
Federal Reserve Bank of Minneapolis
Research Department Staff Report 306

May 2002

Nonconvex Factor Adjustments in Equilibrium
Business Cycle Models: Do Nonlinearities Matter?∗

Aubhik Khan

Federal Reserve Bank of Philadelphia

Julia K. Thomas

University of Minnesota
and Federal Reserve Bank of Minneapolis

ABSTRACT

Recent empirical analysis has found nonlinearities to be important in understanding aggregated
investment. Using an equilibrium business cycle model, we search for aggregate nonlinearities arising
from the introduction of nonconvex capital adjustment costs. We find that, while such costs lead
to nontrivial nonlinearities in aggregate investment demand, equilibrium investment is effectively
unchanged. Our finding, based on a model in which aggregate fluctuations arise through exogenous
changes in total factor productivity, is robust to the introduction of shocks to the relative price of
investment goods.

∗This paper is the result of a conversation with John Leahy; we are grateful to him for suggesting the topic
to us. We would also like to thank Ricardo Caballero and Tony Smith for a series of helpful discussions.
In addition we owe thanks to seminar participants at the University of California-Riverside, Penn State,
the Iowa City Midwest Macro meetings, the Society for Economic Dynamics meetings in San Jose, the 2000
NBER Summer Institute, the Penn Meetings of the Rogerson-Wright NBER group, the Federal Reserve Bank
of Minneapolis and, in particular, Marcelle Chauvet, Larry Christiano, Russ Cooper, Martin Eichenbaum,
Jonas Fisher, John Haltiwanger, Tim Kehoe and Lee Ohanian. Aubhik Khan would like to acknowledge the
hospitality of the Federal Reserve Bank of Minneapolis. The views expressed herein are those of the authors
and not necessarily those of the Federal Reserve Bank of Minneapolis or Philadelphia or the Federal Reserve
System.



1 Introduction

We evaluate the aggregate implications of discrete and occasional capital adjustment in an

equilibrium business cycle model. In our model economy, nonconvex costs of capital ad-

justment vary across establishments and lead to periods of investment inactivity. Thus, the

model generates a distribution of plants over capital. This distribution evolves over the busi-

ness cycle in response to changes in productivity that affect not only the levels of investment

undertaken by investing plants, but also the number of plants actively engaged in adjust-

ing their capital stocks. Our objective is to evaluate the contribution of such distributional

changes to the business cycle.

Recent studies of establishment-level investment provide evidence of lumpy capital ad-

justment. Examining a 17-year sample of large, continuing U.S. manufacturing plants, Doms

and Dunne (1998) Þnd that typically more than half of a plant�s cumulative investment occurs

in a single episode. Long periods of relatively small changes are interrupted by investment

spikes. This has been widely interpreted as evidence of (S,s) type investment decisions at

the establishment level. Perhaps due to nonconvexities in the costs of capital adjustment,

plants invest only when their actual capital stock deviates sufficiently far from a target value.

Supporting evidence is provided by Cooper, Haltiwanger and Power (1999), who Þnd that

the probability of an establishment undergoing a large investment episode is rising in the

time since its last such episode.

Exploring the aggregate implications of establishment-level lumpy investment, Caballero,

Engel and Haltiwanger (1995) focus on the effect of interaction between the rising adjust-

ment hazard, the probability of capital adjustment as a function of an establishment�s gap

between actual and target capital stocks, and the resultant distribution of capital. They ar-

gue that shifts in the hazard, in response to large shocks to demand or productivity, magnify

ßuctuations in aggregate investment demand and cause a time-varying elasticity of aggre-

gate investment with respect to shocks. This emphasis on aggregate nonlinearities arising

through micro-level nonconvexities is also found in the work of Cooper, Haltiwanger and

Power (1999), who stress that movements in the distribution of capital are important in ex-

plaining unusually large deviations in total investment. Further, Caballero and Engel (1999)

document skewness and excess kurtosis in aggregate investment rates, as well as a procycli-
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cal elasticity of aggregate investment demand to shocks. Exploring the ability of the lumpy

investment model to explain these features of the data, Caballero and Engel (1999, p. 785)

write �the nonlinear model we estimate has the potential to generate brisker expansions than

its linear counterparts. It is also this feature that largely explains its enhanced forecasting

properties.�

These and related papers, all of which abstract from the effect of equilibrium price

changes, suggest a potentially important role for lumpy investment in propagating the busi-

ness cycle.1 However, when Thomas (2002) evaluates the effects of nonconvex capital

adjustment costs in an equilibrium business cycle model, she Þnds that standard price move-

ments offset the tendency for large changes in the distribution of capital. Solving the model

using a system of linear difference equations, she Þnds that aggregate quantity responses are

virtually unaffected by the presence of lumpy investment patterns.2

Noting the above emphasis on aggregate nonlinearities, we reevaluate the equilibrium

lumpy investment model of Thomas (2002) using a solution method designed to preserve

such phenomena. Our Þrst step is to Þx prices and conÞrm that the introduction of noncon-

vex capital adjustment costs does indeed imply aggregate nonlinearities in the model. Next,

we explore whether these nonlinearities in aggregate investment demand survive equilibrium

price determination. Finally, we analyze the aggregate implications of lumpy investment in

the context of an equilibrium business cycle model containing an additional source of cyclical

ßuctuations. In addition to the conventional exogenous changes in total factor productiv-

ity, we allow for movements in the productivity of investment itself. The recent work of

Christiano and Fisher (1998) and Greenwood, Hercowitz and Krusell (2000) suggests that

such investment-speciÞc productivity shocks are an important source of cyclical ßuctuations.

Since, in the context of a model of lumpy investment, transitory movements in the beneÞt

from investment expenditures are more likely to shift the adjustment hazard than shocks

to total factor productivity, we explore their contribution to the generation of aggregate

nonlinearities.

The economies we study involve state vectors that are sufficiently large to make unmod-

iÞed nonlinear solution methods impractical. Therefore, we approximate the aggregate state

vector, which involves a distribution of plants across capital, with a smaller object and solve

1 See Caballero (1999) for a survey.

2 Veracierto (1998), examining investment irreversibilities, Þnds similar results.
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the model using a method closely related to the approaches of den Haan (1996, 1997) and

Krusell and Smith (1997, 1998). In our context, the method itself presents information on the

importance of changes in the distribution for the overall business cycle. Despite such efforts,

our results provide little support for the importance of discrete and occasional investment

in shaping model dynamics; the inclusion of lumpy investment does not perceptibly alter

the cycle. As a result, the equilibrium model is unable to generate the skewness and excess

kurtosis of empirical investment emphasized by Caballero and Engel (1999) and others, and

discussed above. Alternatively, when subject to equilibrium, the lumpy investment model

fails to generate the brisker expansions that have been emphasized as the basis for its relative

empirical success. This Þnding holds for both the original model of Thomas (2002) and the

model with separate shocks to output and investment.

2 The Model

The model, taken from Thomas (2002) extends the basic equilibrium business cycle model

to include costs associated with undertaking capital adjustment. To match the observed

empirical distribution of investment rates across establishments, we assume a large number

of production units, each of which faces time-varying costs of undertaking capital adjustment.

Within any period, these costs are Þxed at the plant level, being independent of the level

of capital adjustment. Given differences in Þxed costs across production units, some plants

will adjust their capital, while others will not, at any point in time. As a result, there is

heterogeneity across production units, and the model is characterized by a distribution of

plants over capital.3

At any date, a production unit is identiÞed by its capital stock, k, and its current Þxed

cost of capital adjustment, ξ ∈ [0, B]. This Þxed cost is denominated in hours of labor and
drawn from a time-invariant distribution G (ξ) common across plants. Capital and labor, n,

are the sole factors of production, and output at the plant is determined by

y = zF (k, n) ,

where z is stochastic total factor productivity. For convenience, we assume that productivity

3 Given that most available data on establishment-level capital adjustment focus on continuing plants, we
abstract from entry and exit by assuming a constant unit measure of production units.
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follows a Markov Chain, z ∈ {z1, . . . , zJ}, where

Pr
¡
z0 = zj | z = zi

¢ ≡ πij ≥ 0,
and

PJ
j=1 πij = 1 for each i = 1, . . . , J . Note that both z and F are common across plants;

the only source of heterogeneity in production arises from differences in plant-level capital.4

After production, the plant must decide whether to absorb its current cost, in which

event it is able to adjust capital. However, it may avoid this cost by setting investment to

0 and passively allowing capital to depreciate. We denote investment by i and, measuring

adjustment costs in units of output using the wage rate ω, summarize the salient features of

this choice below.

i 6= 0, cost = ωξ, γk0 = (1− δ) k + i
i = 0, cost = 0, γk0 = (1− δ) k

Throughout the paper, primes indicate one-period-ahead values, and all variables measured

in units of output are deßated by the trend level of labor-augmenting technological progress.

This leads to the familiar introduction of γ in the capital accumulation equation above.5

Let capital be deÞned on K ⊆ R+, and let µ : B (K) → [0, 1] be a Borel measure that

represents the distribution of plants over capital in the current period. The aggregate state of

the economy is described by (z, µ), and the distribution of plants evolves over time according

to a mapping, Γ, which varies with the aggregate state of the economy, µ0 = Γ (z, µ). We

will deÞne this mapping below.

In addition to the aggregate state, an establishment is affected by its individual level of

capital and adjustment cost. Let v1 (k, ξ; z, µ) represent the expected discounted value of a

plant having current capital k and Þxed adjustment cost ξ when the aggregate state of the

economy is (z, µ).

We state the dynamic optimization problem for the typical plant using a functional equa-

tion, which is deÞned by (1) and (2) below. First we deÞne the beginning-of-period expected

4 Additional sources of heterogeneity, for example persistent differences in productivity across plants, are
unlikely to contribute to the nonlinearities we isolate in section 5.1, as further explained therein.

5 We assume that efficiency units of labor grow at the exogenous rate γ1−θ − 1, where θ is capital�s share
of output; this implies a trend growth rate for output of γ − 1. Exogenous technological progress requires
that next period�s capital be measured relative to the efficiency units of labor available at that time. For
additional details, see King and Rebelo (1999).
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value of a plant, prior to the realization of its Þxed cost draw, but after the determination

of (k; z, µ):

v0 (k; z, µ) ≡
Z B

0
v1 (k, ξ; z, µ)G (dξ) . (1)

Assume that dj (zi, µ) is the discount factor applied by plants to their next-period expected

discounted value if productivity at that time is zj and current productivity is zi. (Except

where necessary for clarity, we suppress the index for current productivity below.) Their

proÞt maximization problem, which takes as given the evolution of the distribution of plants

over capital, µ0 = Γ (z, µ), is then described by the following functional equation:

v1(k, ξ; z, µ) = max
n

"
zF (k, n)− ω (z, µ)n+ (1− δ) k (2)

+max

−ξω (z, µ) + maxk0
−γk0 + JX

j=1

πijdj (z, µ) v
0
¡
k0; zj , µ0

¢ ,
− (1− δ) k +

JX
j=1

πijdj (z, µ) v
0

µ
(1− δ)
γ

k; zj , µ
0
¶

#
.

Given (k, ξ) and the equilibrium wage rate ω (z, µ), the plant chooses current employment

n. Next it must choose whether to adjust capital, the value of which is represented by the

Þrst term in the internal binary maximum choice above, or avoid its current Þxed cost by

setting investment to 0. Instead of merely subtracting the cost of investment from current

proÞts, we adopt an equivalent but notationally more convenient approach. The value of

nondepreciated capital augments current proÞts, and the plant is seen to repurchase its

entire capital stock each period. Since adjustment costs do not affect the choice of current

employment, we denote using nf (k; z, µ) the common choice of employment by all type k

plants. Further, let kf (k, ξ; z, µ) denote the choice of capital for next period by plants of

type k with adjustment cost ξ.

The economy is populated by a unit measure of identical households. Households� wealth

is held as one-period shares in plants, which we denote using the measure λ. They determine

their current consumption, C, hours worked, N , as well as what number of new shares,

λ0 (k), to purchase at price ρ (k; z, µ). Their lifetime expected utility maximization problem

is described below:
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W (λ; z, µ) = max
C,N,λ

0

³
U (C, 1−N) + β

JX
j=1

πijW
¡
λ0; zj , µ0

¢´
(3)

subject to

C +

Z
K
ρ (k; z, µ)λ0 (dk) ≤ ω (z, µ)N +

Z
K
v0 (k; z, µ)λ (dk) .

Let c (λ; z, µ) describe their choice of current consumption, nh (λ; z, µ) their current al-

location of time to working and Λ (k,λ; z, µ) the quantity of shares they purchase in plants

that begin the next period with k units of capital.

A Recursive Competitive Equilibrium is a set of functions³
ω, (dj)

J
j=1 , ρ, v

1, nf , kf ,W, c, nh,Λ
´

such that the following hold:

1. v1 satisÞes (1) - (2), and
¡
nf , kf

¢
are the associated policy functions for plants.

2. W satisÞes (3), and
¡
c, nh,Λ

¢
are the associated policy functions for households.

3. Λ (k0, µ; z, µ) = µ0 (k0) =
R
{(k,ξ) | k0=kf (k,ξ;z,µ)}G (dξ)µ (dk).

4. nh (µ; z, µ) =
R
K

µ
nf (k; z, µ) +

R B
0 ξJ

³
(1−δ)
γ k − kf (k, ξ; z, µ)

´
G (dξ)

¶
µ(dk),

where J (x) = 0 if x = 0; J (x) = 1 if x 6= 0.

5. c (µ; z, µ) =
R
K
R B

0

h
zF
¡
k, nf (k; z, µ)

¢
+ (1− δ) k − γkf (k, ξ; z, µ)

i
G (dξ)µ (dk).

Using C and N , as given by 4 and 5, to now describe the market-clearing values of con-

sumption and hours worked by the household, it is straightforward to show that equilibrium

requires that ω (z, µ) = D2U(C,1−N)
D1U(C,1−N) and that dj (z, µ) =

βD1U(C0,1−N 0)
D1U(C,1−N) . It is then possible

to compute equilibrium by solving a single Bellman equation that combines plants� proÞt

maximization problem with the equilibrium implications of household utility maximization.

Let p denote the price plants use to value current output, where

p (z, µ) = D1U (C, 1−N) , (4)

ω (z, µ) =
D2U (C, 1−N)

p (z, µ)
. (5)
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A reformulation of (2) yields an equivalent description of a plant�s dynamic problem. Sup-

pressing the arguments of the price functions,

V 1(k, ξ; z, µ) = max
n

"
[zF (k, n)− ωn+ (1− δ) k] p (6)

+max

−ξωp+maxk0
−γk0p+ β JX

j=1

πijV
0
³
k
0
; zj , µ

0
´ ,

− (1− δ) kp+ β
JX
j=1

πijV
0

µ
(1− δ)
γ

k; zj , µ
0
¶

#

where

V 0 (k; z, µ) ≡
Z B

0
V 1 (k, ξ; z, µ)G (dξ) . (7)

Equations (6) and (7) will be the basis of our numerical solution of the economy. This

solution exploits several results which we now derive. First, note that plants choose labor

n = nf (k; z, µ) to solve

zD2F (k, n) = ω (µ, z) .

Next, we examine the capital choice of establishments undertaking active adjustment deci-

sions. DeÞne the gross value of undertaking such capital adjustment, the Þrst choice in the

internal binary maximum within (6), as

E (z, µ) ≡ max
k
0

−γk0p+ β JX
j=1

πijV
0
³
k
0
; zj , µ

0
´ . (8)

Note that the target capital stock solving this maximization problem is independent of both

k and ξ. As a result, all plants that actively adjust their capital stock choose a common level

of capital for the next period, k0 = k∗ (z, µ), which solves the right-hand side of (8). This

independence of target capital from current capital implies that the value of adjustment,

E (z, µ), is itself independent of current capital. Referring again to the functional equation

in (6), it is now clear that a plant will absorb its Þxed cost and adjust only if the net

value of achieving the target capital, E (z, µ) − ξωp, exceeds its continuation value under
nonadjustment (line three). It follows immediately that a plant of type k will undertake

capital adjustment if its Þxed adjustment cost, ξ, falls below some k-speciÞc threshold value,

ξk.
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Let bξk = bξ (k; z, µ) describe that level of ξ, given current k, that leaves a plant indifferent
between active capital adjustment and simply allowing its capital stock to depreciate:

−p (z, µ)bξkω (z, µ) +E (z, µ) (9)

= −p (z, µ) (1− δ) k + β
JX
j=1

πijV
0

µ
(1− δ)
γ

k; zj , µ
0
¶
.

Next, deÞne ξ (k; z, µ) ≡ min
n
B,max

n
0,bξkoo so that 0 ≤ ξ (k; z, µ) ≤ B. Plants with

adjustment costs at or below ξk will adjust their capital stock. Thus, plants described by the

plant-level state vector (k, ξ; z, µ) will begin the subsequent period with capital stock given

by

k0 = kf (k, ξ; z, µ) =

 k∗ (z, µ) if ξ ≤ ξ (k; z, µ),
(1−δ)k
γ if ξ > ξ (k; z, µ).

(10)

Given (10), we now explicitly deÞne the evolution of the distribution of plants over capital,

µ0 = Γ (z, µ). For k ∈ K such that k 6= k∗ (z, µ),

µ0 (k) =
·
1−G

µ
ξ

µ
γ

1− δk; z, µ
¶¶¸

µ

µ
γ

1− δk
¶
, (11)

while for k ∈ K such that k = k∗ (z, µ),

µ0 (k) =

Z
K
G
¡
ξ (k; z, µ)

¢
µ (dk) (12)

+

·
1−G

µ
ξ

µ
γ

1− δk; z, µ
¶¶¸

µ

µ
γ

1− δk
¶
.

It then follows that the market-clearing levels of consumption and hours required to determine

p and ω using (4) and (5) are given by

C =

Z
K

³
zF
³
k, nf (k; z, µ)

´
−G ¡ξ (k; z, µ)¢ hγk∗ (z, µ)

− (1− δ) k
i´
µ (dk) (13)

N =

Z
K

"
nf (k; z, µ) +

Z ξ(k;z,µ)

0
ξG (dξ)

#
µ (dk) . (14)
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3 Model Solution

Given our focus on nonlinearities induced by nonconvex adjustment costs, we adapt existing

nonlinear solution methods to solve the model. The solution algorithm involves repeated

application of the contraction mapping implied by (6) and (7), given the price functions (4)

- (5), to solve for V 0. In implementing this algorithm, we reduce the large state vector of

the model to allow for nonlinear approximation of the plant�s value function.

We solve nonlinearly for V 0 across a multi-dimensional grid of points, using tensor

product splines to interpolate function values at other points. Johnson et al. (1993) have

shown this type of multivariate spline approximation to be relatively efficient in comparison

with multilinear grid approximation. Our splines are generated as the product of univariate

functions, with one of these corresponding to each argument of the value function. Each such

univariate function is itself a spline constructed piecewise using a grid of values, or knots, on

the space of its argument. Each piece of the spline is a polynomial, and adjacent pieces meet

at the interior knot points. We use cubic splines constructed using third-order polynomials,

and each univariate spline is determined as follows: (i) the spline is required to exactly

equal the approximated function at each knot point, and (ii) it must be twice-continuously

differentiable at each interior knot point. Two additional conditions, commonly referred to

as endpoint conditions, are required to determine all 4 coefficients of each polynomial piece.

We use the not-a-knot endpoint conditions that require thrice differentiability at the Þrst

and last interior knot.6 In using these tensor product splines, we increase the number of

knots used for each variable until there is no noticeable change in the approximation.

A difficulty with using nonlinear methods is that the curse of dimensionality restricts

the feasible number of variables; as a result we must reduce the state vector of our economy

for computational tractability. We adopt the method of Krusell and Smith (1997, 1998)

to approximate the state vector of the economy (z, µ), which contains a large object, the

distribution of production units over capital, with a smaller object (z,m) where m is a vector

of elements derived from µ. For example, Krusell and Smith use statistical moments derived

from the distribution, in particular, the mean and standard deviation. For our problem, we

Þnd it more efficient to use a set of conditional means. SpeciÞcally, when m has I elements,

we derive these by partitioning the distribution µ into I equal-measure parts and then setting

6 Additional details on univariate splines are available in De Boor (1978) and Van Loan (2000). De Boor
also provides details on implementing multivariate splines using the B-form; however, we implement these
using the pp-form by developing the algorithm outlined in Johnson (1989).
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m = (m1, . . . ,mI), where mi is the mean of the ith partition.

Nonlinear approximation and state space approximation are the two key ingredients

of our solution method. We now turn to a brief overview of the details of the method.

Given I, we assume functional forms that predict current equilibrium prices, p, and next

period�s proxy endogenous state, m0, as functions of the current state, p = bp ¡z,m;χpl ¢ and
m0 = bΓ (z,m;χml ), where χpl and χml are parameters that are determined iteratively using a
procedure explained below, and l indexes these iterations. For the class of utility functions

we use, the wage is immediate once p is speciÞed; hence there is no need to assume a wage

function. For any I, bp, and bΓ, we undertake the following steps.
1. The Þrst step uses

¡
χpl ,χ

m
l

¢
, having replaced µ with m in (6) - (7), and Γ with bΓ, to

solve for V 0 at each point on a grid of values for (k; z;m).

2. The second step simulates the economy for T periods, recording, at each point in

time, t = 1, . . . , T , the actual distribution of plants over capital, µt, which is a large

but Þnite-dimensional object in our economy.7 To solve the model in each period,

we begin by calculating m directly from the actual distribution and then using bΓ to
specify expectations ofm0,m0 = bΓ (z,m;χml ). This determines βPJ

j=1 πijV
0 (k0; zj ,m0)

for any k0. Thus, given any ep, we are now able to solve for k∗ (z, µ) and ξ (k; z, µ), as
well as nf (k; z, µ) using (8) - (10). The implied levels of consumption and total hours

worked are then obtained using equations (13) and (14). The equilibrium price for

current output, p, is that which leads to plant decision rules, k∗, nf and ξ that in

turn imply market-clearing levels of consumption and hours worked for the household:

p = D1U (C, 1−N). (It is important to emphasize that we have not used bp, but rather
have directly solved for equilibrium p here.) Thereafter equations (11) - (12) deliver

µt+1, and we move into the next date of the simulation. After the completion of the

simulation, the resulting data, (pt,mt)
T
t=1, are used to reestimate

¡
χpl+1,χ

m
l+1

¢
using

OLS.

We repeat this two-step process, Þrst determining V 0 given
¡
χpl ,χ

m
l

¢
, next using our solution

for plants� value functions to determine equilibrium decision rules over a simulation, then

aggregating these rules to obtain (pt,mt)
T
t=1, and updating χ

p and χl, until these parameters

converge.

7 The method is easily extended to cases where µ is countable or larger using a polynomial approximation.
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The simulation step may be used to compute errors implied by the use of the set of

conditional means, m, instead of µ, and the functional forms bp and bΓ. In each period, we
compare the equilibrium price to the forecasted price and the actual values of the conditional

means to their predicted values. Given any functional form, we increase the number of

partitions (the number of conditional means used to approximate the distribution of plants

over capital) until these differences are small. We also experiment with different functional

forms. Below, we report these expectational errors and use them to determine I.

4 Parameter Choices

We compare the lumpy investment economy to an economy without investment frictions

that is otherwise identical, the standard business cycle model. This use of the frictionless

neoclassical model as a reference model is appealing both due to its common usage in business

cycle studies and because it provides a benchmark against which to measure nonlinearities, as

it has been shown to respond approximately linearly to reasonable-sized shocks.8 Toward our

comparison, we specify identical functional forms in utility and production across models.

We follow Hansen (1985) and Rogerson (1988) in assuming indivisible labor, so that the

representative household�s momentary utility function is additively separable and linear in

leisure: u(c, L) = log c+AL. Establishment-level production functions take a Cobb-Douglas

form, zF (k,N) = zkθNν , consistent with the observation that capital and labor shares of

output have remained roughly constant in U.S. time series.

Our solution of each model economy requires the speciÞcation of several parameters

governing preferences and technology. We Þx the length of a period to correspond to one

year, allowing us to use evidence on establishment-level investment in the parameterization of

the adjustment cost distribution below. Model parameters are selected to ensure agreement

between the reference model and observed long-run values for key postwar U.S. aggregates.

In particular, we choose the mean growth rate of technological progress to imply a 1.6

percent average annual growth rate of real per capita output, the discount factor, β, to

yield an average interest rate of 6.5 percent (King and Rebelo 1999), and the rate of capital

depreciation to match an average investment-to-capital ratio of 7.6 percent (Cooley and

Prescott 1995). Given these values, capital�s share of output is determined such that the

8 This follows from the work of Christiano (1990), who shows that the LQ approximation of Kydland and
Prescott (1982) is highly accurate for this class of models.
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average capital-to-output ratio is 2.6 (Prescott 1986). Labor�s share is consistent with direct

estimates from postwar data, while the parameter governing the preference for leisure, A,

is taken to imply an average of 20 percent of available time spent in market work (King,

Plosser and Rebelo 1988).

To complete our calibration of the reference model, we next estimate parameters for a

continuous shock and then assume an equivalent discretized shock process. SpeciÞcally, we

assume an exogenous productivity process of the form

z0 = zρeε
0
; ε ∼ n(0,σ2

ε),

selecting the persistence term ρ and the variability of the log normal innovations, σε, to be

consistent with measured Solow residuals from the U.S. economy over 1953-1997, using the

Stock and Watson (1999) data set. Next, we discretize the productivity process, using a grid

of 5 possible shock realizations. We select this grid of values, along with the transition matrix

Π (with typical element πij ≡ Pr(z0 = zj | z = zi)) to match the required shock persistence
and variability, following a method developed by Rouwenhorst (1995).

Table 1 and equation (15) summarize the parameter set for the reference model.

Z = [.9328 .9658 1.0000 1.0354 1.0720] (15)

Π =



0.8537 0.1377 0.0083 0.0002 0.0000

0.0344 0.8579 0.1035 0.0042 0.0001

0.0014 0.0690 0.8593 0.0690 0.0014

0.0001 0.0042 0.1035 0.8579 0.0344

0.0000 0.0002 0.0083 0.1377 0.8537



As this set of parameters is also used for the lumpy investment model, only the properties of

adjustment costs remain to be determined. We assume that adjustment costs are uniformly

distributed, with cumulative distribution G(ξ) = ξ
B . The distribution�s upper support, B,

is selected to maximize the model�s agreement with three results from Doms and Dunne�s

(1998) study of establishment-level investment: (i) In the average year, plants raising their

real capital stocks by more than 30 percent (lumpy investors) are responsible for 25 percent

of aggregate investment, (ii) these lumpy investors constitute 8 percent of plants, while (iii)
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80 percent of plants are low-level investors exhibiting annual capital growth below 10 percent.

Setting B = .002 (a value corresponding to 1 percent of the average fraction of time devoted

to employment) roughly matches these observations, with lumpy investments comprising 27

percent of aggregate investment, and lumpy investors (low-level investors) representing 6

percent (78 percent) of plants.

We have chosen our baseline value for B to match the data we have on lumpy investment.

Nonetheless, in the results that follow, we explore the sensitivity of model results to this

choice by considering a ten-fold rise to B = .02. In this high cost case, the extent of

lumpy investment is observed to be dramatically overstated. Model counterparts for the

Doms and Dunne moments above become (i) lumpy investment as a proportion of aggregate

investment: 85 percent, (ii) lumpy investors as a proportion of plants: 12 percent, and (iii)

low-level investors as a proportion of plants: 85 percent.

5 Results

To isolate aggregate nonlinearities that may arise through the introduction of nonconvex

adjustment costs, we now compare the behavior of the lumpy investment model with two

benchmarks. The Þrst, with no adjustment costs, is the standard equilibrium business cycle

model. It will serve as our reference. The second, with convex adjustment costs, has been

used extensively in the empirical investment literature. This, the partial adjustment model,

assumes adjustment costs of the form φ
2

¡
i
k − λ

¢2
k. Here, λ represents the economy�s steady

state investment-to-capital ratio, and deviations from this average investment rate entail the

payment of a quadratic cost of capital adjustment. Following Kiyotaki and West (1996), we

set the parameter φ governing the magnitude of this quadratic cost at φ = 2.2, which implies

a steady-state elasticity of the investment-to-capital ratio to Tobin�s marginal q of 5.98. In

all other respects, this partial adjustment model is identical to our reference model.

We begin by illustrating the distinguishing feature of the lumpy investment model, the

rising adjustment hazard described by Caballero, Engel and Haltiwanger (1995). It is an

immediate and important implication of our model that the probability of capital adjustment

rises in the gap between target and actual capital. This result follows from the following

observations. It is straightforward to show that V 0 is increasing in k, plant-level capital.

Consequently,
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E (z, µ) + (1− δ) kp− β
JX
j=1

πijV
0

µ
(1− δ)
γ

k; zj , µ
0
¶

is increasing in
¯̄̄

(1−δ)
γ k − k∗ (z, µ)

¯̄̄
. In other words, the larger the difference between unad-

justed capital and target capital, the greater the value of adjustment. It then follows from (9)

that ξ (k; z, µ) is also increasing in the gap between unadjusted and target capital. Hence the

probability that a production unit of type k undertakes capital adjustment, G
¡
ξ (k; z, µ)

¢
,

is increasing in its capital deviation, as shown in the upper panel of Þgure 1. Notice that

the hazard is centered at the current capital level that yields the target capital for next pe-

riod without need of adjustment, γk
∗(z,µ)
1−δ . Probabilities of adjustment monotonically rise as

capital deviates to the left or right of this value. For the sake of exposition, we temporarily

abstract from aggregate uncertainty and assume that the economy is in its steady state.

In this case, all plants are positioned along the left ramp of the hazard, given depreciation

and trend technological progress, having capital levels at or below that associated with the

target. The implication of this is a monotonically rising steady state distribution of plants,

as shown by the solid curve of the Þgure�s lower panel. The lower, dashed curve depicts the

measure of plants at each capital level that do not adjust their capital stocks. Thus, the area

between represents the steady state measure of adjusting plants, here roughly 30 percent.

5.1 Dynamics under fixed prices

We begin with a series of Þxed price experiments designed to gauge lumpy investment�s

potential for nonlinearities. In these examples, we study aggregate factor demand responses

to ßuctuations in total factor productivity under the assumption that wages and interest

rates faced by the economy�s establishments remain Þxed at their steady state values. We

view this as a useful way of exploring the ability that our model has for producing the

sorts of features uncovered by previous partial equilibrium studies, as discussed in section 1

above. Perhaps more importantly, this series of examples illustrates how shifts in the rising

adjustment hazard, introduced above, may interact with the underlying distribution of plants

to either amplify or dampen the effect of exogenous changes in productivity.

We begin by examining the effects of a transitory rise in productivity, continuing to

use the steady state as a starting point. The Þrst panel of Þgure 2 displays an initial

adjustment hazard for the lumpy investment model, centered at the capital value associated

with steady state target capital. In the face of a one standard deviation rise in productivity
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that is expected to persist, establishments� target capital increases sharply. This recenters the

adjustment hazard, shifting it rightward. Recall that, on average, most plants are positioned

along the left ramp of the hazard, due to capital depreciation and trend productivity growth.

When those plants associated with initial capital holdings below 1.18 experience a rise in

target capital, they Þnd that their current capital lies sufficiently far below their (raised)

target that they are now willing to suffer large adjustment costs to correct the shortfall. In

this particular example, all plants lie along the left ramp of the initial hazard. Here the rise in

productivity generates such large rises in the differences between current and target capital

that even the highest adjustment cost draw does not dissuade any plant from investing. As

a result, the total measure of adjustors rises dramatically from .295 to 1 in the Þgure�s lower

panel.

Next, consider the converse, the effects of a one standard deviation drop in productivity, as

depicted in Þgure 3. In this case, the fall in target capital implies a substantial leftward shift

in the adjustment hazard. Those plants with very low capital holdings, initially associated

with high adjustment probabilities, now Þnd their current capital much closer to the target

value and, hence, are less likely to undertake costly adjustment. At the same time, plants

with current capital roughly between 1 and 1.2 Þnd that, rather than having a minor capital

shortfall, they now have substantial excess. For these plants, adjustment probabilities rise.

On balance, the left-shifting adjustment hazard implies only a minor rise in the number

of active capital adjustors, from .295 to .308, as depicted in the lower panel of the Þgure.

While positive productivity shocks have the potential to generate substantial external-margin

effects on aggregate investment demand, negative productivity shocks do not.

The signiÞcance of this distributional asymmetry becomes apparent in Þgure 4. There,

we consider deviations from trend growth rates in response to the positive shock of Þgure

2, occurring in period 6, followed by 14 periods of average productivity during which the

economy resettles, and then the negative shock of Þgure 3. In panel A, target capital�s devi-

ation from steady state behaves roughly symmetrically and matches the approximately linear

reference model closely. However, in response to the Þrst shock, the rise in target capital is

substantially ampliÞed by a large rise in the measure of investors, as indicated by panel B,

where the growth rate of aggregate capital demand under lumpy investment rises roughly

18 percent more than in the reference model. By contrast, when the negative shock occurs,

changes along the external margin play only a minor role. There, the fall in target capital

is mitigated by the fact that only about 30 percent of establishments actually disinvest to
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the new target; consequently, the growth rate of aggregate capital demand exhibits less than

half the decline seen in the reference model (where all plants disinvest). We conclude from

this example that: (i) our model of lumpy investment does have the potential to generate

aggregate nonlinearities; (ii) these nonlinearities may take the form of asymmetric responses

to shocks - sharper expansions and dampened contractions - as suggested by the Þndings

of previous authors; (iii) these features result entirely from the asymmetric effects of right-

ward and leftward shifts in the adjustment hazard upon the total number of adjustors, and

hence subsequent distributions of plants; (iv) the dynamics of adjustment along the intensive

margin are roughly unaffected by the presence of nonconvexities in plant-level adjustment

technologies.

Our next experiment establishes that the powerful distributional effects we have seen

driving aggregate nonlinearities in investment demand are not merely the result of the ar-

tiÞcial expositional example constructed above. SpeciÞcally, we subject all three models to

the same realization of exogenous shocks, drawn from our calibrated distribution. Over this

2500 period simulation of each economy, illustrated in Þgure 5 and table 2, we again hold

prices Þxed. For each model�s investment series we compute deviations relative to the simu-

lation mean. In the upper panels of Þgure 5, we display the distribution of these aggregate

investment deviations for the reference and lumpy investment models, respectively. The hor-

izontal axes represent 5 broad categories of investment episodes, ranging from extremely low

to extremely high. (With prices Þxed, aggregate investment can vary as much as Þve-fold

relative to its mean.) The vertical axis measures the fraction of dates spent in each of these

ranges.

For the reference model, in the upper left panel, the distribution of investment deviations

is symmetric. By contrast, the lumpy investment economy displays a disproportionate frac-

tion of extremely high, relative to high, investment episodes and has fewer extremely low,

relative to low, observations. SpeciÞcally, while times of near-average investment occur with

roughly equal frequency, the Þgure�s lower right panel reveals that the inclusion of nonconvex

capital adjustments shifts 2.5 percent of very low investment realizations upward into the

low range, while nearly 2 percent (50 periods) of high investment episodes are pushed into

the extremely high range. At lower left, we align these histograms alongside results for the

partial adjustment model, which by comparison displays far less dispersion in investment,

given the convexifying force of quadratic adjustment costs.

For a more detailed examination of the Þxed price simulation results, we next undertake
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a date-by-date comparison between the lumpy investment and reference models. SpeciÞcally,

we construct a series representing the differences between the two models� investment de-

viations at each date in the simulation. The Þrst row of table 2 summarizes the notable

features of this series, while the second row presents the analogous results for the partial ad-

justment versus reference models. Note that average differences from the reference economy

are substantial, 46 percent for lumpy investment and 69 percent for partial adjustment.

We close our preliminary examination of the lumpy investment model under Þxed prices

with two observations. First, table 2 and Þgure 5 clearly indicate that the Þxed costs cal-

ibrated in the previous section are more than sufficient to generate substantive differences

between the lumpy investment and reference models. Second, having demonstrated the mech-

anism that yields the model�s potential for nonlinear behavior, we are now able to discuss

our decision to abstract from additional sources of heterogeneity. Certainly the abstraction

facilitates model solution. However, as the example of Þgures 2 - 4 indicates, it is also likely

to bias our results toward larger nonlinearities than would otherwise occur. If, for example,

there were idiosyncratic plant-speciÞc differences in productivity, there would be an adjust-

ment hazard and target capital associated with each level of productivity. Moreover, since

generally there would be some plants distributed on the right half of these hazards, the

asymmetry described here would be dampened though not, given technological progress and

depreciation, eliminated. In this respect, our results in the next section may be interpreted

as providing an upper bound to the potential for equilibrium nonlinearities in this class of

model.

5.2 Equilibrium dynamics

We begin this section with a discussion of the accuracy of the forecasting rules, bΓ and bp,
used by agents in the model solution. Table 3 displays the equilibrium forecasting functions

when the distribution is approximated using only a single partition.9 (Here we refer to

I, the number of elements in m, as the number of partitions.) We condition the forecasts

on current productivity; thus, as our discretization of stochastic productivity assumed 5

values, there are 5 regressions. The standard errors and R2s associated with each regression

indicate that the statistical mean alone is an efficient proxy for the distribution. This is

9 We have experimented with a variety of functional forms, including, for example, higher order terms.
These produce similar results to the log linear form reported here. In the extension of the model, in section
6 below, we use quadratic forms.
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conÞrmed in table 4, where we re-solve the economy using two partitions to approximate

the distribution and Þnd only marginal reductions in the standard errors on equilibrium

price regressions, indicating little additional relevant information. It is difficult to draw

inferences from the relative magnitudes of the errors in forecasting future conditional means,

as neither m0
1 nor m

0
2 in table 4 corresponds to the mean in table 3. Instead, we use Þgure 6

to present the aggregate capital series from each lumpy investment economy over the same

2500 period history. We Þnd no discernible difference; the maximum difference in the two

series is 2.1×10−4. Finally, to further emphasize plants� forecasting ability in using only the

single mean of the distribution, we compare the results of table 3 with corresponding results

from an economy whose distribution is exactly its mean. SpeciÞcally, when we solve for

equilibrium forecasting functions in the reference economy, we Þnd minimal changes in the

regression coefficients and standard errors. As an illustration of this, the reference economy�s

standard errors for m0
1 and p are 1.22×10−4 and 2.63×10−5, respectively, when productivity

is at its highest value z5, and 2.49×10−4 and 5.36×10−5 for z = z3. Comparing these values

with the corresponding errors of table 3 foreshadows the remaining results of this section. In

any case, we take these Þndings as strong evidence that we need not partition the distribution

further. Thus, except where explicitly noted otherwise, the lumpy investment results below

correspond to the 2-partition economy.

We now reexamine the productivity simulation of our Þxed price experiments in general

equilibrium. We begin with an overview of second moments in table 5.10 Panel A displays

percentage standard deviations in the growth rates of output, investment, consumption,

employment, wages and interest rates across model economies. From these results, it is clear

that the variability under lumpy investment is virtually identical to the reference economy,

regardless of whether we use one partition of the distribution (row 3) or two (row 2). This

similarity is further emphasized by comparison with the partial adjustment model, where

the cycle is dampened by sluggish responsiveness of investment demand. The similarities

between Lumpy Investment and Reference economies are also evident in the comovements

with output reported in panel B. By contrast, aggregate quantities move more closely with

the cycle in the partial adjustment results.

Higher adjustment costs do not induce more investment volatility in the lumpy investment

model. In the Þnal row of table 5, we explore the robustness of its similarities to the reference

10 For tables 5-7, simulated data are logged (with the exception of interest rates) and HP-Þltered using a
weight of 100.
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economy by raising the magnitude of the adjustment cost�s support ten-fold above the value

consistent with the empirical observations discussed in section 4 to B = .02. We have already

noted that this value leads to a dramatically overstated proportion of lumpy investment as a

share of aggregate investment. Nonetheless, in table 5 we see that the results remain close to

the reference. Moreover, the high cost parameterization dampens the cycle slightly, shifting

it in the direction of the partial adjustment model. This may be explained as follows. First,

as the larger upper support corresponds to 10 percent of the average time devoted to labor

supply, the high B induces much longer average delays between investments at the plant

level, thus exaggerating the presence of lumpy investment. (Recall that, while Doms and

Dunne (1998) Þnd that lumpy investment is 25 percent of total, it is 85 percent on average

in this model with high costs.) More lumpy investment is associated with a ßattening of

the average adjustment hazard; with this, shifts in the hazard imply smaller changes in the

number of adjusting plants, reducing the effects of changes in target capital.

From table 5, it is evident that lumpy investment fails to reshape the aggregate cycle in

equilibrium. We explore this further, in Þgure 7, by presenting histograms of the relative

deviations in investment from trend, the equilibrium counterpart to Þgure 5. Two features

of this Þgure are noteworthy. First, investment in both the lumpy investment and reference

economies exhibits far less dispersion than was evident in Þgure 5, as changes in factor prices

largely offset the swings in investment demand seen under Þxed prices. Second, while the

reference economy�s investment series continues to be approximately symmetric around zero,

the distribution is now closer to the Normal. Here again, price movements offset plants� de-

sires for large capital adjustments, shifting substantial mass away from extreme investment

episodes inward toward more moderate changes. This same force removes the lumpy invest-

ment economy�s tendency for sharp expansions, shifting mass from the highest investment

deviations downward. As a result, the differences in these two histograms essentially disap-

pear in equilibrium; the largest difference is in the zero band, where the lumpy investment

economy displays about 0.5 percent fewer realizations than the reference economy.

From the results presented so far, it is apparent that lumpy investment does not produce

the stronger expansions and dampened recessions suggested by the Þxed price results of

Þgure 5, at least on average. Table 6, the equilibrium version of table 2, conÞrms that

the differences between the Lumpy Investment and Reference investment series are never of

quantitative signiÞcance; the maximum difference at any date is 0.3 percent. We also see that

the gaps present in the second row are reduced when price changes are present to dampen
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ßuctuations in the benchmark investment series.

Based on the discussion above, it would appear that changes in extensive-margin capital

adjustment within the lumpy investment economy must be minor in equilibrium. After all,

it was such changes that distinguished the lumpy investment model from the reference model

under Þxed prices. Perhaps surprisingly, while the aggregate cyclical behavior of the noncon-

vex adjustment cost model is essentially identical to that of the reference model, this does

not imply a lack of movement in the distribution of plants. The fraction of plants engaging

in capital adjustment, 0.295 in the steady state, is strongly procyclical. Isolating, as above,

cyclical components using the Hodrick-Prescott Þlter with a weight of 100, this series has

a percentage standard deviation of 4.25, more than twice that of output. Furthermore, the

contemporaneous correlation of the adjustment rate with output is 0.88, and with invest-

ment it is 0.96. In equilibrium, there are changes in both the measure of adjusting plants

and their capital targets. It is this interplay between the extensive and intensive margins of

capital adjustment that allows an approximate reproduction of the aggregate dynamics of

the reference economy.

Changes in adjustment rates are important in our model. However, since production

units are owned by the household, these changes act to reduce consumption volatility to

the level of the reference economy.11 They do not generate brisker expansions. In Þgure

8, we reconsider the asymmetric shock history that illustrated lumpy investment�s potential

for nonlinearities when real wages and interest rates were constant. We Þnd that, even in

this example, the equilibrium lumpy investment economy exhibits no greater evidence of an

asymmetric response than does the approximately linear reference economy.

6 Investment Shocks

The results of the preceding section indicate that nonconvex capital adjustments can generate

large nonlinearities in an environment with unchanging prices, but fail to do so when markets

clear. It is tempting, then, to conclude that lumpy investment is not particularly important

to the business cycle. However, this conclusion may rely on the assumption that business

cycles are generated by a single driving force - an aggregate productivity shock that affects

all production units in the economy.

Recent work by Christiano and Fisher (1998) and Greenwood, Hercowitz and Krusell

11 Consumption ßuctuates considerably more in the partial adjustment model. See table 5.

20



(2000) suggests that, in fact, ßuctuations in the price of investment goods may explain a

substantial portion of the business cycle. Identifying the relative price of new equipment as

a measure of the price of investment goods, Greenwood et al. present evidence that shocks

shifting the price of investment above and below its long-run downward trend can account

for 30 percent of the cyclical variation in output. Measuring investment good prices more

broadly, Christiano and Fisher Þnd that investment-speciÞc shocks explain 75 percent of

output ßuctuations at business cycle frequencies.12

The importance of investment-speciÞc shocks in the economy raises questions about the

generality of our results in the previous section. We reason as follows. All plants beneÞt from

the effects of a positive total factor productivity shock, regardless of whether they expand

their factors of production; to better exploit these beneÞts, some plants increase capital.

By contrast, a positive investment-speciÞc shock provides a more direct incentive for capital

adjustment, since it beneÞts only those establishments that invest. Thus such shocks have the

potential to yield much larger shifts in the economy�s adjustment hazard, perhaps sufficient

to overcome the convexifying forces of equilibrium. To explore this possibility, we now extend

our previous description of the lumpy investment model (and the reference model) to allow

for exogenous ßuctuations in the productivity of investment.

Our extension of the model is related to the approaches taken by Christiano and Fisher

(1998) and Greenwood et al. (2000) and involves the following modiÞcations to our previous

speciÞcation. We assume that investment-speciÞc productivity follows a Þrst order Markov

process with average growth rate G− 1. Plant-level capital accumulation is now governed by

χk0 = (1− δ)k + ζi,

where ζ denotes the current level of detrended investment-speciÞc productivity, and χ − 1
denotes the long-run growth rate of aggregate capital, which is γG 1

1−θ −1.13 The exogenous

aggregate state is given by (z, ζ), and we follow the previous authors in assuming that

shocks to total factor productivity and investment-speciÞc productivity are independently

12 Fluctuations in the price of investment goods may be interpreted as the result of shocks to the productivity
of investment, or investment-specific technology shocks. Throughout this section, we follow this interpretation.

13 As before, all variables denominated in units of output are growth-deßated. With the inclusion of

investment-speciÞc productivity growth, trend output now grows at rate γG θ
1−θ − 1, rather than γ − 1. We

recalibrate the household�s discount factor β to maintain the steady state interest rate at 6.5 percent.
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distributed. Transition probabilities are

πij ≡ Pr
¡
z0 = zj | z = zi

¢
τ ls = Pr

¡
ζ 0 = ζs | ζ = ζ l

¢
.

With these alterations, equations (6) and (7) describing the plant�s dynamic problem in

section 2 change as shown below.

V 1(k, ξ; z, ζ, µ) = max
n

µ·
zF (k, n)− ωn+ (1− δ) k

ζ

¸
p (16)
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0
¶

¶

V 0 (k; z, ζ, µ) ≡
Z B

0
V 1 (k, ξ; z, ζ, µ)G (dξ) . (17)

Equations (8) and (9), determining the target capital and threshold adjustment costs, change

accordingly, z being replaced with (z, ζ) and χ replacing γ, and the evolution of the distrib-

ution of plants over capital µ0 = Γ(z, ζ, µ) is given by the following:

µ0 (k) =
·
1−G

µ
ξ

µ
χ

1− δk; z, ζ, µ
¶¶¸

µ

µ
χ

1− δk
¶
; k 6= k∗ (z, ζ, µ) (18)

µ0 (k) =

Z
K
G
¡
ξ (k; z, ζ, µ)

¢
µ (dk) (19)

+

·
1−G

µ
ξ

µ
χ

1− δk; z, ζ, µ
¶¶¸

µ

µ
χ

1− δk
¶
; k = k∗ (z, ζ, µ) .

The equations describing equilibrium consumption and hours, (13) - (14), are similarly mod-

iÞed. Finally, we assume that shocks to the investment productivity process take the form

ζ 0 = ζρζeε
0
ζ ; εζ ∼ n(0,σ2

εζ
), (20)

then discretize the exogenous state space (z, ζ) on a 3× 3 grid of values, using the procedure
outlined above in section 4.
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Note that the growth-deßated relative price of a unit of investment is simply 1
ζ . As such,

we are able to use a relative price series for aggregate investment, based on U.S. data from

1982 through 1998, to directly estimate the parameters of (20), ρζ and σεζ , as well as the

trend parameter G.14 This yields G = 1.022 , bρζ = .706, and bσεζ = .017.
We now examine the effect of lumpy investment in an economy subject to both ßuctu-

ations in aggregate productivity and investment-speciÞc shocks.15 In table 7, note that

adding the investment shock raises overall volatility in both the lumpy investment and refer-

ence economies. This is particularly true for investment and employment and consequently

interest rates, whose relative standard deviations rise substantially, as is consistent with

our reasoning above. We do Þnd a slightly more pronounced difference between the two

economies; however, the results continue to be quite close. The same is true for the output

correlations shown in the table�s lower panel. Next, we examine the histograms of investment

deviations relative to simulation mean in Þgure 9. In comparison to Þgure 7, where only the

TFP shock was present, there are no more pronounced differences with the inclusion of the

investment shock, as is evident from the scale of the lower right panel.

We have hypothesized that the investment shock is more likely to affect the distribution

of plants than does the total productivity shock. Given this, it is possible that the latter

is acting to dampen nonlinearities. In table 8 and Þgure 10, we explore this possibility by

eliminating variation in total factor productivity. Beginning with the table, it is apparent

that the investment shock alone is insufficient to drive the cycle; output variability is reduced

nearly half relative to the results of table 5. However, now relative volatilities in investment

and employment are at their highest; in the case of employment, the rise is dramatic. In both

panels, we begin to see larger differences between R and L rows, particularly for investment,

as expected. Nonetheless, these differences remain negligible. It is worthy of note that,

beyond the difficulty of reduced output volatility in both models, the consumption, wage

and interest rate series have become countercyclical in the absence of the TFP shock. Hence,

while this example may be useful in studying the aggregate effects of lumpy investment, it

is not a plausible model for business cycle analysis.16

14 We follow Christiano and Fisher (1998), section 2.2, closely in constructing this price series, adapting
their method only as required to translate the quarterly series to an annual frequency.

15 As standard errors in forecasting regressions continue to be small, averaging roughly 6 × 10−4 for m1

and 8× 10−4 for p, we present results only for the I = 1 partition economy.

16 Christiano and Fisher (1998) avoid these problems by allowing for two sectors in the economy and
assuming that labor input must be determined prior to the investment shock�s realization.
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Finally, examining Þgure 10, we Þnd that the histograms for investment deviations do

exhibit greater differences when the productivity shock is removed. This is clearest when they

are viewed together in the lower left panel and conÞrmed by the differences plotted at lower

right. Nonetheless, the variations across the lumpy investment versus reference economies

continue to be small, with only about 2.8 percent more dispersion away from near-average

investment episodes in the former than the latter. From this and the previous set of results,

we conclude that the conjecture that prompted our inclusion of an investment-speciÞc driving

process was correct but quantitatively irrelevant.

7 Concluding Remarks

In the preceding sections, we solved an equilibrium business cycle model where, at the in-

dividual level, investment is subject to nonconvex costs of adjustment. Calibrating these

costs to reproduce the empirical regularities found in establishment-level capital adjustment

data, we found that when the sole source of cyclical ßuctuation is changes in total factor

productivity, and when wages and interest rates are held constant, the lumpy investment

model exhibits nonlinearities in aggregate investment demand that drive sharper expansions

and dampened recessions relative to a reference model without adjustment costs. How-

ever, in equilibrium, the cyclical behavior of the lumpy investment model is remarkably

close to that of this reference model. Moreover, additional sources for the business cycle,

investment-speciÞc productivity shocks, fail to deliver interesting differences, qualitatively or

quantitatively, between the lumpy investment and the reference models.

In developing a business cycle economy characterized by lumpy microeconomic invest-

ment, we have generalized production but, to allow the clearest comparison with the standard

model, we have maintained the assumptions of a representative household, complete mar-

kets and perfect competition. Relaxing some of these assumptions to reduce the inßuence

of the household in determining equilibrium allocations, for example, through the introduc-

tion of imperfect competition, may allow for larger aggregate effects of lumpy investment in

equilibrium. Alternatively, one might expect that the changes lumpy investment implies for

aggregate investment demand would have a larger equilibrium impact in an open-economy

setting. As an extreme example, consider a small open economy facing a perfectly elastic

supply of savings at an exogenous world interest rate. Under this assumption, comparisons

between the lumpy investment economy and the reference would correspond much more
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closely to those of our Þxed price examples than to the results seen here. More generally,

lumpy investment could have more important effects in an intermediate setting where the

link between savings and investment is relaxed but not removed. It is well-known that, ab-

sent additional frictions, simple two-country equilibrium business cycle models suffer from

dramatically excessive volatility in investment. While one common remedy for this is the

assumption of convex capital adjustment costs, the inclusion of lumpy investment could

represent an alternative means of smoothing the series.
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 Figure 1B: Adjustment Across the Distribution (total = 0.295)
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 Figure 2B: Adjustment across the Distribution (total = 1)
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 Figure 3B: Adjustment across the Distribution (total = 0.308)
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 Figure 5:  Distribution of Investment Deviations 
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 Figure 7:  Distribution of Equilibrium Investment Deviations 
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 Figure 9:  Distribution of Equilibrium Investment Deviations (w/ z and ζζζζ shocks) 
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 Figure 10:  Distribution of Equilibrium Investment Deviations (w/ only ζζζζ shock) 



 
 
 
 

TABLE 1 
PARAMETER CHOICES 

γ β δ θ ν Α ρ σε 

1.016 0. 954 0.060 0.325 0.580 3.614 0.9225 0.0134 
 
 
 
 
 
 

TABLE 2 
INVESTMENT DEMAND DEVIATIONS: 
DIFFERENCES FROM REFERENCE 

  minimum mean median maximum 

Lumpy Inv. .00010 0.463 0.1590   2.053 
Partial Adj. .00008 0.690 0.0907 11.630 

 



 
 
 
 

TABLE 3 
FORECASTING RULES WITH ONE PARTITION 

 z1  (161 obs) β1 β2 SE  R2 

  m1’  - 0.0195 + 0.8255 1.874 e - 4 0.99995 
p + 1.2034  - 0.4855 1.000 e - 4 0.99996 

     
 z2  (647 obs) β1 β2 SE  R2 

  m1’  - 0.0071 + 0.8251 2.358 e - 4 0.99994 
p + 1.1810  - 0.4807 8.305 e - 5 0.99998 
     

 z3  (903 obs) β1 β2 SE  R2 

m1’ + 0.0054 + 0.8224 2.525 e - 4 0.99993 
p + 1.1584  - 0.4787 7.052 e - 5 0.99999 
     

 z4  (626 obs) β1 β2 SE  R2 

m1’ + 0.0181 + 0.8206 2.189 e - 4 0.99994 
p + 1.1355  - 0.4768 6.858 e - 5 0.99998 
     

 z5  (163 obs) β1 β2 SE  R2 

m1’ + 0.0308 + 0.8201 1.256 e - 4 0.99995 
p + 1.1123 - 0.4736 4.248 e - 5 0.99999 

 

NOTE. – Forecasting rules are conditional on current productivity, zi.  Each 
regression is of the form log (y) = β1 + β2 log (m1).   
 



 
 
 

TABLE 4 
FORECASTING RULES WITH TWO PARTITIONS 

 z1  (161 obs) β1 β2 β3 SE  R2 

 m1’  - 0.1041 + 0.4827 + 0.3115 1.029 e - 3 0.99836 
  m2’  - 0.1864 + 0.4305 + 0.4314 1.066 e - 3 0.99851 

p + 0.8664  - 0.2488  - 0.2368 7.261 e - 5 0.99998 

 z2  (647 obs) β1 β2 β3 SE  R2 

 m1’  - 0.0750 + 0.4252 + 0.3749 8.894 e - 4 0.99903 
 m2’  - 0.1904 + 0.4670 + 0.3864 1.069 e - 3 0.99877 

p + 0.8474  - 0.2479  - 0.2330 7.401 e - 5 0.99998 

 z3  (903 obs) β1 β2 β3 SE  R2 

 m1’  - 0.0632 + 0.3389 + 0.4391 7.254 e - 4 0.99939 
 m2’  - 0.1804 + 0.5580 + 0.3145 8.884 e - 4 0.99926 

p + 0.8263  - 0.2469  - 0.2318 6.312 e - 5 0.99999 

 z4  (626 obs) β1 β2 β3 SE  R2 

m1’  - 0.0528 + 0.3625 + 0.4141 9.151 e - 4 0.99887 
m2’  - 0.1715 + 0.5659 + 0.3072 7.980 e - 4 0.99931 
p + 0.8053  - 0.2495  - 0.2272 5.423 e - 5 0.99999 

 z5  (163 obs) β1 β2 β3 SE  R2 

 m1’  - 0.0241 + 0.3216 + 0.4653 9.068 e - 4 0.99874 
m2’  - 0.1763 + 0.5945 + 0.2640 8.883 e - 4 0.99896 
p + 0.7844  - 0.2484  - 0.2252 3.238 e - 5 0.99999 

 

NOTE. – Forecasting rules are conditional on current productivity, zi.  Each 
regression is of the form log (y) = β1 + β2 log (m1) + β3 log (m2).   
 



 
 
 
 

TABLE 5 
BUSINESS CYCLE MOMENTS 

  Output Investment Consumption Employment Wage Interest 
Rate 

 Panel A: Standard Deviations 
R 1.906 6.373 0.935 1.101 0.935 0.793 
L2 1.906 6.386 0.933 1.102 0.933 0.793 
L1 1.905 6.373 0.933 1.100 0.933 0.795 
PA 1.547 3.458 1.094 0.473 1.094 1.068 

High Costs 1.875 6.152 0.940 1.050 0.940 0.816 
 Panel B: Contemporaneous Correlations with Output 

R 1.000 0.971 0.924 0.946 0.924 0.685 
L2 1.000 0.972 0.925 0.947 0.925 0.683 
L1 1.000 0.972 0.926 0.947 0.926 0.681 
PA 1.000 0.990 0.995 0.972 0.995 0.545 

High Costs 1.000 0.973 0.936 0.949 0.936 0.665 
 
NOTE. – R: Reference; L2: Lumpy Investment with I=2 partitions; L1: Lumpy 
Investment with I=1 partition; PA: Partial Adjustment; High Costs: Lumpy 
Investment with B=.02.  All series log HP-filtered.  

 
 
 
 
 
 

TABLE 6 
EQUILIBRIUM INVESTMENT DEVIATIONS: 

DIFFERENCES FROM REFERENCE 

  minimum mean median maximum 

Lumpy Inv. 1.6 e-7 5.9 e-4 4.8 e-4 0.003 
Partial Adj. 3.6 e-6 3.3 e-2 2.5 e-2 0.167 

 
 



 
 
 

TABLE 7 
BUSINESS CYCLE MOMENTS WITH TFP & INVESTMENT-SPECIFIC SHOCKS 

  Output Investment Consumption Employment Wage Interest 
Rate 

 Standard Deviations 
R 2.172 8.575 1.374 2.251 1.374 1.410 
L1 2.182 8.670 1.373 2.265 1.373 1.407 
 Contemporaneous Correlations with Output 

R 1.000 0.884 0.258 0.808 0.258 0.243 
L1 1.000 0.885 0.253 0.810 0.253 0.242 

 

NOTE. – R: Reference; L1: Lumpy Investment with I=1 partition.  
 

 
 

TABLE 8 
BUSINESS CYCLE MOMENTS WITH ONLY INVESTMENT-SPECIFIC SHOCKS 

  Output Investment Consumption Employment Wage Interest 
Rate 

 Standard Deviations 
R 1.128 7.037 1.042 2.021 1.042 1.140 
L1 1.152 7.222 1.062 2.060 1.062 1.156 
 Contemporaneous Correlations with Output 

R 1.000 0.953 - 0.733 0.936 - 0.733 - 0.203 
L1 1.000 0.952 - 0.732 0.936 - 0.732 - 0.200 

 

NOTE. – R: Reference; L1: Lumpy Investment with I=1 partition.  
 
 




