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ABSTRACT

Concerns about constructing and maintaining good reputations are known to reduce borrow-
ers’ excessive risk-taking. However, I find that the self-discipline induced by these concerns
is fragile, and can break down without obvious changes in economic fundamentals. Further-
more, in the aggregate, breakdowns are clustered among borrowers with intermediate and
good reputations, which can exacerbate an economy’s weakness and contribute to a broad
economic crisis. These results come from an aggregate dynamic global game analysis of rep-
utation formation in credit markets. The selection of a unique equilibrium is accomplished
by assuming that borrowers have incomplete information about economic fundamentals.
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1 Introduction

The major financial crisis that began in 2008 seems to contradict our understanding of the
self-disciplining nature of financial markets. In these markets, borrowers whose actions and
profits are not observable tend to take excessive risk when compared to the efficient bench-
mark in which their actions are observable. The reason is that, by taking risks, borrowers can
appropriate most of the extra benefits expected from large successes and, by defaulting, can
impose to lenders most of the losses expected from large failures. However, since the 1980s,
researchers (Stiglitz and Weiss (1983), Diamond (1989)) have established that borrowers” con-
cerns about constructing and maintaining good reputations restrain their tendency to behave
opportunistically. Yet as housing prices shot up over the few years before 2008, financial in-
termediaries - even well-known, highly rated, reputable ones - began borrowing heavily in
order to turn around and lend heavily to high-risk customers for mortgages and other assets.
Once the housing bubble burst, that risky behavior led to a collapse in many large financial

firms as well as in money markets and eventually in general economic activity.

U.S. Federal Reserve chairman, Ben Bernanke, has pointed to the collapse in the financial
market discipline as the main source of the crisis: "Market discipline has in some cases bro-
ken down, and the incentives to follow prudent lending procedures have, at times, eroded”
(Statement, Board of Governors, December 18, 2007). Why did financial market discipline
fail in this way? Why did firms’ concerns about gaining and maintaining good reputations
apparently disappear and lead to the recent crisis? This paper constitutes a first attempt to
understand the relation between the self-discipline of financial markets and the economic

fundamentals affecting them.

I argue that firms’” concerns about their reputations can have negative as well as positive
aggregate effects. These concerns, I show, are, in fact, fragile and their breakdown induces
a sudden change in risk-taking behavior in response to small and not obvious changes in
aggregate fundamentals. Furthermore, these breakdowns are clustered among firms with
intermediate and good reputations, generating a large change in aggregate risk-taking be-
havior and a large negative impact on overall economic outcomes, such as corporate rates of
success and failures, credit conditions, interest rates, and returns to investors. Historically,
then, the loss of reputation concerns may have been an unnoticed amplifier of financial crises

characterized by excessive risk-taking, such as the recent one.

I establish this in a way that has not been done before. I begin with a standard model of
credit markets in which firms borrow to produce. In this model, all firms can invest in risky
projects, while only some of them (strategic firms) can also invest in safer projects that in-

crease the probability that the firm continues operating - and hence reduce the probability



of loan default - but generate lower profits when the firm continues. A firm’s reputation is
defined in my model as the probability that the firm is strategic. Reputation is updated by
lenders after observing the firm’s continuation, which is an observable signal correlated with
the firm’s decisions. Strategic firms want to distinguish themselves from nonstrategic ones so
that they can pay lower interest rates in the future. The fear of losing reputation, therefore,
leads strategic firms to reduce risk-taking.

In this setting, firms’ temptation to take risks varies monotonically with a stochastic aggregate
fundamental. As is standard, however, it turns out that when fundamentals are perfectly
observable, the model delivers multiple equilibria, the characterization of which varies with
lenders’ beliefs about firms” behavior. There is a range of this fundamental for which two
equilibria coexist. At the one extreme, if lenders believe that all strategic firms play it safe,
then firms do that. Firms know that in this case their continuation and loan repayment will
be attributed at least partly to their good behavior, thereby improving their reputation. At the
other extreme, if lenders believe that all firms take risks, then strategic firms do that. Under
these beliefs, firms know that their continuation and repayment will be attributed solely to
good luck and won’t improve their reputation at all. Reputation concerns clearly reduce risk-
taking in the first equilibrium but not in the second.

In order to obtain a unique equilibrium, which is robust to small perturbations of information,
I here use techniques from the global games literature. I assume that after negotiating the
loan, but before making a decision about risky or safe behavior, firms observe a noisy signal
of the fundamental, which becomes part of what determines their decisions. The model thus
becomes a nonstandard dynamic global game in which strategic complementarities are not
just assumed, but are rather obtained endogenously from the concerns behind reputation
formation. Uniqueness of equilibrium is characterized for each kind of reputation by a cutoff
in signals about fundamentals, below which firms decide to take risks. Fundamentals, that
is, do not only affect the temptation but also become a coordination device for risk-taking

behavior.

Here equilibrium selection generates the first of two sources of reputation fragility. When,
based on its signal about economic fundamentals, a firm believes that similar firms will take
risks, it also believes that lenders will assign a low probability of good behavior to all firms,
hence playing it safe will not be rewarded with a better reputation and the firm takes risks. If
signals about fundamentals are precise, small changes of fundamentals around the cutoff of

risk-taking produce a clustering of behavior among firms with the same reputation.

The second source of fragility exists at an aggregate level when firms with different reputa-
tion are compared. This source of fragility is independent of the equilibrium selection and

depends only on primitive learning properties. Safe projects have higher probabilities of con-



tinuation, which generates two types of incentives for safe behavior. One type, continuation
incentives, increases with reputation; firms with better reputations face lower rates in the
future, have higher expected future profits, and are more afraid to die. The other type, rep-
utation formation incentives, is low for extreme reputations and high for intermediate ones;
because of learning, priors are harder to change at the extremes. By combining these two
types of incentives, we can see that:

e Poor reputation firms have no incentives to play it safe because their continuation value

is low and, if they survive, their reputation cannot improve much.

e Intermediate reputation firms do have incentives to play it safe, not because their con-

tinuation value is high; rather, if they survive, they can improve their reputation a lot.

e Good reputation firms also have incentives to play it safe, but not because they can
improve their reputation if they survive; rather, their continuation value is high and

they can lose a lot if they die.

Hence, intermediate and good reputation firms have similar cutoffs for different reasons.
They switch to risk-taking under similar conditions, which produces a clustering of behavior
change among them. Furthermore, since the distribution of reputation is biased toward in-
termediate and good reputations, what these firms do strongly affects the aggregate level of

risk-taking in the economy.

My work here primarily combines two strands of literature: reputation and global games.
With regard to the reputation strand, my model is most closely related to the models of Di-
amond (1989) and Mailath and Samuelson (2001), who analyze the ability of reputation to
deter opportunistic behavior in the presence of both adverse selection and moral hazard.
Unlike their work, which is focused on reputation incentives for a single agent living in a
state-invariant environment, my work here explicitly introduces a cross section of firms in an
environment that evolves stochastically in order to study the interplay between reputation
incentives and economic conditions in determining aggregate behavior. As in their work, my
model also has multiple equilibria. While Diamond (1989) considers extreme equilibria and
Mailath and Samuelson (2001) focus on the most efficient one, I select a unique equilibrium
by exploiting the existence of fundamentals as a coordination device. Finally, unlike in the
work of Mailath and Samuelson (2001), here firms” behavior affects the probability of their
continuation, a signal to update reputation, and unlike Diamond’s (1989) model, mine is flex-
ible enough to include the use of additional signals correlated to actions, which breaks the
perfect correlation between age and reputation that he obtains.

My work also contributes to the literature of herding behavior generated by reputation con-
cerns. While the work pioneered by Scharfstein and Stein (1990) considers agents that mimic
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others and disregard private information, firms in my model cannot observe others” actions

and instead use private information to coordinate behavior.

My work relies as well on the dynamic global games literature - such as the work of Morris
and Shin (2003), Chassang (2007), and Toxvaerd (2007) - but I exploit novel properties coming
from the endogenous reputational generation of strategic complementarities. In particular,
the range of fundamentals with multiple equilibria depends on the initial reputation of the
tirm, and this is useful in characterizing the schedule of cutoffs for different kinds of reputa-
tion. My work contributes, as well, to the scarce literature on learning in global games. While
most of that literature studies situations in which players learn about a policymaker or a sta-
tus quo (as in, for example, the 2006 and 2007 work of Angeletos, Hellwig and Pavan), my
model deals with the opposite situation, in which the market learns about players’ types and
so generates coordination problems. My work here is the first to exploit fundamental-driven

incentives to create a reputation global game and select a unique equilibrium.

In the next section, I show how, with incomplete information about economic fundamentals,
a dynamic global game analysis of reputation formation in credit markets delivers a unique
equilibrium. In Section 3, I show that firms’ concerns about reputation can have substantial

aggregate negative as well as positive effects. In Section 4, I conclude.

2 Selecting a Unique Reputation Equilibrium in Credit Markets

Models of credit markets have been used to analyze the effects of reputation concerns before.
However, based on complete information about aggregate economic conditions, their results
have not been determined by a unique equilibrium. Introducing small perturbations on the

information about those conditions, I am able to select here a unique equilibrium.

2.1 Multiple Equilibria in a Model with Complete Information

First, I demonstrate the standard result that a model with complete information has multiple

equilibria.

2.1.1 The Model

Here I describe my basic model of reputation concerns in credit markets, the timing of its

events, and the definition of its equilibrium.



a) Description

Credit markets are composed of a continuum of long-lived, risk-neutral firms (with mass 1)

and an infinite number of risk-neutral lenders that provide funds to those firms.

Each firm in the model runs a unique project, by selecting either safe (s) or risky (r) produc-
tion technologies.! T assume that firms using safe technologies are more likely to continue

operating in the market (c).

Assumption 1 The selection of a safe technology makes a firm’s continuation more likely. This is,
Pr(c|s) = ps > Pr(c|r) = p,.

If the firm does not continue, or dies, then current and future cash flows are zero. If the firm
continues, then current cash flows (II) depend both on the technology used and on a single-
dimensional variable § € R that represents aggregate economic fundamentals. I assume the

relationship between the fundamental and the temptation to play it safe is positive.

Assumption 2 Safe technologies are more tempting with higher 0: 86%5 > 8519]9T forall 6.

Fundamentals 0 are independently and identically distributed over time and distributed with
density v(f), mean p, and standard deviation 7 at each period. What actually matters in
Assumption 2 is not the direction of the inequality, but the monotonic change in incentives to
use safe technologies as fundamentals vary.

The model has two types of firms, defined by their access to production technologies. Strate-
gic firms S can choose between safe and risky technologies. Risky firms R can use only risky
technologies. Firm’s reputation is defined by ¢ = Pr(S), the probability of being a strategic

firm.3

'T will also use these terms interchangeably: playing it safe or taking safe actions (s) and taking risks or taking
risky actions (r).

Unlike in other reputation models, in this one incentives differ over the cycle. A good example is a construc-
tion firm, in which risky technology is the use of cheap materials and 6 is the relative price of cheap materials.
Another example of 6 is the level of aggregate demand when more structure is imposed into the definition of cash
flows. This extension is available in Ordonez (2008). A final example, related to the recent financial crisis, in which
the direction of the assumption reverses, is financial institutions whose risky technology is to extend mortgages
to risky households and 6 is the expected housing price.

3The introduction of these two types of firms is based on my (maybe pessimistic) belief that all firms can take
risks, but not all of them can play it safe. While all firms can perform trial-error procedures, not all of them have
access to well-designed procedures. Particularly in lending markets, saying that some firms are restricted to using
inferior technologies rather than superior ones seems to be a better description of reality. An obvious alternative
is that nonstrategic firms have access to only safe technologies. In this case the main result of reputation fragility
remains unchanged. Another way to rationalize our assumption of types is that some strategic firms have a
positive discount factor, while others (risky ones) have a zero discount factor.



To run a project, each firm needs external funds (normalized to one per period), which can
be provided by lenders, whose outside option is an alternative investment in a risk-free bond
that pays R > 1. Failure to repay loans (default) is characterized by a costly state verification
with a bankruptcy process that destroys the value of the firm’s output. This is a straightfor-
ward way to introduce truth-telling by firms. When cash flows are greater than debts, firms
always find it optimal to repay loans and get the positive differential rather than default and
file for bankruptcy. I assume that, conditional on continuation, firms can always pay back
their loans; hence, default occurs only if a firm dies.” Finally, I restrict the analysis to the use
of short-term debt, ruling out equity contracts.®

b) Timing

This model is repeated during a finite number of periods. The order of events in each period
t is the same in all periods. In what follows I focus on the reputational game in a given period
t, hence there is no need to use subscripts to denote time. In Section 2.2.2 I study the full-
fledged repeated game and introduce explicitly dynamic considerations, denoting periods by
the subscript ¢. The timing in each period is as follows.

e Firms and lenders meet. Each lender observes the reputation ¢ of the firm it is matched
to. The firm acquires a loan of 1 at a rate that depends on its reputation, R(¢) > 1.
e Fundamentals 6 (that affect short-term cash flows) are realized by firms and lenders.”

e Strategic firms decide between using safe (s) or risky (r) technologies. Risky firms just

use risky ones (r).
e Production occurs, and the firms either continue or die.

e If the firm dies, it defaults on its loan. If the firm continues, it pays to lenders the

negotiated debt R(¢) > 1 and consumes the remaining cash flows.®

“Since lenders are the long side of the market, there is no competition for funds. The introduction of such
competition makes reputation effects more important and magnifies the results. Other alternative assumptions
are that fundamentals do not only affect cash flows (II), but also the probability of continuation (ps) and/or the
risk-free interest rate (R). These alternatives do not modify my main results either.

°Nothing fundamental changes with this assumption, but it simplifies the notation and eases the exposition.
Relaxing it, so that default also exists in case of continuation, does not change the results.

°I rule out equity contracts for two reasons. One is that short-term debt not only seems to be widely used
in reality but also it better highlights the importance of reputation concerns. The other reason is that the opti-
mal lending contracts make interest rates conditional on fundamentals. When this contract does not eliminate
excessive risk-taking completely, reputation concerns still exist and their incentives are also fragile.

"The timing in which fundamentals are observed will be relevant later in selecting a unique equilibrium. An
alternative, and possibly more realistic, assumption is that a subset of fundamentals is observed before the loan,
while another subset is observed after the loan but before production.

8 Allowing for asset accumulation would introduce not only an additional signal but also an additional decision
between asking for the loan or not. This is an interesting extension, but beyond my scope here.



e Lenders do not observe the firm’s type, action, or cash flow, just its continuation. They
then update the firm’s reputation from ¢ to ¢'.

¢) Preliminaries

Before formally defining the equilibrium of this model, I discuss the properties of reputation

updating and the definition of the value function that firms maximize.

First, a few preliminaries about the behavior of strategic firms. Define z(¢, ) as the probabil-
ity that a firm with reputation ¢ that observes fundamentals 6 takes risks. I focus on equilibria
in cutoff strategies, in which a firm with reputation ¢ decides to take risks if it observes funda-
mentals below a certain cutoff point, k*(¢) and play it safe if it observes fundamentals above
that cutoff,’ such that

0 1 0> k*
w0y =40 0RO 1)
1 if 6<k(g)

i) Reputation Updating

When updating a firm’s reputation, lenders have a prior belief about the firm’s reputation
and an expectation about the firm’s behavior.

First, I restrict attention to Markovian strategies, such that the sufficient statistic about the
firm’s type (strategic or risky) is the lenders’ prior belief of the firm’s reputation level ¢.
This restriction allows the elimination of many equilibria, standard in models with public
signals, that require an implausible degree of coordination between the firm’s behavior and
the lender’s beliefs about the firm’s behavior. The restriction also allows the elimination of

equilibria in which reputation is not an asset, as we typically observe in reality.!?

Second, even though I am restricting attention to Markovian strategies, reputation formation
still depends on beliefs about the firm’s actions. Let Z(¢, §) be lenders’ beliefs about the prob-
ability that a strategic firm with reputation ¢ takes risks when the fundamental is §. Given
cutoff strategies from equation (1), Z(¢, #) is pinned down by k(¢), the lenders’ beliefs about
the cutoff that firms ¢ follow.

°I restrict attention to this strategy given the monotonicity Assumption 2. In Section 2.1.2, I show that in this
family of strategies a multiplicity of equilibria exists when the information about fundamentals is complete. In
Section 2.2.1 I show that introducing noise into the observation of fundamentals, the unique equilibrium which
survives iterated deletion of dominated strategies (as the noise goes to zero) is a cutoff strategy of this type.

°One of these equilibria can be, for example, to play it safe for certain fundamentals until the first bad result
happens and then take risks forever afterward. In this particular equilibrium, reputation does not exist as I have
interpreted it, and beliefs about firms’ behavior require implausible degrees of complexity and coordination. See
the discussion in the 2006 work of Mailath and Samuelson.



Using Bayes’ rule, we know that after observing a continuing firm, lenders update reputations
this way:

[prT + ps(1 — )¢
[prZ + ps(1 = 2)]o + pr(1 — ¢) 7

Pr(Sle) = ¢'(¢,7) = )

where ¢’ is the firm’s posterior reputation after the observation that the firm has continued.

Note that, for ¢ € (0,1), ¢ = ¢ whenZ = 1 and ¢ > ¢ when = < 1, with the gap between
the new and old reputation (¢’ — ¢) increasing as z goes to 0. Graphically, firms reputation
evolves as in Figure 1. Reputation priors ¢ are represented on the horizontal axis; reputation
posteriors ¢’ on the vertical axis. For any prior ¢, we can say three things.

e Iflenders believe strategic firms play it safe for sure (that is, if z = 0), then the gap ¢’ — ¢
represents the gains to the firm from continuation, in terms of reputation.

e If lenders believe strategic firms take risks for sure (that is, if = 1), then ¢/ = ¢ and

firms get no gains in terms of reputation.

e Regardless of 7, the updating is weak when priors are strong (that is, close to ¢ = 0 or
¢ = 1). In particular, regardless of z, ¢/ = ¢ for ¢ = 0 and ¢ = 1. The maximum gap,
(¢’ — ¢) is obtained at some intermediate level, like ¢ ;.

Figure 1: Reputation Updating for Different Beliefs about Risk-Taking (z)
Reputation | Updating (x=0)

after s
continuation P

/A

7 Updating (£=1)
7

U N

0 é ¢M 1

Reputation before continuation

ii) Continuation Values

For now, I will focus on a firm’s single period problem, when it faces exogenously fixed ex-
pected continuation values V(¢), one for each reputation ¢. These values are characterized
by three properties: They are well-defined, they are positive (since profits are bounded below
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by zero), and they are monotonically increasing in the reputation level ¢ (since reputation is

a valuable asset).!!

Total discounted profits for a firm with reputation ¢, that observes a fundamental 6, condi-
tional on taking risks with probability z(¢, §) and lenders’ beliefs about the cutoff @(qb), are,

V(. 0le k)= @ [p[T1(0) - R(6IR)] + B, V(S o) 3)
+(1 = 2)[ps[I1,(8) = R(SIR)] + Bps V(@ (7))

where ( is the discount factor. This allows us to define

V(¢,0lk) = max V (g, 0|z, k)
z€[0,1]

and V(¢ 6 E)) = [T V(¢ K )o(8')d#’ is the expected continuation value for ¢/, an element
of a given stream of expected continuation values Y’ = {V(gb’)}é),zo.

d) Equilibrium

Now, I formally define the model’s equilibrium in a given period, for any arbitrary stream
of expected continuation values. Hence, each variable should have a subscript ¢t. To simplify

notation, I am not including it.

Definition 1 A single period Markov perfect equilibrium in cutoff strategies, for a given stream of
expected continuation values Y' = {V(¢/ )}<1z>':0/ consists of risk-taking cutoffs k*(¢), interest rates
R(¢), and posteriors ¢/, for each ¢, such that

o Each firm with reputation ¢ that observes fundamental 6 chooses x* (¢, 0) to maximize Vg, 0z, 79\)

(as in (3)) following a cutoff strategy k*(¢) (as in (1)).
e Lenders charge R(¢) to obtain the risk-free rate R in expectation.
e Posteriors ¢ are updated using Bayes’ rule (using (2)).

o A strategy for a firm with reputation ¢ uniquely determines the equilibrium interest rate and the
updating rule that lenders must use if their beliefs are to be correct (that is, if k(o) = k*(¢)).

The equilibrium in a game in which firms live for a finite time 7" and Vr;(¢) = 0, for all ¢,
(now explicitly differentiating each period by a subscript t) is as follows:

1T show later, when solving the complete dynamic model, that these properties hold in equilibrium.



Definition 2 A finite-horizon Markov perfect equilibrium in cutoff strategies consists of a sequence
of risk-taking cutoffs {k; (¢)}1_,, interest rates { Ry(¢)}1_,, posteriors ¢/, and firm continuation val-
ues {Vi(¢)}L, for each ¢, such that

e A single period Markov perfect equilibrium exists in each t € {0,1,...,T'}.

o Vi(0) = [ Vi(6, 011, k) dV(0) + [i) Vil(6,010,k7) dV(0).

2.1.2 Multiple Equilibria

Now I'show that in my baseline model, when firms perfectly observe economic fundamentals,
a multiplicity of Markovian perfect equilibria exists in monotone cutoff strategies in each
period. First I discuss properties of the firms’ differential gains from taking safe actions rather
than risky ones, which characterize each firm’s decisions. Then I show how these properties
interact with lenders’ beliefs about the firms” actions to create multiplicity of equilibria. I
begin analyzing multiplicity in a single period and then I show how it extends to multiplicity

in the whole finite horizon game as well.

a) Differential Gains from Safe Actions

Define by A(¢, 9\@) = V(¢,0]0, 75) —V(g, 001, E) the differential gains to firms from playing it
safe rather than taking risks when a firm with reputation ¢ observes a fundamental 6, condi-
tional on cutoff beliefs E((;S) (and, hence, beliefs Z(¢, ) about risk-taking for each #). Naturally,
a firm decides to play it safe if A(¢, 0@) > (0 and takes risks if A(¢, 9\@) < 0.

Short — Term Continuation Moral Hazard

—~ ——

A(¢7 H‘k) = psHs(‘g) - err(9> =+ ﬁ(ps - pr)v(¢) - (ps - pT)R(¢|k>
+5[ps - pr] [V(¢,(¢75"]§)) - V(d))] 4)

Reputation Formation
Equation (4) displays the four essential components of these differential gains:

e Short-Term refers to differential gains in expected short-term cash flows to the firm from
using a safe technology. This is the only part of the differential gains that depends on 6,
and it drives the relative temptation to take risks.

e Continuation captures the effect that, taking safe actions increases the probability of the

firm’s continuation.
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e Moral Hazard represents the firm’s incentives to take risks in order to reduce the proba-
bility of having to pay back the debt. This component is the one that generates excessive
risk-taking.

e Reputation Formation refers to the fact that taking safe actions also increases the prob-

ability of reputation improvement.

The following lemma shows that playing it safe is less tempting for firms as fundamentals
and lenders’ beliefs of safe actions decline:

Lemma 1 A firm’s differential gains from playing it safe, A(¢, 0|k), is monotonically increasing in
fundamentals 6 and monotonically not increasing in risk-taking beliefs, k and 7.

Proof I divide the proof of Lemma 1 into three steps:

o Step 1: 220280 -
By Assumptions 1 and 2, we know that W > 0.
e Step 2: % <0.

Since loans are negotiated before fundamentals are known, interest rates are defined by the
risk-free interest rate R divided by the expected probability of firm’s continuation. Hence,
R

R(¢|%) = m»

(5)

where
Pr(elg,k) = (1= @)pr + 6 [pV(E) +p,(1 = V(R)]

with V(k) being the cumulative distribution of fundamentals up to k or the ex ante believed
probability of risk-taking by firms with reputation ¢. Since p; > p;, it is straightforward to
OR(¢lk)

show that i > 0.

e Step 3: % <0.
From equation (2), we know that w < 0 (and strictly negative fS)I‘ ¢ € (0,1)). By assump-
tion (for now),'2 V() is monotonically increasing in ¢, hence, w < 0. Even when I

discuss the effects of k and 7 separately, recall that pessimistic lenders (those with high k(¢))
will not update reputation for a wider range of fundamentals (since (¢, §) = 1 for 6 < E(qb)).

Q.E.D.

12I show later (Section 2.2.2) this assumption holds in equilibrium.
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b) Multiplicity

Now I turn to how this relationship between firms’ differential gains from playing it safe and
lenders’ beliefs about their behavior creates a multiplicity of equilibria in this model. But
before, I assume uniform limit dominance , which defines ranges of fundamentals for which,
regardless of beliefs, firms decide to either take risks (fundamentals below a lower bound 6)

or play it safe (fundamentals above an upper bound 6).

Assumption 3 (Uniform Limit Dominance)
e For each ¢ and k, there is a lower bound Q(qﬁ@) such that A(¢,Q|E, r=0)=0

o For each ¢ and k, there is an upper bound 0(¢|k) such that A(¢, 0|k, T =1) =0

A pair of reputation ¢ and cutoff beliefs k, determines an interest rate R(¢[k). From equation
(4) we know that Q(¢|E) is the level of fundamentals that makes firms indifferent between
playing it safe and taking risks when z = 0 is artificially assigned to all 6, regardless of k.
Similarly, §(¢|E) is the level of fundamentals for firm indifference when = = 1 is artificially

assigned to all 6. For example, 6(¢| — o0) is the indifference 6 for firms ¢ given R(¢| — c0) =
R R
Pr

m and 7 = 0. Similarly, 6(¢|co) is the indifference 6 for firms ¢ given R(¢|oc) =
andz = 1.

The following lemma characterizes these bounds. The proof follows from inspecting equation

(4), using lemma 1 and assumption 3.

Lemma2 e d(¢|k) < 0(¢|k) forall k € R (strictly < for ¢ € (0,1)).

o —00 < 8(d| — 00) < O(¢|k) and B(d|k) < B(¢|oo) < oo forall k € R.

The next Proposition formalizes the multiplicity of equilibria in this model. The proof is in
the Appendix.

Proposition 1 (Equilibria Multiplicity)

For all reputation levels ¢ € (0,1), there is a continuum of equilibrium strategy cutoffs k*(¢). These
strategies are located in a range [6* (), 0 (¢)] where its bounds are given by the fixed-point funda-
mentals that solve A(¢,0%|0*,z = 0) = 0 and A((b,?* ]?*,55 = 1) = 0. There is a unique range
[0%(4),0” ()] for each ¢ if v() < Mfor all § € R. Only for reputation levels ¢ = 0

ﬁ(ps—pr)Z
and ¢ = 1, is there a unique equilibrium cutoff, k*(0) and k*(1), respectively.
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Figure 2 provides a graphical intuition of this multiplicity. Consider a particular risk-taking
cutoff k*(¢) for some firm with reputation ¢ € (0,1), such that k*(¢) € [0(¢|k*), (k)]
Then, the equilibrium differential gain A(¢, §|k*) for different levels of fundamentals is the
bold function with a discrete jump at £*(¢). This is an equilibrium because it is a best response
for any realization of the fundamental 6 such that lenders” beliefs are correct. Playing it safe
is optimal for all § > k*(¢) (since A(¢, 8|k*,z = 0) > 0 for all § > k*(¢)), and taking risks is
optimal for all § < k*(¢) (since A(¢,0|k*, 7 =1) < 0 for all § < k*(¢)).

We know that in this setup, an arbitrarily small increase in the proposed risk-taking cutoff
k*(¢) generates an arbitrarily small increase in the interest rate. If interest rates do not change
suddenly (which is guaranteed by the sufficient condition in Proposition 1, basically that fun-
damentals distribution has a variance large enough), then they cannot overcome the discrete
jump generated by the effects of changes in reputation that result from sudden changes in
beliefs from z = 1 to ¥ = 0. Hence, we can find equilibrium cutoffs arbitrarily close to each
other and, hence, a continuum of equilibria cutoffs. As we move the proposed cutoffs to the
right of £*(¢), interest rates increase, reducing A(¢, 0|k) for all 6 until 6" (¢) is reached. The
same is true as we move in the opposite direction, decreasing the proposed cutoffs from k*

toward 0% (¢). These extremes are the bounds to equilibrium cutoffs.

Figure 2: Equilibria Multiplicity with Complete Information about Fundamentals

Differential A(g| k" ,£=0)
gains from
playing it .
safe (A(g)) Aglk ,x=1)
0—= <
e 0@l k(¢ a1k )]
/ Fundamentals ()

In words, for a fundamental to be a cutoff in equilibrium, it should be the case that two
equilibria coexist at exactly that cutoff. At the one extreme, if lenders believe that all strategic
firms play it safe, then firms do that. Firms know that in this case their continuation and loan
repayment will be attributed at least partly to their good behavior, thereby improving their
reputation. At the other extreme, if lenders believe that all firms take risks, then strategic
firms do that. Under these beliefs, firms know that their continuation and repayment will be
attributed solely to good luck and won’t improve their reputation at all. Since the difference of
payoffs between these two extremes is strictly positive, there is a continuum of fundamentals
that fulfill this condition.
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In the finite-horizon game, where continuation values are endogenous, it is straightforward to
see that the range of multiple equilibria cutoffs in each period widens. Since multiplicity ex-
ists in every single period, multiple streams of future expected continuation values (consistent
with multiple equilibria in future periods) can be used to construct A¢(¢, #). By introducing
extreme streams of continuation values determined by the highest (T’) and the lowest (Y)
probability of risk-taking in all future periods for all reputation levels, we can construct ex-
treme bounds 8*(¢[T') < 6*(4|Y’) and 8" (¢|X’) > 6" (4| Y’) such that the region of multiplicity
in a given period is wider when considering the multiplicity of equilibria in future periods.

The multiplicity I have described here thwarts attempts to draw conclusions about the effec-
tiveness of reputation to reduce risk-taking. The higher the equilibrium cutoff is, the more
likely firms are to take risks and the higher interest rates are. Hence, to perform compara-
tive statics and comparative dynamics is impossible, since there is no explicit theory to guide
the selection of equilibrium, leaving a big role to self-fulfilling beliefs and payoff irrelevant
sunspots. However, here, as in Morris and Shin (2001), what really creates the multiplicity
is the assumption of complete information of fundamentals, which at the same time requires
an implausible degree of coordination and prediction of rivals” behavior in equilibrium. This

orients us toward what to do next to move toward the selection of a unique equilibrium.

2.2 A Unique Equilibrium with Incomplete Information

What I do is modify the assumption that information about fundamentals is complete. I
assume instead that firms observe a noisy signal about the aggregate fundamental before
deciding which technology to use (safe or risky). After production occurs, fundamentals are
perfectly observed by both firms and lenders.!® The early signal observed by each firm is not
observed by lenders, who can infer it only after observing the true fundamental. Introducing
this noise into the observation of fundamentals is what leads to the selection of a unique
equilibrium. As I did before, first I show uniqueness in a single period and then I expand the
solution into the finitely repeated game.

2.2.1 Uniqueness in a Single Period

Incomplete information about fundamentals allows us to select a unique equilibrium in a sin-
gle period, assuming exogenous future expected continuation values. The new assumptions

about the information structure are as follows:

3The assumption about the timing is important. If interest rates reveal, through the market’s aggregation of
information, the true fundamental before production occurs, we go back to complete information and a unique
equilibrium cannot be pinned down by introducing heterogeneity through signals. See Atkeson (2001).
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Assumption 4 Each firm i observes a signal about the economic fundamentals z; = 0 + oe;, where
€; ~ F (density f and mean 0) is identically and independently distributed across i. The precision of
the signal is measured by the inverse of the positive parameter o.

Hence, conditional on 6, the distribution of signals z is determined by F(%)

Assumption 5 (Monotone likelihood ratio property). For a > b, J}Eg:z)) is increasing in 0.

Assumption (5) means that a firm which receives a signal of the occurrence of high funda-
mentals assigns a large probability that other strategic firms do too; hence, a large probability
that lenders believe strategic firms play it safe. Signals are thus useful not only to estimate
and cash flows but also to make inferences about the beliefs that lenders will use to update

their views about the firm’s reputation.

Given this revised, incomplete information structure, the firm uses a cutoff strategy defined
over the set of signals rather than over the set of fundamentals, which the firm not longer
observes. For a current signal, a strategy of a firm ¢ is a real number z*(¢) such that the firm
uses safe technologies for z; > 2*(¢) and risky ones for z; < z*(¢). In what follows, I eliminate

subscripts i for notational simplicity.

The next proposition states that under this incomplete information structure, when signals
are precise enough (¢ — 0), there exists a unique Markovian perfect Bayesian equilibrium in

monotone cutoff strategies for each reputation level ¢. The proof is in the Appendix.

Proposition 2 (Uniqueness in a Single Period)

Fora given ¢, as o — 0, there exists in equilibrium a unique cutoff signal z* () such that A(¢, z|z*(¢))
0 for z = z*(¢), A(¢, z|z*(¢)) > 0 for z > 2*(¢), and A(¢, z|z*(¢)) < 0 for z < z*(¢), where
A, z|2*(¢)) are the expected differential gains to firms from playing it safe if a firm ¢ receives a
signal z and lenders believe strategic firms ¢ use a cutoff z*(¢) determined by

1
A, 2*]2") = /0 A(6,6(2),5]2")dz = 0, 6)
where 0(%) = z* — o F~1(T)

Intuitively, relaxing the assumption of complete information about fundamentals and mak-
ing signals very precise, we can use the approach provided by global games to select a unique
equilibrium by iterated deletion of dominated strategies. Assume, for example, that a strate-
gic firm ¢ receives a signal 0*(¢). The firm would like to play it safe only if lenders have a
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belief z(¢) = 0. However, if fundamentals in fact happen to be §*(¢), lenders believe with
some positive probability that the firm observed a signal below 0*(¢), in which case it would
have taken risks, no matter what. This means z(¢) cannot be zero. But with z(¢) > 0, the firm
would strictly prefer to take risks. Then §*(¢) cannot be an equilibrium cutoff anymore. By
continuity, the same reasoning can be applied to signals above 8*(¢) and below 8" (¢).

As is standard, I require 0 — 0 so that the firm gives more weight to its private signal than
to the public signal given by the prior distribution of 6. In this case, the process of iterated
deletion of dominated strategies results in a unique cutoff z*(¢) € [0%(4),8 (4)], such that
the firm takes risks when z < z*(¢) and plays it safe when z > 2*(¢). Hence, fundamentals
become also a coordination device. If a firm observes a low signal, it believes the fundamental
is low with high probability, which directly induces the firm to take risks. On top of that, the
firm also believes that other similar firms have observed a low signal and will take risks as
well. Since lenders will believe with a high probability that a single firm takes risks, there will
not be a reputation reward for playing it safe, which indirectly induces the firm to take risks.
This is why, fundamentals, through the generation of signals, coordinate firms’ expectations
about lenders’ beliefs and hence coordinate firms” actions.

2.2.2 Uniqueness in a Finite Horizon Model

Now I switch from analyzing a single period to analyzing the full-fledged finite horizon game
where future expected continuation values are endogenous. I show also uniqueness in this
full model, which is characterized by a unique sequence of equilibrium cutoffs as signals
become very precise. Also, as the last period goes to infinity, there is a unique limit to the
sequence of perfect Markovian equilibrium for the finite game.

This extension is necessary because the previous sections were based on an assumed profile
of well-defined, positive, and monotonically increasing continuation values. Here I confirm

these three properties arise in the dynamic equilibrium.

The following Proposition states that, based on the boundary condition V741(¢) = 0 for all ¢,
expected continuation values V;(¢) are well-defined in each period ¢ for all reputation levels
¢ and then, a unique equilibrium exists in the finite horizon game as o — 0. In order to solve
this finite dynamic global game, I follow the literature from Morris and Shin (2003), Toxvaerd
(2007), Giannitsarou and Toxvaerd (2007), and Steiner (2008).

Proposition 3 (Uniqueness in a Finite Horizon Game)

For each reputation ¢, in each period t, as o — 0, a unique cutoff signal z;(¢) exists such that the
expected differential gains from playing it safe A¢(¢p, z¢| 25 (¢)) = 0 for ze = 25 (@), Ae(b, 2| 25 (¢)) >
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0 for ze > z{ (@), and A(¢, z¢|z5 (¢)) < O for ze < zf(¢p), where A(¢, z¢|2f (¢)) and zf (@) (as defined
in Proposition 2) depend on Vi1 1(¢) and Viy1(¢'). Continuation values Vi(¢p) are well-defined and,

given the boundary condition Vr1(¢) = 0, are recursively determined by

z{ (9)
Vi(6) = / pelIL(6) — Ri(6) + Vs (6)]0(0)dB @)

—0o0

+ / " pIL(0) — Re(@) + BVia(6)]o(6)d8
z£(9)

Proof The dynamic game can be solved as a series of static games that deliver a unique equi-
librium (that is, a unique cutoff z/(¢) for each t). In the last period 7', the cutoff z7.(¢) is unique
(under the condition in Proposition 1) since A7 (¢, 27|27 (¢)) is well-defined and V71(¢) =0
for all ¢; thus here reputation concerns do not generate multiplicity. Once z7.(¢) is deter-
mined, the equilibrium interest rate at 7" for each ¢ is
. R R
RO O) = Bty = W= o + ooV @) + 2L V@)

Then we can define expected continuation values in 7" for each reputation level ¢. For signals
zr < zp(¢), firms take risks and for signals 27 > 27.(¢), firms play it safe. As 0 — 0, expected
profits in the last period 7" are

o0

27(¢)
Vi(g) = / po[IL (6) — Re(0)]0(0)d + / Pl (0) — Re(o)jo(0)db.  (8)

—00 Z?(Qﬁ)

Since equilibrium thresholds are well-defined and unique in period 7', continuation values

V1 (¢) are also well-defined and unique for all ¢.

Now consider the decision of a firm ¢ in the next to last period 7' — 1. The problem is es-
sentially static, since continuation values Vr(¢) are well-defined and unique for all ¢. Then,
Ar(¢, zr—1|zZr—1(¢)) is also well-defined for all ¢, thus leading to a unique equilibrium cutoff

251 (¢) (following Proposition 2) and unique and well-defined V7 _;(¢) for all ¢.

By straightforward inductive reasoning, we know that, as ¢ — 0, a unique sequence of cutoffs
{27 ()}, and a unique sequence of expected continuation values exist for each reputation
level ¢ in each period t, characterized by equation (7). Q.E.D.

The next proposition establishes that under certain conditions, in particular when the vari-
ance of the fundamentals distribution is large enough, there is a unique limit to the sequence
of perfect Markovian equilibria for the finite game.
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Proposition 4 If Vi (¢) — V(¢) as T — oo and o — 0, then a cutoff 2*(¢) exists for each ¢ that
is a unique limit to the sequence of cutoffs {2} (¢)}L_, of the finite-horizon Markov perfect equilibria

described in Proposition 3.

Proof In the Appendix, I show that the sufficient condition for Vr(¢) — V(¢) for all ¢ as

1—8ps P2[Ps G —Pr %]
Bps E(ps _pr)2

arbitrary finite-horizon 7', I must show that the same reasoning is extended as T — oc. First,

T — ooisv(f) < for all § € R. Having shown uniqueness for an
note that the value of taking safe and risky actions is a bounded and well-behaved monotone
function of T when continuation values converge to a fixed point V(¢) as T — oo. Second,
as defined in equation (4), A¢(¢, 2|z} (¢)) also converges to a unique limit as 7' — oco. Then
2L (Q|T) — zf(p|loo) = 2*(¢) as T — oo, where 2/ (¢|T) is the equilibrium cutoff in a game

truncated in 7" and 2*(¢) is the equilibrium cutoff in any ¢ in an infinite-horizon game. Q.E.D.

Intuitively, we know that if we solve backward from some 7" by using as a boundary condition
the fixed point V7.41(¢) = V(¢), rather than Vr,1(¢) = 0, then we obtain a unique z*(¢) for
each ¢ in all periods ¢t < T'. This matters because, as ¢ — 0, in a period ¢ far enough from the
last period T — oo, unique cutoffs and ex ante probabilities of risk-taking are constant over

time for each reputation level ¢.

3 Establishing Negative Effects of Reputation Concerns

Now I use the unique equilibrium from the last propositions to show how in this model con-
cerns about reputation have potential negative effects as well as the positive effects already
understood. Reputation concerns reduce risk-taking, but they are fragile. Small and not obvi-
ous changes in economic fundamentals can suddenly break down the discipline induced by
those concerns. Furthermore, when they are gone, they are gone for a bunch of different firms
with intermediate and good reputation, generating a clustering of risk-taking that can have
far-reaching aggregate negative consequences. I demonstrate these results first in a formal

abstract analysis and then in an illustrative numerical simulation of the model.

3.1 The Formal Analysis

A formal dynamic analysis of reputation concerns in credit markets establishes both the pos-
itive and potential negative effects of reputation at an aggregate level.
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3.1.1 The Standard Positive Effects

The next proposition shows why firms are concerned about constructing and maintaining
good reputations. A better reputation for a firm implies a lower ex ante probability of taking
risks, and hence that it pays lower interest rates and has a higher continuation value. The

proof is in the Appendix.

Proposition 5 (Reputation, Risk-Taking, Lending Rates and Continuation Values)

As a firm’s reputation ¢ improves

i) Its ex ante probability of risk-taking monotonically decreases (that is, dv(z;(d’)) < Oforall ¢ € [0,1]).

ii) The interest rate it faces monotonically decreases (that is, d}flff) < 0forall ¢ € [0,1]).

ii) Its continuation value monotonically increases (that is, %(f) > 0 forall ¢ € [0,1]).

The next Proposition shows the positive effect of reputation concerns in reducing risk-taking
by firms of all kinds of reputation, when compared to an artificial situation in which firms are

not concerned about their reputation, simply because the reputation cannot change.'

Proposition 6 (Reputation Concerns Reduce Risk-Taking)

Define as z*(¢) the risk-taking cutoffs when reputation is not a concern (this is, when reputation
cannot change). Reputation concerns reduce the ex-ante probability of risk-taking (that is, z*(¢) <

Z*(¢)) for all ¢ € (0, 1) and does not change it (this is z*(¢) = z*(¢$)) for ¢ = {0, 1}.

Proof With reputation concerns, z*(¢) is determined by equation (6) in the following way:

1
/ A(¢p,z|2")dz = 0.
0
Without reputation concerns, z*(¢) is determined just by
Ap, 7 = 1]z7) = 0,

since the restriction that reputation cannot change is exactly the same as assuming = = 1. Fix-
ing V(¢) and R(¢) for all ¢, from equation (4) we know A(¢, z*|z*, T) achieves the minimum
at 7 = 1. Hence, applying lemma 1, z*(¢) is not lower than z*(¢). Since R(¢|z*) < R(¢|z*)
and V(¢|z*) > V(¢|z*) for all ¢, A(¢,Z|z*) > A(¢,z|z*) for all ¢ and all Z, which rein-
forces the previous argument. Hence, from equation (2), z*(¢) < z*(¢) for all ¢ € (0,1)
and z*(¢) = z*(¢) for ¢ = {0,1} . Q.E.D.

“For example, credit histories are erased or lenders cannot observe the age of the firm.
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3.1.2 The New Potential Negative Effects

Now I can go further and establish that the existence of reputation concerns may also have
negative effects by creating sudden changes in aggregate risk-taking behavior without obvi-
ous changes in fundamentals. First, we can characterize firms’ equilibrium cutoffs z*(¢) for
different reputation levels ¢. The next lemma shows that the concerns for reputation forma-
tion convexify the schedule of cutoffs. The proof is in the Appendix.

Lemma 3 Reputation concerns convexify the schedule of cutoffs (that is, d2§;§¢) > d2§;§¢) for all

¢ € [0,1], where z*(¢) are the cutoffs without reputation concerns). Furthermore, there are always

signals of the firm’s type precise enough (2= high enough) such that the schedule of cutoffs is convex

(that is, dzj;g“b) > 0) for all ¢.

I use Figure 3 to explain the intuition for Lemma 3. Each firm can be represented by a point
on the graph, a combination of levels of reputation ¢ and an observed signal z. Firms follow a
cutoff schedule. A firm ¢ that observes a signal below z*(¢) will decide to take risks and will
play it safe otherwise. Assume, for example, that without reputation concerns, the schedule
of cutoffs (z*(¢)) is linear in ¢ (as in the figure). As we know from Proposition 6, reputation
concerns reduce risk-taking (that is, reduce cutoffs from z*(¢) to z*(¢)) for all ¢. However,
the strength of this force is not the same across reputation levels. I start by discussing ¢ = 0
and then gradually raise ¢.

Firms with reputation ¢ = 0 cannot change their reputation, which means that the cutoff
for risky behavior is the same, with and without reputation concerns (z*(0) = z*(0)). As ¢
increases, firms have higher reputation concerns, which rapidly reduces cutoffs. This effect
achieves the maximum at ¢,7, where reputation can increase the most. After this point, fur-
ther increments in ¢ reduce the role of reputation concerns. At the extreme ¢ = 1, reputation
cannot improve further, so the cutoff is again the same with and without reputation concerns
(2*(1) = z*(1)). For firms with poor reputation the two types of reputation incentives - con-
tinuation and reputation - reinforce each other in reducing risk-taking. For firms with better

reputation, while continuation effects increase with ¢, reputation effects decrease.

Now I can summarize results considering just three types of firms, based on their reputation.
Poor reputation firms are prone to take risks because their gains from surviving are low (they
will have to pay high interest rates in the future) and they cannot change their reputation
much. Intermediate reputation firms want to take safe actions not because they can lose a
lot if they die, but because they can improve their reputation a lot if they survive. Good
reputation firms want to take safe actions for the reverse reason, not because they can improve

their reputation a lot if they survive but because they can lose a lot if they die.
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Figure 3: Reputation and Cutoffs for Risk-Taking Behavior
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This leads us to a final, crucial proposition:

Proposition 7 (Fragility of reputation and clustering of risk-taking)

i) Reputation is fragile at a firm level. For highly precise signals about fundamentals (¢ — 0), small
changes in fundamentals 6 around the optimal cutoff z*(¢) induce a change in risk-taking, clustered
among firms with reputation level ¢.

ii) Reputation is fragile at an aggregate level. For strong reputation concerns (2= high enough), small
changes in fundamentals 6 around the optimal cutoff z*(¢ar) for intermediate reputation firms induce
a change in risk-taking, clustered among firms with intermediate and good reputation levels.

The first part of this proposition is just a result from global games. If § < z*(¢), then when the
signal noise goes to zero, almost all firms with reputation level ¢ receive a signal z < z*(¢) and
decide to take risks. Hence, reputation concerns are fragile in the sense that small changes in
fundamentals around z*(¢) induce sudden changes in risk-taking for firms with reputation
¢. Our equilibrium selection creates a clustering of risk-taking among firms with the same

reputation level.

The second part of Proposition 7 is a corollary of Lemma 3 for a given distribution of repu-
tation levels. When fundamentals are strong enough (high 6), small variations do not induce
tirms of different kind of reputation to modify their risk-taking behavior. Contrarily, when
fundamentals are weak enough (low ), then small variations may induce firms of different
kind of reputation to modify their risk-taking behavior. Changes around weak fundamentals
generate clustering of risk-taking among firms with different reputation levels. This fragility
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is generated at an aggregate level by learning primitives. Figure 4 illustrates fragility both at
a firm and at an aggregate level.

Figure 4: Individual and Aggregate Clustering of Risk-Taking

Reputation
(#) Schedule z" (@)

L ; A ; |
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
! ' Large ' '
1 1 > additional range 1 1
' ' of risk-takers ' '
! ! (low @) ! !
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
| | | | Small
! | ' | additional range
! ! ! ! of risk-takers
| | | 1 (high )
L LK

0 «— 9 +«— 6, Signals(z)

While reputation concerns have a positive effect (reducing excessive risk-taking) they also
have a negative effect. Because they are fragile, their breakdown can lead to sudden and iso-

lated clusters of risk-taking, big increases in default probabilities, and huge losses for lenders.

Before illustrating reputation fragility by a simulation exercise (which also shows how to
solve the model numerically), let me highlight the fact that clustering depends not only on
the convex schedule of cutoffs, but also on the reputation distribution in the economy. In par-
ticular, a distribution with a large mass of intermediate and good reputation firms strengthens
the results.!> In the numerical exercise below, I derive numerically the endogenous station-
ary distribution of firms, reputations and show it is indeed skewed toward intermediate and
good reputation levels, where cutoffs are more alike. This reinforces the aggregate effects of

clustering among firms with intermediate and good reputation.

3.2 A Numerical Exercise

Here I use a numerical example to illustrate the results just established in the formal analysis
above, how a breakdown of reputation concerns may generate large changes in aggregate

behavior in response to small changes in aggregate fundamentals.

>To derive theoretically the endogenous reputation distribution is beyond my scope here, however the exten-
sion is feasible and interesting. Since cutoffs z*(¢) are independent of the distribution, the reputation distribution
depends primarily on assumptions about the birth and reputation priors of new firms, which can be pinned down
assuming entry of firms at a given cost
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3.2.1 The Exercise

For this exercise I must assign the model’s parameters some reasonable values. In particular

I require these values to fulfill four conditions.

e Risk-taking is almost never efficient.!® It happens for fundamentals that occur ex ante
with a probability of only 0.001%.

e Short-term cash flows for any level of fundamental are higher than interest rates in

equilibrium, hence, firms can always pay back debts if they continue.

e Without reputation concerns, interest rates are not convex in ¢, so I can show the forces

of reputation concerns in convexifying them.

¢ Conditions for uniqueness of bounds (from Proposition 1) and convergence of continu-
ation values to a fixed point (from Proposition 4) are fulfilled.

I assume that profits from safe actions (II,) are constant and profits from risky actions (II,.)
decrease with fundamentals. Hence, as in the model, risky actions are more tempting for low
values of §. In particular II, = II; + K —f with ¢ > 0, where Il = 1.5, K = 0.4, and ¢ = 0.2.
I also assume that the probability of continuation is p, = 0.9 when playing it safe and p, = 0.7
when taking risks. Finally, I assume the discount factor is 3 = 0.95, the risk-free interest rate

is R = 1 and fundamentals are distributed as a standard normal (this is,  ~ N(0, 1)).

For this exercise, I also add to the basic model a set of signals correlated to actions, that lenders
observe after the firm continues. One reason is that it shows the flexibility of the model to
include additional signals such that they allow lenders to make better inferences about the
firm’s type. Another reason is that, in the basic setup of my model, firm reputation only
increases with age since the only potential positive signal is continuation. These additional
signals increase the importance of reputation formation. Naturally, I assume the probability
of generating a good signal after a firm continues is greater if playing it safe (as > ;). For

this exercise in particular I assume oy = 0.8 and «,, = 0.4.

Using these parameters I compare the results of the basic model (with reputation concerns)
with an artificial situation in which the firm’s reputation cannot change (without reputation
concerns), and identify the positive and negative effects of reputation concerns, as described

in the formal analysis.

I proceed in two steps. First I compute the limit of the schedule of cutoffs for different rep-

utation levels as T — oo, with and without reputation concerns. These cutoffs are the same

16Risk-taking is efficient when firms decide to take risks if lenders observe their actions and charge a corre-
sponding high interest rate.
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in every period of the model. Then I simulate realizations of fundamentals for 100 periods
and I aggregate the risk-taking behavior of firms that follow those cutoffs. The computational
procedure is described in the Appendix.

3.2.2 Positive Effects

Figure 5 shows, for each reputation ¢, cutoffs with and without reputation concerns (z*(¢)
and z*(¢), respectively) and ex ante probabilities of risk-taking (V(z*(¢)) and V(z*(¢))) that
apply to any period when T'" — oo. As stated in Proposition 5, the probability of risk-taking
decreases with reputation. Furthermore, as stated in Proposition 6, for all reputation levels,
the probability that firms take risks is lower with reputation concerns than without them. For
example, the ex ante probability that a firm with a reputation level ¢ = 0.4 takes risks is only
4% with reputation concerns but 50% without them. Recall that, by construction, risk-taking
is almost never efficient (it is only efficient for § < —4, which happens with a probability of
only 0.001%). Hence, the gap between the two curves in the second plot of Figure 5 shows
how reputation concerns reduce ex ante probabilities of inefficient risk-taking.

Figure 5: Reputation Concerns Reduce the Ex Ante Probability of Risk-Taking
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Figure 6 shows the expected continuation values and lending rates for different reputation
levels ¢. Also as stated in Proposition 5, continuation values increase and lending rates de-
crease with reputation. Furthermore, firms have higher expected continuation values and pay

lower interest rates when having reputation concerns.

3.2.3 Negative Effects

Here I simulate fundamental shocks realization for 100 periods and aggregate the risk-taking
behavior in the economy. In this way I can show how the fragility of reputation concerns can
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Figure 6: Reputation Concerns Increase Continuation Values and Reduce Lending Rates
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create sudden and isolated events of clustering of risk-taking, with spikes in aggregate loan

defaults and lenders’ losses, without obvious changes in aggregate fundamentals.

Three characteristics of this simulation exercise are worthwhile to note. First, 'm aggregating
only strategic firms, since these are the ones whose behavior changes with fundamentals. If
all of them play safe, the aggregate probability of loan default is 10% (since ps = 0.9). If all
of them take risks, the aggregate probability of loan default is 30% (since p, = 0.7). Second, I
aggregate over firms assuming an invariant uniform reputation distribution in all periods first
and an evolving reputation distribution later. Finally, I choose 100 periods where risk-taking

is never efficient (that is, no fundamental realization is below —4).

The first plot of Figure 7 shows aggregate loan default probabilities in the 100 periods for a
fixed uniform reputation distribution. Without reputation concerns, aggregate default closely
follows changes in fundamentals. With reputation concerns, aggregate default is less sensitive
to those changes in fundamentals. It is low in general and spikes when conditions weaken
enough. This comparison reveals that reputation concerns in general reduce inefficient risk-
taking (a positive aggregate effect) but also creates large spikes in default rates without ob-
vious changes in fundamentals (a negative aggregate effect). The main reason can be seen in
Figure 5. Reputation effects are stronger for intermediate reputation levels than for extreme
ones, convexifying the schedule of cutoffs and generating clustering of risk taking among a
bunch of firms with intermediate and good reputations, when fundamentals go below values

around —2.

In the second plot of Figure 7, I allow the reputation distribution to evolve over time, starting
from a uniform distribution in the initial period. I assume that new firms enter to replace dead
ones with a reputation prior ¢ = 0.5. AsIshow later, this distribution evolves biasing towards

good reputations. Recognizing this bias reinforces not only the positive effects of reputation
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concerns (less inefficient aggregate default at most periods), but also the negative ones, since
spikes in default rates are even more isolated and sensible to small changes in fundamentals.
This is mainly because the market is mostly composed by firms with intermediate and good
reputations, which are the ones that cluster when fundamentals weaken enough.

Figure 7: Simulated Default Probability with Fixed and Evolving Reputation Distribution
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Figure 8 shows the stationary expected distribution of reputation in the market and the evo-
lution of firms with reputation 0.01, 0.99 and the assigned prior 0.5, as a fraction of the total
of firms. The fraction of firms with poor reputation tends to disappear while the fraction of
tirms with good reputation grows over time toward a stationary distribution. However, this
evolution is not monotonic. When a spike of risk-taking occurs, good firms die at a higher
rate than in normal times, and are replaced by new firms with an intermediate reputation of
¢ = 0.5. Hence, in those periods of high risk-taking, there is a decline in the average quality
of firms in the market. This is relevant because a bad enough shock in fundamentals does not

only magnify crisis, but also makes it persistent.

Finally, Figure 9 shows the model’s view of aggregate net returns to lenders.!” When fun-
damentals weaken enough, we see that returns decline catastrophically, since most firms,
regardless of their reputations, take risks. Since lenders charge low rates to good reputa-
tion firms, sudden losses are large. With reputation concerns, lending rates are lower, hence
lenders losses are greater when they rarely occur. This matters because reputation concerns
reduce the frequency of crises, but they magnify lenders’ losses when crises do occur.

This exercise has illustrated that reputation concerns have negative as well as positive effects.

'7First I obtained individual net returns for each reputation level (computed by the lending rate charged to ¢
multiplied by the true probability of no default minus the risk-free rate). Then I calculated the weighted sum of
individual returns to obtain aggregate net returns.
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Figure 8: Stationary Reputation Distribution and Initial Evolution of Certain Reputations
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Reputation

Reputation concerns deter excessive risk-taking in general, but also generate sudden clus-
ters of risk-taking behavior, characterized by more default and large losses to lenders, even
without noticeable changes in fundamentals. Even when the exercise is based on arbitrary
parameters, results are highly robust to variations in them, as long as reputation concerns

remain important and conditions for uniqueness and convergence are guaranteed.

4 Summary and Implications

Firms’ concerns about their reputation reduce excessive risk-taking. This positive effect of
reputation is widely accepted on both formal and informal grounds. Here I have studied
the effects of reputation concerns from an aggregate perspective, when incentives to take risk
vary with the state of the economy. My main finding is that reputation concerns may have
negative as well as positive aggregate effects. These concerns are in fact fragile, and may
suddenly disappear, leading to large changes in aggregate risk-taking as well-known and
reputable firms cluster in response to small or not obvious changes in fundamentals.

In my model, reputations can eventually be constructed, destroyed, and managed. How-
ever, this desirable feature comes with a cost in terms of equilibria multiplicity. To overcome
this problem I have interpreted the reputation model extended with fundamentals as a non-
standard dynamic global game in which strategic complementarities arise endogenously from
reputation formation. This allows me to select a unique equilibrium, robust to perturbations
in information about fundamentals, which become a coordination device for risk-taking.

Two clear testable implications from the model have been supported empirically. One is that,
if risk-taking is more tempting during recessions, then reputation should evolve less and with
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Figure 9: Simulated Aggregate Net Returns to Lenders
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more difficulty in bad times than in good times.'® The other supported implication is that risk-

taking and defaults cluster in time, especially around recessions, to a large degree that cannot

be explained just from a weakening in fundamentals.!’

The model’s results also have several new policy implications, all of which may tell us some-
thing about the recent financial crisis. One implication is that reputation can be thought as a
self-disciplining screening device provided by the market, which makes unnecessary and in-
efficient a regulatory intervention to deter excessive risk-taking under certain fundamentals.
However, I argue that this device is fragile and may suddenly disappear, eventually making
regulation necessary to prevent crises. This suggests that, to be efficient, regulation should
be cyclical, operating only when economic fundamentals move toward regions in which risk-
taking becomes more tempting. For the recent crisis this suggests, for example, that when
the housing bubble was growing, the intervention of a regulatory body, responsible for over-
seeing mortgage paperwork, controlling loan risks, and restricting debt ratios of financial

institutions might have helped prevent the subsequent crisis.

Another implication is that, during periods of clustering of risk-taking, credit ratings are
likely to be uninformative about default probabilities. In certain times, firms with AAA bond
ratings may have incentives to undertake risky projects, exactly like firms with not-so-good
ratings. In these periods, reputation loses its meaning. This argues against the use of Basel
I regulations, which rely on ratings to determine the level of capital that banks should hold.

BThis is supported empirically by Nickell, Perraudin, and Varotto (2000), Bangia et al. (2002), Altman and
Rijken A. (2006), and Ordonez (2008) using data on corporate credit-rating transitions over the business cycle.
This pattern has been also observed during the latest financial crisis. The Moody’s Credit Policy report of July
2008 shows that the rating volatility decreased significantly, almost 50% with respect to historical averages.

“See the work of Campbell et al. (2001) and Das et al. (2007).
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Since ratings may lose information content exactly when they are most needed, they may in
fact spread a loss of confidence throughout the financial system. In fact, part of the failure
that led to the wider crisis has been assigned to a breakdown in the bond rating system (The
Economist, August 16, 2007).

Finally, a third implication is that policies which promote credit bureaus can be double-edged.
They do improve learning and increase reputation incentives in domestic financial systems,
so they may be effective in reducing excessive risk-taking. However, they may also have the
potential to exacerbate credit crises.

References

Altman, Edward 1., and Herbert Rijken A. 2006. “A Point-in-Time Perspective on Through-
the-Cycle Ratings.” Financial Analysts Journal 62 (1): 54-70.

Angeletos, George-Marios, Christian Hellwig, and Alessandro Pavan. 2006. “Signaling in a
Global Game: Coordination and Policy Traps.” Journal of Political Economy 114 (3): 452—
484.

. 2007. “Dynamic Global Games of Regime Change: Learning, Multiplicity, and the
Timing of Attacks.” Econometrica 75 (3): 711-756.

Athey, Susan. 2002. “Monotone Comparative Statics Under Uncertainty.” Quarterly Journal
of Economics 117 (1): 187-223.

Atkeson, Andrew G. 2001. “Discussion on 'Rethinking Multiple Equilibria in Macroeco-
nomic Modeling” by Morris and Shin.” In NBER Macroeconomics Annual 2000, edited by
Ben S. Bernanke and Kenneth S. Rogoff, 162-171. Cambridge, MA: MIT Press.

Bangia, Anil, Francis Diebold, Andre Kronimus, Til Schuermann, and Christian Schagen.
2002. “Ratings Migration and the Business Cycle, with Application to Credit Portfolio
Stress Testing.” Journal of Banking and Finance 26 (2-3): 445-474.

Campbell, John Y., Martin Lettau, Burton G. Malkiel, and Yexiao Xu. 2001. “Have Individual
Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk.” Journal
of Finance 56 (1): 1-43.

Chassang, Sylvain. 2007. “Fear of Miscoordination and the Robustness of Cooperation in
Dynamic Global Games with Exit.” Mimeo, Princeton University.

Das, Sanjiv R., Darrell Duffie, Nikunj Kapadia, and Leandro Saita. 2007. “Common Failings:
How Corporate Defaults Are Correlated.” Journal of Finance 62 (1): 93-117.

Diamond, Douglas W. 1989. “Reputation Acquisition in Debt Markets.” Journal of Political
Economy 97 (4): 828-862.

Giannitsarou, Chryssi, and Flavio Toxvaerd. 2007, September. “Recursive Global Games.”
CEPR Discussion Paper 6470. London, UK.

Mailath, George, and Larry Samuelson. 2001. “Who Wants a Good Reputation?” Review of
Economic Studies 68:415-441.

29



. 2006. Repeated Games and Reputations. New York: Oxford University Press.

Morris, Stephen, and Hyun Song Shin. 2001. “Rethinking Multiple Equilibria in Macroeco-
nomic Modeling.” In NBER Macroeconomics Annual 2000, edited by Ben S. Bernanke and
Kenneth S. Rogoff, Volume 15, 139-161. Cambridge, MA: MIT Press.

. 2003. “Global Games: Theory and Applications.” In Advances in Economics and Econo-
metrics, edited by Lars Peter Hansen Mathias Dewatripont and Stephen J. Turnovsky.,
Volume 1, 56-114. Cambridge, UK: Cambridge University Press.

Nickell, Pamela, William Perraudin, and Simone Varotto. 2000. “Stability of Rating Transi-
tions.” Journal of Banking and Finance 24 (1-2): 203-227.

Ordonez, Guillermo L. 2008. “Essays on Learning and Macroeconomics.” Ph.D. diss., UCLA.

Scharfstein, David S., and Jeremy C. Stein. 1990. “Herd Behavior and Investment.” American
Economic Review 80 (3): 465-479.

Steiner, Jakub. 2008. “Coordination Cycles.” Games and Economic Behavior 63 (1): 308-327.

Stiglitz, Joseph E., and Andrew Weiss. 1983. “Incentive Effects of Terminations: Applications
to the Credit and Labor Markets.” American Economic Review 73 (5): 912-927.

Toxvaerd, Flavio. 2007. “Strategic Merger Waves: A Theory of Musical Chairs.” Journal of
Economic Theory 140 (1): 1-26.

30



A Appendix

A.1 Proof of Proposition 1

First we will prove two lemmas that describe single crossing properties and allow us to iden-
tify a unique cutoff in the set of fundamentals (¢) and in the set of beliefs (z) when fixing an
interest rate (this is, a fixed k).

Lemma 4 (Fundamental single crossing) For every reputation level ¢ € (0, 1) and cutoff belief k, fix
az € [0,1] forall §. There exists a unique 6* € [0(¢[k), O(|k)] such that A(¢,0[k, F) < 0 for 6 < 6%,
A(¢, 0k, 7) = 0 for 0 = 6%, and A(¢, 6]k, Z) > 0 for 6 > 6*. For ¢ = {0,1}, 6* = 0(¢[k) = 0(¢[k)
for any x. Furthermore, 0* is non-decreasing in k and 7.

Proof By Lemma 1 A(¢, 9|E) is monotonically increasing in ¢, hence there is a unique 6* such
that A(¢, 0|k, 7) = 0. By assumption 3, and since z € [0, 1], 0* € [0([k),8(¢[k)]. Also by
Lemma 1, A(¢, 0|E) is non-increasing in k and 7, then 6~ is non-decreasing in k and 7. If
beliefs of risk-taking increase, the firm will weakly prefer to play risky at the previous 6*,
requiring ¢ increasing to recover the indifference. Q.E.D.

Lemma 5 (Belief single crossing) For every reputation level ¢ € (0,1) and cutoff belief k, fix a
0 € [Q(d)@),@(gb@)]. There exists a unique =* € [0, 1] such that A, 0k, T) > 0 for z < ¥
A, 0|k, T) = 0 for T = 7* and A(¢, 0|k, T) < 0 for T > T*. For ¢ = {0,1}, any 7 € [0, 1] delivers
A(o, 9|E, z) = 0. Furthermore, T* is increasing in 6.

Proof By Lemma 1 A(¢, 9|E) is monotonically decreasing in z when ¢ € (0, 1), hence there is
a unique z* € [0, 1] such that A(¢, 6|k, ) = 0. Also by Lemma 1, A(¢, o[k) is increasing in 6,
and so is z*. If fundamentals improve, the firm will strictly prefer to play safe at z*, requiring
an increase in the beliefs that the firm will play risky () to recover the indifference. Finally,
for the special cases of ¢ = 0 and ¢ = 1, from equation (2) and assumption 3, (qb\z) = g(qb\%)
and by definition any z € [0, 1] supports indifference. Q.E.D.

The first part of the Proposition follows directly from Lemmas 4 and 5. A cutoff k*(¢) is an
equilibrium strategy only if it is a best response for any realization of the fundamental 6. Take
a cutoff k*(¢) such that k*(¢) € (6(¢|k*),0(¢|k*)). Such a k*(¢) is guaranteed by Lemmas
2 and 4. Furthermore we know that x(¢,6) = 0 for all § > k*(¢) and z(¢,0) = 1 for all
0 < k*(¢). From Lemma 5, at § = k*(¢), indifference occurs at some 0 < z*(¢,k*) < 1.
The cutoff k*(¢) is an equilibrium because, for all § > k*(¢), A(¢,0|k*) > 0, and hence it is
optimal for the firm to play safe (i.e., z(¢, ) = 0). Similarly, for all 0 < k*(¢), A(¢,0|k*) <0,
and hence it is optimal for the firm to take risks (i.e., z(¢, 0) = 1).

Finally, since the conditions for equilibrium are both A(¢, k*|k*,z = 0) > 0and A(¢, k*|k*, 7 =
1) < 0 and since A(¢, 8]k) is monotonically not increasing in & (from lemma 1), an arbitrarily
close fundamental £* + ¢ (with e — 0) is also an equilibrium cutoff.
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The bounds of the equilibrium cutoffs [6*(¢),8 (¢)] are determined in the following way:
0*(¢) is the indifference fundamental when beliefs are k= 0* and z = 0. This is the lowest
fundamental that can be sustained in equilibrium fully considering reputation gains and the
lowest possible interest rate R(¢|0*). Lemmas 2 and 4 guarantee this bound exists and is
finite. Similarly, 0" (¢) is determined by the fundamental that solves A(¢, 010", 7 =1)=0.

To show the sufficient condition under which these bounds are unique for each ¢, fix a = for
all 0 and fix a belief k (i.e, a given R(¢|k)). Then k* solves p Ils(k*) — p,IL.(k*) + B(ps —
pr)V(¢'(9,7)) = (ps — pr)R(d]k) (from equalizing equation (4) to zero). Taking derivatives

with respect tok, [ps s — Dr 31,}: ] % = (ps pr) (d’) . There will be a unique best response to
% when C <1 Considering ggj’) = R(PT ( j;)%;( ), the condition for uniqueness is therefore,

©)

Ol O, _ R(ps — py)*dv (E)
s - Mr >
Ok Ok T Pr(elg, b

The worst situation to fulfill the condition happens when ¢ = 1 and Pr(c|¢, E) = p,. Since
this should be true for all fundamentals 8, the sufficient condition can be written as

OIls oIl
w(0) < Pi ps'eg — ] forall 6 € R. (10)
R(ps pr)

This condition basically requires a variance of fundamentals large enough such that interest
rates do not jump suddenly with changes in beliefs. For example, if fundamentals are nor-
mally distributed, 8 ~ N(u,~?), v(f) < V\% for all # and the sufficient condition can be

M for all 6.

expressed in terms of the standard deviation as v > O iy

[ps 90 pro 20

For ¢ = 1, and from Lemmas 2 and 5, k*(1) = 0%(1) = 6°(1), since A(¢, 0k, 7 = 0) =

A(¢, 0k, T = 1) for all k (ie., Z does not play a role in generating multiplicity). Under the
condition in equation (10), £*(1) is unique. Using the same logic, £*(0) is always a unique
equilibrium for ¢ = 0. To see this, just replace ¢ = 0 in equation (9).

A.2 Proof of Proposition 2

Proof To prove this proposition, I proceed in four steps. First, I derive the posterior density
and distribution of ¢ given a signal z. Second, I prove there is a unique signal z*(¢) that makes
a strategic firm ¢ indifferent in expectation between taking risk or not. Third, I show that, for
any o, using z*(¢) is a best response when the prior about 6 follows a uniform distribution on
the real line and lenders believe z*(¢) is the equilibrium cutoff. Finally, I show that, as 0 — 0,
the best response in a game with any prior distribution of # uniformly converges to following
the unique cutoff 2*(¢) when lenders believe z*(¢) is the equilibrium cutoff.

e Step 1: Distributions of fundamentals conditional on signals
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Lemma 6 The posterior density fg|. and distribution Fy|, of 0 given a signal z are given by

1) = = 0y 10y an
[0 f(50do Zav(z —ou)f(u)du
Fy.(nlz) = T 0@ (=0d8 o v(z — ou)f(u)du (12)
Proof By Bayes’ rule,
_ v(0)f(:l9)
fo:(6012) = — 5 (13)

where f. and f.y are the densities of z and 2|0, respectively. Since z is the sum of ¢ and
o¢, its density is given by the convolution of their densities, i.e., v and f,.. Considering that

Fye(n) = F(n/0), foc(n) = £9%) then f, can be defined as

e =ot [Tuor (220 (14)

oo o

We can obtain the distribution of the observed signal z after observing a fundamental 6,

g

L10(n]0
F10(nl6) = ';i"’) 1f<” 9) (15)

Foo(nl6) = Pr(= < nlo) = F (” - 9) ,

g

Plugging equations (15) and (14) in (13), we obtain equation (11). The posterior distribution
is obtained by integrating over the density,

f77 9 f z—O)dQ

Fy.(nlz) = / fo12(012)

z—0

and the expression in equation (12) follows from variable transformation u = *= Q.E.D.

e Step 2: Unique equilibrium cutoff z*(¢).
Lemma 7 There is a unique cutoff signal for each reputation ¢ such that A(¢, z|z*) = 0 for z = 2%,

A(p,z|z*) > 0 for z > 2%, and A(¢,z|z*) < 0 for z < z*, where A(¢,z|2*) are the expected
differential gains from playing safe for a firm ¢ that observes z when lenders believe the cutoff is z*.

This cutoff z* is obtained using Laplacian beliefs over the probability the firm plays risky when the
fundamental is 0, where T = F (Z*U—*e), such that

/ A(p,0(Z),z|z")dx = 0. (16)
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Proof When fundamentals 6 are not observed directly, differential gains A turn into expected
differential gains conditional on the signal. When the firm observes a signal z and lenders
believe firms use a cutoff Z, expected gains from playing safe are

A(¢, z[2) = E[A(9,0]2)]2]. (17)

Introducing noise in the observation of fundamentals allows us to pin down the believed
probability of risk taking  as a function of cutoff beliefs z and observed fundamentals 6.

azp(gge). (18)

Developing the expectation from equation (17),

A.a19 = [ " A6.6,7(6)[3)dFy. (0]2).

Note that § = Z — o F~1(Z). From equation (12), define

f%JFF,l(E) v(z — ou) f(u)du
[Z vz —ou)f(u)du

(#]2,2) = Fypo(5— oF 1 (7)]2,2) =
Changing variables from 6 to z,

A, z|Z) / Ap,0(7),z|2)d¥Y(Z|z, Z).

Laplacian beliefs arise from

z—2z

U(F]2,2) = Pr(d < 5 — oF7L(@)|2) = F[Z—2 + F71(3)].

g

In equilibrium 2 = z*. Evaluating the expectation at z = 2*, ¥(z|z*, 2*) = 7.

/A¢, ), %]2*)dz = 0.

By Lemmas 4 and 5, we know there is a unique solution z*(¢) to this equation. Q.E.D.
e Step 3: Best response with uniform priors over fundamentals

Now we need to verify that a firm ¢ playing risky if z < 2*(¢) and safe if z > 2*(¢) indeed
constitutes an equilibrium. Signals z allow firms to have an idea not only about the funda-
mental but also about the signal that lenders believe the firm has observed. Following Tox-
vaerd (2007), I first assume 6 is drawn from a uniform distribution on the real line, hence an
improper distribution with infinite probability mass. This assumption allows us to normalize
the prior distribution assuming v(#) = 1, simplifying the density to fp,(0]z) = o~ f (%:9)
and the distribution to Fy|.(0]z) = F (27_9) We will denote A(¢, z|2) the expected differential
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gains from safe actions for the special case in which the prior of fundamentals is uniform,

A, 2|7) = /Oo A <¢,9,F (3; 9) |2> o 1§ (Z - 9) d.

. . . . 09—z
Changing variables introducing m = ==,

A, 2|7) / A (6,0, F(—m)|?) o 1f<z_z m)de.

We can rewrite it more conveniently, defining A
A(o.25) = B2 ) = [ BEmlRDmfE)dm

where B(2/,m|Z) = A(¢, 2, F(—m)|?) (renaming 6 as 2') and D(z,m|z) = o~ f (%3 - m)

As shown in Athey (2002), because of the monotone likelihood property, A(¢, z, 2/|2) inher-
its the single crossing property of A(¢,6|z). This means there exists a z*(¢, z, z’) such that
A, 2,2 [2) > 0if 2 > 2(¢,2,2/) and A(6, 2, 2/|Z) < 0if z < 2*(4,2, /). Assuming z < 2’ and
A(¢,z,2]2) =0,

A(p,2',2|2) > Ao, 2, 2'|7) > A(¢, 2, 2|7) = 0, (strict > for ¢ € (0,1)).

The first inequality comes from the state monotonicity and the second from the single crossing
property. A symmetric argument holds for z > 2’. Hence, there exists a best response x : R —
R such that

A(¢,2[2) >0 if z>x(2)
Al,2[2) =0 if z=x(2)
A, 2]2) <0 if z<x(3)

There exists a unique z* that solves
/ A (¢,0(2),z|z%)dz = 0. (19)

Hence, x(2*(¢)) = 2*(¢), showing that there is a unique equilibrium in cutoff strategies for
each ¢ such that

. )0 af 2> 2% ()
m(gb,z)—{l if z<z2*(¢) (20)

Q.E.D.

e Step 4: Best response with general priors over fundamentals

Lemma 8 A(¢, 2|2) — A(¢, 2|2) uniformly, when = z — o€, as o — 0.
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Proof First, A(¢, z|z — 0€) — A(¢, 2|z — 0€) continuously as o — 0, this is,

_ fgoijl(g) v(z — ou) f(u)du

U (Z]z,2 — 0f) 2 v(z — ou) f(u)du

—1-F(¢+FY(3)) = V(3|22 — 0€).

As in Toxvaerd (2007), we show convergence with respect to the uniform convergence norm,
which implies uniform convergence. Uniformity ensures that the equivalence between the
games with the two different assumptions about the prior distributions is not the result of a
discontinuity at o = 0.

Pick z(¢) < 8*(¢) and Z(¢) > 8" (¢) and restrict attention to the compact sets Z = [2(), Z(¢)]
and Z, = [z(¢) — 0&,Z(¢) + 0&]. Hence, A(¢, z|Z) maps into a compact set.

Define the uniform convergence norm as
I A(¢) [I= sup. z{|A(4, 2[2)]}-

We can show continuity with respect to the Euclidean metric. Fix z’ and Z’ such that

Ver > 0,36, |z — 2| < 61 = |A(¢, 2|2) — A(¢, 2'|3)| < €1, V2

Ves > 0,30, |7 — 2| < 05 = |A(6, 2|5) — A, 2|7)] < €2,V

This implies

N CEFIE e )
By the triangle inequality,

|A(, 2[2) — A, 2'|2)| = |A(, 2[2) — A, 2'[2) + Ao, #'[2) — A(g, 2'7))
< ‘A(¢7Z|/Z\> - A(¢7 Z/|/Z\/)| + |A(¢7 Z/|2) - A(gba Z/|/Z\/)|
<€+ e

Hence, A(¢, z|Z) belongs to the space of continuous functions on Z x Z.

Uniform convergence is equivalent to

| A(¢) = A(¢) |= sup.z{A(¢, 2]2) — A(¢,2[2)} — 0

with respect to the uniform convergence norm, as ¢ — 0, after substituting for the functions
and taking limits. Q.E.D.

A.3 Conditions for Proposition 4

In this section we discuss the conditions for Vi(¢) — V(¢) as T — oo (i.e., by backward
induction, continuation values converge to a fixed point for all ¢ and periods ¢ far enough
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from T'). These fixed points are the bounded limits required to show that there is an infinite
horizon equilibrium that is a unique limit of the finite horizon Markov perfect equilibrium.?

In short, the condition for convergence is that the variance of fundamentals is large enough. I
will prove this by steps. First, I discuss the case without reputation formation as a benchmark
in which reputation levels do not interact and obtain sufficient conditions for convergence.
Then, I introduce reputation formation and show that those conditions are also sufficient.

Step 1: No reputation formation:

This is an artificial and expositional convenient case in which a firm is born with a given repu-
tation and cannot change it (because age cannot be observed, for example). First assume safe
actions deliver higher expected continuation values. That is, if commitment were feasible,
firms would choose to take safe actions rather than risky actions, regardless of their reputa-
tion. This assumption makes sense in our context, since the focus is on the case in which safe
actions are almost always the efficient behavior.

From Proposition 3 and without reputation formation (i.e., Vi41(¢') = Viy1(9)),

2{ (¢)
VM%=waMWA%ﬂ@—m&WH+[> poI1(0)0(6)do
+u—wammmwﬂw—m&wnﬁﬂ;mmwnww.

Applying the envelope theorem,

V()
OVir1(9)

OR(g]2*) 02"
0z*  OViy1(9)

= V(Z*(¢))ﬂpr + (1 - V(Z*<¢)))Bps - [ps - V(Z*(é))(ps - pr)] .

The cutoff z* is determined by psIls(z*) — p,IL.(2*) — (ps — pr) R(P|2*) = —B(ps — pr)Vit1(d),
since there is no reputation formation. Taking derivatives with respect to V;1(¢),

0= Bpe-m)
Vi@ [pa s — p, 2]
Al (81) _ ¢F(ps — p)
OR(p|z*)  ¢R(ps —pr) , .
oz Pr(c)? v(z") > 0.
Recall 6(2&(1‘25) > 0 and V¢(¢) > 0 when V;41(¢) = 0. Hence, convergence to a fixed point
V(¢) happens if 8?,2(1@) < 1. It is clear this is the case for ¢ = 0 (since % = 0). At

the other extreme, when ¢ = 1, imposing the worst combination of parameters to fulfill the
requirement (V(z*(¢)) = 0 and Pr(c) = p,) and considering all fundamentals 6, the sufficient
condition for convergence is

T have not yet examined the broader issue of what other equilibria there might be in the infinite horizon game.
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1 - s 2 SBHS _ 'I’aHT
Bps pr [ps 55 — e ], forall 6 € R. (21)
Bps R(ps — pr)?

v(f) <

In words, the variance of fundamentals should be large enough (or the density low enough)
to have convergence in continuation values for all reputation levels when reputation cannot
be modified. First, recall that this is a really stringent sufficient condition, since the worst
combination of parameters are not jointly consistent. For example, if ¢ = 1 and V(z*(¢)) =0,
Pr(c) is not p, but ps, hence convergence conditions are effectively more relaxed. Second,
note the sufficient condition for convergence is more stringent than the sufficient condition
for uniqueness when 3ps > 0.5.

Step 2: Reputation formation:

Assume the sufficient condition expressed in equation (21) is met. Then, there is a unique
V(¢) for all ¢ such that considering reputation formation

R

z{ ($) oo
/ peIL,(6)0(0)d6 + / psnsww(e)de] .
—00 z{ (¢)

R(¢)

1=V (z*(¢))Bpr

Taking derivatives to consider a greater continuation value for playing safe obtained from a
higher reputation

OV(0) _ = V((0)Ips _ OR") 9 v
(:)V(¢/) T 1= V(z*(¢))Bpr 2 8V(¢’) V(" (@)pr + (1 = V(2" (8)))ps] -
V(9)

It is straightforward to see
oV(9)
ov(¢') - _
With and without reputation formation extreme continuation values, V(0) and V(1)), are the
same. Since reputation generates a convex combination between unique values in a compact
set, the resulting continuation values V(¢) with reputation formation are also unique.

o) 0. Itis also possible to check monotonicity of continuation

< 1 when the sufficient condition expressed in equation (21) is fulfilled.

values, since

A.4 Proof of Proposition 5

Proof As a first step, assume convergence has been achieved (Proposition 4). Then z*(¢) is
determined by equation (6) in the following way:

1 1
/0 A(6,2*]2%, 3)d5 = polLy(2*) — pelL (=) + (ps — py) [5 /0 V(¢/|6, )5 — R(6,2)| = 0.
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Taking derivatives with respect to ¢,

. I INCE
dz" (o) o (Bqﬁ‘ dx

d¢ = - OA(¢,2*) ) (22)
0z*
where DA, 22", 7) V(60 OR
Hlzta) a¢'  OR
a—¢—(ps pr) | B o0 067% 34|
and OA(6,=*|2*,F)  om, oI OR
7Z z 7:1: _ S _ T _ _ s ~
e =Psg o TPrg (ps — pr) Epes for all .
From equation (5),
dR(¢) OR  ORdz"
d6 06 0rdo 23)
where g—g = —E(pf’gr)((cl)gv(z*)) <0and 2% = W > 0 for all ¢.
Finally, from equation (7), using the envelope theorem
iV(¢) OV oV dz
dp — 0p = 0z* dop’ 24)
where
v _ w, OV(9) oy, 9V(¢) 0¢/ . OR(9)
50 =8 |V g 4 1=V T | = = V)0 - ) T,
and

g:i — Bu(z") [ps (/01 V(¢ [7)d7 — V(6|7 = O)daf) o, (/01 V(& |7)d7 — V(qs)d@)] .

To determine the sign of each derivative, I solve backward from the last period 7. To do this,
we simply introduce period subscripts in all equations, particularly replacing V(¢) by V.(¢)
and V4 1(¢) where needed.

At period T, %j%m > 0 for all Z (since V1 = 0 for all ¢) and 9220021) (from

0z}
condition in Proposition 1). Hence, dc% < 0. From equation (23), deT¢>(¢) < 0. Finally, from

equation (24) (since V41 = 0 for all ¢), dvg(ﬁ) > 0.

At period T' — 1 we additionally have the effects coming from V7. From Bayesian learning

/ T z r -z s e~ 190 ' ' >
88‘7; s = pfjjai j}frl) (flpf)] 5 > 0 for all 7 and all ¢. From results at T’ Jo Vg ¢(’¢ ) %|5dx > (. Hence,

fol 9211025 47~ 0 and LZ=1 < 0. From equation (23), (mz;dj(‘b) < 0. Finally, it follows

9¢ d¢
that dVTd:;((b) > 0 from equation (24) and from the fact that a‘%ﬁ) > 0 for all ¢ and that

fol V1 (¢'|Z)dZ can be written as a convex combination between Vr(¢) and Vp(¢'|Z = 0).

Following the same steps and solving backward until convergence, dv(fl;w)) <0 (d‘z;d()‘b) < 0),
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dlzgﬁ) < 0and dV( ) > 0forall ¢ €[0,1]. Q.E.D.

A.5 Proof of Lemma 3

Proof Differentiating equation (22) with respect to ¢, we get

d2 2 1 |62A 92A d 92A 2
° 921992 Z+ (d¢>] (25)

QT T m
d 98

D2 0p0z* d¢

In what follows, I assume a linear relation between payoffs and fundamentals, so the shape of
the cutoffs is not just an artifice of the shape of the payoffs. Under this assumption, we have

PA LoV a2, 92V o' _ O’R
ogz ~ ) [ﬁ/o (a¢a¢| 057 0 )dzaw ’ )
PA 9’R
900~ P TP gi s
and
92A 9’R
W = —(Ps —Pr)w~
From equation (24)
PV, 9?V(¢) 0*R(¢) . V¢ PVay? \  0*R(¢)
3¢>2 |:E V( ) Pr ﬁ 0¢2 - ad)g :|+(1_V(Z ))ps [ﬁ (a(b, 8¢2 |ac ¢/2 8@5 - ad)g ’
(27)
where

O*R _ 2R(ps — p,)*(1 = V(2"))?

092 Pr(c)3 > 0.

I will proceed in three steps. First, as a benchmark, I solve backward from 7" when reputa-
tion cannot be updated. Then, I show how reputation formation convexifies the schedule of
cutoffs.

Step 1: No reputation formation: This is an artificial and expositionally convenient case in
which a firm is born with a given reputation and cannot change it (because age cannot be
observed, for example) I call the cutoffs in this case z*. In this case, beliefs Z do not play any

role, 8‘2) =1and % g; = 0 for all ¢. Hence, equations (26) and (27) can be rewritten as

02 A - Vi O*Ry
947 = (ps —pr) |:ﬁ 2 B 0¢? :| ’
and v PViii(¢)  *Ri(o)
W; = (VEDpr + (1= V(E))ps) [ﬁ 5;21 - 6;2 ] '
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At period T, since V741 = 0 for all ¢, 8;(?{ < 0and a;;’; < 0. However these signs do not

guarantee that equation (25) is positive. The sufficient condition for <

L v(Z T) [pr—(ps—pr)(1— V( )]
[PT(C)UI(z;)+2(ps*pT)U2(g})i
enough.?! The condition is more difficult to be fulfilled for low values of ¢.

v d)g > 0 is the following

or, more generally, the variance of fundamentals is large

. c . d2z*
At period, T — 1, 828%271 < a;jo < 0 and dQ;;;’l < 6;;’5 < 0. This means ;;{1 > 0 for
a higher range of ¢ values. The same analysis hold until convergence. In this case, g% =
* 2R 2 — ~ ~ ~ 7 ep s
—3 %() )a 5 and %dé = l(p%wf’)) go2, With ¥(Z%) = V(Z")p, + (1 = V(27))ps. Still it is
d?z*

not clear that without reputation concerns
reputation levels.

T > 0 for all ¢, being more difficult at lower

Step 2: Reputation formation: Consider now the full model with reputation formation. This
leads to convexity, since it relates continuation values of different reputation levels. We con-
sider again equations (26) and (27).

2 % 2 3k
At period T, as in step 1, 8;(?5 <0, 8;2)’5 < 0,and dd;;f = ddd‘;T )
¢’ Pr(ps(1-2)+p,?) _ _ 2pr(ps(1=2)+prZ) (ps—pr)(1-7)
At period T'—1, since 36 = ot (ps—p7.)(1—55)¢]2 > 0and d¢2 = D F e ) (1) <0
forall z € [0,1)), o ggg L < aa(ff <0and & g(g;‘l < aalf < 0, exactly as in step 1. Further-

2 " 2 ) 2 2
more, 01 %‘g % dfé |zdZ < 0 and f ! B&ZZT %% |zdx < 88%, which means Z ?(;;’1 and 2VI-1 are

lower than their counterparts without reputation concerns, derived in step 1. This implies

2
that — s > p ¢2 L for all ¢.

Solving backward until convergence, reputation formation introduces pressure for concavity
of continuation values and hence the convexity of the schedule of cutoffs and interest rates at

all reputation levels, leading to 4 d ¢ > d 3

Even more importantly, as reputation formation becomes easier (i.e., signals are more precise),

d2 zx X .
for p—: — 0, 8¢ lg=0 — o0 and 2 a¢> |¢ 0 — 00, hence ;;;1 > 0 for all ¢ (since it always
convexifies the schedule of cutoffs for low reputation levels, which are the levels of reputation

where convexity was more difficult to obtain without reputation formation). Hence, for any

reputation ¢, there is always a %((;S) (0, 1] such that = 0. Furthermore, from the

— d¢2
condition in step 1, 2*(¢) is weakly increasing in ¢. Q.E.D.

A.6 Computational Procedure

We solve the model following the next procedure.

e Set a large grid of ¢ € [0, 1].

e Solve full information (F'/) environment (efficiency).

*'This condition requires some algebra that is available upon request.
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- Guessa Vpro = 0.
— Obtain 0% from A(0) pr = psILs(0) — p,I1,(0) + B(ps — pr)VFro = 0.

FIELO [ 1L (0)~Ro(0)do+ 5%, [peT ()~ T (0)do
T=B(ps V(01 o) (Ps—pr))
— Use Vpy 1 as the new guess and iterate until Vpr; — Vi1 < e.

— Obtain VFI,l =

e Solve the environment without (wo) reputation formation.

— Guess V(¢)uo,0 = 0 and 6*(¢)o = 07, for all ¢.
— Obtain 6*(¢); from A(¢, 8*(¢)1) = 0, where

A(¢7 6) = psHs(Q) - err(G) + (ps - pr)[/BV(¢)wo,O - R(¢|9*(¢)0)]

— For each ¢, obtain

SO p I, (0) = R(10*(6)1)]0(0)d0 + [, Ps[TL(0) — R(616* (6)1)]v(0)d0
[ =B, + V(0" (6)1) (s — )] ‘

— Use V(¢)wo,1 and 6*(¢)1 as new guesses and iterate until V(¢)uwoi — V(@) wo,i—1 < €1
and 6*(¢); — 0"(¢)i—1 < &2 for all ¢.

V(qb)wo,l -

e Solve the environment with reputation formation.

- Guess a V(¢)p = 0 and z*(¢)o = 6*(¢) for all ¢.
— Using V(¢)o, for each belief z € [0, 1] from a large grid of size N,, obtain

A(¢, 2, 2|27 (¢)o)o = Ez[psILs(0) — prILe(0)] + (ps — pr)[BV(¢'1Z)0 — R(¢l2"(¢)o)]-

Recall that for o — 0, this expression can be well approximated by
A, z,Z]2"(¢)o)o = pslls(z) — prll(2) + (ps — pr)[ﬂv(gb/ﬁ:)o — R(¢|2"(#)o)]-

0.

- Solve for 2*(¢); from ZA@’ZJ@z*(d))O)O =
- Forall § < (>)z*(¢)1, z(¢,0)1 = 1(=0).
* R(¢|z*(¢)1) follows from z*(¢);.
x ¢ follows from x (¢, 6);.
— Obtain V(¢); as

2*(¢)1
V() = / pr[L(0) — R(8]2%(0)1) + BV(6)o]v(0)do

+ / T palIL(8) — R(6|2 (1) + BV(&)oJu(8)db.
2% ()1

- Use V(¢)1 and 2*(¢); as new guesses and iterate until V(¢); — V(¢);—1 < &1 and
2*(@)i — 2" (¢)i—1 < &2 for all ¢.
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