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1 Introduction

Recent studies have stressed the importance of infrequent and large, or lumpy,

establishment-level capital adjustments in explaining the dynamics of aggregate in-

vestment. This paper reevaluates these findings, extending the analysis to allow for

equilibrium prices. Specifically, I embed a generalized (S,s) model of establishment-

level investment within an otherwise standard equilibrium business cycle model. Indi-

vidual production units face random, nonconvex costs of undertaking capital adjust-

ment and, as a result, invest only when there is sufficient distance between a target

and their actual capital stocks. The extent of this tolerated capital imbalance varies

across plants and evolves over time as a function of both aggregate and plant-level

state variables. Thus the model delivers a time-varying distribution of establishments

over capital levels.

The model is consistent with several empirical regularities arising from recent

studies. First, establishment-level capital adjustment exhibits long episodes of rela-

tive inactivity punctuated by lumpy investments. For example, examining U.S. manu-

facturing plants in the Longitudinal Research Database, Doms and Dunne (1998) find

that between 25 and 40 percent of the typical plant’s total investment expenditure

over a 17 year sample is concentrated into a single large episode. Furthermore, the

probability of an investment spike rises in the level of capital imbalance. Again using

the LRD, Caballero, Engel and Haltiwanger (1995) document an upward sloping em-

pirical adjustment hazard, a finding confirmed by Caballero and Engel (1999) using

aggregated data. Finally, this rising adjustment hazard is also evident in terms of

time-since-adjustment. Cooper, Haltiwanger and Power (1999) link establishments’

capital imbalances to the duration since their last large investment episode and find

that the likelihood of an investment spike increases with the time since the last pri-

mary spike.

A general theme running through recent literature is that the micro-level quasi-

fixity in capital has important implications for aggregate investment and, more gener-

ally, for aggregate economic activity. Doms and Dunne (1998) show that the number

of plants experiencing their primary investment episode is strongly positively cor-

related with aggregate investment. Building on this evidence, other authors have

emphasized how the interaction of upward sloping adjustment hazards with time-
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varying distributions of plant-level capital can produce large effects on aggregate

investment demand, as certain histories of shocks lead plants to synchronize the tim-

ing of lumpy investment projects. Caballero, Engel and Haltiwanger (1995, page 3)

suggest:

If the history of shocks and microeconomic actions is such that many

production units are about to enter a feverish state of investment, then

aggregate investment becomes very responsive to further shocks.

Caballero (1999, page 28) elaborates, providing the following example.

Suppose that a history of mostly positive aggregate shocks displaces the

cross sectional distribution of imbalances toward the high part of the

hazard. Such a sequence of events will not only lead to more investment

along the path but also to more pent-up investment demand; indeed the

cross sectional distribution [of capital imbalances] represents unfulfilled

investment plans. But as unfulfilled demand “climbs” the hazard more

units are involved in responding to new shocks; incremental investment

demand is more easily boosted by further aggregate shocks, or depressed

by a turnabout of events.

My model contains both elements emphasized above as central in determining

the aggregate impact of nonconvex micro-level capital adjustment, namely rising ad-

justment hazards and time-varying plant distributions. However, its results contrast

sharply with those of previous studies. In particular, when the business cycle is

assumed to originate from exogenous changes in aggregate productivity, the state-

dependent adjustment economy exhibits a striking negative result: lumpy investment

has only minor consequences for the reduced-form relations between productivity

shocks and real aggregate quantities. Quantity dynamics are virtually identical to

those generated by a standard equilibrium business cycle model characterized by

frictionless investment. Given that establishments often have lengthy periods of in-

vestment inactivity, but are able to change the timing of their investment at relatively

small cost, this similarity may seem surprising.

I trace the effective invariance of aggregate quantities to the influence of general

equilibrium. The permanent income theory, embedded in the model, leads to con-

sumption series that are highly similar across economies with and without costs of
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capital adjustment. In particular, households’ preference for smooth consumption

profiles restrains shifts in investment demand. This dampening force plays the pre-

dominant role in equilibrium investment determination and produces the invariance

result.

The effect of equilibrium changes in relative prices upon aggregate investment

demand is dramatic. Abstracting from such price adjustments, I find both quantita-

tive and qualitative changes in the response of aggregate investment relative to the

neoclassical benchmark. For example, following a persistent increase in productivity,

an unusually large number of establishments synchronize the timing of their capital

adjustment, and there is a strong shift in the cross-sectional distribution of plants

across capital imbalances. This widespread reshuffling of investment timing causes

the aggregate investment series to rise well above the level it would achieve were

changes in adjustment rates suppressed. Further, it generates a series of oscillations

that qualitatively distinguish the model’s response. Thus, with prices held fixed, the

model’s predictions confirm earlier partial equilibrium findings. When markets clear,

however, equilibrium price movements smooth the economy’s response to such a de-

gree that distributional effects are eliminated, and lumpy investment becomes largely

unimportant to aggregate business cycle dynamics.

The organization of the remainder of the paper is as follows. Section 2 briefly

reviews previous research related to the state-dependent lumpy investment model

developed here. Sections 3 and 4 describe the economic environment, model solution

and parameter choices. Section 5 presents the economy’s dynamics relative to the

frictionless neoclassical business cycle model and explains the similar results across

economies. Section 6 concludes.

2 Related Research

Researchers have recently developed dynamic partial equilibrium models of dis-

crete choice that achieve greater consistency with the micro-level evidence described

above. Within these models, discrete investment choices are typically driven by the

presence of nonconvexities, and (S,s) policies characterize investment. (Examples

of (S,s) investment models include Abel and Eberly (1996), Bertola and Caballero

(1994), Caballero and Engel (1991) and Caballero and Leahy (1996).) Plants exhibit
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nonlinear responses to shocks, as periods of inactivity are occasionally broken by

lumpy investments when capital’s deviation from its target exceeds a tolerance level.

Abstracting from equilibrium interest and wage rate changes, such nonlinearities rep-

resent a marked departure both from the linear adjustment rules predicted by the

traditional partial adjustment model, which assumes convex adjustment costs, and

from the immediate convergence predicted in the absence of adjustment costs.

Caballero and Engel (1999) extend the (S,s) framework, developing a generalized

(S,s) adjustment model that allows for probabilistic bands of inactivity, so that the

likelihood of a discrete adjustment rises in the deviation of a plant’s state from its

desired value, rather than jumping discontinuously from zero to one. They find that

their state-dependent adjustment model significantly outperforms the partial adjust-

ment model in explaining 2-digit U.S. manufacturing investment, and they attribute

this to the model’s ability to “generate brisker expansions than its linear counter-

parts.”1 Related work by Caballero, Engel and Haltiwanger (1995) and Cooper,

Haltiwanger and Power (1999) provides further evidence for the relative success of

state-dependent (S,s) adjustment in explaining aggregate investment.

Despite these findings, extensions of state-dependent adjustment frameworks to

general equilibrium have been limited, as it is difficult to determine equilibrium when

the aggregate state involves a distribution of production units, a high-dimensional

object. Thus, as noted by Caplin and Leahy (1997, page 601),

One of the most limiting aspects of these models is that they focus exclu-

sively on the impact that microeconomic inertia has on aggregate dynam-

ics. They ignore the feedback from aggregates onto individual behavior.

My results will show that these equilibrium feedbacks dominate the distributional

effects emphasized by partial equilibrium analyses.

One notable exception in the (S,s) investment literature is the model of Veracierto

(1998).2 Assuming that the resale price of investment goods is some constant frac-

tion of the purchase price, Veracierto embeds the costly reversibility model of Abel
1See Chirinko (1993) and Hassett and Hubbard (1996) for excellent surveys of the mixed empirical

success of the partial adjustment model in explaining aggregate investment.
2Aside from investment theory, other leading examples of equilibrium (S,s) models include the

price-setting models of Caplin and Leahy (1997) and Dotsey, King and Wolman (1999) and the

inventory model of Fisher and Hornstein (2000).
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and Eberly (1996) within an equilibrium business cycle model. In the absence of a

microeconomic estimate of the extent of investment irreversibility, he calibrates his

model across a wide range of values and concludes that there are no quantitatively

significant effects of such investment frictions for business cycle dynamics.

As explained by Caballero (1999), the irreversible investment model is designed

to explain nonlinearities in the response of investment demand to Tobin’s q. It

cannot address the lumpy micro-level capital adjustment described above, since it

tends to generate infrequent, but not lumpy, investment. In contrast, my model

abstracts from irreversibilities and is calibrated using data on establishment-level

lumpy investment. Given the emphasis across the partial equilibrium studies surveyed

above, this choice is motivated by the belief that there is an important need to

evaluate a general equilibrium model consistent with the lumpy investment and rising

adjustment hazards found in micro-level data.

3 Model

I model state-dependent investment at the plant level using a generalized (S,s)

framework. The approach is related to Caballero and Engel’s (1999) generalized

(S,s) model in its use of stochastic adjustment costs to simultaneously yield lumpy

plant-level investment and smooth aggregates. Unlike traditional (S,s) models which

assume nonstochastic costs, this allows for probabilistic adjustment thresholds that

can capture the rising hazards observed in microeconomic data. The version herein

yields straightforward aggregation and thus convenient extension to general equilib-

rium.

The economy is populated by a unit measure of production units differentiated

by their stocks of capital. To isolate the effects of lumpy investment, I ensure equiv-

alence along all other margins to a neoclassical benchmark model, discussed below,

by abstracting from the entry or exit of establishments. This also facilitates the

model’s calibration, as empirical studies of establishment-level investment generally

focus on continuing establishments (Doms and Dunne (1998)). Each establishment’s

production technology is characterized by diminishing returns with respect to vari-

able inputs in production.3 Plants produce using capital and labor as variable inputs;
3This implicit assumption of a fixed factor determines plant size.
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they may frictionlessly adjust labor usage, but they face fixed labor costs of adjusting

capital stock. These adjustment costs, denoted ξ, are independently and identically

distributed across establishments and across time with a known cumulative distrib-

ution G(ξ) and finite upper support B. Their denomination in labor units ensures

that plants cannot effectively outgrow adjustment costs along the balanced growth

path. Capital depreciates at rate δ.

Associate a production unit that last acquired new capital j periods in the past

with the subscript j. Plant-level output is given by the Cobb-Douglas production

function:

yjt = Atk
γ
jtn

ν
jt. (1)

No plant can alter its current capital stock; a plant that last invested j + 1 periods

ago produces using its predetermined capital stock kjt and employment njt. Current

productivity At, common to all establishments, is determined by the realization of

a stochastic component, zt, and a trend component, Xt. The Xt component evolves

deterministically with growth rate ΘA, while zt follows a mean zero AR(1) process

in logs.

At = Xtzt (2)

zt = z
ρ
t−1e

εt , εt ∼ N(0,σ2ε)

After observing the current aggregate state and its individual adjustment cost,

each plant chooses whether to undertake an investment action. If an establishment

decides to adjust its capital for date t+ 1 production, it pays its current cost draw,

ξwt in units of output (where wt represents the real wage at date t) and chooses an

appropriate investment to reach its desired capital stock.4

k0,t+1 = (1− δ)kjt + ijt (3)

In the absence of adjustment, the plant’s capital stock at t+1 is that which remains

after date t production.

kj+1,t+1 = (1− δ)kjt (4)
4Here, and in subsequent equations, commas distinguish subscripts only when necessary for clarity.
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Each plant’s current flow profit is determined by its output less wage payments,

investment and adjustment costs; these flow profits are returned in lump-sum fashion

to households.

A representative household owns the portfolio of plants in the economy and sup-

plies labor. The household values consumption and leisure in each period, with

momentary utility given by u(ct, Lt), and discounts future utility by the factor β.

It is endowed with one unit of time per period, which may be split between leisure

Lt and market activities Nt. Finally, current consumption is financed with income

received from the economy’s plants in the form of wages and profits.

Before I proceed further in the discussion of equilibrium and model solution,

it is useful to aggregate the actions of the diverse population of plants described

above. Note that all establishments share the same production technology and face

the same distribution of adjustment costs. This implies that, irrespective of their

current capital levels, all investing plants share the same expected stream of future

marginal revenues for any given choice of future capital. Thus investors choose a

common target capital k0,t+1, and all plants adjusting at a given time are for practical

purposes identical immediately following investment. The cross-sectional distribution

of establishments over capital levels is therefore summarized by the distribution of

plants across time-since-adjustment groups or, loosely, vintages, where each member

of a group shares the same time since last capital adjustment and is thus associated

with the same capital stock.

Next, given the large number of establishments present, each group contains a

marginal plant whose cost draw makes it just worthwhile to invest. All plants of

the same vintage drawing costs at or below this group-specific threshold cost also

invest, implying that the investing fraction of any group, αjt, is retrievable from the

adjustment cost CDF. Thus the nonconvex behavior of individual production units

is conveniently represented by the fractions of plants in each group that undertake

capital adjustment and the target capital stock of such plants.

At each date, the distribution of the economy’s establishments across groups is

summarized by two vectors. First, kt = {kjt}, the vector of capital levels across time
since adjustment groups, captures the support of the distribution. Next, the fraction

of plants associated with each capital level is given by the predetermined vector

Θt = {θjt}, where each θjt describes the number of plants currently owning vintage
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j capital stock, and θ0t denotes the number of plants that adjusted capital after

production in the previous period. The evolution of the cross-sectional distribution

over time is determined as follows. The support at time t+ 1 is determined through

(4) and adjusting plants’ common choice of k0,t+1. Next, let αt = {αjt} denote the
vector of adjustment rates. The fraction of plants associated with each point in the

support at t+1, Θt+1, is summarized by equations (5) and (6) below and illustrated

in figure 1.

θ0,t+1 =
∞X
j=0

αjtθjt (5)

θj,t+1 = θj−1,t (1− αj−1,t), j = 1, 2, . . . (6)

Membership in time-since-adjustment group 0 at date t + 1 is determined by the

fraction of all plants investing at date t, the population-weighted sum of adjustment

fractions from each group. Membership in the remaining groups is governed by

nonadjustment fractions; plants of each vintage j that do not adjust at date t become

vintage j + 1 plants in the subsequent period.

In addition to the evolution of the plant distribution, the economy is subject to

a series of aggregate constraints. Household consumption cannot exceed aggregate

production net of the investments made by all adjusting plants,

ct ≤
∞X
j=0

θjt yjt −
∞X
j=0

θjtαjt ijt. (7)

Hours worked by the household must satisfy the weighted sum of employment in

production and adjustment activities across groups,
∞X
j=0

θjt njt +
∞X
j=0

θjtΞ(αjt) ≤ Nt, (8)

where Ξ(αjt) is the average adjustment cost paid from each group, conditional on the

fraction of plants investing.

Ξ(αjt) ≡
Z G−1(αjt)

0
xdG(x) (9)

Competitive equilibrium allocations are determined through the solution of a

planning problem. Specifically, the equilibrium allocation for the economy solves the

following Bellman equation,
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V (kt,Θt, At) = max

{ct,nt, Nt, it,
αt,Θt+1, k0,t+1}

h
u(ct, 1−Nt) + βEtV (kt+1,Θt+1, At+1)

i
, (10)

where the optimization is subject to aggregate goods and labor constraints in (7) and

(8) - (9), plant-level production (1), and the evolution of the distribution of capital

(3) - (6). Expectations are rational and consistent with (2).

The solution to the planning problem satisfies a series of efficiency conditions. As

is standard, consumption is chosen such that the marginal utility of consumption is

equated to the shadow value of output (the multiplier on the goods constraint (7))

denoted λt, and total labor hours equate the marginal rate of substitution between

leisure and consumption to wt (the multiplier on the time constraint (8)) which

represents the real wage.

λt = D1u(ct, 1−Nt)
wt =

D2u(ct, 1−Nt)
D1u(ct, 1−Nt)

Plant-level employments in production satisfy the familiar static condition for labor

choice under Cobb-Douglas production.

njt =

"
νAtk

γ
jt

wt

# 1
1−ν

The remaining efficiency conditions describe optimal adjustment fractions and

target capital choice. Note that the finite upper support for the cost CDF, combined

with a constant rate of capital depreciation making investment increasingly valuable

across vintages, implies that the economy’s history is redundant beyond a finite num-

ber of lags. Once a plant’s capital stock has sufficiently depreciated, the value of

investing eventually offsets the highest possible fixed cost. Thus, the stationary dis-

tribution of plants is characterized by an endogenously chosen vintage J by which

full adjustment occurs: αJ = 1. For j < J , optimal adjustment fractions are interior

solutions equating the anticipated value of adjusting one additional plant from group

j to the additional adjustment cost entailed, wt · G−1(αjt) in units of output, and
investment required. That is, for j = 0, ..., J − 1,
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wtG
−1(αjt) + ijt = v0t − vj+1,t, (11)

where v0t is the multiplier associated with (5), and vjt, j = 1, 2, ..., J − 1, are the
multipliers associated with (6), representing the expected discounted value at date t

of having an additional plant of vintage j at the start of date t+ 1.

vjt = Et

·
βλt+1
λt

³
yj,t+1 − wt+1nj,t+1 − αj,t+1ij,t+1 (12)

+αj,t+1v0,t+1 + (1− αj,t+1)vj+1,t+1 − wt+1Ξ(αj,t+1)
´¸

Define ϕj,t+1+j ≡
jQ
i=0
(1 − αi,t+1+i) as the date t probability that an investing

plant will make no further investments through date t+ 1 + j, and hence enter date

t+2+ j as a member of nonadjustment group j +1. This represents the probability

that the date t investment level will continue to affect profits in each future period

through date t + j + 2. The optimal adjustment level is the investment required to

reach the target capital stock that satisfies (13) below, equating the marginal utility

cost of foregone consumption to the expected discounted marginal utility payoff of

an additional unit of future capital.

λt = Et

·
βλt+1

µ
∂ y0,t+1
∂ k0,t+1

+ (1− δ)α0,t+1

¶
(13)

+β2λt+2(1− δ) ϕ0,t+1

µ
∂ y1,t+2
∂ k1,t+2

+ (1− δ)α1,t+2

¶
+ · · ·
+βJλt+J(1− δ)J−1 ϕJ−2,t+J−1

µ
∂ yJ−1,t+J
∂ kJ−1,t+J

+ (1− δ) αJ−1,t+J
¶

+ βJ+1λt+J+1(1− δ)J ϕJ−1,t+J

µ
∂ yJ,t+J+1
∂ kJ,t+J+1

+ (1− δ)

¶¸
Because each kj,t+1+j = (1− δ)jk0,t+1, the payoff to additional capital involves a dis-

counted sum of the marginal effects on future profits continuing into the future until

capital is readjusted. Hence the choice of target capital is dependent on expectations

about a potentially long stream of future wages, interest rates, productivity levels

and adjustment rates.
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4 Model Solution and Parameter Choices

Quantitative evaluation of the economy’s business cycle behavior requires numer-

ical methods to solve the model. The first step in the algorithm is the computation

of a steady state. This computation requires the specification of a functional form

for utility. Following Hansen (1985) and Rogerson (1988), I assume indivisible labor.

The representative household’s momentary utility is u(c, L) = log c+ ζL.

Along the balanced growth path, the technological frontier grows at rate At+1
At
≡

ΘA, and the stochastic component zt is at its mean. The economy is detrended,

and time series are expressed in terms of their trend deflated counterparts. After

elimination of variables through substitution, the steady state is described by a system

of J +2 simultaneous nonlinear equations in (k0, w, [α0,· · · ,αJ−1]). I solve this non-
linear system using a quasi-Newton algorithm. Since J itself is determined in the

solution, the procedure iterates over values of J . The steady state for the economy

involves the lowest value for J that generates αJ = 1.

The second step in solving the model involves a near-steady state log-linear ap-

proximation. The model is reformulated as a system of first-order linear difference

equations, and standard linear systems methods are employed to solve the system.

The solution expresses each nonpredetermined endogenous variable as a linear func-

tion of the economy’s state variables, and dynamic multipliers are retrieved using

the King and Watson (1997) algorithm. The accuracy of the local approximation

relies on the assumption that productivity shocks are sufficiently small that J does

not leave its long run value. To establish the validity of this local approximation, I

have examined a large number of simulations of length 1000 periods (driven by the

productivity process in (2) under the calibration below); in no case did equilibrium

αj , j = 1, . . . , J − 1, or θj , j = 1, . . . , J , reach 0 or 1 boundaries.
I study the impact of lumpy establishment-level investment on the aggregate

business cycle by contrasting the behavior of the above state-dependent adjustment

economy to an otherwise identical economy characterized by frictionless investment.

Plant-level production in this benchmark neoclassical economy takes the form de-

scribed above, but there are no fixed costs on investment. As a result, plants are

homogenous and have smooth decision rules governing their investment in every pe-

riod. I discuss the parameter values which determine technology and preferences for
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both economies below.

The model’s frequency, or length of a period, corresponds to one year. This

choice is motivated by annual data on establishment level investment, which are

used to parameterize the adjustment cost distribution. (I have also examined quar-

terly calibrations; the choice of frequency does not affect the nature of the results

discussed below.) The parameter values for the benchmark economy are common

choices in the quantitative stochastic dynamic general equilibrium literature and are

taken to ensure the model’s consistency with long-run values for key postwar U.S.

aggregates. Specifically, the discount factor β is taken to imply an average annual

interest rate of 6.5 percent, given long-run per-capita output growth of 1.6 percent

per year (King and Rebelo 1999). The rate of capital depreciation is selected to

match a long-run investment-to-capital ratio of .076 (Cooley and Prescott 1995), and

labor’s share of output is .58, as consistent with direct U.S. estimates (King, Plosser

and Rebelo 1988). Given these choices, capital’s share is taken to yield an average

capital-to-output ratio of 2.6 percent (Prescott 1986), and the parameter ζ governing

the preference for leisure implies that, on average, 20 percent of available time is spent

in market work (King, Plosser and Rebelo 1988). Finally, the exogenous stochastic

process for productivity requires the choice of values for ρ, the first-order autocorre-

lation of zt, and σε, the standard deviation of the innovation term. I estimate these

values from Solow residuals measured using Stock and Watson (1999) data on U.S.

output, capital and total employment hours in 1953-1997.

Table 1 summarizes the parameterization for the benchmark model.

Table 1: Parameter choices

ΘY ν γ δ ζ β ρ σε

1.016 .580 .325 .060 3.6142 .954 0.9225 0.0134

The parameters of table 1 are also used for the state-dependent adjustment model,

allowing close comparison with the benchmark. This is a consistent exercise, as

aggregate quantities and prices across the two steady states are close. The remaining

parameters are those involving the distribution of adjustment costs for the state-

dependent adjustment model. The cumulative density function for adjustment costs
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takes the general form,

G(ξ) = α+ a

µ
z − ξ

B

¶−Ψ
ξ ∈ [0, B],

which, if not further restricted, adds 3 free parameters in the model. These are

the upper support B, the parameter governing curvature Ψ and z.5 For the results

presented here, the form is restricted to imply a uniformly distributed cost, (Ψ = −1,)
leaving one cost parameter, the upper support, to be chosen. I examine more general

cost distributions in an appendix to this paper.

The value of B is selected using two key pieces of evidence on investment spikes

noted by Doms and Dunne (1998): (i) In the average year, plants raising their real

capital stocks by more than 30 percent (lumpy investors) comprise 25 percent of

aggregate investment, and (ii) these investors constitute 8 percent of plants. Setting

B equal to 0.002 roughly matches these two observations. Lumpy investors constitute

6 percent of plants, and their investment activities account for 29 percent of aggregate

investment. The chosen parameterization also implies that plants exhibiting annual

capital growth below 10 percent make up 78 percent of all plants, which agrees well

with the Doms and Dunne estimate of 80 percent.

5 Results

5.1 Stationary State

Table 2 displays the stationary state adjustment fractions and cross-sectional

density of the plant distribution in the state dependent adjustment economy. Capital

adjustment for any plant occurs within 5 years, and 29 percent of the economy’s

establishments invest in each period along the balanced growth path.

Table 2: The stationary plant distribution

time since adj. group j =

Adjustment fraction: αj

Population density: θj

0 1 2 3 4 5

0.059 0.197 0.377 0.576 0.782 1.000

0.293 0.276 0.221 0.138 0.059 0.013

5The remaining terms, α and a, are determined by the restrictions G(0) = 0 and G(B) = 1.
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The most noteworthy feature of this table is that adjustment fractions steadily rise

across time-since-adjustment groups. The value of adjustment increases as plant-level

capital depreciates, while the fraction of establishments drawing costs at or below any

particular level is constant over vintages. Thus the economy exhibits the increasing

adjustment hazard discussed in section 1.

5.2 Business Cycles

In this section, I consider the dynamic behavior of the state dependent ad-

justment model versus the benchmark model. These models’ distinct investment

technologies suggest substantial differences should exist in their aggregate dynam-

ics. Specifically, the state-dependent adjustment model includes the two elements

emphasized by previous authors as important in explaining aggregate investment:

heterogeneity of capital across plants and rising adjustment hazards. When produc-

tivity shocks change target capital, shifts in the adjustment hazard (across the plant

distribution) may produce large changes in the number of current investors. The

resulting shifts in subsequent distributions of plants drive additional fluctuations in

aggregate investment. By contrast, the benchmark model has no such mechanism.

I also compare the state dependent adjustment model to a third, constant adjust-

ment, model in which time variation in adjustment fractions is suppressed. There,

the plant distribution and adjustment fractions across vintages are fixed at the sta-

tionary values of table 2, and the fraction of plants adjusting is constant at 29 percent

in every period. Through that model’s inclusion, I gauge the importance of the in-

teraction between increasing adjustment hazards and changes in the cross-sectional

distribution of establishments. Specifically, a comparison of the constant and state-

dependent adjustment models addresses the following question: If adjustment rates

are carefully chosen so that they match the optimal long-run hazard, how much is

lost in terms of short-run dynamic performance when we assume them constant over

the cycle? The results that follow indicate that the loss is minimal if one’s interest

is in aggregate quantities.

Two additional sets of results are provided for reference in the tables discussed

below. First, population moments for a traditional model of staggered capital adjust-
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ment, the partial adjustment model, are included. This alternative model smooths

aggregate investment demand through the inclusion of convex costs that induce plants

to gradually adjust their capital stocks in response to shocks.6 (Table 3 briefly sum-

marizes the models considered, along with their abbreviations in subsequent tables.)

Second, I present corresponding moments for real per-capita GDP, consumption, in-

vestment, hours and real wage and interest rates (constructed from nominal interest

rates on treasury bills, adjusted for expected inflation) in the U.S. during 1953-97.

Each series, taken from the Stock and Watson (1999) data set, is annualized and

HP-filtered for comparison with model results.

Table 3: Summary of models

B Benchmark neoclassical no adjustment costs

SD State-dependent adjustment
nonconvex adjustment costs;

endogenously varying adjustment rates

CA Constant adjustment
nonconvex adjustment costs;

adjustment rates fixed at table 2 values

PA Partial adjustment convex adjustment costs

Quantities

I begin with an examination of impulse responses across the benchmark, state-

dependent adjustment and constant adjustment models that are my primary focus.

Figure 2 presents the first 10 periods of each economy’s response to a persistent ag-

gregate productivity shock driven by an initial rise of one percent. The figure reveals

a surprising similarity in aggregate investment and employment behavior across the

three models. The same observation holds for consumption and output series, as will

be evident from the discussion below.

To further explore the apparent invariance of aggregate quantities to underlying

investment timing, tables 4-7 present selected population moments implied by each
6Here, the convex function governing adjustment costs, h(Kt+1−(1−δ)Kt

Kt
), is parameterized to

yield a steady-state elasticity of the investment-to-capital ratio to Tobin’s marginal q of 5.98, as in

Kiyotaki and West (1996).
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model’s dynamic multipliers. Casual inspection of these tables indicates that the

benchmark business cycle model suffers a number of well-recognized difficulties in

matching important features of U.S. business cycles.7 For the purposes of this study,

however, what is perhaps more striking is that the inclusion of state-dependent lumpy

investment patterns neither improves, nor even affects, model performance along any

of these dimensions.

Table 4 reveals that the standard deviations for output, investment, employment

and consumption are essentially identical for the benchmark and state-dependent ad-

justment economies. The similarities there extend to the constant adjustment model

as well, which exhibits only somewhat reduced investment volatility. That close-

ness is further emphasized by contrast to the traditional partial adjustment model,

which exhibits a substantially weakened cycle due to excessively smooth investment

demand. The overall similarity across models is also seen in the first and second

order autocorrelations of table 6 and in the contemporaneous and lagged correlations

with output reported in tables 5 and 7. Consistent with its slightly reduced relative

investment volatility, autocorrelations for the constant adjustment model’s output,

investment and employment series are somewhat higher, as are its investment and

employment correlations with output.

The discussion above raises two questions. First, given that adjustment fractions

cannot respond to aggregate shocks in the constant adjustment model, why does it

nonetheless achieve such similar results for aggregate investment (and hence other

aggregate quantities) when compared to the state-dependent adjustment economy?

Second, how can the presence of adjustment frictions that lead to lumpy plant-level

investment have so little impact on aggregate dynamics; that is, why does the state-

dependent adjustment economy so strikingly resemble the benchmark? To resolve

these questions, I next examine the differences across economies.

Intensive versus extensive margin capital adjustment

First, in comparing the constant and state-dependent adjustment results, note

that aggregate capital stock can generally be increased via two channels: the number
7The model exhibits weak propagation of the cycle, excessive volatility in investment and wages,

and inadequate variability in consumption. Further, it fails to generate realistic interest rate dynam-

ics, producing neither sufficient variability nor the strong negative correlation with output found in

the data. See King and Rebelo (1999) for a more complete discussion.

17



of adjusting plants and the target capital chosen by such plants. In figure 3, the

number of investing plants rises with the productivity shock in the state-dependent

adjustment economy. By construction, the number of investors does not vary in the

constant adjustment economy; however, there, in contrast to the smooth and gradual

adjustment in the state-dependent model, target capital for adjustors rises steeply

in response to the productivity shock. Heightened precautionary investment arises

because high productivity is expected to persist, but it may be some time before

a current investor will be able to reinvest. This important difference in individual

investment levels is the primary factor driving the models’ closeness in aggregate

investment for two reasons. First, the trade-off between the number of adjusting

establishments and the target capital to which they adjust is quite effective despite

the departure from constant returns at plant-level. Moreover, the fixed adjustment

hazard in the constant adjustment model is not particularly restrictive, as the state-

dependent model exhibits relatively small changes in the number of adjusting plants.

I return to this unexpected lack of distributional effects below.

Prices

For each model, indivisible labor implies that the real wage is proportional to con-

sumption. Figure 4a reveals that wage (and consumption) responses are essentially

identical across models. There are more pronounced differences in interest rates,

as seen in figure 4b, particularly when the constant adjustment model is compared

to the benchmark or state-dependent adjustment model. Turning to table 4, note

that, while relative investment volatility differs by less than one-tenth of one percent

between the benchmark and state-dependent adjustment economies, the benchmark

interest rate is about 1.4 percent more variable than in the state-dependent adjust-

ment economy. Comparing the benchmark to the constant adjustment model, this

interest rate gap is much larger, at sixteen percent, while there is only a two percent

difference in investment volatility. Similarly, in tables 5 - 7, the sharpest difference

across models occurs with respect to the interest rate. These distinctions suggest

that the similarities in aggregate quantities across models share in large part a single

explanation, intertemporal price movements.

Consider the following. Thusfar, I have focused primarily upon the sharp dif-

ferences in factor demands that arise from nonconvexities in the adjustment cost
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structure. Taken alone, this should necessarily imply significant differences in aggre-

gate behavior across economies. Common across economies, factor supplies (savings

and work effort) are derived from ex-ante identical representative households. Hence,

the close dynamical behavior of aggregate quantities indicates a critical role for factor

supply. Equivalently, it suggests the predominant importance of equilibrium.

If the primary mechanism generating similar responses across economies does so

through equilibrium price movements, then model behavior should become distinct

when price dynamics are removed. Figure 5 presents model responses to the persis-

tent shock described above, this time with wage and interest rate changes suppressed.

Without the smoothing effect of price changes, the response in the benchmark model

is large and immediate, while the constant adjustment model exhibits a much smaller

and more gradual response, due to plants’ inability to change the timing of invest-

ment. By contrast, higher establishment-level productivity sharply raises both the

size of investments and the number of investors in the state-dependent adjustment

model, and its response is pushed substantially above the constant adjustment case.

Further, the model now exhibits oscillations, a consequence of a high initial rise in

adjustment rates that echoes through subsequent distributions of plants.

Sharp divergence in aggregate response under fixed prices verifies the claim; the

essential invariance in equilibrium quantity responses arises from households’ prefer-

ence for smooth consumption paths. Though the preference specification here implies

a high elasticity of intertemporal substitution, at unity, households are nonetheless

reluctant to accommodate large changes in investment demand. Despite the differ-

ences in factor demands, households in each of these economies are highly successful

in smoothing changes in permanent income, and essentially achieve the same con-

sumption profiles, when markets clear. The sharp rises in demand (figure 5) are

largely offset, and the adjustment process slowed, through upward pressure on inter-

est rates over those dates when there are tendencies for large capital adjustments.

Interest rate rises are strongest in the benchmark economy, where investment demand

is otherwise unrestrained, and mildest for the constant adjustment economy, where

fixed adjustment rates dampen investment demand. It is worth noting that, while

aggregate quantities remain similar across economies, differences in prices become

more pronounced under alternative calibrations. Larger adjustment costs raise the

gap in interest rate volatility between the benchmark and state-dependent adjustment
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economies. Additionally, stronger decreasing returns make the trade-off between in-

tensive and extensive margin adjustment less effective, leaving interest rate volatility

even more markedly reduced in the constant adjustment economy.8

I have shown that price movements smooth aggregate quantity responses in the

frictionless benchmark model, yielding strong resemblance to economies where invest-

ment demand necessarily responds more gradually. These same equilibrium forces

eliminate the state-dependent adjustment model’s investment oscillations, dampen-

ing the distributional effects emphasized by previous research. In the absence of

price movements, these distributional effects are strong, as seen in panel (a) of figure

6. There, with price changes suppressed, a one-percent rise in productivity nearly

doubles the number of investors (members of group 0). In nearby dates, a large frac-

tion of these extra plants do not adjust, reducing the number of current investors

below trend and raising population in subsequent time-since-adjustment groups. As

a result, investment demand falls below its average in figure 5, then returns to trend

through a series of dampened oscillations as the plant distribution resettles. By con-

trast, panel (b) of figure 6 shows that changes in population densities across groups

are minor with market-clearing price adjustment. Equilibrium restrains such changes

in two ways. First, rises in the value of undertaking early investment are reduced

by increases in the market-clearing interest rate, largely offsetting the tendency for

many extra plants to invest. In addition, the opportunity cost of the adjustment

activity rises with the procyclical real wage, further deterring early investments. As

a result, productivity shocks produce very little disruption in the equilibrium distri-

bution of plants across vintages, and the dynamics of aggregate investment are not

qualitatively affected by the presence of heterogeneous plant-level capital adjustment.

6 Concluding Remarks

I have adapted the neoclassical business cycle model to allow for lumpy capital

adjustments within individual establishments. My approach implements an aggrega-

tion that maps a large number of individual decisions into a small number of smooth

behavioral restrictions that describe the economy. This allows the incorporation
8 I present results under these and other alternative parameterizations in an appendix available

upon request.
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of nonconvexities at the plant level without sacrificing the tractability of standard

methods for computing general equilibrium.

Previous partial equilibrium (S,s) models of lumpy adjustment have stressed im-

portant amplification and propagatory effects arising from flexibly timed discrete

investment activities of heterogenous establishments. My model contains the essen-

tial ingredients required to produce these features. Specifically, when investment

demand is unrestrained by changes in wages and interest rates, the model demon-

strates its potential for large synchronizations in investment timing in response to

aggregate shocks. As shown in figure 5, these large changes in investment timing can

produce sufficiently large disturbances to the distribution of plants as to alter the

path of aggregate investment demand both quantitatively and qualitatively relative

to a business cycle model lacking establishment-level capital heterogeneity.

The importance of market-clearing price adjustment is vivid in the analysis. Were

the method less tractable, so that the examination ended with a such a fixed price

figure, one would be led to conclude that lumpy investment plays a substantial role in

aggregate dynamics. In fact, in equilibrium, this is shown to be incorrect. Large dis-

tributional shifts disappear in the presence of relatively minor price changes, and the

inclusion of lumpy plant-level investment does not significantly alter the equilibrium

predictions of the traditional neoclassical equilibrium business cycle model.

This invariance of aggregate dynamics to the presence of lumpy capital adjust-

ment at the micro-level is not special. Similar results arise under a variety of spec-

ifications for the underlying adjustment cost distribution, household preferences, as

well as the relative importance of capital and labor inputs in production. Of course,

some modifications to the current environment may allow lumpy investment a more

prominent aggregate role. While I have confined this study to economies in which

aggregate productivity shocks are the sole exogenous source of fluctuations, it is

possible that disturbances exerting more direct effects on the plant distribution (for

example changes in investment tax credits or depreciation allowances) may generate

dynamic effects more consistent with the predictions of figure 5. Alternatively, given

that the current finding rests largely on the importance of household preferences in

determining equilibrium quantities, it is also possible that relaxing the assumptions

of complete markets or perfect competition may sufficiently weaken the role of the

representative household as to overturn the result.
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 Figure 1: Evolution of plant distribution
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Figure 2: Impulse responses for aggregate quantities 

Percentage deviations from (growth-deflated) steady state in response to 1 percent rise in aggregate 
productivity. B: Benchmark; SD: State-dependent adjustment; CA: Constant adjustment.
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Figure 3: Impulse responses in extensive and intensive capital adjustment

Percentage deviations from (growth-deflated) steady state in response to 1 percent rise in aggregate
productivity.  SD: State-dependent adjustment; CA: Constant adjustment.
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Figure 4: Impulse responses in prices

Percentage / basis point deviations from (growth-deflated) steady state in response to 1 percent rise in
aggregate productivity.  B: Benchmark; SD: State-dependent adjustment; CA: Constant adjustment.
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Figure 5: Aggregate quantity responses under fixed prices

Percentage deviations from (growth-deflated) steady state with a 1 percent rise in aggregate productivity.
Prices fixed at steady state.  B: Benchmark; SD: State-dependent adjustment; CA: Constant-adjustment.
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Figure 6: Responses in state-dependent adjustment plant distribution

Population densities (in levels) in response to 1 percent productivity rise: (a) with prices held fixed at
steady state; (b) with equilbrium price adjustment.



Table 4:  Standard deviations relative to output∗   
  Output Investment Employment Consumption Wage Interest Rate 

data 2.16 2.901 0.959 0.540 0.287 0.444 
B 1.85 3.303 0.577 0.492 0.492 0.096 

SD 1.85 3.304 0.576 0.492 0.492 0.095 
CA 1.82 3.227 0.556 0.503 0.503 0.083 
PA 1.51 2.223 0.305 0.708 0.708 0.019 

 
Table 5:  Contemporaneous correlations with output  

  Investment Employment Consumption Wage Interest Rate

data 0.823 0.903 0.858 0.263 -0.385 
B 0.973 0.946 0.924 0.924 0.889 

SD 0.973 0.946 0.925 0.925 0.892 
CA 0.976 0.950 0.938 0.938 0.904 
PA 0.991 0.971 0.995 0.995 0.610 

 
Table 6a:  First order autocorrelations 

  Output Investment Employment Consumption Wage Interest Rate 

data 0.463 0.466 0.440 0.628 0.325 0.513 
B 0.482 0.435 0.428 0.632 0.632 0.434 

SD 0.483 0.437 0.431 0.630 0.630 0.448 
CA 0.488 0.455 0.453 0.607 0.607 0.511 
PA 0.482 0.460 0.453 0.508 0.508 0.607 

 
Table 6b:  Second order autocorrelations 

  Output Investment Employment Consumption Wage Interest Rate 

data 0.027 -0.183 -0.088 0.150 -0.240 0.031 
B 0.121 0.067 0.060 0.291 0.291 0.066 

SD 0.121 0.068 0.060 0.291 0.291 0.075 
CA 0.126 0.082 0.077 0.273 0.273 0.135 
PA 0.121 0.096 0.087 0.152 0.152 0.268 

                                                 
∗  Column 1 reports the percent standard deviations for HP-filtered output in the data, 
benchmark, state-dependent adjustment, constant adjustment and partial adjustment 
models, respectively.  (The models are briefly summarized in table 3.)  Columns 2-6 are 
standard deviations relative to the standard deviation of output.  In tables 3-6, the Hansen 
preference specification implies identical consumption and wage moments within each 
model economy. 



 
Table 7:  Cross-correlations with output∗  

    (Y, X -2) (Y, X -1) (Y, X +1) (Y, X +2) 
  data 0.024 0.460 0.243 -0.280 

Investment B 0.215 0.536 0.335 -0.055 
  SD 0.215 0.537 0.337 -0.055 
  CA 0.217 0.542 0.360 -0.038 
  PA 0.181 0.520 0.407 0.026 
  data -0.207 0.175 0.651 0.168 

Employment B 0.251 0.550 0.267 -0.129 
  SD 0.251 0.551 0.270 -0.129 
  CA 0.254 0.557 0.297 -0.109 
  PA 0.226 0.543 0.341 -0.051 
  data -0.010 0.508 0.474 0.127 

Consumption B -0.048 0.335 0.667 0.397 
  SD -0.048 0.336 0.665 0.396 
  CA -0.031 0.355 0.642 0.371 
  PA 0.074 0.447 0.534 0.194 
  data 0.037 0.085 0.254 0.208 

Wage B -0.048 0.335 0.667 0.397 
  SD -0.048 0.336 0.665 0.396 
  CA -0.031 0.355 0.642 0.371 
  PA 0.074 0.447 0.534 0.194 
  data -0.010 -0.314 -0.235 0.026 

Interest Rate B 0.300 0.562 0.163 -0.235 
  SD 0.300 0.563 0.179 -0.228 
  CA 0.305 0.573 0.254 -0.167 
  PA 0.434 0.544 -0.126 -0.486 

 

                                                 
∗  B: Benchmark; SD: State-dependent adjustment; CA: Constant adjustment; PA: Partial 
adjustment. 
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