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This technical appendix is designed to help the reader reproduce the results in our

paper. The Matlab programs referred to in Small Caps font are available from the authors.

Our programs make heavy use of the toolkit provided by Uhlig (1999) and, on occasion,

make use of other functions available in Matlab’s extra toolboxes (e.g., the optimization and

statistics toolboxes).

Appendix A outlines the solution method when money growth is exogenous. Appendix

B discusses the equilibrium dynamics of the model when nominal interest rates are exogenous.

Appendix C discusses an algorithm for solving the model when nominal interest rates are

exogenous.

Appendix A: Money growth exogenous
For convenience, we suppress dependence on histories. For any variable x, we denote

the level of the variable at t by xt, the steady-state level by x̄, and the log deviation at t

by x̂t. Therefore, x̂t ≡ log(xt/x̄) and xt = x̄ exp(x̂t) such that 100 × x̂t is the approximate

percentage deviation of xt from its steady-state value.

The Matlab program which does most of the work when money growth is taken as ex-

ogenous is Money Exogenous. This program calls a number of function files, the purposes

of which are described below.

A1. Non-stochastic steady-state

To begin with, we solve for the non-stochastic steady-state of the model. In the

steady-state, all real variables are stationary and the price level is determined by:

Pt
Pt−1

= π̄ = µ̄,

where steady-state money growth µ̄ is an exogenous policy parameter. We then write the

bank account constraints as:

c̄(0) + z̄(1) =
z̄(N) + γȳ

µ̄
+ x̄, (A1)

c̄(s) + z̄(s+ 1) =
z̄(s) + γȳ

µ̄
, for all s = 1, 2, ..., N − 2 (A2)

c̄(N − 1) + z̄(N) =
z̄(N − 1) + γȳ

µ̄
, (A3)

where c̄(s) denotes steady-state real consumption, z̄(s) denotes steady-state end-of-period

real balances, x̄ denotes the steady-state real transfer between bank and brokerage accounts

by a household who is active, γ is the paycheck parameter, ȳ is the steady-state real aggregate

endowment, and N denotes the number of periods between activity. Typically, we will have

z̄(N) = 0 and z̄(s) > 0 for all s < N . In the exposition below, we impose this. In our actual

computations, we check that solutions do have this form.



Steady-state transfers by the s = 0 households are given by:

x̄ =

(
1− 1

µ̄

){N−1∑
s=1

z̄(s)

}
+

(
1− γ

µ̄

)
Nȳ. (A4)

Since z̄(N) = 0 and z̄(s) > 0 for all s < N , there are N−1 binding Euler equations governing

money holdings between periods. For s = 0, 1, ..., N−2, these Euler equations can be written:

c̄(s+ 1) =

(
β

µ̄

)1/σ

c̄(s), (A5)

where 1/σ > 0 is the intertemporal elasticity of substitution and β/µ̄ is the steady-state

real return to holding money between periods. Finding the non-stochastic steady-state in-

volves solving 2N linear equations in 2N unknowns, specifically N consumptions c̄(s) for

s = 0, 1, ..., N − 1, plus N − 1 real balances z̄(s) for s = 1, ..., N − 1 and 1 transfer x̄.

Given a specification of parameters, the function Steady State attempts to compute

the non-stochastic steady-state by solving the 2N linear equations in 2N unknowns implied

by (A1)-(A5). Notice that Steady State allows non-negativity constraints to be violated. A

check function in the main program detects whether any non-negativity constraints have been

violated. If this happens, another function, Resolve Kinks, is called and the steady-state

is re-computed but this time allowing for the possibility that there are corner solutions.

Once a complete solution for the steady-state has been found, we can recover other

interesting variables (such as m̄ and v̄) and then begin to set up the system of log-linear

equations.

A2. System of log-linear equations

We start with the rate of inflation implied by the exchange equation:

πt =
mt−1

mt

µt =

{
1
N

∑N−1
s=0 [zt−1(s)] + yt−1

1
N

∑N−1
s=0 [zt(s)] + yt

}
µt,

where mt ≡ Mt/Pt denotes aggregate real balances. Summing up the bank account con-

straints and using money-market clearing gives mt = 1
N

∑N−1
s=0 zt(s) + yt as used on the

right-hand side. Log-linearizing both sides of this expression, recognizing that π̄ = µ̄ and

that steady-state velocity is v̄ = ȳ/m̄, gives us the law of motion for inflation:

π̂t = µ̂t −
1

N

N−1∑
s=0

z̄(s)

m̄
[ẑt(s)− ẑt−1(s)]− v̄(ŷt − ŷt−1). (A6)
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Similarly, the log-linear bank account constraints corresponding to (A1)-(A3) are:

c̄(0)ĉt(0) + z̄(1)ẑt(1) = γ
ȳ

µ̄
ŷt−1 − γ

ȳ

µ̄
π̂t + x̄x̂t, (A7)

c̄(s)ĉt(s) + z̄(s+ 1)ẑt(s+ 1) =
z̄(s)

µ̄
ẑt−1(s) + γ

ȳ

µ̄
ŷt−1 −

z̄(s) + γȳ

µ̄
π̂t, (A8)

c̄(N − 1)ĉt(N − 1) =
z̄(N − 1)

µ̄
ẑt−1(N − 1) + γ

ȳ

µ̄
ŷt−1 −

z̄(N − 1) + γȳ

µ̄
π̂t,

(A9)

and the transfers by the active s = 0 households are given by:

x̄x̂t =

(
1− 1

µ̄

){N−1∑
s=0

z̄(s)ẑt(s)

}
+

1

µ̄

{
N−1∑
s=0

z̄(s)

}
µ̂t +Nȳ

(
ŷt −

γ

µ̄
ŷt−1 +

γ

µ̄
π̂t

)
.

It is actually easier to drop the bank account constraint for s = 0 and pin down ĉt(0) with

the log-linear resource constraint:

1

N

N−1∑
s=0

c̄(s)ĉt(s) = ȳŷt. (A10)

The Euler equations for money holdings can be written:

Et{σ[ĉt+1(s+ 1)− ĉt(s)] = Et{π̂t+1}, for s = 0, 1, ..., N − 2. (A11)

In addition, we have the exogenous processes for the shocks µ̂t and ŷt. For the time being,

assume that each of these follows a (possibly correlated) mean zero stationary homoscedastic

first-order autoregressive process:

ŷt+1 = ρyŷt + ε̂y,t+1, ρy ∈ [0, 1), (A12)

µ̂t+1 = ρµµ̂t + ε̂µ,t+1, ρµ ∈ [0, 1), (A13)

where for all t:

Et

[
ε̂y,t+1

ε̂µ,t+1

]
=

[
0

0

]
, Et

[
ε̂2y,t+1 ε̂y,t+1ε̂µ,t+1

ε̂y,t+1ε̂µ,t+1 ε̂2µ,t+1

]
=

[
σ2
y σyµ

σyµ σ2
µ

]
.

A3. Solving the model with money growth exogenous

We solve the model using the toolkit of Matlab programs written by Harald Uhlig

(1999). To make use of these programs, we partition our variables into three categories: a

vector of endogenous state-like variables, a vector of endogenous control-like variables, and a

vector of exogenous state variables.
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For the remainder of this Appendix, we suppress the endowment shocks to focus our

attention on the policy innovations. (Both the money growth exogenous and the interest rate

exogenous models are easily augmented with the additional equation governing the aggregate

endowment process.) Also, we use the resource constraint (A10) instead of the transfer rule

to reduce the number of endogenous variables by one — if needed, the path of transfers can

always be computed once a solution to the rest of the model is in hand. Thus, define:

ẑt ≡


ẑt(1)

ẑt(2)
...

ẑt(N − 1)

 , ĉt ≡


ĉt(0)

ĉt(1)
...

ĉt(N − 1)

 , and ε̂t ≡ ε̂µ,t.

Notice that dim(ẑt) = N − 1 and dim(ĉt) = N . Given these definitions and the system of

log-linear equations derived above, we can write out a system of the form:

0 = Aẑt + Bẑt−1 + C

[
π̂t
ĉt

]
+ Dµ̂t,

0 = Et

{
Fẑt+1 + Gẑt + Hẑt−1 + J

[
π̂t+1

ĉt+1

]
+ K

[
π̂t
ĉt

]
+ Lµ̂t+1 + Mµ̂t

}
,

plus the law of motion for the exogenous money growth shocks. The coefficient matrices

are constructed using the coefficients from the log-linear equations in (A6)-(A13). Note, for

example, A is (N+1)×(N−1) and F is (N−1)×(N−1). The function file Matrices Money

constructs the matrices taking as given the structural parameters and the steady-state values

of the endogenous variables.

We then try and solve for an equilibrium law of motion of the form:

ẑt = Pẑt−1 + Qµ̂t,[
π̂t
ĉt

]
= Rẑt−1 + Sµ̂t.

In the main program, we invoke the command Solve which calls the programs written

by Uhlig (1999) and attempts to solve for the matrices P, Q, R, and S. In the case where

money is exogenous, we have a saddle-path solution. There are exactly as many stable

eigenvalues as there are given initial conditions. Thus, we can solve for a unique equilibrium

law of motion. We can then construct equilibrium processes for {ẑt, π̂t, ĉt} given the shocks

and solve for other variables, such as velocity and the nominal interest rate.
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B. Equilibrium dynamics with exogenous interest rates
In this section, we prove a proposition about the model when nominal interest rates

are exogenous. We posit a first-order autoregressive process for the nominal interest rate:

ı̂t+1 = ρiı̂t + ε̂i,t+1, ρi ∈ [0, 1),

where, in a slight abuse of notation, the log deviation of the nominal interest rate is ı̂ ≡
log[(1 + it)/(1 + ı̄)] and where 1 + ı̄ ≡ µ̄/β is the steady-state gross nominal interest rate.

For the purposes of exposition, we shut down any shocks to the endowment process (thus,

the only exogenous shocks come from the interest rate process which replaces the exogenous

process for money growth). We then augment the system of stochastic difference equations

with the Fisher relationship:

Et{σ[ĉt+1(0)− ĉt(0)]} = r̂t ≡ ı̂t − Et{π̂t+1}, (B1)

where r̂t is the log deviation of the real interest rate.

The relevant equations of the model are the Fisher equation (B1) given above plus the

resource constraint:

0 =
N−1∑
s=0

c̄(s)ĉt(s), (B2)

which allows us to drop the transfers x̂t from the system; the bank account constraints:

z̄(s+ 1)ẑt(s) + c̄(s)ĉt(s) =
z̄(s)

π̄
ẑt−1(s)−

(
z̄(s) + γȳ

π̄

)
π̂t, (B3)

for s = 1, ..., N − 1, with the understanding that z̄(N) = 0; the Euler equations for money

holdings:

0 = Et{σ[ĉt(s)− ĉt+1(s+ 1)]− π̂t+1}, (B4)

for s = 0, 1, ..., N − 2. We subtract the Fisher equation (B1) from the Euler equation for

money holdings (B4) for s = 0 to get:

ı̂t = Et{σ[ĉt+1(0)− ĉt+1(1)]}, (B5)

and we subtract (B4) for s+ 1 from (B4) for s to get:

0 = Et{[ĉt(s)− ĉt(s+ 1)]− [ĉt+1(s+ 1)− ĉt+1(s+ 2)]}, (B6)

for s = 0, . . . , N − 3.
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We look for a solution of the form:

ẑt = Pẑt−1 + Qı̂t,[
π̂t
ĉt

]
= Rẑt−1 + Sı̂t,

and partition the R and S matrices as follows:[
π̂t
ĉt

]
=

[
Rπ

Rc

]
ẑt−1 +

[
Sπ
Sc

]
ı̂t.

And let:

Rc =


Rc(0)

Rc(1)
...

Rc(N − 1)

 , Sc =


Sc(0)

Sc(1)
...

Sc(N − 1)

 .

This allows us to write, for example:

ĉt(s) = Rc(s)ẑt−1 + Sc(s)̂ıt,

where Rc(s) is the 1× (N − 1) row vector associated with ĉt(s).

Proposition. The eigenvalues of the matrix P are all equal to zero.

Proof. Write the Jordan canonical form of the matrix P as:

D = V−1PV.

Since P is arbitrary, the columns of V are the eigenvectors and generalized eigenvectors

of P and the Jordan form D is block diagonal. If the eigenvalues of P are distinct, then

D is diagonal and the columns of V are the associated linearly independent eigenvectors.

We are going to show that not only does P have no distinct eigenvalues (λ(k) = λ for all

k = 1, ..., N − 1), but that they are also all zero (λ = 0).

To begin, define a rotation of ẑt by:

ζ̂t ≡ V−1ẑt,
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so that:

ζ̂t = Dζ̂t−1 + V−1Qı̂t,

ĉt(s) = Rc(s)Vζ̂t−1 + Sc(s)̂ıt,

π̂t = RπVζ̂t−1 + Sπ ı̂t.

We can show that P has no distinct eigenvalues by showing that D cannot have any

columns with only the diagonal element non-zero.

In the event that D has any columns that are all zeros except for a distinct non-zero

eigenvalue λ(k) 6= 0 on the diagonal (k’th element of column k), then the initial condition

ζ̂t−1(k) = 1 and ζ̂t−1(j) = 0 for j 6= k implies ζ̂t(k) = λ(k) and ζ̂t(j) = 0 so that ĉt(s) =

Rc(s)V(k), π̂t = RπV(k), ĉt+1(s) = Rc(s)V(k)λ(k), and π̂t+1 = RπV(k)λ(k), where V(k)

denotes the k’th column vector of the matrix V. We use these results to trace out the

deterministic dynamics of the model (for which ı̂t = 0).

Plugging ĉt(s) = Rc(s)V(k) into the resource constraint (B2) gives:

0 =
N−1∑
s=0

c̄(s)Rc(s)V(k). (B7)

Similarly, plugging in for ĉt(s) and π̂t in the bank account constraints of equation (B3) gives:

z̄(s+ 1)V(s+ 1, k)λ(k) + c̄(s)Rc(s)V(k) =
z̄(s)

π̄
V(s, k)−

(
z̄(s) + γȳ

π̄

)
RπV(i), (B8)

with V(s, k) the scalar (s, k)’th element of the matrix V. For the Fisher equation (B1)

plugging in for ĉt(0), ĉt+1(0) and π̂t+1 leads to:

0 = σRc(0)V(k)− [σRc(0) + Rπ]V(k)λ(k), (B9)

and for the money holdings Euler equation for s = 0:

0 = σ[Rc(0)−Rc(1)]V(k)λ(k), (B10)

and for s = 0, ..., N − 3,

0 = [Rc(s)−Rc(s+ 1)]V(k)− [Rc(s+ 1)−Rc(s+ 2)]V(k)λ(k). (B11)

From the fourth of these equations, (B10), we get

0 = [Rc(0)−Rc(1)]V(k).
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Using the fifth of these equations, (B11), for s = 0, ..., N − 3 in order gives:

0 = [Rc(s+ 1)−Rc(s+ 2)]V(k),

hence, for s = 0, 1, ..., N − 1, we find Rc(s)V(k) are all equal. Hence, from the first equation

(B7) we get that they are all equal to zero. From the third of these equations, (B9), we

then get that RπV(k) = 0. From the second of these equations, (B8), for s = N − 1 with

z̄(N) = 0 we get that V(N − 1, k) = 0. Iterating on these equations as s decreases to 1 gives

V(s, k) = 0 for s = 1, . . . , N − 1. Thus, V(k) is not an eigenvector.

Given that the matrix D cannot have any columns with all zeros except a non-zero

element on the diagonal, and that (from above) the matrix D cannot be identically zero, we

know that it has the Jordan form:

D
(N−1)×(N−1)

=


λ 1 0 · · · 0

0 λ 1 0
...

. . .
...

0
. . . 1

0 0 · · · · · · λ

 ,

for some scalar λ. Since the first column is all zeros except for the λ on the diagonal, we have

that λ = 0. Thus, the eigenvalues of the matrix P are all equal to zero. �

In short, P is a nilpotent matrix.

C. Solving the model with exogenous interest rates
For an arbitrary matrix P we can construct a Schur decomposition which characterizes

the deterministic dynamics. The decomposition has the form:

P = UTU′,

where U is unitary so U′U = I and T is upper triangular with the eigenvalues of P on the

diagonal. We take here as given the proof that the eigenvalues of P are all equal to zero.

Hence, the matrix T is strictly upper triangular with all of the elements on the main diagonal

equal to zero.

Unfortunately, Matlab seems to suffer from some numerical accuracy problems; when

we use its routines to decompose some arbitrary P matrix with all zero eigenvalues, it does

not correctly find a “similar” T matrix that also has all zero eigenvalues. In this section,

we provide a recursive algorithm that exploits the strict upper triangularity of T to find P

exactly.

The equations of the model can again be written as in (B2)-(B6) and we again look
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for a solution of the form:

ẑt = Pẑt−1 + Qı̂t,[
π̂t
ĉt

]
= Rẑt−1 + Sı̂t,

where P = UTU′. If we define ζ̂t ≡ U′ẑt, then we have:

ζ̂t = Tζ̂t−1 + U′Qı̂t,

π̂t = RπUζ̂t−1 + Sπ ı̂t,

ĉt(s) = Rc(s)Uζ̂t−1 + Sc(s)̂ıt.

C1. Solving for the deterministic dynamics

The program Interest Simulations begins by computing the non-stochastic steady-

state of the model just as for the exogenous money growth case. The program then calls a

function, Matrices Interest, that constructs the basic coefficient matrices of the model;

the matrices A,B,C, ..., etc, described above. We then solve for the model’s deterministic

dynamics by computing U and T and then backing out P and R.

We proceed algorithmically, starting with the first column of U. The program In-

terest Simulations calls the function Deterministic Dynamics which automates the

procedure described below.

Since T is strictly upper triangular its elements satisfy T(k, j) = 0 for k ≥ j. Now

start with the initial condition ζ̂t−1(1) = 1 and ζ̂t−1(j) = 0 for j > 1. This initial condition

implies ζ̂t(1) = T(1, 1) = 0 and ζ̂t(j) = 0 for j > 1. Hence ĉt(s) = Rc(s)U(1), π̂t = RπU(1),

ĉt+1(s) = 0, ẑt(s) = 0, and π̂t+1 = 0, where U(1) is the first column of U. Our equations for

the deterministic dynamics parallel equations (B7)-(B11). Plugging ĉt(s) = Rc(s)U(1) into

the resource constraint:

0 =
N−1∑
s=0

c̄(s)Rc(s)U(1). (C1)

Similarly, for the cash flow constraints:

c̄(s)Rc(s)U(1) =
z̄(s)

π̄
U(s, 1)−

(
z̄(s) + γȳ

π̄

)
RπU(1), (C2)

and for the cash Euler equation for s = 0 we have:

0 = σRc(0)U(1), (C3)
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and for s = 0, . . . , N − 3 we have:

0 = [Rc(s)−Rc(s+ 1)]U(1). (C4)

The last two of these equations, (C3)-(C4), plus the resource constraint (C1) give Rc(s)U(1) =

0. Thus, (C2) implies that the elements of U(1) satisfy:

U(s, 1) ∝ z̄(s) + γȳ

z̄(s)
,

for some constant of proportionality. This constant is pinned down by the fact that U is

unitary. Specifically, since U is unitary:

N−1∑
s=1

U(s, 1)2 = 1.

Hence, for s = 2, . . . , N − 1 we have:

U(s, 1) =

(
z̄(s) + γȳ

z̄(s)

)(
z̄(1)

z̄(1) + γȳ

)
U(1, 1),

and

U(1, 1) =

[
1 +

N−1∑
s=2

(
z̄(s) + γȳ

z̄(s)

)2(
z̄(1)

z̄(1) + γȳ

)2
]−1/2

.

After solving for all the elements of U(1) in this fashion, we can compute the implied value

of RπU(1) 6= 0.

With the first column of U solved for, we can proceed to the second. To do this,

consider what happens when we start with the initial condition ζ̂t−1(2) = 1 and ζ̂t−1(j) = 0

for j 6= 2. Then, ζ̂t(1) = T(1, 2), ζ̂t(2) = T(2, 2) = 0, and ζ̂t(j) = 0. Hence, ĉt(s) = Rc(s)U(2),

π̂t = RπU(2), ẑt(s) = U(s, 1)T(1, 2), ĉt+1(s) = Rc(s)U(1)T(1, 2) = 0 (from the result above

that Rc(s)U(1) = 0), and π̂t+1 = RπU(1)T(1, 2) (recall that RπU(1) 6= 0 is computed

above).

We can now run through the same sort of substitutions that gave us (C1)-(C4) to get

the system of equations:

0 =
N−1∑
s=0

c̄(s)Rc(s)U(2),

c̄(s)Rc(s)U(2) + z̄(s+ 1)U(s+ 1, 1)T(1, 2) =
z̄(s)

π̄
U(s, 2)−

(
z̄(s) + γȳ

π̄

)
RπU(2),
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0 = σRc(0)U(2)−RπU(1)T(1, 2),

0 = [Rc(s)−Rc(s+ 1)]U(2).

We will have to use properties of the unitary matrix U — that is, the fact U(2)′U(2) =

1 and the columns U(1) and U(2) are orthogonal, U(1)′U(2) = 0 — to solve out for the

elements of U(2) and the element T(1, 2) of the upper strictly triangular matrix T. (When

we were solving for the elements of U(1), the element T(1, 1) was trivially zero, just as here

the element T(2, 2) is trivially zero.) Notice that every equation except U(2)′U(2) = 1 is

linear.

With the first and second columns of U and the (1, 2) element of T solved for, we can

now proceed to the third column of U and the (1, 3) and (2, 3) elements of T. Notice that

at each step, we will be adding one more unknown element of T but will also be adding one

more orthogonality condition.

To see this pattern, let’s work through the process one more time. Consider what

happens when we start with the initial condition ζ̂t−1(3) = 1 and ζ̂t−1(j) = 0 for j 6=
2. Then, ζ̂t(1) = T(1, 3), ζ̂t(2) = T(2, 3), ζ̂t(3) = T(3, 3) = 0, and ζ̂t(j) = 0 other-

wise. Hence ĉt(s) = Rc(s)U(3), π̂t = RπU(3), ẑt(s) = U(s, 1)T(1, 3) + U(s, 2)T(2, 3),

ĉt+1(s) = Rc(s)U(1)T(1, 3) + Rc(s)U(2)T(2, 3) = Rc(s)U(2)T(2, 3) (from the result above

that Rc(s)U(1) = 0), and π̂t+1 = RπU(1)T(1, 3) + RπU(2)T(2, 3).

Paralleling the results above, our system of equations for the deterministic dynamics

becomes:

0 =
N−1∑
s=0

c̄(s)Rc(s)U(3), (C5)

c̄(s)Rc(s)U(3) + z̄(s+ 1)[U(s+ 1, 1)T(1, 3) + U(s+ 1, 2)T(2, 3)]

=
z̄(s)

π̄
U(s, 3)−

(
z̄(s) + γȳ

π̄

)
RπU(3), (C6)

0 = σRc(0)U(3)− σRc(1)U(2)T(2, 3)−Rπ[U(1)T(1, 3) + U(2)T(2, 3)], (C7)

0 = [Rc(s)−Rc(s+ 1)]U(3)− [Rc(s+ 1)−Rc(s+ 2)]U(2)T(2, 3). (C8)

Note that the interest rate Euler equation,

0 = [Rc(0)−Rc(1)]U(2)T(2, 3),

is satisfied automatically (from the previous calculations for column U(2), we found that

0 = [Rc(0)−Rc(1)]U(2)), so we drop it. Again, we use the extra conditions U(3)′U(3) = 1

and U(1)′U(3) = 0 and U(2)′U(3) = 0 to pin down the (1, 3) and (2, 3) elements of T.
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Aside from equations of the form U(3)′U(3) = 1 we are always solving a system of

linear homogeneous equations. For example, in the case of solving for the third column of U

and the (1, 3) and (2, 3) elements of T, we can write the problem as one of solving:

A′3w3 = 0,

where the unknowns are:

w3 = [Rc(0)U(3), . . . ,Rc(N − 1)U(3),RπU(3),T(1, 3),T(2, 3),U(1, 3), . . . ,U(N − 1, 3)]′ ,

and where the coefficient matrix A3 is constructed from the equations (C5)-(C8) and the

orthogonality conditions. Note that the coefficient matrix makes use of the previous solutions

for U(1), U(2), and the element T(1, 2). Computing the (one-dimensional) null-space of the

matrix A′3 [e.g., in Matlab, computing null(A′3)] delivers a vector that satisfies A′3w3 = 0. We

then scale this vector by using the condition U(3)′U(3) = 1 and move on to solve for U(4)

and the (1, 4) and (2, 4) and (3, 4) elements of T. Now we will face the problem of solving:

A′4w4 = 0,

where:

w4 = [Rc(0)U(4), . . . ,Rc(N − 1)U(4),RπU(3),T(1, 4),T(2, 4),T(3, 4),U(1, 4), . . . ,U(N − 1, 4)]′ .

The dimension of the unknown vector has increased by one, but there is one more equation

(one more orthogonality condition) to satisfy too, so A4 is conformably larger. Of course, the

solution to this null-space problem has to be scaled so that U(4)′U(4) = 1.

The function Deterministic Dynamics called by Interest Simulations carries

out this procedure. For each k = 1, ..., N − 1 the column U(k) and associated elements of T

need to be found. The program constructs the appropriate Ak matrix using the equations for

the deterministic dynamics and the orthogonality conditions and then solves the null-space

problem and scales the solution vector wk such that U(k)′U(k) = 1. Proceeding in the same

manner N − 1 times delivers a solution for U and T and the products Rc(s)U(k), RπU(k).

The desired (N − 1)× (N − 1) matrix is then P = UTU′. Since U is of full rank, the vectors

Rc(s) and Rπ can be recovered from the inverse of U = U′. This completes the solution for

the deterministic dynamics. We then have to solve for the response of the model to shocks;

that is, we have to solve for the additional matrices Q and S.

C2. Solving for the response to interest rate shocks

The function Deterministic Dynamics returns the matrices U and T and the

implied P and R given the structural parameters and non-stochastic steady-state of the

12



model. Now, with the other coefficient matrices A,B,C, ..., etc set up by the function

Matrices Interest, we can easily compute the additional matrices Q and S. The program

Harald is a modification of the program written by Uhlig (1999) and uses the supplied

matrix P to find Q and S.

C3. Solving for the response to unexpected money growth shocks

In our model, there are many stochastic processes for money, all consistent with the

same exogenously specified path for nominal interest rates in equilibrium. In the experiments

that we carry out, we choose one of the many stochastic processes for the gross growth rate of

the money supply that result in an equilibrium in which the short-term nominal interest rate

follows a first-order autoregressive process similar to that estimated for the monthly Federal

Funds Rate. The process for money growth that we choose has the property that a shock

to the nominal interest rate, on impact, is associated with no movement in the current price

level. In order to implement this, we solve for the responses of the endogenous variables to an

unexpected money growth shock that leaves the path of the nominal interest rate unchanged.

We then combine an appropriately scaled version of this money growth shock to our nominal

interest rate shock to solve for the desired process for money growth.

To implement this procedure, we first denote by Qi and Si the response matrices found

using the program Harald. We are interested in finding a linear solution of the form:

ẑt = Pẑt−1 + Qiı̂t + Qµε̂µ,t,[
π̂t
ĉt

]
= Rẑt−1 + Siı̂t + Sµε̂µ,t,

where ε̂µ,t denotes the additional (IID) shock. The system of equations that must hold in

equilibrium are:

0 = Aẑt + Bẑt−1 + C

[
π̂t
ĉt

]
+ Dı̂t,

0 = Et

{
Fẑt+1 + Gẑt + Hẑt−1 + J

[
π̂t+1

ĉt+1

]
+ K

[
π̂t
ĉt

]
+ Lı̂t+1 + Mı̂t

}
,

plus the law of motion for the exogenous interest rate shock. Plugging in the equilibrium
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laws of motion reduces this to:

0 = (AP + B + CR)ẑt−1 + (AQi + CSi + D)̂ıt + (AQµ + CSµ)ε̂µ,t,

0 = (FP2 + GP + H + JRP + KR)ẑt−1

+ (FPQi + FQiN + GQi + JRQi + JQiN + KSi + LN + M)̂ıt

+ (FPQµ + GQµ + JRQµ + KSµ)ε̂µ,t,

where N is the coefficient matrix for the law of motion for the exogenous interest rate shock.

Since these equalities always have to hold, we can write a matrix problem for the two remain-

ing vectors of unknowns, Qµ and Sµ,[
A C

FP + G + JR K

][
Qµ

Sµ

]
=

[
0

0

]
. (C9)

We can solve for the vector of unknowns by finding the (one-dimensional) null-space of the

matrix of coefficients in (C9). This leaves us with a normalization to pin down the elements

of Qµ and Sµ. We use the normalization that the response of money growth µ̂t to the shock

ε̂µ,t is one.
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