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ABSTRACT

This paper describes recent modifications to the mixed-frequency model vector autoregression (MF-

VAR) constructed by Schorfheide and Song (2012). The changes to the model are restricted solely to

the set of variables included in the model; all other aspects of the model remain unchanged. Forecast

evaluations are conducted to gauge the accuracy of the revised model to standard benchmarks and

the original model.
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1 Introduction

This paper describes recent modifications to the mixed-frequency vector autoregression (MF-

VAR) constructed by Schorfheide and Song (2012). The original model has been in use at

the Federal Reserve Bank of Minneapolis for more than two years. A noteworthy feature of

the model is that it combines data measured at both monthly and quarterly frequencies. The

primary advantage of the mixed-frequency approach is that it can use more timely monthly

data to help forecast quarterly variables– primarily GDP and associated national income and

product account concepts– that are available on a less timely basis. The algorithm used to

solve the model uses all available monthly information to construct forecasts of the quarterly

variables. The changes we make to the original model are restricted solely to the set of variables

that increase their number from 11 to 14; all other aspects of the model are unchanged.

Setting the mixed-frequency feature aside, the model is a descendant of the statistical ap-

proach to forecasting developed by Doan, Litterman, and Sims (1984). Specifically, it is a vector

autoregression (VAR) set in a Bayesian framework that allows the introduction of extra-sample

information based on prior beliefs of macroeconomic time series behavior. The “prior” infor-

mation helps to counter the problems of forecast degradation due to overfitting. The precise

structure of the prior information scheme is a refinement of Doan et al. (1984) and is primarily

based on work by Sims and Zha (1998).

The paper is written to be brief but self-contained for those familiar with the Bayesian

VAR approach to forecasting. Those interested in further details and a fuller understanding

should consult the original paper by Schorfheide and Song (2012) and associated references.

The following section provides an overview of the VAR model and the Bayesian framework.

Section 3 discusses variable selection and the motivation for the updated list of variables.

Section 4 presents a series of forecast evaluations that document forecast accuracy to standard

benchmarks, including a direct comparison with the original specification. Section 5 concludes.
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2 Model and Prior Specification

Let yt = (y1t y2t . . . ynt)
′ be an n × 1 data vector of n random variables. The model is an

n-variable VAR(p) we first write as

yt = Φ1yt−1 + · · ·+ Φpyt−p + Φc + ut, ut ∼ i.i.d. N (0,Σ) (1)

for t = 1, · · · , T . In this expression, Φ1, . . . ,Φp are n × n matrices of VAR coeffi cients, Φc =

(c1, c2, . . . , cn)′ is an n-dimensional vector of constants, and Σ = Eutu
′
t. Each equation in

the VAR model contains k = np + 1 regressors. For notational convenience, the VAR system

(1) can be written more compactly by grouping the coeffi cient matrices into the n × k matrix

Φ = [Φ1 · · · Φp Φc] and defining the k × 1 vector xt =
(
y′t−1 · · · y′t−p 1

)′. Then,
yt = Φxt + ut . (2)

Furthermore, if one allows the slight abuse of notation where the matrix Φ is formed by stack-

ing the Φi’s vertically rather than horizontally as in (2), the VAR can be written even more

compactly as

Y = XΦ + U, (3)

where

Y =


y′1
...

y′T

 , X =


x′1
...

x′T

 , x′t =

[
y′t−1 · · · y′t−p 1

]
, U =


u′1
...

u′T

 .

In (3), X is a T × k matrix, and Y and U are T × n matrices.

VAR models are richly parameterized; for the 14-variable, 6-lag model presented here, each

equation has k = 85 regressors. With only a limited data history, the estimated model is subject

to forecast degradation due to overfitting. Approaching the problem by limiting the number

of regressors exposes the model to misspecification bias, which also compromises forecasting

accuracy. To balance these risks, Bayesian methods are typically applied to shrink the coeffi cient
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estimates for Φ1, . . . ,Φp and Σ to their “prior”means in a reasonably large model.

Since the ut are i.i.d, the VAR system can be used to construct the likelihood function,

which gives the probability of observing the sequence of random variables Y1:T = {y1, . . . , yT }

conditional on the parameters (Φ,Σ) and the p initial observations:

p (Y1:T | Φ,Σ, Y1−p:0) = ΠTt=1p (Yt | Φ,Σ, Y1−p:t−1) . (4)

To be succinct, we use the following shorthand for the likelihood function: p (Y | Φ,Σ) ≡

p (Y1:T | Φ,Σ, Y1−p:0). Bayes’rule implies that

p (Φ,Σ | Y ) =
p (Y | Φ,Σ) p (Φ,Σ)

p (Y )
(5)

where p (Φ,Σ) is the prior distribution (a subjective assessment of the probabilities on (Φ,Σ)

before the data on Y are observed), and p (Φ,Σ | Y ) is the posterior distribution (the assessment

of probabilities (Φ,Σ) once Y has been observed). The posterior distribution is the primary

object of importance in Bayesian inference and prediction.

In the current version of the model, we continue to use an updated version of the “Min-

nesota” prior originally introduced by Doan et al. (1984). Based on work by Sims and Zha

(1998), Schorfheide and Song (2012) apply a prior distribution in the form of a multivariate

normal inverted Wishart (MNIW ). Among other advantages, the MNIW prior produces a

posterior distribution that is also MNIW (i.e., it is the “natural conjugate”prior).1 The prior

is implemented with the mixed estimation method proposed by Litterman (1986), whereby the

observed data set is augmented with dummy observations.2

Prior beliefs regarding the variances are determined by a parsimonious vector of hyperpara-

meters λ > 0. The prior is parameterized so that as λ→ 0, the prior becomes noninformative

(or “flat”), essentially producing ordinary least squares (OLS) estimates for the posterior means,

and as λ → ∞, the prior is said to be “dogmatic”and the prior means become the posterior

1The precise specification of the prior distribution is described in Del Negro and Schorfheide (2011). In brief,
the vectorized coeffi cient matrices Φ are distributed as a multivariate normal given covariance matrix Σ, and the
covariance matrix is distributed as an inverted Wishart, which is the multivariate generalization of the inverted
gamma distribution.

2See Del Negro and Schorfheide (2013).
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means. Considering the complexity produced by the large number of means and covariances

controlled by the hyperparameters, purely Bayesian methods are of little use in selecting their

values. Instead, we continue to select hyperparameter values that jointly maximize the mar-

ginal likelihood of the data.3 Giannone, Lenza, and Primiceri (2012) have shown this empirical

Bayesian procedure to produce better forecasting accuracy against a number of alternatives.

An attractive feature of the marginal density associated with the MNIW prior is that it can

be obtained in closed form.4

The basic idea behind the Minnesota prior is that macroeconomic times series behavior is

fairly well described as a collection of random walks correlated only through the innovations.

In terms of the VAR system (1),

Φ1 = In, Φ1 = · · · = Φp = 0. (6)

We optimize the marginal likelihood over four hyperparameters. The first determines the degree

of belief in the unit root behavior expressed by (6). The Minnesota prior also expresses the

belief that the quantitative importance of a variable fades as the lag lengthens. Assumptions on

the decay rate of prior variances with distant lags receive tighter prior variances, implying that

they are more likely to be zero than shorter lagged coeffi cients. A hyperparameter controls the

overall tightness of the decay scheme. Another prior that has been shown useful for forecast

accuracy is the sum-of-coeffi cients prior (Doan et al., 1984). This prior allows for inexact

differencing in the sense that a variable’s own lags sum to one:

Φ1 + · · ·+ Φp = In . (7)

In term of time series behavior, when lagged values of a time series are at a particular level, the

same level is likely to be a good forecast for that variable. In other words, time series are assumed

3Given the data Y , the marginal data density p (Y ) is the missing factor of proportionality p (Y ) that forces
(5) to hold with equality. Specifically,

p (Φ,Σ | Y ) = [p (Y | Φ,Σ) p (Φ,Σ)] p (Y )−1 ,

which follows from Bayes’rule. In Bayesian econometrics it is the principal measure of model fit to the data and
is used extensively in model comparison.

4See Bauwens, Lubrano, and Richard (1999) for a derivation.
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to display “persistence”; another hyperparameter is reserved to express the degree of belief in

persistence. A last hyperparameter governs one’s belief in “copersistence”: when all lagged

variables are (separately) at particular levels, then all variables tend to persist simultaneously

at those levels.5

To operationalize the mixed-frequency feature of the model, the estimation procedure ex-

ploits the Kalman filter and its ability to handle missing observations (i.e., the unobserved

monthly values of quarterly variables). The VAR (1) is written as a first-order state vector

equation and is augmented by a measurement equation ensuring that the inferred monthly ob-

servations of the quarterly variables average to the observed quarterly values. To estimate the

model, a two-step Gibbs sampler is used, which draws from the MNIW distribution of VAR

parameters conditional on the inferred monthly observations and, alternatively, applies a sim-

ulation smoother to the state-space representation to draw the missing monthly observations

conditional on VAR parameters.6

3 Variable Selection

We have two motivations for updating the set of variables. As background, every member of

the Federal Reserve Board and each Federal Reserve System bank president participates in the

Summary of Economic Projections (SEP) as part of the Federal Open Market Committee’s

policy process. The survey is compiled by the Board four times annually. The participants

currently register their projections on aspects of five variables: real GDP, the unemployment

rate, personal consumption expenditures (PCE) prices, the PCE index excluding food and

energy prices (the core PCE index), and the federal funds rate. As a side note, participants

are instructed to conditional their outlooks on what they perceive to be appropriate monetary

policy.

Although the original model contains real GDP, the unemployment rate, and the federal

funds rate, the consumer price index (CPI) is the consumer price variable; the corresponding

core CPI index is not included. We substitute the PCE index for the CPI. We also add the core

5Del Negro and Schorfheide (2011) provide a clear exposition of the MNIW natural conjugate prior and the
dummy variables used to implement it.

6See Schorfheide and Song (2012) for details.

6



PCE index to the model to complete the list of SEP variables. Also, with both PCE indexes

included, the revised model implicitly contains important information on energy prices (and

food prices to a lesser extent).

Our second objective is to augment the model with variables that may offer a partial un-

derstanding of why forecasts change over time. Although our primary focus is on unconditional

forecasting, theory-inspired variable selection facilitates unconditional forecasting experiments

that may help “inform causal hypotheses” (Doan et al., 1984) of monetary policy and the

business cycle. Variable selection also provides a basis for choosing informative overidentifying

restrictions for structural analysis. For guidance, we turn to the New Keynesian class of dy-

namic stochastic general equilibrium (DSGE) models that have gained influence in many central

bank research departments. Because unit labor costs lie at the heart of inflation dynamics in

these models, we add average hourly earnings as the key labor compensation variable. Together

with real GDP and aggregate labor hours, the addition of hourly earnings implies a monthly

measure of unit labor costs that can be backed out of the forecast.7 In terms of variable se-

lection, the core of the revised MF-VAR model is similar to the smaller VAR constructed by

Christiano, Eichenbaum, and Evans (2005) to identify the effects of a monetary policy shock

and to help quantify their DSGE model.

Finally, we introduce the Moody’s Baa corporate bond yield to the model. This addition

implies a credit spread (Baa corporate yield minus 10-year Treasury yield) in addition to the

existing term spread (10-year Treasury yield minus the federal funds rate) and provides a

measure of financial market stress that may be useful for forecasting turning points.

Table 1 compares the new set of variables to the original one. In summary, the PCE index

replaces the CPI as the main price variable, and the core PCE index is added. Average hourly

earnings and the yield on Moody’s Baa-rated corporate bonds are also added to the model.

The set of quarterly variables (real GDP, fixed investment, and government purchases) has not

changed. Table 1 also indicates how each of the variables is transformed for the MF-VAR.

7Although the Bureau of Labor Statistics publishes quarterly data on unit labor costs and its components
in the nonfarm business sector (and others), in principle we could add productivity and hourly compensation
or even unit labor costs by itself. This approach has at least two drawbacks. The first is the usual concern
over forecast degradation due to overfitting– particularly when adding highly collinear variables. The second
problem is computational; adding additional quarterly variables is substantially more costly in computing time
than adding monthly variables.
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4 Forecast Evaluation

Our main purpose in this section is to evaluate the forecasting performance of the revised model

relative to standard benchmarks and the original model. We focus our attention on the five

model variables that are part of the SEP (GDPR, UR, PC, PCXFE, and RFF ), but provide

results for all model variables for completeness.

Prediction in a Bayesian framework is based on the posterior predictive density (or “predic-

tive density” for short). It provides a complete probability assessment of future values of the

model variables given current and past observations. Let YT+1:T+H =
(
y′T+1, y

′
T+2,, . . . , y

′
T+H

)′
represent an arbitrary forecast path in the set of all possible future paths. Constructing the

predictive density requires us to assign a probability to each path:

p
(
YT+1:T+H | Y T

)
=

∫
p (YT+1:T+H ,Θ | Y1−p:T ) dΘ , (8)

where Θ = (Φ,Σ), Φ is the vector of VAR coeffi cients and Σ is the variance-covariance matrix

of shocks. The integrand in (8) is the joint density of model parameters and future variable

observations. Using the rules of probability, it can be written

p (YT+1:T+H ,Θ | YT ) = p (YT+1:T+H | Y1−p:T ,Θ) p (Θ | Y1−p:T ) . (9)

The two sources of forecast uncertainty are highlighted by this expression. The first term on

the right-hand side of (9) describes the uncertainty on future observables given the observed

data and model parameters or, equivalently, the forecast uncertainty due to future disturbances

that impact the VAR. The second term is the model posterior distribution describing parameter

uncertainty. Both distributions have analytical expressions under the Normal-inverted Wishart

prior, so simple direct Monte Carlo sampling can be used to produce an approximation to the

predictive density.

In what we follows, we provide forecast accuracy metrics for point forecasts. We gener-

ate point forecasts using the “pseudo-iterated” approach in which parameter uncertainty is

integrated out. The one-step-ahead forecast is obtained using the posterior mean Φ:
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ŷT+1 = Φc + Φ1yT + Φ2yT−1 + . . .+ ΦpyT−p+1.

The remaining h = 1, . . . ,H − 1 step-ahead point forecasts are then computed by recursive

substitution. For example, the H = 2 forecast is then computed as

ŷT+2 = Φc + Φ1ŷT+1 + Φ2yT + . . .+ ΦpyTt−p+2

and so on. More generally,

ŷT+h = Φc + Φ1ŷT+h−1 + Φ2ŷT+h−2 + . . .+ ΦpŷT+h−p, h = 1, . . . ,H , (10)

where ŷT+h = yT+h−p for h ≤ p. Alternatively, using the notation in (2) we can write

ŷT+h = Φ
h
xt .

The forecast evaluations are conducted on a recursive basis in which the sample period is

lengthened by one observation for each forecast. The initial sample period runs from 1968M1 to

1986M12 with the 1967M7—1967M12 observations serving as the pre-sample to accommodate

the six lags. A 36-step (month) ahead forecast is then computed covering the 1987M1—1989M12

period as described above. In the next recursion, the sample is updated to 1968M1—1987M1

and the point forecast computed for the 1987M2—1990M1 period. The process continues until

the last forecast that accommodates a three-year interval covering the end of the data sample

can be constructed. That recursion uses the 1968M1—2010M6 sample to forecast the 2010M7—

2013M6 period. New hyperparameters are computed for each recursion, implying (potentially)

different prior means for all forecasts.

The forecast evaluations are conducted in “pseudo real time,” meaning that we do not

use vintage (or real-time) data, that is, that were available when a forecast would have been

initially performed. Schorfheide and Song (2012) evaluate the original version of the model

with real-time forecasts to facilitate comparisons with the Greenbook forecasts produced by

the Federal Reserve Board of Governors staff. We doubt that the current revision in model
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variables has been extensive enough to disrupt their overall conclusions. Interested readers

should consult that paper for details. The use of only the most recent vintage of data (at the

time of our evaluations) allows comparisons to a wide range of other studies and also economizes

on computer time, since the Kalman-smoother step of the posterior simulator procedure can

be eliminated. The monthly observations for the three quarterly series are obtained (for each

model) by running the full two-step Gibbs sampler over the entire sample period 1968M1—

2013M6.

Because the actual quarterly variables are only observed at that frequency, we evaluate

forecasts of the quarterly averages in our analysis even though the model is solved at the

underlying monthly frequency. We abuse notation slightly so that h = 1, . . . ,H is counted

in quarters rather than months. Forecasts are evaluated over the 1987Q1—2013Q2 period,

which allows for a 20-year initial evaluation window. This period is also singled out as one

characterized by a single monetary policy regime.

The original 11-variable specification and the revised 14-variable model are treated sym-

metrically with one exception. Recall that the original used the headline CPI as its consumer

price variable, whereas the updated model favors the headline PCE and core PCE indexes. To

facilitate comparison, we modify the original model to use the PCE index instead of the CPI.8

Under that substitution, the revised 14-variable model nests the slightly modified version of the

original 11-variable model.

Forecast evaluations are based on the mean squared forecast error (MSFE) statistic. Let

T0 denote the beginning of the evaluation period minus one period (1986Q4) and T1 the end

period (2013Q2). The MSFE is defined as

MSFEi,h =

∑T1−h
t=T0

(ydatai,t+h − ỹt+h)2

T1 − h− T0 + 1

for each forecast variable i and forecast horizon h = 1, . . . ,H. Before MSFEs are computed, the

simulated projections ŷt+h are transformed back to original units ỹt+h according to the trans-

formations indicated in Table 1. The root mean squared forecast error is given by
√
MSFEi,h.

Table 2 reports the root MSFEs for all variables in the revised model for horizons h = 1, . . . , 8.
8Our results show that the 11-variable model with the PCE index in place of the CPI tracks consumer prices

(as measured) much better, with almost no performances changes noted in other varialbles.
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We report MSFE statistics relative to three different benchmark model forecasts. First,

we evaluate the forecasting accuracy gained by using (optimized) informative priors with a

comparison of the Bayesian MF-VAR forecasts to those generated by the same system under

flat priors (OLS). Next, we compare the Bayesian MF-VAR forecast to one generated by

the univariate AR(6) process for each variable (denoted AR). Because overfitting is of little

threat due to the parsimonious specification, the autoregressive models are estimated using

OLS. This comparison helps gauge the value of the cross-correlation information contained in

VAR coeffi cients. Finally, we compare the forecasting accuracy of the 14-variable model relative

to the original 11-variable model (designated OR).

DefiningMSFEBV ARi,h as the MSFE for the Bayesian VAR with optimized hyperparameters

andMSFEmi,h wherem ∈ {OLS,AR,OR} as the ones corresponding to each benchmark model,

the relative mean squared forecast error (RMSFE) statistic is expressed as the ratio of the former

to the latter,

RMSFEi,h =
MSFEBV ARi,h

MSFEmi,h
,

so that values less than one imply better forecasts from the 14-variable model. Table 3 shows

that using informative priors produces dramatically better forecasts than the same model using

flat priors, with the largest accuracy gains for the federal funds rate and the smallest for PCE

and core PCE prices. In nearly all cases, the informative priors produce a better forecast, with

a single exception: average hourly earnings in the first two quarters of the horizon.

In Table 4, we report the RMSFEs generated by the Bayesian VAR model and the classi-

cally estimated AR(6) benchmark models. Overall, the results favor the Bayesian VAR, which

outperforms the AR(6) models in over 60% of the cases. The notable exceptions are for the

price and wage variables (PC, PCXFE, EARNS), which for the most part, do substantially

worse. In these cases, the cross-covariance information embedded in these equations is coun-

terproductive. This suggests that the symmetry property that treats the prior shrinkage of

own-lags in the same way as other lags may be overly restrictive in the case of price and wage

forecasting. If so, a case could possibly be made for a more flexible specification, but only by
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sacrificing the considerable computational conveniences of using the MNIW prior.9

Finally, Table 5 shows how the revised 14-variable model compares with the original 11-

variable model. Although the models are very close overall, the revised model tends to perform

better in the two- and three-year horizons and worse in the near term. Although the revised

model performs better in only 32% of the cases in the first four quarters, it does better in roughly

60% of the cases in the second two years. With the exception of the first two quarters of the

horizon, the revised model predicts real GDP (GDPR) better than the original model, with the

advantage generally growing as the forecast horizon expands. The differences in unemployment

rate (UR) forecasts mimic the same pattern as real GDP, but the differences are small. Forecasts

of consumer prices are substantially improved in the revised version. Forecast accuracy improves

for each of the 12 forecast horizon quarters and by as much as 7.5% for h = 4, 5. The new

model does, however, give some ground on the accuracy of federal funds rate forecasts.

5 Summary

We expand the 11-variable MF-VAR to include 14 variables. The new version of the model

includes all five variables submitted to the FOMC’s Summary of Economic Projections. The

PCE price index was substituted for the CPI, and the core PCE price index has been added.

The addition of average hourly earnings potentially adds a key component for understanding

changes in inflation forecasts. Along with real GDP and aggregate hours worked, the model’s

output now implies a proxy for unit labor costs– the driving force of inflation dynamics in New

Keynesian DSGE models. Finally, the addition of Moody’s corporate Baa yield adds credit

spread information to the model to help anticipate economic downturns.

Forecast evaluations show that the models are close in forecast accuracy. The revised model

better forecasts consumer prices and real GDP– the latter in the medium and longer term.

The revised and original models are evenly matched on the unemployment rate, but the revised

model does not does as well as the original model regarding forecasts for the federal funds

rate. Since the revised model improves the forecast accuracy for consumer prices, both models

9The MNIW natural conjugate prior is one of the very few distributional assumptions that allow for direct
Monte Carlo sampling for posterior simulation. Most other specifications require Monte Carlo Markov chain
(MCMC) posterior simulation methods. Layering that complication on top of the multiple-frequency feature of
the model would be computationally impractical.
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produce price forecasts that do not outperform those from a simpler univariate autoregression.

Ongoing research explores ways to improve price forecasts and assess the contribution of

introduced variables to forecast interpretation.
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Table 1. Updated Model Variables

Code Series Change Transform
GDPR∗ Real GDP (chained 2005 dollars) log-level
UR Unemployment rate (%) level/100
PC PCE price index Replaces CPI log-level
PCXFE Core PCE price index New log-level
RFF Effective federal funds rate (%) level/100

LHRS Index of aggregate weekly hours log-level
EARNS Average hourly earnings ($) New log-level
IP Industrial production index log-level
CONSR Real personal consumption expenditures log-level
IFIXR∗ Real fixed investment log-level
GOVR∗ Real government purchases log-level
RTCM10 10-year Treasury note yield (%) level/100
RBAA Moody’s Baa corporate bond yield (%) New level/100
SP500 S&P 500 composite stock price index log-level
∗Quarterly time series.
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Table 2. Root Mean Squared Forecast Errors: Revised Model

Forecast Horizon in Quarters
yi 1 2 3 4 5 6 7 8

GDPR 52.49 104.95 167.85 229.15 286.34 338.98 387.30 433.00
UR 0.17 0.17 0.55 0.76 0.97 1.15 1.30 1.43
PC 0.27 0.58 0.82 1.03 1.25 1.43 1.67 1.94
PCXFE 0.14 0.30 0.46 0.64 0.82 1.01 1.23 1.47
RFF 0.49 1.04 1.37 1.65 1.93 2.15 2.33 2.50

LHRS 0.39 0.85 1.41 2.00 2.58 3.10 3.54 3.91
EARNS 0.03 0.06 0.09 0.12 0.14 0.17 0.20 0.22
IP 0.63 1.44 2.34 3.19 3.93 4.57 5.07 5.48
CONSR 37.24 72.80 110.89 149.50 187.26 221.94 254.64 286.35
IFIXR 19.88 48.86 80.23 111.89 143.61 174.24 202.50 228.43
GOVR 11.34 23.77 30.58 39.01 48.34 58.49 67.93 76.62
RTCM10 0.30 0.65 0.82 0.91 1.00 1.04 1.08 1.14
RBAA 0.27 0.52 0.68 0.76 0.82 0.83 0.84 0.89
SP500 52.26 104.71 149.29 191.16 230.40 265.33 298.72 332.99
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Table 3. Forecast Comparison: Informative vs.Flat Priors

Forecast Horizon in Quarters
yi 1 2 3 4 5 6 7 8 9 10 11 12

GDPR 0.769 0.760 0.775 0.803 0.824 0.836 0.854 0.867 0.873 0.875 0.871 0.867
UR 0.804 0.732 0.750 0.805 0.839 0.870 0.899 0.925 0.945 0.952 0.946 0.924
PC 0.964 0.890 0.798 0.726 0.683 0.642 0.621 0.611 0.601 0.604 0.607 0.608
PCXFE 0.914 0.820 0.753 0.715 0.684 0.653 0.635 0.625 0.618 0.616 0.617 0.618
RFF 0.719 0.590 0.574 0.585 0.561 0.558 0.560 0.564 0.579 0.596 0.619 0.650

LHRS 0.881 0.819 0.848 0.884 0.900 0.916 0.929 0.934 0.935 0.927 0.913 0.896
EARNS 1.085 1.012 0.903 0.842 0.800 0.762 0.734 0.708 0.685 0.663 0.644 0.628
IP 0.828 0.737 0.779 0.829 0.855 0.879 0.895 0.907 0.912 0.907 0.897 0.885
CONSR 0.917 0.912 0.949 0.949 0.958 0.959 0.958 0.949 0.934 0.917 0.899 0.882
IFIXR 0.813 0.818 0.859 0.887 0.904 0.907 0.906 0.903 0.896 0.886 0.879 0.875
GOVR 0.889 0.682 0.649 0.653 0.656 0.681 0.689 0.695 0.690 0.694 0.708 0.729
RTCM10 0.871 0.769 0.760 0.720 0.689 0.665 0.649 0.627 0.610 0.598 0.597 0.603
RBAA 0.947 0.818 0.823 0.781 0.720 0.662 0.607 0.566 0.547 0.543 0.551 0.560
SP500 0.963 0.898 0.885 0.885 0.880 0.857 0.844 0.833 0.817 0.805 0.802 0.799

h = 1,...,12 h = 1,...,4 h = 5,...,8 h = 9,...,12
Mean 0.782 0.818 0.773 0.755
Median 0.809 0.819 0.812 0.764
Min 0.543 0.574 0.558 0.543
Max 1.085 1.085 0.959 0.952
% < 1 0.988 0.964 1.000 1.000
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Table 4. Forecast Comparison: Revised MF-VAR vs. AR(6)

Forecast Horizon in Quarters
yi 1 2 3 4 5 6 7 8 9 10 11 12

GDPR 0.772 0.871 0.938 0.979 1.000 1.011 1.011 1.014 1.013 1.015 1.015 1.015
UR 0.933 0.917 0.942 0.961 0.992 1.007 1.015 1.018 1.021 1.024 1.027 1.034
PC 0.991 0.983 1.002 1.017 1.063 1.126 1.180 1.250 1.323 1.377 1.443 1.509
PCXFE 1.205 1.381 1.402 1.444 1.493 1.540 1.583 1.606 1.619 1.631 1.646 1.656
RFF 1.198 1.066 0.973 0.923 0.908 0.891 0.874 0.864 0.856 0.851 0.847 0.845

LHRS 0.920 0.934 0.952 0.960 0.965 0.961 0.946 0.922 0.900 0.879 0.857 0.838
EARNS 1.461 1.425 1.328 1.263 1.207 1.147 1.105 1.074 1.053 1.039 1.028 1.018
IP 0.868 0.892 0.904 0.913 0.919 0.920 0.912 0.900 0.892 0.888 0.882 0.876
CONSR 1.047 1.088 1.103 1.089 1.087 1.076 1.062 1.051 1.044 1.040 1.036 1.034
IFIXR 0.813 0.937 0.958 0.973 0.975 0.966 0.954 0.942 0.935 0.928 0.923 0.921
GOVR 0.802 0.891 0.815 0.780 0.749 0.735 0.722 0.703 0.684 0.672 0.663 0.653
RTCM10 0.849 0.995 0.994 0.933 0.889 0.838 0.790 0.766 0.744 0.720 0.699 0.680
RBAA 0.844 0.936 0.901 0.838 0.786 0.726 0.678 0.663 0.667 0.673 0.684 0.691
SP500 0.998 1.021 1.012 1.003 0.988 0.967 0.939 0.916 0.897 0.876 0.854 0.836

h = 1,...,12 h = 1,...,4 h = 5,...,8 h = 9,...,12
Mean 0.989 1.006 0.989 0.973
Median 0.956 0.960 0.966 0.011
Min 0.653 0.772 0.663 0.653
Max 1.656 1.461 1.606 1.656
% < 1 0.607 0.661 0.589 0.571
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Table 5. Forecast Comparison: Revised MF-VAR vs. Original MF-VAR

Forecast Horizon in Quarters
yi 1 2 3 4 5 6 7 8 9 10 11 12

GDPR 1.043 1.019 0.999 0.989 0.978 0.972 0.972 0.971 0.968 0.968 0.968 0.970
UR 1.019 1.040 1.033 1.016 1.005 0.994 0.992 0.992 0.995 0.997 0.999 1.003
PC 0.990 0.960 0.942 0.928 0.925 0.929 0.933 0.939 0.943 0.946 0.949 0.952
PCXFE N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
RFF 1.127 1.016 1.006 1.030 1.038 1.043 1.050 1.052 1.052 1.052 1.051 1.051

LHRS 1.112 1.099 1.064 1.034 1.013 1.000 0.994 0.991 0.989 0.990 0.992 0.994
EARNS N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
IP 1.057 1.027 1.008 0.998 0.984 0.977 0.973 0.968 0.964 0.962 0.964 0.966
CONSR 1.104 1.027 1.009 0.987 0.978 0.975 0.975 0.975 0.975 0.975 0.975 0.975
IFIXR 1.082 1.037 1.009 0.987 0.977 0.975 0.974 0.973 0.972 0.973 0.975 0.977
GOVR 1.097 1.036 1.066 1.081 1.089 1.097 1.102 1.102 1.106 1.108 1.107 1.108
RTCM10 0.981 0.995 0.990 0.996 1.001 1.010 1.023 1.018 1.016 1.013 1.013 1.017
RBAA N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
SP500 1.060 1.002 0.994 1.004 1.011 1.020 1.026 1.034 1.041 1.049 1.055 1.062

h = 1,...,12 h = 1,...,4 h = 5,...,8 h = 9,...,12
Mean 1.010 1.025 1.000 1.004
Median 1.000 1.017 0.992 0.991
Min 0.925 0.928 0.925 0.943
Max 1.127 1.127 1.102 1.108
% < 1 0.508 0.318 0.591 0.614
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