Percent of variance in K-step
Variance of ahead forecast error explained by
K-step Ahead orthogonalized innovation in:
Forecast Error Employment Real Wage
Real Wages
K= 1, .00022 0 100.00
K= 2, .00043 .34 99.65
K= 3, .00062 .71 99.28
K= 4, .00083 1.25 98.74
K= 5, .00101 2.02 97.97
K= 6. .00117 2.78 97.21
K= 7. .00132 3.45 96.54
K= 8, .00145 4.04 95.95
K= 9, .00156 4.53 95.46
K = 10. ' .00166 4.91 95.08
K= 11, .00175 5.20 94.79
K= 12, .00183 5.41 94.58
K = 20. .00220 5.87 94.12
K = 35, .00238 5.91 94.08

Standard error of orthogonalized innovation in real wage = .3586.
Standard error of orthogonalized innovation in employment = .01505.

*The orthogonalized innovation in employment here equals
the innovation in employment, while the orthogonalized innovation in
the real wage equals that part of the innovation in the real wage
that is orthogonal to the imnovation in employment.
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Table 4

. Decompositions of Variance of Forecast Errors*

Employment
Percent of variance in K-step
Variance of ahead forecast error explained by
K~Step Ahead orthogonalized innovation in:
Forecast Error Employment Real Wage
K
K= 1. .136 100.0 .0
K= 2, .478 99.8 .10
K= 3. .824 99.8 : .15
K= 4, 1.107 99.2 .71
K= 35, 1.346 97.7 2,27
K= 6. 1.542 95.3 4,68
K= 7. 1.701 92.0 7.92
K= 8. 1.840 88.1 11.87
K= 9, 1.970 83.8 16.16
K = 10. 2.095 79.5 20.47
K = 11. 2.216 75.4 24,52
K= 12, 2.333 71.8 28.18
K = 20. 2.962 56.6 43,38
K = 35, 3.238 . 51.7 48.21
Real Wage
Percent of variance in K-step
Variance of ahead forecast error explained by
K-step Ahead orthogonalized innovation in:
Forecast Error Employment Real Wage
Real Wages
K= 1. .00022 5.96 94,03
K= 2, .00043 . 4.34 95.65
K= 3. .00062 3.47 96.52
K= 4, .00083 2,74 97.25
K= 5, .00101 2.24 97.75
K= 6. ‘ .00117 1.95 98.04
K= 7. .00132 1.78 98.21
K = 8. .00145 1.67 98.32
K= 9, . 00156 1.61 98.38
K = 10. .00166 1.56 98.43
K= 11. 00175 1.52 98.47
K= 12, .00183 1.48 98,51
K = 20. .00220 1.26 98.73
K = 35. .00238 1.17 98.82

Standard error of orthogonalized innovation in real wage = .3697.
Standard error of orthogonalized innovation in employment = .0146.

*The orthogonalized innovation in the real wage here just
equals the innovation in the real wage, while the orthogonalized
innovation in employment equals that part of the employment innova-
tion that is orthogonal to the innovation in the real wage.
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Table 5

First Solution of Likelihood Equations
Seasonally Adjusted Data (n=4)
: 19481-19721v*

fl = 19.80 P = .9372 vy = .9542
d = 2377.90 02 = ,7800 vy = .0052
e = 104.02 u, = .2002 vy = 0743
61 = ,5886 v, = -.1867
@ = -.0185 Bl = —,0600 KS(nl) = ,0706
uz = .0009‘ BZ = -,0001 KS(nz) = .0744
a3 = ,0017 83 = -.0004 KS(w) = .0346
a, = . 0044 84 = ,0026
.9220E~-01 .2000E+00 .1298E-02
vV = .7747E+00 .2077E-02
.1949E-03
.9225E-01 . 2002E4+00 +.1301E-02
pvel = . 7749E+00 .2089E-02
.1949E-03
Iv.| = .5497E-05, |V | = .4998E-05 v | = .34743E-05
r u u
T{logIVrl—logIVu]} = 9,5271 T{;og]Vrl-logIVu|} = 45,881
Marginal confidence level = ,7830 Marginal confidence level = ,9868

*
Period of observation on the dependent variables.
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Table 6

Seasonally Adjusted Data--Second Solution of
Likelihood Equations (n=4)
19481~19721V*

£, = .5386 v, = .9548 KS(ny) " = .0755
d = 2367.87 v, = .0039 KS(n,) = .0765
e = 122.737 vy = .0721 KS(w) = .0309
py = .5962 v, = -.1823
P, = -2080
8, = .9317 wy = L7778
@, = -.0135 B, = -.3428
a, = .0L41 B, = .0821
ay = .0160 By = .1124
a, = .0190 B, = -1769

.9176E-01 .1984E+00 .1296E-02
V= . 7718E+00 .2071E-02
.1949E-03
.9180E-01 .1988E+00 .1299E-02
- -]

B lysl = .7732E+00 .2138E~02
.1949E-03

lvr[ = .55074E-05, lvu[ = .4998E-05

T{loglvrl~logIVul} = 9.7113

Marginal confidence level = ,7945

* ,
Period of observation on the dependent variables.

+KS(nl), KS(nz), KS(w) denote Kolmogorov-Smirnov statistics

on cunmulated periodograms of innovations of Ny, 0,, and w respectively.
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Table 7

Seasonally Unadjusted Data (n=4)
19481-19721IV*

f1 = ,4718 v, = .9159 KS(nl) = .0679
d = .3266.00 v, = .0189 KS(nz) = .0736
e = 78.60 v,y = .0959 KS(w) = .0252
Py = .3972 v, = .1938
p, = -1024
§, = .9487 uy = 7426
oy = ~-.0078 By = -.5085
ay = .0104 By = .0865
ay = .0117 By = .1322
a, = 0137 B, = +2361
. 1404E+00 .2668E+00 .1147E-02
vV = .8174E+00 .9501E-03
.1945E~03
. 1405E+00 .2674E+00 .1148E-02
- "
B~ lvpl = . 8184E+00 .1049E-02
.1945E-03
|V _| = .7864E-05, |V | = .7360E-05 |V | = .58289E-05
r u u
T{loglVr|—10g|Vu|} = 6.6248 T{loglVr]—logquI} = 29,94658
Marginal confidence level = .5310 Marginal confidence level = ,68344

*
Period of observation on the dependent variables.
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Table 8

Seasonally Unadjusted Data (n=8)
19491-19721V*

£, = .3612 v, = .8719 vy = .0322
d = .3266.29 v, = .0982 ve = .0795
e = 75.6750 v, = .1183 v, = -.1688
p) = 4094 v, = =.2537 vg = .0397
p, = .0571
61 = _9569 Hy = .7687 KS(nl) = .0756
@y = =.3790 B, = -.7970 K8(n,) = .0706
KS(w) = .0308
o, = =.0745 B, = -.0417
oy = -.0448 By = .0211
o, = -.0045 B, = -1232
ag = -.1010 ' Bs = -.0335
ag = —.0989 Bg = -+0203
ay = =.0787 B, = 0356
ag = =.1505 Bg = ~.0857
.1355E+00 .2721E+00 .9675E-03
Vv = . 8420E+00 .1147E-02
.1791E-03
.1362E+00 .2734E+00 .1035E-02
s lys L' - .8439E+00 .1289E-02
.1791E-03
[V_| = .6802E-05, |V | = .6163-05 [V,] = .339897E-05
T{log|V_|-log|V |} = 9.4610 T{log|V_|-log|V |} = 66.599337
Marginal confidence level = ,1478 Marginal confidence level = .7680

*
Period of observation on the dependent variables.
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Table 9

Vector Autoregressions (n=8)
Seasonally Unadjusted Data
(19491-19721IV)

(20a) Unconstrained Constrained by (21)
Ny _q "1.4040 1.3663
nlt_’2 -.4305 -.3918
LAY -.7105 -.2498
LA -2.8277 -.0515
W _3 ~-2.3616 -.0309
Ve 4 1.0005 ~.0031
Y. _s 6.8486 -.0698
Ve 6 -.1849 -.0683
W7 -6.2083 -.0543
V. _g .1310 0466
(20b)

Ny 1 .8361 .8258
N, o -.0710 -.0439
Vo1 -.5042 ~.6911
Vo o -10.2706 -.0548
Vi _3 .2643 .0277
LA -6.8648 .1616
V. _s 17.6580 -.0440
Ve 6 -7.3990 ~-.0266
V7  6.7369 .0468
V._g ~12,0341 -.0268
{20c)

W1 .8557 .8719
Ve o .1021 ‘ .0982
W, g .0699 .1183
Vs -.2183 -.2536
v _s .7217 -.0322
Ve 6 .9416 .0795
LA ~-.2382 -.1688
w .0574 -.0397
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Table 10

Moving Average Representation Implied
By Model For Seasonally Unadjusted
(Table 8) Estimates

Response to a One-Standard Deviation
Innovation in nl

=
o
o)

n w n

1 2
0 L4324 0 0
1. .5909 0 0
2. .6379 0 0
3. . 6401 .0 0
4, .6247 0 0
5. .6028 0 0
6. .5788 0 0
7. . 5547 0 0
8. .5312 0 0
9. .5085 0 0
10. . 4366 0 0
11. L4657 0 0
12. L4456 0 0
13. L4264 0 0
14. .4081 0 0
15. .3905 0 0
‘16. .3737 0 0
17. .3576 0 .0
18. . 3422 0 0
19. .3275 0 0
20. .3134 0 0
21. . 2999 0 0
22. . 2869 0 0
23. .2746 0 0
24, .2628 0 0
25. . 2514 0 0
26. .2406 0 0
27. - . 2302 0 0
28. .2203 0 0
29. .2108 0 0
30. .2018 0 0
31. L1931 0 0
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Table 10 (cont.)

Response to a One-Standard Deviation
Innovation in w

Lag n w n

1 2
0 0 .0144 0
1. -.0036 .0125 -.0099
2. -.0088 .0123 -.0177
3. -.0148 .0137 -.0230
4. -.0212 .0110 -.0257
5. -.0281 .0096 -~.0268
6. ~-.0354 .0095 -.0269
7. -.0432 .0060 -.0258
8. -.0493 .0044 -.0236
9. -.0540 .0030 -.0205
10. -.0572 .0007 -.0169
11. -.0588 -.0003 -.0132
12. -.0591 ~.0012 -.0095
13. -.0582 -.0023 -.0060
14. -.0561 ~-.0026 -.0030
15. -.0533 -.0028 -.0004
16. -.0499 -.0029 .0016
17. -.0461 -.0026 .0031
18. -.0422 -.0023 .0041
19. -.0384 -.0020 .0046
20. -.0348 -.0015 .0047
21. ~-.0315 -.0010 .0045
22. -.0285 -.0006 . 0040
23. -.0260 -.0002 .0034
24, -.0239 .0000 .0027
25. -.0222 .0002 .0019
26. -.0208 .0004 .0012
27. -.0198 .0005 .0006
28. -.0190 .0006 .0000
29. -.0184 .0006 -.0003
30. -.0179 . 0006 -.0007
31. -.0176 .0005 -.0009
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Table 10 (cont.)

Response to a One-Standard Deviation
Innovation in n,

Lag nl w n,
0 0 0 1.080
1. 0 0 .892
2. 0 0 .689
3. 0 0 .530
4, 0 0 .407
5. 0 0 .313
6. 0 0 . 240
7. 0 0 .185
8. 0 0 .142
9. 0 0 .109
10. 0 0 .084
11. 0 0 064
12, 0 0 .049
13, 0 0 .038
14, 0 0 .029
15. 0 0 .022
16. 0 0 .017
17. 0 0 .013
18. 0 0 .010
19. 0 0 .007
20. 0 0 .006
21. 0 0 .004
22, 0 0 .003
23. 0 0 .002
24, 0 0 .002
25. 0 0 .001
26. 0 0 .001
27. 0 0 . 000
28. 0 0 .000
29. 0 0 .000
30. 0 0 . 000
31. 0 0 .000

Correlation Matrix of Innovations

ny w n,
nl 1.00 . 197 .808
W 1.000 .135
n, 1.000
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Table 11

Variance Decompositions for Forecast Errors
Implied By Model (Table 8 and 9 Estimates)
Seasonally Unadjusted Data
Percentage of 35-Step Ahead Forecast Error
Variance in x Accounted for by "Orthogonalized
Innovations'" in Dy, W, B,

n, w n,
X = n, 98.3 1.71 -
X =w 0 100. 0
X =, 63.79 1.38 34.84

Orthogonalization order®*: w, Ny, T,

*See note to Table 13.
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Table 12

Moving Average Representation Implied by
Maximum Likelihood Estimates of Vector
Autoregression, Unconstrained Seasonally
Unadjusted Data
(19481-19721V)

Response to a One-Standard Deviation
Innovation in n

1
Lag nl w n2
0 . 4005 0 0
1. .5623 0 0
2. .6170 0 0
3. .6241 0 0
4, .6106 0 0
5. . 5886 0 0
6. .5635 0 0
7. .5377 0 0
8. .5123 0 0
9. 48717 0 0
10. L4642 0 0
11. L4417 0 0
12. .4203 0 0
13. .3999 0 0
14, . 3805 0 0
15. .3621 0 0
i6. . 3445 0 0
17. .3278 0 0
i8. .3119 0 0
19, .2967 0 0
20. .2823 0 0
21, . 2686 0 0
22. .2556 0 0
23. 2432 0 0
24, L2314 0 0
25. .2202 0 0
26. . 2095 0 0
27. .1993 0 0
28. .1896 0 -0
29, . 1804 0 0
30. L1717 0 0
31. .1633 0 0



- 56 =~

Table 12 (cont.)

Response to a One Standard Deviation
Innovation in w

Lag ‘n w n

1 2
0 0 .0144 0
1. -.0102 .0123 -.0072
2. -.0640 .0120 ~-.1607
3. -.1631 .0125 -.2287
4, -.2592 .0097 ~.3764
5. -.2533 .0087 -.2306
6. -.2135 .0090 -.2083
7. -.2416 .0051 -.0945
8. -.2613 .0037 -.1603
9. -.2869 .0021 -.2076
10. -.3095 -.0001 -.2269
11. -.3044 -.0008 -.2143
12. ~.3028 -.0017 -.2149
13. -.3077 -.0029 ~.1868
14. -.2987 -.0029 -.1863
15. -.2910 -.0031 ~.1644
16. -.2786 -.0031 ~-.1331
17. -.2589 -.0026 -.1044
18. -.2428 -.0023 -.0753
19. -.2256 -.0019 -.0451
20. -.2060 -.0013 ~.0249
21. -.1897 -.0008 -.0022
22, -.1730 -.0004 .0154
23. -.1573 .0000 .0267
24, ~.1449 .0002 .0357
25. -.1333 .0005 .0400
26. -.1234 .0007 .0397
27. -.1158 .0007 .0386
28. -.1090 .0008 .0343
29. -.1036 .0007 .0284
30. -.0996 .0006 0224

31. ~.0960 .0005 .0156
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Table 12 (cont.)

Response to a One Standard Deviation
Innovation in n,

Lag nl w 4 n,
0 0 0 1.0595
1. 0 0 .8859
2. 0 0 .6654
3. 0 0 .4934
4. 0 0 .3653
5. 0 0 L2704
6. 0 0 .2001
7. 0 0 . 1481
8. 0 0 .1096
9. 0 0 .0811
10. 0 0 .0600
11. 0 0 0444
12, 0" 0 .0329
13. 0 0 .0243
14. 0 0 .0180
15. 0 0 .0133
16. 0 0 .0098
17. 0 0 .0073
18. 0 0 0054
19. 0 0 .0040
20. 0 0 .0029
21. 0 0 .0021
22. 0 0 .0016
23. 0 0 .0012
24, 0 0 . 0008
25. 0 0 .0006
26. 0 0 .0004
27. 0 0 .0003
28. 0 0 .0002
29. 0 0 .0001
30. 0 0 .0001
31. 0 0 .0001

Correlation Matrix of Innovations

n w n

1 2
ny 1.00 . 2066 .7971
\ 1.0000 .1350
n 1.0000
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Table 13

Decomposition of Variance of Forecast
Error for Unconstrained Estimates,
Seasonally Unadjusted Data
(19481-19721V)

Percentage of 35~Step Ahead Forecast
Exrror Variance in x Accounted for by

"Orthogonalized Innovations" in n;, W, n,

Orthogonalization order*: oy, W, 0

2

ny w n,
x = ng 74.71 25.29 0
X =w 4.27 95.73 0
x = n, 49.14 20.12 30.73
Orthogonalization order: n;, 0,, W

nl w nz
X = ng 74.71 25.23 .06
X =W 4,27 95.49 24
X =1, 49.14 19.03 31.83
Orthogonalization order: W, my, D,

n, \ n,
x =1, 87.76 12,24 0
X =w 0 100 0
X =, 52.22 17.05 30.73

*
Orthogonalization order refers to the
procedure described in the appendix of defining
an orthogonal u process from u, = Fet. If the

orthogonalization order is n.,, w, n,, then the

1

"orthogonalized n, innovation' is simply the n

1 1
innovation; the “orthogonalized w innovation' is

the part of the w innovation orthogonal to the ny

innovation; the "orthogonalized n., innovation" is

2

the part of the n, innovation that is orthogonal

to both the nl and w innovations.
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Table 14+

Decomposition of Variance of Forecast
Errors, Seasonally Unadjusted Data
(19481-19721V)

Percentage of 35-Step Ahead Forecast
Error Variance in x Accounted for by

"Orthogonalized Innovations" in ny, W, n,

Orthogonalization order¥*: Ny, W, N

2
ny w n,
X = n; 50.74 49.26 0
X =W 3.58 96.42 0
x =0, 45,68 24,71 29.62
Orthogonalization order: Ny, My, W
ny w n,
x = ny 50.74 49,23 .03
X =w 3.58 96.36 .06
X =, 45,68 24.31 30.01
Orthogonalization order: w, ny, n2
ny w | n,
X =n; 64.66 35.34 0
X =W 0 100 0
x = n, 46.80 23.59 29.62

*
See note to Table 13.

+Data are residuals from regressions
on constant, trend, and three seasonal dummies,
with no trend squared terms, in contradistinc-
tion to the Table 13 results.
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Table 15

Summary Statistics for Fourth-Order
Vector Autoregressions for (nl, n,, w)

Seasonally Unadjusted data+
(19481-19721V)

Marginal Significance Levels¥
Pertinent for Testing Null Hypothesis
That Lagged n, or n, or w's Have Zero

Coefficients in Autoregression for x

nl nz w
x = n, .0000 .0000 .2000
x = n, .0395 .0000 0446
X = w .6857 .6128 .0000

*Where f is the calculated value of
the pertinent F-statistic, the marginal sig-
nificance level is defined as prob{F>f} under
the null hypothesis.

+
Regressions included a constant,
trend, and three seasonal dummies.
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Table 16

Decomposition of Variance of Forecast
Error Implied by Vector Autoregression
for (nl, n,, w) Seasonally Unadjusted Data

(19481~19721V)
Percentage of 35-Quarter Ahead Forecast

Error Variance in x Accounted for by

"Orthogonalized Innovation' in ny, W, n,

Orthogonalization order*: n;, W, n

2
nl w n2
x = n 21.82 48.74 29.44
X = w .76 98.39 .85
x =1, 23.64 16.25 60.25

Orthogonalization order: w, n,, 0,

n w n

1 2
X = ny 26.90 43.66 29.44
X =w 2.11 97.03 .85
X =n, 20.82 18.93 60.24

*
See note to Table 13.



