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1 Introduction

Safety nets are a central pillar of the current financial architecture. By granting liquidity

support to a collection of institutions, a safety net can relieve the liquidity strains of financially

distressed entities. A long-standing concern about safety nets, reinvigorated after the financial

crisis, is that they can lead to excessive risk taking.1 Accordingly, a key question regarding

the design of safety nets is: How should the stability gained from a financial safety net be

balanced against the moral hazard problem? Despite extensive discussions, the literature lacks

a theoretical framework that can be used to address this question.

In this paper, we tackle the design of financial safety nets using a stylized model of liquidity

demand under limited private credit. As in Holmström and Tirole (1998), the government can

relax credit constraints by providing public liquidity. The question we address is whether the

government should restrict ex ante the set of investors to whom it provides liquidity support

ex post. In a nutshell, how wide should the financial safety net be?

The model features investors that save in short-term and long-term assets. These investors

are subject to private idiosyncratic liquidity shocks, which occur before the long-term asset’s

payoffs are realized, as in Diamond and Dybvig (1983). Private contracts are not enforceable—

which limits borrowing between investors to smooth liquidity shocks—and investors can anony-

mously trade bonds that the government issues to finance liquidity facilities. The new feature

we introduce in this model is a government’s choice about the share of investors that are eligible

for public liquidity support. Specifically, we consider a government that chooses at time 0 the

share of investors that will be eligible for liquidity support in the interim period, but without

commitment about the magnitude of this liquidity support. This intends to capture the fact

that only a subset of financial institutions are granted access to facilities such as the discount

window or deposit insurance, which is a cornerstone of the current financial architecture. We

label the set of investors eligible for ex post public support the protected sphere and the set of

investors excluded from it the unprotected sphere.

Our analysis of financial safety nets delivers several results, both positive and normative.

We first show that if the government can commit to a future liquidity provision policy, the

optimal safety net covers the entire set of investors. With commitment, the government can

provide an amount of public liquidity that induces the efficient amount of investment in long-

1Greenspan (2001) notably warned that policymakers must be “very cautious about purposefully or in-
advertently extending the scope and reach of the safety net.” Following the US financial crisis, there have
been discussions surrounding Dodd-Frank on whether shadow banks should have access to lender of last resort
facilities (see, e.g., Fischer, 2016).
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term assets and thereby leads to the efficient allocation.2 Offering a differential treatment to

identical investors is inefficient if the government has commitment. In this case, the optimal

size of the unprotected sphere is zero.

We then consider the optimal safety net when the government lacks commitment. Specif-

ically, we study a time-consistent equilibrium in which the government chooses without com-

mitment the liquidity support in the interim period. We can characterize in closed form three

distinct regions depending on how wide the safety net is (i.e., how large is the protected sphere

chosen by the government at time 0). When there is a large protected sphere, protected in-

vestors invest large amounts in the long-term asset and the economy features high production

efficiency. As it turns out, all investors achieve the same level of welfare regardless of whether

they are in the safety net, because interest rates on short-term and long-term assets are equal-

ized in equilibrium. When there is a midsize protected sphere, protected investors invest only

in long term assets and obtain higher welfare than unprotected investors. Interestingly, the

welfare benefits of protected agents are decreasing in the share of investors that is eligible for

liquidity support. The opposite happens for the unprotected investors. Finally, when there is a

small protected sphere, public liquidity provision exclusively benefits the protected sphere and

there is a large welfare gap between protected and unprotected investors.

Our main normative result is that in a time-consistent equilibrium, the optimal ex ante

government’s choice implies a midsize protected sphere. Unlike the solution under commmit-

ment, it is optimal to leave a fraction of investors, strictly between 0 and 1, without liquidity

support. A safety net covering all investors is undesirable because, under lack of commitment,

the government provides too much liquidity support to protected investors ex post. Anticipat-

ing the access to public liquidity facilities, protected investors free ride on others’ investment

in short-term assets and choose excessively illiquid portfolios. In order to finance the liquidity

facilities, the government needs to issue a large amount of public debt. This in turn yields an

interest rate on government bonds that is too high from a social point of view. A high interest

rate redistributes resources away from investors that have liquidity shortfalls and hurts ex ante

welfare. Because of incomplete markets, the costs of this higher interest rate for borrowing

investors that have a shortfall of liquidity outweigh the benefits to lending investors that have

a surplus of liquidity. In addition, a midsize protected sphere also dominates a small protected

sphere because it features less socially costly liquidity hoarding. A safety net with a midsize

protected sphere is thus desirable from an ex ante welfare perspective.

2As in Yared (2013), the amount of liquidity provision under commitment induces a wedge between the
technological rate of return on the long asset and the rate of return of government bonds.
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Related literature This paper is related to a vast literature on public liquidity provision.

Woodford (1990) and Holmström and Tirole (1998) are classic papers showing how public

liquidity provision may relax private borrowing limits.In our model, the government also has

a special role as a liquidity provider, but we address a distinct issue—the design of financial

safety nets. In particular, we show that our model rationalizes a key feature of prevailing

safety nets, where some financial institutions have access to a discount window while other

institutions performing essentially the same activities do not. Our environment is closer to

Yared (2013). He shows that the optimal liquidity provision under commitment entails a wedge

between the technological rate of return on the long asset and the rate of return of government

bonds. By promising a low return on bonds, the government reduces underinvestment in liquid

assets and improves risk sharing.3 We study instead optimal policy when the government

lacks commitment. In particular, we show that the government provides too much liquidity ex

post for investors within the safety net, and hence the optimal liquidity provision plan under

commitment is not implementable. We characterize investment efficiency and risk sharing as

a function of the safety net and show that it is strictly optimal to leave a share of investors

outside the safety net.

A related literature highlights how bailouts can increase financial fragility when the govern-

ment lacks commitment. Farhi and Tirole (2012) show that discretionary interest rate policy

makes private leverage decisions strategic complements and generates multiple equilibria. Lack

of commitment also plays an important role in the analysis of bailouts by Acharya and Yorul-

mazer (2007), Diamond and Rajan (2012), Chari and Kehoe (20016). Nosal and Ordoñez

(2016) show that a government’s uncertainty about whether failed institutions were affected by

idiosyncratic or systemic shocks creates strategic restraint in leverage decisions and supports

government commitment. Freixas (1999) shows that randomizing between bailing out banks

in distress or not can create “constructive ambiguity” and reduce risk taking. Keister (2016)

presents an environment in which a commitment to a no bailout policy is undesirable because

it can increase the likelihood of bank runs, and Keister and Narasiman (2016) show that these

policy conclusions emerge regardless of whether bank runs are driven by expectations or fun-

damentals. Bianchi (2016) finds that bailouts are desirable despite the moral hazard effects

if conducted only during systemic crises. None of these papers, however, study the design of

financial safety nets.

Our paper also relates to an growing literature on shadow banking. Existing work empha-

sizes regulatory arbitrage as the raison d’être of shadow banks (see, for instance, Acharya et al.

(2013); Gorton and Metrick (2012); Pozsar et al. (2010)). In this spirit, Plantin (2015) devel-

3In a different environment, Yared (2015) and Bhandari, Evans, Golosov and Sargent (2015) study the effects
of government debt on inequality.
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ops a model in which capital requirements lead banks to bypass regulation through a shadow

banking sector. Grochulski and Zhang (2015) introduce shadow banks in the model of Farhi et

al. (2009) and study the implications for financial regulation. Ordoñez (2013) shows that the

bluntness of capital requirements can make shadow banks desirable as a way to build reputation

and better align the interests of banks and bondholders. In contrast, our analysis shows that

the very existence of these institutions could be the result of the optimal plan of a government

that is subject to a classic time-inconsistency problem.

The paper proceeds as follows. Section 2 describes the model. Section 3 describes the main

results, and Section 4 concludes. The Appendix includes all of the proofs.

2 The Model

2.1 Technology and Preferences

The environment is based on the Diamond and Dybvig (1983) model of consumer liquidity

demand that has been a workhorse in the study of financial intermediation. It is closest to the

model presented by Yared (2013). The economy lasts for three dates: t = 0, 1, 2. There is a

single consumption good and there are two technologies, which we label the short asset and

the long asset. The short asset pays one unit of the good at t + 1 for each unit invested at t.

The long asset pays R̂ > 1 units at date 2 for each unit invested at date 0. For simplicity, we

assume that the long asset cannot be liquidated at date 1.4

The economy is populated by a unit continuum of ex ante identical agents. These agents

are endowed with e units of the good at t = 0. The type space has two dimensions. At date

0, each individual draws the first dimension of his type: s = {P,U}. A fraction γ ∈ [0, 1]

of individuals is of type s = P , and the complementary fraction 1 − γ is of type s = U . P

stands for protected, while U stands for unprotected. As we will explain below, protected agents

have access to public liquidity and unprotected agents do not. The type dimension s is public

information, and the parameter γ is a policy choice on which we elaborate more in Section 2.2.

At date 1, an agent draws the second dimension of his type, θ = {0, 1}, which determines the

preference for early consumption. With probability π ∈ (0, 1), an individual is of type θ = 0,

while with probability 1−π, he is of type θ = 1. The distribution parameter π is a fundamental

of the economy. Agents have Diamond-Dybvig preferences: the utility of an individual of type

(s, θ) is given by

U (cs1, c
s
2, θ) = (1− θ)u (cs1) + θρu (cs1 + cs2) , (1)

4All results carry through qualitatively as long as the date 1 liquidation value is strictly smaller than one.
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where cs1 and cs2 represent the respective date 1 and date 2 consumption levels. The utility

function u(·) is twice continuously differentiable, strictly increasing, and strictly concave, and

satisfies the Inada conditions limc→0 u
′(c) =∞ and limc→∞ u

′(c) = 0.

The type dimension θ refers to liquidity shocks. Agents of type θ = 0 are hit by liquidity

shocks and only value consumption at date 1, whereas agents of type θ = 1 are not hit by

liquidity shocks and are indifferent between consumption at date 1 and date 2. As is standard

in the literature, we assume that the type dimension θ is private and cannot be observed by

other agents (including the government). We will often refer to agents hit by a liquidity shock

as impatient agents and to agents not hit by a liquidity shock as patient agents.

The type dimension s determines the eligibility for public support at t = 1. Agents of type

s = U are unprotected and are not entitled to public liquidity provision, whereas agents of type

s = P are protected and can receive public liquidity at date 1. Unlike the type dimension θ,

the type dimension s is public. In what follows, we will denote an allocation of consumption

across consumers by {cs1(θ), cs2(θ)}θ∈{0,1},s∈{U,P}.
We define `s ∈ [0, 1] as the fraction of the date 0 endowment invested in the short asset

by a type s individual. Accordingly, we denote by Ls ∈ [0, 1] the aggregate choice of type

s individuals. In equilibrium, consistency will require that aggregate and individual choices

coincide, that is, Ls = `s for s ∈ {U, P}.
We make some parametric assumptions to ensure that the equilibria we consider fall within

economically interesting regions.

Assumption 1. As in Diamond and Dybvig (1983), the relative risk aversion is less than or

equal to 1:

− u′(c)

cu′′(c)
≤ 1 for all c > 0, (2)

and R̂−1 < ρ < 1.

Assumption 1 notably implies that efficient risk sharing requires impatient agents to consume

more than e and patient agents to consume less than R̂e.

Assumption 2. The probability of being hit by a liquidity shock is not too small:

π ≥ ρ(R̂− 1)

1 + ρ(R̂− 1)
.

This assumption ensures that in all equilibria we consider, agents make investment choices
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such that they never consume positive amounts at date 2 when they turn out to be impatient.5

2.2 Public Liquidity Provision and Markets

We assume that private contracts are not enforceable. The assumption of unobservability

of liquidity shocks implies that contracts cannot be written at date 0 contingent upon their

realization at date 1, and the lack of enforceability implies that agents cannot borrow privately

at date 1.6 The assumption of imperfect private contract enforceability motivates the analysis

of public liquidity provision and the design of an optimal safety net.

The government makes two distinct choices at date 0 and date 1. At date 0, it sets the

share of protected agents γ.7 At date 1, it provides a liquidity facility to protected agents, and

finances it by issuing public debt. We hereafter provide details on the government’s policy at

date 1 and postpone our exposition of the government’s date 0 safety net decision to Section 3.

At date 1, the government issues public debt and extends credit to protected agents. At

date 2, it uses the proceeds from protected private investors’ repayments to pay back public

debt holders. In the background, we assume that the government has a superior technology

to enforce repayment.8 We assume that the credit facility is contingent on protected agents’

portfolio position.9 Because the liquidity shock realization is private information, the credit

facility cannot be made contingent on θ.

We denote the quantity of credit extended by the government to agents with short asset

position ` by B(`) and the aggregate amount of public debt by B. The government demands

the same interest rate 1/q on the credit it extends to protected agents as the one it pays on its

own public debt, it has zero initial public debt, and it does not finance any public expenditures.

5Agents who turn out to be impatient do not value date 2 consumption, but if liquidity shocks occur with a
sufficiently low probability, they might find it optimal to make investment decisions at date 0 that result in an
ex post wasting of date 2 resources in the contingency where they are hit by these shocks. Assumption 2 rules
out this case.

6All of our results continue to hold with a finite borrowing limit as long as the borrowing constraint binds
for all unprotected agents who turn out to be impatient at date 1.

7In other words, it sets the respective probabilities with which an agent draws a type s = U or s = P at
date 0.

8This is a standard assumption in the literature on public liquidity provision. As we will show below,
this access to a better enforcement technology allows the government to reach the efficient allocations under
commitment, but not under discretion.

9By making the government liquidity provision contingent on individual variables as opposed to aggregate
variables, we are able to abstract from issues of multiplicity that would arise in this model when we turn to the
optimal time-consistent equilibria (see e.g. Farhi and Tirole, 2012). In ongoing work, we show that the model
with credit contingent on aggregate variables displays similar results for our analysis of safety nets for a range
of equilibrium selection mechanisms.
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Its budget constraints thus require that∫ γ

0

B(`j)dj = B. (3)

We denote by bs(θ) the individual holdings of government bonds and assume that govern-

ment bonds cannot be shortened, i.e., (bs(θ) ≥ 0). The dynamic budget constraints of an

unprotected agent are represented by

`U ∈ [0, 1], (4)

cU1 (θ) = `Ue− qbU(θ), (5)

cU2 (θ) = R̂(1− `U)e+ bU(θ), (6)

while those of a protected agent are represented by

`P ∈ [0, 1], (7)

cP1 (θ) = `P e− qbP (θ) + qB(`P ), (8)

cP2 (θ) = R̂(1− `P )e+ bP (θ)−B(`P ), (9)

for θ ∈ {0, 1}. We have used in (5) and (8) that in an equilibrium with q ≤ 1, agents weakly

prefer to save using government bonds between date 1 and date 2 rather than use the short

asset.10 Combining the government’s budget constraint (3) with (5), (6), (8), (9) and the public

debt market clearing condition

B = (1− γ)[πbU(0) + (1− π)bU(1)] + γ[πbP (0) + (1− π)bP (1)] (10)

we obtain that a feasible allocation needs to satisfy the economy’s resource constraint

π

[
(1− γ)

(
cU1 (0) +

cU2 (0)

R̂

)
+ γ

(
cP1 (0) +

cP2 (0)

R̂

)]
+(1− π)

[
(1− γ)

(
cU1 (1) +

cU2 (1)

R̂

)
+ γ

(
cP1 (1) +

cP2 (1)

R̂

)]
= e. (11)

An alternative representation of the agents’ constraint set is given by

cs1(θ) + qcs2(θ) = `se+ qR̂(1− `s)e

cs1(θ) ≤ `se+ I{s=P}qB(`s).

10An equilibrium with q > 1 implies bs(θ) = 0. That is, if the return on government bonds is lower than the
return on short-term assets, government bonds would be strictly dominated assets.
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These substitutions show that the protected agent’s problem induced by a government debt

policy is equivalent to that of an agent that faces an exogenous borrowing limit bP (θ) ≥ −B(`P )

in the absence of public liquidity provision. On the other hand, because they do not benefit

from public liquidity provision, unprotected agents always face an effective borrowing limit

bU(θ) ≥ 0. The government’s date 0 choice about the size of the protected sphere will determine

the respective fractions of agents facing a relaxed borrowing limit −B(`) and of those facing an

unrelaxed limit at 0. One might think that the government would like to maximize the fraction

of agents who face a relaxed borrowing limit ex post, but as our analysis of Section 3 reveals,

this not the case when the government cannot commit ex ante about its debt issuance policy.

The timeline is summarized in Figure 1.

Time

t = 0

Gov. chooses
share of protected agents

Agents observe
their public type s

and invest

t = 1

Agents observe
their private

type θ

Gov. provides liquidity
to protected agents

Agents invest
and consume

t = 2

Gov. collects repayments
from protected agents

Agents collect
investment proceeds

and consume

Figure 1: Timeline of the model.

We let (s, `, θ) denote an agent’s individual state and X ≡ (γ, LU , LP ) denote the aggregate

state. We also let B(`) denote a public liquidity provision policy, q(X) denote the bond pricing

function, and C1(s, `, θ,X), C2(s, `, θ,X) represent the date 1 decision rules of an agent, whose

problem is

V1(s, `, θ,X) = max
c1,c2

U (c1, c2, θ) (12)

subject to

c1 + q(X)c2 = `e+ q(X)R̂(1− `)e, and c1 ≤ `e+ κ(s, `,X),

where

κ(s, `,X) ≡

0 for s = U

q(X)B(`) for s = P
(13)

is a type- and agent-specific effective borrowing limit. This problem is defined for any policy
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B(`). We can then define a date 1 continuation equilibrium.

Definition 1 (Continuation equilibrium). Given a government policy B(`), a continuation equi-

librium is a value function V1(s, `, θ,X) with associated decision rules C1(s, `, θ,X), C2(s, `, θ,X),

and a bond price function q(X) such that

1. given q(X) and B(`), V1(s, `, θ,X) solves the agent’s date 1 problem (12), and

2. the markets for date 1 and 2 consumption clear:11∑
s

∑
θ

γsπθC1(s, Ls, θ,X) ≤
∑
s

γsL
se, (14)∑

s

∑
θ

γsπθC2(s, Ls, θ,X) =
∑
s

γsR̂(1− Ls)e

+

[∑
s

γsL
se−

∑
s

∑
θ

γsπθC1(s, Ls, θ,X)

]
. (15)

This is a standard definition of a competitive equilibrium, adapted to accommodate the

dependence of the government’s liquidity provision policy upon the ex-ante choices of agents.

Condition (14) requires that aggregate date 1 consumption does not exceed the aggregate payoff

of the short asset at date 1. Condition (15) requires that aggregate date 2 consumption does

not exceed the aggregate payoff of the long asset, plus the payoff of the short asset invested in

between date 1 and date 2. By Walras’ law, the market clearing condition on government bonds

is satisfied. The following lemma characterizes a continuation equilibrium, which will be useful

when we turn to analyze the optimal government policy and highlight the role of commitment.

Lemma 1 (Continuation equilibrium). A continuation equilibrium features12

1. a bond price function satisfying

q(X) = min

{
e

1− π
π

γLP + (1− γ)LU

γmin{R̂(1− LP )e, B(LP )}
, 1

}
(16)

11To simplify notation, we define π0 ≡ π and π1 ≡ 1− π, as well as γP ≡ γ and γU ≡ 1− γ.
12When an equilibrium features q = 1, any other allocation such that c1 +c2 = R̂(1− `)e+ `e (and c1, c2 ≥ 0),

together with the price q = 1, also constitutes an equilibrium, but we can focus without loss of generality on
the one featuring c1 = 0 and c2 = R̂(1− `)e+ `e.
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2. consumption allocations satisfying

C1(s, `, 0, X) = `e+ min
{
q(X)R̂(1− `)e, κ(s, `,X)

}
, (17)

C2(s, `, 0, X) = max

{
R̂(1− `)e− κ(s, `,X)

q(X)
, 0

}
, (18)

C1(s, `, 1, X) = 0, (19)

C2(s, `, 1, X) = R̂(1− `)e+
`e

q(X)
. (20)

Proof. See Appendix A.1.

According to this lemma, in the absence of public liquidity provision, all impatient agents

consume the proceeds of their short asset at date 1 and consume the payoff of their long asset at

date 2. The latter is wasteful, because these agents do not value date 2 consumption, but they

have no choice since credit constraints prevent them from transferring resources from date 2 to

date 1. By relaxing protected agents’ effective credit constraint, the extension of public liquidity

allows this set of agents to transfer some or all of their date 2 illiquid wealth stemming from the

payoff of their long asset back into date 1. Patient agents, on the other hand, consume only at

date 2. These agents are natural savers at date 1, and therefore public debt issuance does not

generate an asymmetry between the protected and unprotected patient agents’ consumption.

However, these agents (at least weakly) benefit from a higher level of public debt to the extent

that it (weakly) increases the interest rate they earn on date 1 bond purchases (the bond price

q is weakly decreasing in public debt issuance B since the demand for government bonds by

patient agents is decreasing in the price).

For a given liquidity provision policy B(`), an agent’s date 0 problem can be represented as

V0(s,X) = max
`∈[0,1]

πV1(s, `, 0, X) + (1− π)V1(s, `, 1, X) (21)

Given this date 0 problem and Definition 1 of a continuation equilibrium, we have the following

definition of a competitive equilibrium

Definition 2 (Competitive equilibrium). Given government policies γ,B(`),B a competitive

equilibrium is a vector of aggregate variables X, a date 0 value function V0(s,X) with associated

policy function `(s,X), a date 1 value function V1(s, `, θ,X) with associated decision rules

C1(s, `, θ,X), C2(s, `, θ,X), and a bond price function q(X) such that

1. V1(s, `, θ,X), C1(s, `, θ,X), C2(s, `, θ,X), and q(X) are induced by a continuation equilib-

rium according to Definition 1,

2. V0(s,X), `(s,X) solve the agent’s problem (21),
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3. aggregate variables are consistent with individual choices: X = (γ, `(P,X), `(U,X)),

4. the government’s budget constraint (3) is satisfied.

3 Optimal Policy Analysis

3.1 Efficient Allocation

We start by characterizing the efficient allocation. This allocation will serve as a benchmark

for our normative analysis. In presenting this allocation, we abstract from the type dimension s

of agents, since it is unrelated to their preferences. The efficient allocation solves the following

problem:

max
c1(0),c2(0),c1(1),c1(2)

πU (c1(0), c2(0), 0) + (1− π)U (c1(1), c2(1), 1) (22)

subject to

π

[
c1(0) +

c2(0)

R̂

]
+ (1− π)

[
c1(1) +

c2(1)

R̂

]
≤ e,

and c1(0), c2(0), c1(1), c2(1) ≥ 0.

The solution to this problem is described by the lemma below.

Lemma 2 (Efficient Allocation). The solution to the planning problem satisfies e < c∗1(0) <

c∗2(1) < R̂e and c∗2(0) = c∗1(1) = 0, with u′(c∗1(0)) = ρR̂u′(c∗2(1)).

Proof. See Appendix A.2.

Thus, as is standard under Diamond-Dybvig preferences, the allocation features zero date 2

consumption of impatient agents, zero date 1 consumption of patient agents, and risk sharing

between patient and impatient agents that is consistent with an equalization of the social

marginal rate of transformation 1/R̂ and the marginal rate of substitution ρu′(c∗2(1))/u′(c∗1(0)).

3.2 Optimal Safety Net under Commitment

We now turn to analyzing decentralized equilibria. We start by assuming that the government

can commit at date 0 about its date 1 liquidity provision policy. This will be important to

highlight the role of the government’s ability to commit in our analysis of the design of the

optimal safety net.

In this case, after the government set γ and credibly announce a future liquidity provision

policy Bc(`) at date 0, private agents make investment choices. Recall that agents know whether

they are protected at the time of making their date 0 investment choice.

11



Under commitment, the government chooses the policy γc, Bc(`),Bc to attain the competi-

tive equilibrium with highest time 0 utility.

Proposition 1 (Optimal policy under commitment). A safety net architecture covering all

agents (γc = 1), together with a commitment to provide an amount of public liquidity Bc(`) =

Bc = (1− π)c∗2(1), achieves the efficient allocation described in Lemma 2.

Proof. See Appendix A.3.

This proposition shows that it is optimal to cover all agents, and that the appropriate

amount of liquidity provision achieves the efficient allocations. The latter result is related

to Yared (2013), who established that under a weaker version of Assumption 2, a fiscal policy

scheme equivalent to our credit facility can achieve the efficient allocations when the government

has commitment.13 Proposition 1 indicates that if the government were able to commit to a

future liquidity provision policy, it would not leave any agent outside the safety net. In fact,

setting a boundary between protected agents and unprotected agents not only is redundant but

also would deliver strictly lower ex ante welfare.14 Below, we relax the assumption that the

government can commit to its liquidity provision policy, and show that having a smaller safety

net becomes strictly optimal. To put the results below into perspective, it is important to note

that under commitment, the amount of liquidity provision that the government commits to

provide puts a lower bound on the amount of short assets that agents choose to invest in. If

agents were to invest less in short assets than the level associated with the efficient allocation,

and were to end up being impatient, they would become credit constrained. This will contrast

with the outcome that prevails when the government lacks commitment. As we show below,

under discretion the government will ex post relax agents’ credit constraints unconditionally,

i.e., for any values of their investment choice. Anticipating the reaction of the government,

agents will invest too little in short assets in the initial period. The inability of the government

to commit to the extent of an ex post public liquidity provision will create a rationale for

optimal management of the safety net.

3.3 Optimal Safety Net under Discretion

To analyze optimal policy under discretion, we proceed by backward induction. We start

by solving for the government’s optimal liquidity provision policy at date 1 when it is not

13Without this assumption, Yared (2013) finds that the government, despite not reaching the efficient alloca-
tion, should still restrict public debt issuances to prevent underinvestment in liquid assets.

14To see this, note that an unprotected impatient agent’s consumption cannot exceed e, which is strictly lower
than the impatient agents’ consumption in the efficient allocation.
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bound by past commitments. We then move back to date 0 choices and characterize time-

consistent equilibria, for a given safety net architecture represented by the value of γ. Finally,

we characterize the optimal ex ante choice of γ.

3.3.1 Ex post Policy: Liquidity Provision

After date 0 choices have been made, the government chooses the liquidity provision policy

rule Bd(`) to maximize the average welfare of unprotected and protected agents subject to the

private sector’s date 1 response to its actions. The government solves

max
{Bj}j∈[0,γ]

∫ γ

0

[πV1 (P, `i, 0, X) + (1− π)V1 (P, `i, 1, X)] di

+

∫ 1

γ

[πV1 (U, `i, 0, X) + (1− π)V1 (U, `i, 1, X)] di (23)

where V1(·) is given by our definition of a continuation equilibrium.

The following proposition establishes that an optimal ex post policy always features a full

relaxation of impatient protected agents’ effective borrowing constraints at date 1.

Proposition 2 (Optimal ex post bailout). An equilibrium with an optimal ex post policy

features a full relaxation of impatient protected agents’ effective credit constraints, Bd(`) =

R̂(1− `)e. Further, the equilibrium bond price is given by

q(X) = min

{
1

R̂

1− π
π

γLP + (1− γ)LU

γ(1− LP )
, 1

}
, (24)

and the equilibrium consumption of protected agents is given by

C1(P, `, 0, X) = `e+ q(X)R̂(1− `)e, (25)

C2(P, `, 1, X) = R̂(1− `)e+
`e

q(X)
. (26)

Proof. See Appendix A.4.

Proposition 2 establishes that it is always optimal for the government to provide an amount

of public liquidity that makes a protected agent unconstrained in a date 1 continuation equi-

librium. The intuition for the ex post optimality of fully relaxing constraints is as follows. For

Bi < R̂(1 − `i)e, increasing Bi always increases the equilibrium consumption of some agent

without decreasing the equilibrium consumption of another agent. To see this, we distinguish

the situations in which q = 1 from the ones in which q < 1. When q = 1, an increase in

Bi increases the equilibrium consumption of the protected impatient agent i while leaving the
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equilibrium consumption of other agents unchanged.The increase in agent i’s consumption is

the result of a borrowing constraint relaxation at a locally unchanged interest rate. When

q < 1, on the other hand, an increase in Bi increases the equilibrium consumption of all patient

agents while leaving the equilibrium consumption of impatient agents unchanged. The increase

in patient agents’ consumption results from the upward pressure on the return on government

debt from date 1 to date 2 (i.e., q is decreasing in Bi). It follows that the government’s value

function is strictly increasing in Bi for Bi < R̂(1 − `i)e. For Bi ≥ R̂(1 − `i)e, on the other

hand, equilibrium consumption allocations do not locally depend on Bi. It follows that the

debt issuance policy Bd(`) = R̂(1− `)e is optimal.

A higher level of public liquidity provision is thus always desirable ex post up to the point

where protected agents’ effective credit constraints are fully relaxed. This is true for any level

of private investment. In the absence of commitment, an optimal public liquidity provision

policy hence works as insurance provided freely to protected agents. This contrasts with the

optimal policy under commitment, which offers a limited amount of insurance. This extra layer

of insurance present under discretion will distort ex ante incentives.

As we will see below, the moral hazard costs induced by discretion in public liquidity

provision depend on the size of the protected sphere. In the next sections, we provide a sharp

analytical characterization of this relationship and analyze the key trade-offs involved in the

optimal setting of the size of the safety net.

3.3.2 Time-Consistent Equilibrium

After the government has set γ at date 0, private agents make investment choices. Agents

know γ and forecast aggregate actions LP , LU to form beliefs about q(X). They also rationally

anticipate the ex post public liquidity provision policy rule Bd(`). We can define a time-

consistent equilibrium as follows:

Definition 3 (Time-consistent equilibrium for given safety net γ). For a given γ, a time-

consistent equilibrium is a liquidity provision policy Bd(`), a bond price q(X), consumption

policies C1(s, `, θ,X), C2(s, `, θ,X) and investment portfolio ` such that:

1. Bd(`) solves (23)

2. ` solves (21)

3. V1(s, `, θ,X) , C1(s, `, θ,X), C2(s, `, θ,X), q(X), and Bd(`) are a continuation equilibrium

according to Definition 1.
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Using that Bd(`) = R̂(1−`)e as established in Proposition 2, the time-consistent equilibrium

for given γ can be conveniently solved for in closed form, as summarized in the following

proposition.

Proposition 3 (Characterization of time-consistent equilibria for given safety net γ). In a

time-consistent equilibrium, unprotected agents always invest all of their endowment into the

short asset: LU = 1. For other variables, we can distinguish between three mutually exclusive

regions, characterized by boundaries 0 < γ < γ < 1, with γ ≡ 1−π
1−π+R̂π and γ ≡ 1− π:

• Region I (0 ≤ γ < γ): protected agents invest LP = 0, the date 1 bond price is q = 1, and

the consumption allocations are cU(0) = cU(1) = e and cP (0) = cP (1) = R̂e.

• Region II (γ ≤ γ ≤ γ): protected agents invest LP = 0, the date 1 bond price is q =
1

R̂

πγ
(1−π)(1−γ) , and the consumption allocations are cU(0) = e, cU(1) = R̂ (1−π)(1−γ)

πγ
e, cP (0) =

πγ
(1−π)(1−γ)e, and cP (1) = R̂e.

• Region III (γ < γ ≤ 1): protected agents invest LP = π+γ−1
γ

, the date 1 bond price is

q = 1/R̂, and the consumption allocations are cU(0) = cP (0) = e and cU(1) = cP (1) = R̂e.

Proof. See Appendix A.5.

The equilibrium of the model takes different forms, depending on the value of the size of the

protected sphere γ. In all of the cases that arise, unprotected agents always invest all of their

endowment in the short asset at date 0. We note that in the laissez-faire benchmark where

all agents are unprotected (γ = 0), everyone invests his entire endowment into the short asset

(LU = 1) and consumes an amount equal to that endowment whether hit by a liquidity shock

or not at date 1 (cU(0) = cU(1) = e). Thus, the laissez-faire benchmark features an extreme

form of self-insurance that results in clear efficiency losses relative to the efficient allocation.

We now discuss equilibrium properties in the different regions.

Region I When the fraction of protected agents is smaller than a threshold γ < 1−π
1−π+R̂π , we

say that there is a small protected sphere. In this case, the demand for government bonds by

patient unprotected agents at date 1 is large enough to push the interest rate down to its lower

bound 1/q = 1. In this region, impatient protected agents benefit from fully relaxed credit

constraints and a low interest rate at date 1, which allow them to transfer the date 2 proceeds

of their long investment back into date 1 one for one. On the other side of the trade, patient

unprotected agents are not able to earn a return higher than the storage technology between date

1 and date 2 on the proceeds of their date 0 short investment. Thus, in equilibrium, protected

agents always end up consuming R̂e, and unprotected agents always end up consuming e,
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whatever the realization of their liquidity shocks. This region features an extreme form of

redistribution between the two spheres. A large unprotected sphere has the same consumption

profile as in the laissez-faire benchmark (i.e., when γ = 0) and implicitly subsidizes a small set

of protected agents.

Region II When the fraction of protected agents is between two thresholds 1−π
1−π+R̂π ≤ γ ≤

1 − π, we say that there is a medium protected sphere. In this case, the mass of unprotected

agents is still large enough for protected agents to completely rely on the short asset investment

made by unprotected agents. However, the aggregate amount of debt issued by the government

is not high enough relative to the supply of funds to push the date 1 interest rate to R̂, so

impatient protected agents, whose credit constraints are fully relaxed by the bailout, can enjoy

a consumption level higher than e (the date 0 payoff on their long investment, R̂e, is worth more

than e when discounted into date 1 at the prevailing interest rate). Patient unprotected agents,

on the other hand, earn a positive return, albeit lower than R̂, between date 1 and date 2 on

the proceeds from their date 0 short investment. Their date 2 consumption is therefore higher

than the laissez-faire level of e, but it falls short of R̂e. This discussion, together with Panel

(d) of Figure 2, makes it clear that in this region, government bailouts induce a redistribution

of resources from unprotected to protected agents, whose strength decreases with the share of

protected agents γ. As γ increases, the gap between the equilibrium consumption of protected

and unprotected agents narrows, in both liquidity risk contingencies (θ = 0 and θ = 1). The

fact that this gap gap is decreasing in γ reflects the fact that as γ increases, there are fewer

and fewer unprotected agents who self-insure by investing in the short asset, which puts an

increasing upward pressure on the date 1 interest rate.

Region III When the fraction of protected agents is greater than a threshold γ > 1− π, we

say that there is a large protected sphere. Protected agents invest only a fraction LP = π+γ−1
γ

of their date 0 endowment in the short asset. This fraction is equal to zero when γ = 1 − π,

is increasing in γ, and reaches π when γ = 1. Panel (e) of Figure 2 represents the date 0

investment choice of agents as a function of the size of the protected sphere γ. Protected

agents anticipate being bailed out by the government at date 1. This a priori eliminates their

incentive to self-insure by investing in the short asset. However, someone needs to invest in the

short asset to support the consumption of impatient agents at date 1, and when the number of

unprotected agents in the economy is small, protected agents need to do their share of short

investment at date 0. Given a full relaxation of credit constraints by the government ex post,

for there to be an incentive to invest in the short asset for protected agents, the return on

government bonds between date 1 and date 2, 1/q, needs to equal the return on the long asset
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R̂. Panel (d) of Figure 2 represents the consumption allocations of agents as a function of the

size of the protected sphere γ. In this region, all impatient agents consume e, and all patient

agents consume R̂e. This consumption allocation strictly dominates the allocation achieved

by the benchmark economy without government intervention (γ = 0). Perhaps surprisingly,

protected agents are not better off than unprotected agents in this case, even though the former

benefit from a public liquidity provision and the latter do not. Despite not benefiting directly

from a public liquidity provision, unprotected agents benefit from it indirectly through the

price system. In this region, the government issues aggregate amounts of public debt that are

sufficiently high to push the date 1 interest rate on government bonds to its upper bound R̂.

Unprotected agents who turn out to be patient are thus able to earn a return of R̂ between date

1 and date 2 on the proceeds from their date 0 short investment. This enables them to achieve

the same equilibrium consumption profile as protected agents. Panel (b) of Figure 2 displays

the interest rate as a function of the size of the protected sphere, and Panel (c) represents

aggregate public debt issuance.

To see more clearly why the allocations under commitment are not an equilibrium outcome

under discretion, consider the date 0 decision of a protected agent in a fully protected economy,

when all other agents hypothetically make the same investment choice as under commitment.

Note that this collective investment choice leads to an interest rate such that 1/q < R̂ ex post.

And given that the government will always relax the protected individual’s credit constraint ex

post, it is strictly optimal for this agent to invest all his endowment into the long asset at date

0. By doing so he is better off in any contingency. If he turns out patient, he enjoys a strictly

higher date 2 consumption of R̂e. If he turns out impatient, he can freely borrow against

his date 2 investment income at an interest rate lower than R̂. Since there is an incentive

for individual deviations, this, of course, cannot constitute an equilibrium. The fundamental

problem is that agents free ride on other agents’ short investments when the government lacks

commitment about its liquidity provision policy.15

Now that we have fully characterized time-consistent equilibria conditional on the size of the

protected sphere γ, we can finally turn to the analysis of the optimal choice of this parameter

by a welfare benevolent government at date 0.

3.3.3 Ex-ante Policy: Size of the Protected Sphere

We now consider the date 0 choice of a welfare benevolent government that sets the size of the

protected sphere γ while anticipating the response of agents in a time-consistent equilibrium.16

15This free rider problem is distinct from the coordination problem typically present in the literature on
bailouts (e.g. Farhi and Tirole, 2012, Keister, 2016).

16We deliberately abstract from prudential policies that can limit agents’ portfolio choices at time 0.

18



The government solves

W0 = max
γ∈[0,1]

γV0(P,X) + (1− γ)V0(U,X) (27)

subject to

X = (γ, `(P,X), `(U,X)).

The following proposition contains our main result.

Proposition 4 (Optimal ex ante size of protected sphere). The optimal size of the protected

sphere is interior, satisfying γ < γd < γ.

Proof. See Appendix A.6.

Proposition 4 establishes that the optimal size of the protected sphere is not a corner

solution. The optimal safety net architecture from an ex-ante perspective features positive

masses of protected and unprotected agents. The intuition for this result can be most easily

built by considering how welfare depends on γ within each of the three regions defined in section

3.3.2.

Panel (e) of Figure 2 represents ex ante average welfare as a function of the size of the

protected sphere γ. We first note that ex ante average welfare is continuous in γ since all

equilibrium consumption allocations are continuous in γ. In region I, protected agents always

consume R̂e, whereas unprotected agents always consume e. Hence in that region, the welfare

of protected agents is strictly higher than that of unprotected agents. It follows that ex ante

average welfare is strictly increasing in γ in that region, with a maximum of γu(e)+(1−γ)u(R̂e)

at the upper bound γ = γ. Safety net architectures with small protected sectors strictly

dominate the laissez-faire benchmark (γ = 0) because protected agents are strictly better

off than in the laissez-faire benchmark and unprotected agents are no worse off. In region III,

protected and unprotected agents consume the same amounts in equilibrium in the contingency

in which they are patient. Likewise, they consume the same in the contingency in which they

are impatient. It follows that within this region, ex ante average welfare is constant with respect

to γ and given by πu(e) + (1− π)ρu(R̂e). We also note that since γ < 1− π, ex ante average

welfare is strictly higher in region III than in region I. By the continuity of ex ante average

welfare with respect to γ, it must therefore be that the optimal size of the protected sphere

falls in region II. But a key feature of Proposition 4 is that the optimal size of the protected

sphere lies in the interior of region II rather than at its right boundary, so that the optimal

safety net architecture strictly dominates a fully protected economy.

The ex ante optimality of restricting the scope of protection in the economy can be drawn

from the fact that the left derivative of ex ante average welfare is strictly negative at γ = γ =
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1 − π. The intuition has to do with the improvement in risk sharing induced by the splitting

of agents between a protected and an unprotected sphere. In region II, a marginal decrease

in γ causes a decrease in the equilibrium date 1 interest rate. Since in this region impatient

protected agents borrow in equilibrium from patient unprotected agents, this decrease in the

interest rate redistributes wealth from the latter to the former.17 At γ = γ = 1 − π, such

a wealth redistribution is necessarily socially desirable given that (i) the masses of patient

unprotected and impatient protected agents are equal (i.e., to π(1 − π)), and (ii) relative to

the efficient allocation, impatient agents consume too little and patient agents consume too

much (a consequence of Assumption 1). Hence, a marginal decrease in the share of protected

agents from γ = 1−π unambiguously increases the ex ante average welfare criterion. It directly

follows that the optimal size of the protected sphere γd must lie strictly between γ and γ. This

intuition is illustrated in Panel (e) of Figure 2. There, it is apparent that directly to the left of

γ = γ = 1− π, the welfare increase for protected agents more than offsets the welfare decrease

for unprotected agents, so that ex ante average welfare is strictly decreasing in γ.

4 Conclusion

In this paper, we studied the optimal design of financial safety nets. In a workhorse model

of liquidity provision under limited private credit, we obtain the following results. First, if

the government has commitment, the optimal financial safety net covers all agents. Second,

when the government lacks commitment, the government provides excessive liquidity to agents

protected by the safety net. Third, in the absence of commitment, the optimal financial safety

net includes only a subset of agents. Compared with an economy where all agents are protected,

this results in more liquid asset portfolios, lower interest rates and higher social insurance.

Our analysis points to the importance of the institutional design of central banks’ framework

for liquidity provision. Contrary to the view that the financial safety net should be expanded,

our model suggests that this would lead to underinvestment in liquid assets and too little risk

sharing. When the government lacks commitment to a liquidity provision policy, it should limit

ex ante the set of agents that are eligible for support. Indeed, the optimal safety net we derived

resembles the current framework where only depositary institutions can access lender of last

resort facilities.

17The effect of this redistribution on equilibrium consumption can be inferred from Panel (d) of Figure 2.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Step 1 : Date 1 consumption choice

A type s agent solves the following date 1 problem:

V1(s, `, θ,X) = max
c1,c2

U (c1, c2, θ) (A.1)

subject to

c1 + q(X)c2 = `e+ q(X)R̂(1− `)e (A.2)

c1 ≤ `e+ κ(s, `,X) (A.3)

c1, c2 ≥ 0.

Note that c2 cannot be negative. Thus, for an agent who turns out to be impatient (type θ = 0)

at date 1, it is optimal to maximize c1 and minimize c2. It must therefore be that

C1(s, `, 0, X) = `e+ min
{
q(X)R̂(1− `)e, κ(s, `,X)

}
, (A.4)

and

C2(s, `, 0, X) = max{R̂(1− `)e− κ(s, `,X)

q(X)
, 0}. (A.5)

For an agent who turns out to be patient (type θ = 1) at date 1, it is weakly (strongly if

q < 1) optimal to set c1 = 0 and18

C2(s, `, 1, X) = R̂(1− `)e+
`e

q(X)
. (A.6)

Step 2 : Bonds price

First, note that the opportunity to invest in the short asset at date 1 requires that q ≤ 1. We

now show that conditional on the aggregate state X, if q(X) < 1, then it must satisfy

q(X) =
C1(s, Ls, 0, X)

C2(s, Ls, 1, X)− C2(s, Ls, 0, X)
= e

1− π
π

γLP + (1− γ)LU

γmin{R̂(1− LP )e, B(LP )}
. (A.7)

To establish this, we use the fact that in equilibrium, we must have ` = Ls for the agents of

18When q ≥ 1, any plan such that c1 + c2 = R̂(1− `)e+ `e (and c1, c2 ≥ 0) is also optimal for a patient agent,
but we can focus without loss of generality on the one featuring c1 = 0 and c2 = R̂(1− `)e+ `e.
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type s (consistency). From (A.2) and C1(s, Ls, 1, X) = 0, we have

C1(s, Ls, 0, X) + q(X)C2(s, Ls, 0, X) = Lse+ qR̂(1− Ls)

q(X)C2(s, Ls, 1, X) = Lse+ qR̂(1− Ls).

Combining these two equations allows us to obtain the first equality in (A.7):

q(X) =
C1(s, Ls, 0, X)

C2(s, Ls, 1, X)− C2(s, Ls, 0, X)
for s ∈ {U, P}, (A.8)

which itself implies

q(X) =
γC1(P,LP , 0, X) + (1− γ)C1(U,LU , 0, X)

γ[C2(P,LP , 1, X)− C2(P,LP , 0, X)] + (1− γ)[C2(U,LU , 1, X)− (C2(U,LU , 0, X)]
.

(A.9)

Now, as q < 1, agents do not invest in short assets between date 1 and date 2, since they could

otherwise make themselves strictly better off by saving in public bonds. Thus, the market

clearing condition for date 1 consumption holds with equality:∑
s

∑
θ

γsπθC1(s, Ls, θ,X) =
∑
s

γsL
se.

Along with the fact that C1(s, Ls, 1, X) = 0 for s ∈ {P,U}, this implies

γC1(P,LP , 0, X) + (1− γ)C1(U,LU , 0, X) =
e

π
(γLP + (1− γ)LU). (A.10)

Using (A.5) (with (13)) and (A.6), the denominator in (A.9) is given by

γ[C2(P,LP , 1, X)− C2(P,LP , 0, X)] + (1− γ)[C2(U,LU , 1, X)− C2(U,LU , 0, X)]

=
γLP + (1− γ)LU

q(X)
e+ γmin

{
R̂(1− LP )e, B(LP )

}
. (A.11)

Substituting (A.10) and (A.11) into (A.9) yields, after some algebraic manipulation, to the

second equality in (A.7):

q(X) = e
1− π
π

γLP + (1− γ)LU

γmin
{
R̂(1− LP )e, B(LP )

} .
Since the opportunity to invest in the short asset at date 1 requires that q ≤ 1, the general
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bond price expression in a continuation equilibrium is given by

q(X) = min

{
e

1− π
π

γLP + (1− γ)LU

γmin{R̂(1− LP )e, B(LP )}
, 1

}
. (A.12)

A.2 Proof of Lemma 2

We start by establishing that c∗2(0) = c∗1(1) = 0. First, c2(0) > 0 cannot be optimal, since

impatient agents do not value consumption at date 2. Second, if it were the case that c1(1) > 0,

then the planner could decrease c1(1) by some ε > 0 arbitrarily small while increasing c2(1) by

εR̂ and while still satisfying the resource constraint (11) and strictly increasing welfare.

Next, we characterize c∗1(0) and c∗2(1). The planner’s first-order condition with respect to

c1(0) and c2(1) is given by

u′(c∗1(0)) = ρR̂u′(c∗2(1)).

Since ρR̂ > 1 by Assumption 1, this implies that c∗1(0) < c∗2(1). As shown in Diamond and

Dybvig (1983) (footnote 3), condition (2) on the relative risk aversion in Assumption 1 further

implies that u′(e) > ρR̂u′(R̂e), and therefore that c∗1(0) > e and c∗2(1) < R̂e.

A.3 Proof of Proposition 1

We show that γ = 1 and B = (1−π)c∗2(1) achieve the efficient allocation described in Lemma 2.

Since this safety net architecture only features protected agents, we ignore unprotected agents

in what follows.

The protected agents’ date 0 problem is

max
`∈[0,1]

πu
(
`e+ qmin

{
R̂ (1− `) e, B

})
+ (1− π) ρu

(
R̂ (1− `) e+

`e

q

)
We consider separately the agent’s problem in the two intervals [0, 1 − B/(R̂e)] and [1 −
B/(R̂e), 1]. In the first interval, the problem is

max
`∈[0,1− B

R̂e
]
πu (`e+ qB) + (1− π) ρu

(
R̂ (1− `) e+

`e

q

)

The first-order condition is given by

Ψ (`) ≡ eπu′ (`e+ qB)− e (1− π) ρ

(
R̂− 1

q

)
u′
(
R̂ (1− `) e+

`e

q

)
S 0

with “≤” if ` = 0, “≥ 0” if ` = 1 − B/(R̂e), and “=” if ` ∈ (0, 1 − B/(R̂e)). Note that the
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agent’s objective function is strictly concave in `, as Ψ′ (·) < 0 for ` ∈ [0, 1 − B/(R̂e)]. In the

second interval, the problem is

max
`∈[1− B

R̂e
,1]
πu
(
`e+ qR̂ (1− `) e

)
+ (1− π) ρu

(
R̂ (1− `) e+

`e

q

)
.

We conjecture that the policy consisting of γ = 1 and B = (1− π)c∗2(1) leads to an equilib-

rium collective choice of LP = 1−B/(R̂e) = 1− (1− π)c∗2(1)/(R̂e) = πc∗1(0)/e, and verify this

conjecture. Under the conjecture, the bond price is given by

q = min

{
e

1− π
π

LP

R̂ (1− LP ) e
, 1

}
=

1− π
π

LP

R̂ (1− LP )
=
c∗1(0)

c∗2(1)
< 1.

Starting with the first interval, we have

Ψ

(
1− B

R̂e

)
≡ eπu′ (c∗1(0))− (1− π) e

(
R̂− 1

q

)
ρu′ (c∗2(1))

> eπu′ (c∗1(0))− (1− π) e
(
R̂− 1

)
ρu′ (c∗2(1))

> e
[
π − ρ (1− π) e

(
R̂− 1

)]
u′ (c∗1(0)) > 0,

where the last inequality follows from Assumption 2. The fact that Ψ(1−B/(R̂e)) > 0 implies

that within this first interval, ` = 1− B/(R̂e) is optimal. Since the conjecture induces a bond

price such that q = c∗1(0)/c∗2(1) > 1/R̂, in the second interval the agent’s objective function is

strictly decreasing in `, so ` = 1−B/(R̂e) is optimal. We have thus verified that the privately

optimal investment choice over ` ∈ [0, 1] is consistent with the conjectured aggregate investment

choice above. The fact that the policy in question achieves the efficient allocation follows from

simple algebra.

A.4 Proof of Proposition 2

At date 1, the government chooses a debt issuance policy B (`) to maximize the average welfare

of agents, subject to the private sector’s date 1 response to its action. The government solves

max
{Bj}j∈[0,γ]

∫ γ

0

[πV1 (P, `j, 0, X) + (1− π)V1 (P, `j, 1, X)] di+

∫ 1

γ

[πV1 (U, `j, 0, X) + (1− π)V1 (U, `j, 1, X)] dj
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Using Lemma 1, this problem can be written as

max
{Bj}j∈[0,γ]

∫ γ

0

[
πu
(
`je+ q (X) min

{
R̂ (1− `j) e, Bj

})
+ (1− π)u

(
R̂ (1− `j) e+

`je

q

)]
dj

+

∫ 1

γ

[
πu (`je) + (1− π)u

(
R̂ (1− `j) e+

`je

q

)]
dj

subject to19

q = min

e1− π
π

∫ 1

0
`jdj∫ γ

0
min

{
R̂ (1− `j) e, Bj

}
dj
, 1

 .

The first-order condition for Bi is

I{Bi<R̂(1−`i)e}πu
′ (`ie+ qBi) q+

I{
e 1−π

π

∫ 1
0 `jdj∫ γ

0 min{R̂(1−`j)e,Bj}dj<1

} × I{Bi<R̂(1−`i)e}

− q∫ γ
0

min
{
R̂ (1− `j) e, Bj

}
dj


×
[
π

∫ γ

0

u′
(
`je+ qmin

{
R̂ (1− `j) e, Bj

})
min

{
R̂ (1− `j) e, Bj

}
dj

+ (1− π)

∫ 1

0

u′
(
R̂ (1− `j) e+

`je

q

)(
−`je
q2

)
dj
]

= 0.

To show that the optimal bailout rule satisfies B (`) ≥ R̂ (1− `) e, suppose otherwise, seeking a

contradiction. Then the first-order condition, evaluated at symmetric date 0 investment choices,

becomes

πu′ (`ie+ qBi) q

+I{
e 1−π

π

∫ 1
0 `jdj

γBi
<1

} [− q

γBi

]
×
[
πγu′ (`ie+ qBi)Bi + (1− π)u′

(
R̂ (1− `i) e+

`ie

q

)(
−`ie
q2

)]
= 0.

If e1−π
π

∫ 1
0 `jdj

γBi
≥ 1, we are left with πu′ (`ie+ qBi) q = 0, which is a contradiction. If e1−π

π

∫ 1
0 `jdj

γBi
<

1, we have

(1− π)u′
(
R̂ (1− `i) e+

`ie

q

)
`ie

qγBi

= 0,

which is also a contradiction. It follows that the optimal rule satisfies B (`) ≥ R̂ (1− `) e. Note

that any such rule trivially satisfies the first-order condition, since in that case the indicator vari-

able I{Bi<R̂(1−`i)e} is zero. Without loss of generality, the solution is thus B (`) = R̂ (1− `) e.

19This equilibrium price expression is obtained by a procedure analogous to that of Lemma 1, but without
(yet) imposing the symmetry of date 0 investment choices.
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A.5 Proof of Proposition 3

Step 1 : Date 0 short asset choice

An agent at date 0 faces this problem:

V0(s,X) = max
`∈[0,1]

πu (C1(s, `, 0, X)) + (1− π)ρu (C1(s, `, 1, X) + C2(s, `, 1, X)) (A.13)

subject to (A.4) with B(`) = R̂(1− `)e, (A.6), and (24).

First, it is useful to prove that 1/R̂ ≤ q(X) ≤ 1. We have already argued that the presence

of the short asset at date 1 requires q(X) ≤ 1. We now show that 1/R̂ ≤ q(X). Seeking

a contradiction, we suppose that q(X) < 1/R̂. In this case, from the perspective of date 0,

investing in the short asset strictly dominates investing in the long asset. As a result, all agents

invest only in the short asset at date 0, resulting in LR = LU = 1, and, according to (24), in

q(X) = min {∞, 1} = 1, a contradiction. It follows that 1/R̂ ≤ q(X) ≤ 1.

Next, we specialize the problem (A.13) for an unprotected agent as

max
`∈[0,1]

πu (`e) + (1− π)ρu

(
R̂(1− `)e+

`e

q(X)

)
. (A.14)

The first-order condition is

ψ(`) ≡ eπu′ (`e)− e(1− π)(R̂− 1

q(X)
)ρu′

(
R̂(1− `)e+

`e

q(X)

)
= 0.

Note that the agent’s objective function is strictly concave in `, as ψ′(·) < 0 for ` ∈ [0, 1].

Seeking a contradiction, suppose that ` = 1 is not optimal. It must thus be that ψ(1) < 0, or

πu′(e) < (1−π)

(
R̂− 1

q(X)

)
ρu′
(

e

q(X)

)
≤ (1−π)(R̂−1)ρu′

(
e

q(X)

)
≤ (1−π)(R̂−1)ρu′(e),

which requires π < ρ(R−1)
1+ρ(R−1) . This contradicts Assumption (2). The solution to (A.14) must

thus feature ` = 1.

Problem (A.13) specialized for a protected agent is given by

max
`∈[0,1]

πu
(
`e+ q(X)R̂(1− `)e

)
+ (1− π)ρu

(
R̂(1− `)e+

`e

q(X)

)
. (A.15)

We distinguish two cases: q(X) = 1/R̂ and q(X) > 1/R̂. When q(X) = 1/R̂, date 1 and 2

consumption does not depend on `, and therefore protected agents are then indifferent across

all levels of ` ∈ [0, 1]. When q(X) > 1/R̂, agents optimally choose ` = 0, since in that case the
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objective function is strictly decreasing in `.

Step 2 : Time-consistent equilibrium (as a function of γ)

The investment decision of unprotected agents always leads to ` = LU = 1. Regarding protected

agents, we consider several cases. When q = 1/R̂, protected agents are indifferent across any

short-term investment level. Therefore, we can have LP ∈ [0, 1], but consistency with the

equilibrium price expression (24) requires

LP =
π + γ − 1

γ
.

And since LP ≥ 0, this constellation only prevails when γ ≥ 1−π. The equilibrium consumption

allocations are then given by cs2(0) = cs1(1) = 0 for s ∈ {U, P} and

cU1 (0) = cP2 (0) = e, and cU2 (1) = cP2 (1) = R̂e. (A.16)

When q > 1/R̂, protected agents’ short asset decision at date 0 leads to LP = 0. Substituting

LP = 0 and LU = 1 into the equilibrium price expression (24), we obtain

q = min

{
1

R̂

1− π
π

1− γ
γ

, 1

}
.

Consistency thus requires γ < 1− π, and the equilibrium consumption allocations are given by

cU1 (0) = e, cU2 (1) =
1

q
e, cP1 (0) = qR̂e, and cP2 (1) = R̂e. (A.17)

A.6 Proof of Proposition 4

Let us define γ ≡ 1−π
1−π+R̂π and γ ≡ 1− π. The government chooses γ to maximize the average

indirect utility function of private agents. It solves

W0 = max
γ∈[0,1]

γV0
(
P, (γ, LP (γ), 1)

)
+ (1− γ)V0

(
U, (γ, LP (γ), 1)

)
. (A.18)

To characterize the solution to this problem, it is convenient to separately consider the optimal

choice of γ in the three intervals [0, γ], [γ, γ], and [γ, 1]. We note that the objective function is

continuous in γ.

First, for γ ∈ [γ, 1], the problem reduces to

max
γ∈[γ,1]

πu(e) + (1− π)ρu(R̂e).

The objective function is constant with respect to γ, and therefore any γ ∈ [γ, 1] is optimal.
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Next, for γ ∈ [0, γ], the problem is

max
γ∈[0,γ]

[π + (1− π)ρ]
[
γu
(
R̂e
)

+ (1− γ)u (e)
]
.

The objective function is strictly increasing in γ, so the optimal choice is given by γ = γ.

Finally, for γ ∈ [γ, γ], the problem is given by

max
γ∈[γ,γ]

γ

[
πu

(
e

1− π
π

1− γ
γ

)
+ (1− π)ρu(R̂e)

]
+(1−γ)

[
πu(e) + (1− π)ρu

(
R̂e

π

1− π
γ

1− γ

)]
.

(A.19)

Since the overall objective function in (A.18) is strictly increasing over [0, γ] and constant over

[γ, 1], it must be that if (A.19) admits a strictly interior solution, then it will be the global

solution of (A.18).

The first-order condition for problem (A.19) is

φ(γ) ≡
[
πu

(
e

1− π
π

1− γ
γ

)
+ (1− π)ρu(R̂e)

]
−
[
πu(e) + (1− π)ρu

(
R̂e

π

1− π
γ

1− γ

)]
−e1− π

γ
u′
(
e

1− π
π

1− γ
γ

)
+ e

π

1− γ
ρR̂u′

(
R̂e

π

1− π
γ

1− γ

)
S 0

with “≤” if γd = γ, “≥” if γd = γ, and “=” if γd ∈ (γ, γ). Evaluating φ(·) at the bounds γ and

γ, we have

φ(γ) = [π + (1− π) ρ]
[
u
(
eR̂
)
− u (e)

]
+ e

(
1− π + R̂π

)
ρ
[
u′ (e)− u′

(
eR̂
)]

> 0

φ(γ) = −e
[
u′ (e)− ρR̂u′

(
R̂e
)]

< 0.

The global optimum is therefore strictly interior: γd ∈ (γ, γ).
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