Transactions Demand for Money

John Bryant

November 1978

Staff Report #: 38

The views expressed herein are solely those of the author and do not necessarily represent the views of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
Transactions Demand For Money
by John Bryant*

The only existing coherent model of fiat money is Samuelson's (1958) pure consumption loans model (p.c.l.m.). However, most economists (including Samuelson himself?) do not take the p.c.l.m. as a serious model of money. This paper presents a case in favor of the p.c.l.m. as a serious model of fiat money. Indeed it is argued that any model which implies fiat money must be essentially similar to the p.c.l.m. That is to say that the p.c.l.m. parsimoniously satisfies conditions which are necessary for any model of valued fiat money. The p.c.l.m. is, then, the preferred model of fiat money and should be the source of the null hypotheses for monetary economics.

Doubtless many will not find the above parsimony argument convincing, and for good reason. To say that the p.c.l.m. satisfies the necessary conditions for a model of fiat money does not say that the p.c.l.m. captures the important attributes of fiat money as it exists in the economy. Certainly the proposition that any model which satisfies the necessary conditions for fiat money will behave in all important respects like the p.c.l.m. is a nonprovable proposition. On the other hand, the number of possible modifications and embellishments of the p.c.l.m. is limitless, and the aimless production of such an unproductive exercise.

A common specific criticism of the p.c.l.m. is that it involves only the store of value, not the transactions, motive for money holding. This criticism has force only when coupled with the presumption that including a transactions motive substantially alters the implications of the p.c.l.m. This

*I am indebted to Preston Miller and Neil Wallace for valuable comments and suggestions. Errors are my responsibility alone. Views expressed do not represent the Federal Reserve Bank of Minneapolis.
paper answers this particular criticism in two ways. First, it is not at all obvious that the p.c.l.m. fails to include the transactions motive. Second, two models are presented which by anyone's definition should be considered transactions models, but which are modifications of the p.c.l.m., and which have the same implications for at least some important questions.

The new models presented in this paper belong to the class of "information" models of money, see Brunner and Meltzer (1971). Fiat money is used in transactions because the information costs of other means of transacting are too high. In the particular models provided borrowing and lending is the alternative means of transacting, and the cost arises because of moral hazard. Moreover, it is argued that in an important sense these models exhaust the possible "information" models of fiat money.

The three problems which any model of valued fiat money must solve are, (a) the dominance of money by contracts, (b) the seigniorage problem, and (c) the terminal value problem. In the next section the first problem is addressed, and its relation to the transactions motive of holding money discussed. Then we turn to the p.c.l.m., show how it solves the three problems, and discuss the latter two, seigniorage and terminal value, problems. Lastly, we turn to the two new models which solve the first problem, contracts dominating money, in a manner different from that of the p.c.l.m.

Dominance by Contracts

Fiat money is money which is intrinsically worthless, it does not enter utility or production functions and is not automatically convertible into something which does. In the usual (Arrow-Debreu) exchange problem, individuals are endowed with varying quantities of several goods which they then trade to reach a Pareto optimal set of consumption bundles. The transformation from endowments
into consumption bundles is assumed costless (reversible). There is said to be a complete market if all possible exchanges of goods can be made. In such complete markets there is no role for fiat money.

To introduce fiat money the market must be made incomplete, frictions must be added to the model. Certain sequences of bilateral trades are made impossible or costly, as in Shapley and Shubik (1977). In general an object is being used as money for transactions purposes if it is used in a trade, but the recipient of it does not consume it but trades it again. Fiat money can be introduced into these transactions models of money by making all goods which enter utility functions costly to transfer and introducing an object, fiat money, which is not costly to transfer.

Typically transactions costs are introduced in the technology of the physical exchange of goods, for example the "trading post" models as in Shapley and Shubik (1977). There are innumerable possible nonlinearities in the technology of exchange that can yield the result that all goods are not exchanged at a single geographic place and point in time. Moreover, in a model with costs of exchange (linear or otherwise) a series of bilateral exchanges is often more costly than a single multilateral exchange.

Such costly physical exchange of goods is not, however, necessary or sufficient for the existence of money. First, let us consider sufficiency. The individuals involved in a series of exchanges can sign a contract for the delivery of goods at the efficient place and time. If such contracts are costless, the transactions made feasible by them include as a subset those made feasible by money (See Brunner and Meltzer, 1971, p. 785). The outcome of any set of exchanges involving money can be achieved through contracts for multilateral exchange without the use of money. Therefore for money to have value it is necessary that such contracts be costly or infeasible. That costly physical
exchange is not necessary for a fiat money equilibrium is demonstrated by the p.c.l.m. which does not involve such costs. The introduction of frictions is correct, but the crucial frictions for valued fiat money involve contracts, not the technology of the physical exchange of goods. Money makes certain transactions feasible or less costly. If the set of possible transformations of endowments without money was binding in the "direction" affected by money, money will have value.

The problem of dominance of money by contracts and the question of transactions versus store of value motives for holding money are closely related. To illustrate this we consider Hahn's (1973) distinction between models in which money is "essential" and "inessential." Goods can differ both in their physical attributes and in their time dimension. That is to say, two goods which are identical except in their date of production can be treated as separate goods. Naturally, goods which do not overlap in time cannot be physically exchanged one for the other. If transactions are limited to such exchanges then money can be introduced to the market to allow transactions between goods which do not overlap in time. Hahn objects to such "store of value" models in that in them money is not "essential". That is to say, that if one treats time like any other attribute and assumes that trade occurs in a single market, then the role of money disappears in such models. Hahn's objection to the "store of value" models is a special case of the observation that it is frictions in contract writing that are crucial to the existence of money. If contract writing is impossible or costly, then the inability to physically exchange goods that do not overlap in time is a constraint on the possible transformations of initial endowments; a constraint which can generate money holding. If contracts are costless, then the constraint on physical exchanges is irrelevant and money is "inessential."
The p.c.l.m.

Now let us consider a version of the Samuelson pure consumption loans model. First we show how it solves the dominance by contracts problem, and then consider the seigniorage and terminal value problems.

Time is discrete and is a double countable infinity of periods, time has no beginning or end. Each period N identical individuals are born and they live two periods. In their first period of life they are endowed with an amount K of a transferable but nonstoriable consumption good, that good being the same in every period. In their second period of life they are endowed with nothing. Individuals maximize \(U(C_1, C_2) \) where \(U(\cdot) \) is a utility function with the usual properties and \(C_1 \) and \(C_2 \) are the individual's consumption of the consumption good in his first and second period of life, respectively.

In this model no trades are possible without money because contracts with the yet to be born are impossible. The time sequence imposed on the goods does matter in an essential way. The model can be viewed as a single market in which certain contracts, the only desirable contracts, cannot be written. There is no need to interpret the index as time, although doing so provides a good explanation for why the contracts cannot be written. If fiat money is imposed on the model, then individuals can trade first-period endowment for second-period consumption without ever contracting with the unborn, and with simple restrictions on the utility functions, for example \(U_2(C_1, 0) = \infty \), there is a valued fiat money equilibrium.

One crucial element of the p.c.l.m. is the fact that all generations cannot get together and write contracts. However, the impossibility of writing contracts is not the only attribute of the p.c.l.m. which makes it a viable model of fiat money. Karl Shell (1971) has noted that the seigniorage problem is
central to the inefficiency of competitive equilibrium in the p.c.l.m.\(^1\) This is a problem which must be addressed by any model of valued fiat money. Generally it is assumed that fiat money is costless to produce. Therefore, the only market solution is for fiat money to be without value. Valued fiat money is not a market solution, so it must be imposed from outside the market and the market participants must not be allowed to produce it. In the p.c.l.m. this problem is avoided by each generation being unable to produce fiat money, but getting fiat money from the previous generation in exchange for goods.

There is a third problem which must be addressed by any model of fiat money. When the market closes someone must be holding the money. Therefore, he must have been willing to make a transaction of goods for money or foregone a transaction of money for goods when the market was operating. As fiat money by definition has no intrinsic value, this behavior requires explanation. In the p.c.l.m. a generation sells its money holdings for goods to the next generation next period, in other words, the market never closes. This problem we refer to as the terminal value problem.

Thus, the p.c.l.m. very parsimoniously handles the necessary problems for a model of money: money is given an advantage over contracts (the latter are infeasible), and the seigniorage and terminal value problems are solved. One difficulty with the model is the interpretation that is put on it: it is a "store of value" not a "transactions" model of money. We have already seen that by Hahn's definition the p.c.l.m. is not a store of value model. The reason that the p.c.l.m. is given this store of value interpretation is that in the model

\(^1\) In a model with costless contracts this seigniorage problem can arise if there are a countably infinite number of individuals. There is no Nash equilibrium set of contracts in such a model. Perhaps this could be used as an explanation of why a fiat money solution is imposed by a government, but it does seem a far fetched explanation for the existence of valued fiat money.
people hold money as a means of saving for their retirement. This criticism of the p.c.l.m. does have appeal. After all, the reason many transactions are handled in money rather than by contract is not that some of the potential contractors are not yet born. And if an implication of the model is taken to be that transactions in money will only be of that sort, the model is rejected. In other words, this is an objection to the way the p.c.l.m. handles the dominance by contracts problem.

To respond to this criticism we turn to some alternative "information" models of fiat money. In these models we use the method of the p.c.l.m. to solve the seigniorage and terminal value problems. That is to say, the model is an overlapping generations model. However, the models solve the dominance by contracts problem in a different manner. People live many periods, and the reason that money exists is not because one cannot contract with the unborn, but because contract writing is costly or impossible.

Model 1

This first model is structured so that contracts are impossible, yielding a valued fiat money equilibrium. Except as noted below the model is identical to the p.c.l.m. Suppose N individuals are born each period, they live 2n periods and N/2 have endowment stream $\sum_{1x2n}^{1} k, k, \ldots, k$ and N/2 have endowment $\sum_{1x2n}^{2} K, k, K, k, \ldots, K, k$, where $K > k$. All individuals have the identical concave utility function $W(C_{1x2n}) = W(C_{1x2n}^1 = k, C_{1x2n}^2 = K + k) + \ldots + U(C_{2n})$. The stationary fiat money solution is that the N/2 poor consume $\frac{C_{1x2n}^1}{2} = k, \ldots, k$ and don't use money, and the N/2 rich consume $\frac{C_{1x2n}^2}{2} = \frac{K+k}{2}, \ldots, \frac{K+k}{2}$ and do use money.

To consider the possibility of contracts we must introduce more structure. Our bankruptcy law is that no one can be reduced below k. Moreover,
people are unidentifiable, except as to having made a commitment last period to
give or receive goods this period. The only possible contracts are, then, one-
period contracts. But there is no Nash equilibrium with one-period contracts
either. For suppose there was. The optimal strategy for a deviant poor person
is to offer to supply an infinite amount of goods tomorrow for goods today. If
this is an equilibrium strategy, then the probability of a rich person getting a
legitimate contract is zero, so the demand for them is zero. As another way to
see this consider a futures market. Suppose the promise of 1 unit tomorrow has
price \(P \) in terms of goods today. For \(P > 0 \) all the poor will offer an infinite
amount so \(P = 0 \). We have a moral hazard explanation for the impossibility of
contracts.

In this model there is valued fiat money, and contracts cannot exist.
We now modify the model to have borrowing and lending be costly and allow the
coeexistence of valued fiat money and borrowing and lending.

Model 2

\(N \) individuals are born each period, they live 2n periods and all have
endowment stream \(0, K, \ldots, K, K \). Because of the way money is introduced
to this market—purchase from the previous generation—there is no way money
alone can yield an optimal distribution of consumption for the individual. Only
by borrowing can he increase first-period consumption.

Assume that \(U \) is unbounded above. Unless it is possible to verify that
an individual can make good on his promises, no contract is possible for the same
reason as in Model 1. Instead of assuming that no such verification is possible
as before, let us assume a verification technology of a particular simple and
unrealistic form. For every unit of good promised tomorrow it costs \(v \) units of
goods today to verify that the borrower will not be bankrupt next period. Since
offering to borrow is costless, the only solution is for every borrower to have his contract verified. Clearly, if \(v = 1 \), there will be no borrowing as the equilibrium rate of interest is nonnegative (zero actually). However, there is a stationary valued money equilibrium. If \(v = 0 \), borrowing and lending yields the optimal consumption stream and there is no demand for money. Is there an intermediate value of \(v \) such that borrowing and lending and valued fiat money can coexist? While the proof is rather tedious (see the Appendix), the answer is that the model can be rigged so that this is so. If \(v \) and \(U(\cdot) \) satisfy

\[
\frac{U'(k)}{U'[(k+K)/2]} > (1-v) > \frac{U'[(k+K)/2]}{U'(k)}
\]

then there is an integer \(I \) such that if \(n > I \), there is such an equilibrium.

Borrowing and lending and money can coexist in Model 2 because individuals are poorly endowed at birth and because people live long enough that desired lending exceeds borrowing. However, the p.c.l.m. can be similarly modified as shown in Wallace (1978). If some individuals are endowed in their second period of life but not the first but aggregate endowment is still larger in the first period, borrowing and lending can coexist with money holding in the p.c.l.m. The advantage of Model 2 in this regard is only that it assumes identical endowments and has costly contracts rather than a mix of costless (within generation) and impossible (between generations) contracts.

We have, then, models of fiat money where fiat money exists because individuals cannot costlessly be known to be able to meet their contractual obligations. The transactions which occur do take place through time, so it still may be objected that these are store of value, not a transactions models. However, the important point here is that money enters not because contracts with the unborn are impossible, but because contracts with anyone are impossible or costly to police.
To make our case that these are not store of value models more convincing, some simple further modifications can be sketched. Suppose, for example, that individuals live n periods, not 2n, but there are two goods in each period, goods 1 and 2. Let there be two kinds of people with endowments $\Omega^1_{2\times n} = (k,K)' ; (k,K)' ; \ldots ; (k,K)'$, and $\Omega^2_{2\times n} = (K,k)' ; (K,k)' ; \ldots ; (K,k)'$, respectively. Suppose further that the markets for the two goods operate in sequence because, for example, the markets must be physically separate and one cannot be two places at once. Then money and borrowing and lending can coexist as in Model 2. Note that without the ordering of markets money dominates borrowing and lending. In this model money is held for between-period transactions by the first group of individuals but is held for within-period transactions by the second group of individuals. Or consider a model with identical individuals in a world of three goods with endowment path $\Omega^3_{3\times n} = (k,K,k)' ; (K,k,K)' ; (k,K,k)' ; \ldots ; (k,K,k)'$. Here twice as many money balances are held for within-period transactions as for between-period transactions.

Any appearance of a store of value nature of the demand for money in these models comes from the overlapping generation structure. One can use some other means of solving the seigniorage and terminal value problems, for example appropriate government intervention, and have multigood models that remove even this slight appearance of store of value role of money. In such multigood models it is not important to the existence of valued fiat money that markets be ordered, although the coexistence of money and borrowing and lending requires that money not dominate the latter. But efforts in this direction do seem misguided in the face of the empirical fact that all actions take place through time. Moreover, by eliminating the time dimension in the model one removes the possibility of analyzing some problems of interest, for example, the distortions of inflation.
One objection to the above models is that they do not exhaust the set of models which generate valued fiat money by assuming that income streams are not known with certainty and contracts are not enforceable. Specifically, it could be argued that moral hazard is not the explanation for the use of money, but that uncertain income streams and costly information is. This objection does not stand up under scrutiny.

Suppose the problem is not the individual making bad faith contracts, but that his income stream is random. With complete markets and costless knowledge of the stochastic structure this would not matter, the individual would just trade contingent claims. Suppose learning about the stochastic structure is costly. If transactions are limited to bilateral exchanges, then an individual's promises would not be used for transactions purposes in a series of exchanges. But this is not relevant, for if costless contracts are available, a single multilateral exchange would be negotiated anyway. Also, with scale technologies, or interdependent production costs at a point in geographic location and time, promises are not traded for goods at a single point. But this also does not explain the need for money. Multiple exchange contracts can be negotiated with the intermediary engaged in evaluating such promises. It may be that such contracts are costly to organize, not to verify. However, organization costs can be modeled just as verification costs are.

This is not to say that uncertain endowments are not interesting in their own right. For example, in the above models there is a unique rate of return at which individuals diversify between money and loans, and at this rate the portfolio is indeterminate. With stochastic repayment there may be many rates of return consistent with diversification, each implying a unique portfolio. However, such randomness can easily be included in the p.c.l.m.
The above models in an important sense exhaust the set of "information" models of money, models in which fiat money dominates contracts because of uncertain returns, costly information, and costly organization and enforcement of contracts. Yet these models are simple modifications of the p.c.l.m., and by almost anyone's definition the information models of money involve the transactions motive. Does the inclusion of transactions motive affect the important implications of the models? It would seem not. Let us consider the major properties of the p.c.l.m. as treated by Wallace (1978). As the reader can easily verify, in the above models, as with the p.c.l.m., (a) dominance in return distribution by another asset drives out fiat money, (b) there is a nonmonetary equilibrium, (c) there is the possibility of multiple monetary equilibria with different rates of inflation, (d) a costless endowment tax is Pareto superior to printing money to cover deficits, and (e) the models can be included in the Lucas (1972) incomplete information model, the Kaecken-Wallace (1978) country-specific fiat money model, the Bryant-Wallace (1978) model of open market operations, or the Bryant (1978) model of depression with only a change in some details.

Summary

The p.c.l.m. parsimoniously handles the three problems essential to a model of fiat money. Contracts which can substitute for money are not feasible, and the seigniorage and terminal value problems are solved. The p.c.l.m. should, then, be the source of null hypotheses concerning the behavior of fiat money in the economy.

The objection that the p.c.l.m. is not a proper model of fiat money because it fails to capture the transactions motive of holding money is invalid. We have produced "information" models of fiat money, models which are unambiguously transactions models, but which are modifications of the p.c.l.m. with the same important properties. Moreover, these models exhaust the possible
"information" models of money, which suggests that searching for further modifications or alternative models of fiat money is not now a productive activity.
Appendix

To prove:

\(\frac{U'[((k+k)/2)]}{U'[k]} < (1-v) \frac{U'[k]}{U'[(k+k)/2]} \)

implies that if individuals live long enough, valued fiat money and borrowing and
lending can coexist in Model 2.

Let \(\Omega_{2J} = (k, K, \ldots, k, K) \) where \(J \) is a large integer. It is easily
shown that interest on loans is zero in a stationary monetary equilibrium and
that the borrower pays the verification cost. Also, the individual borrows only
on odd periods of life and lends or acquires money only on even periods. The
individual's problem can be written as:

\[
\max_{\Omega_{2J}} \sum_{i=1}^{2J} U(C_i)
\]

subject to

\[
C_{2j+1} = k + l_{2j} + m_{2j} + (1-v)b_{2j+1} \quad j=0,\ldots,J-1
\]

\[
C_{2j+2} = K - l_{2j+2} - m_{2j+2} - b_{2j+1}
\]

\[
l_0 = m_0 = b_{2J} = 0
\]

where \(l, m, \) and \(b \) are lending, money holding, and borrowing. Lending and money
holding are perfect substitutes to the individual. The first-order necessary
conditions are:

\((1-v)U'(C_j) \leq U'(C_{j+1}), = \) if \(b_j > 0 \quad j=1,\ldots,2J \)

\(U'(C_j) \geq U'(C_{j+1}), = \) if \(l_j \) or \(m_j > 0. \)
First we prove that the L.H.S. of (1) implies there is borrowing in the first period. Suppose there is no borrowing in the first period \((C_1 = k)\). Since (3) implies that consumption is nondecreasing, and consuming \(K\) from period 2 on is not feasible, the individual must lend or hold money in period 2. Then (3) implies \(C_2 = C_3\) or \(K - l_2 - m_2 = k + l_2 + m_2 + (1-v)b_2\). This implies \(C_2 \geq (K+k)/2\). But then

\[
(1-v)U'(C_1) = (1-v)U'(k) > U'[(K+k)/2] \geq U'(C_2)
\]

by the L.H.S. of (1), which violates (2).

Next we show that there is a first odd-numbered period in which the individual does not borrow. Suppose in odd-numbered periods up to \(2j-1\) the individual does not borrow. By iterative substitution of (2) and (3) \(U'(C_{2j-1}) \leq (1-v)^{j-1}U'(C_1)\). As \(j\) becomes large, \(U'(C_{2j-1}) \to 0\), but this is impossible as it implies that consumption grows without bound which clearly is nonoptimal \((K\) is an upper bound).

Now we show that if there is no borrowing in period \(2j-1\), there is no borrowing in period \(2j+1\). As he did not borrow in period \(2j-1\), the individual must lend or hold money in period \(2j\). Then (3) implies \(C_{2j} = C_{2j+1}\) or \(K - l_{2j} - m_{2j} = k + l_{2j} + m_{2j} + (1-v)b_{2j+1}\). This implies \(C_{2j+1} \geq \frac{1}{2}(K+k)\). However, \(C_{2j+2} \leq K\). This and the R.H.S. of (1) imply

\[
(1-v)U'(C_{2j+1}) \leq (1-v)U'[(K+k)/2] < U'[K] \leq U'[C_{2j+2}]
\]

which implies \(b_{2j+1} = 0\) by (2).

Therefore, there is a period beyond which the individual does not borrow. But his lending or acquiring money on even periods continues. Therefore, if \(J\) is large enough, his lending or holding money exceeds his borrowing. As this is a representative individual, aggregate lending and money
holding exceed aggregate borrowing, and there is a valued fiat money equilibrium. Since every individual borrows in his first period of existence, valued fiat money and borrowing and lending coexist.
References

