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1. Introduction

This paper describes methods for estimating the parameters of con-
tinuous time linear stochastic rational expectations models from discrete
time observations. The economic models that we study are continuous time,
multiple variable, stochastic, linear-quadratic versions of the costly-
adjustment models of Lucas [13, 14, 15], Mortensen [19], Treadway 29, 30]
and Gould [57. Those aﬁthors all specified their models with agents acting
in continuous time. The present paper in effect shows how such continuous
time models can properly be used to place restrictions on discrete time
data. As Sims [27] and Geweke [47] have emphasized, various heuristic
procedures for deducing the implications for discrete time data of these
models, such as replacing derivatives with first differences, can sometimes
give rise to very misleading conclusions about parameters.

The main idea underlying our estimation procedures can be described
quite simply. The idea is first conveniently to express the restrictions
imposed by the rational expectations model on the continuous time process
of the observable variables. Then the likelihood function of a Aiscrete-
time sample of observations from this process is obtained. The proposal
is to maximize this likelihood function with respect to the free parameters
. of the continuous time model.

The present paper describes solutions of several technical problems
that must be solved in order to implemenﬁ this estimation strategy. First,
we describe convenient methods for calculating the optimal decision rules
which comprise the central feature of the model. The formulas that we
present are about as close to being in an analytic closed form as is technically

possible. In particular, by using linear prediction theory, we obtain a



closed form formula for the cross-equation restrictions implied by
rational expectations in continuous time. We also describe how the method
of Vaughan [31] can be used to factor the spectral-density like matrix
that appears in the Euler equations for our problem. Taken together,
these methods provide computationally rapid and analytically convenient
methods of deducing the continuous time stochastic process from the
parameters of the model.

Second, we describe convenient methods for deducing approximations
to the likelihood function of a discrete time sample, to be viewed as a
function of the parameters of the continuous time model.

The formula; that we describe are general in the semse of accommodating
many interrelated decision variables and very rich specifications of the
continuous time stochastic processes for the driving variables.

The present paper is a sequel to Hansen and Sargent (8], in which
we argued that the cross-equation restrictions delivered by rational ex-
pectations can solve the aliasing problem by uniquely identifying the
parameters of the conmtinuous time model from statistics of the discrete
time observations. The enterprise of the present paper relies on those
earlier results on identification. Those earlier results were stated in
the context of a vector first-order differential equation system. Like
P. C. B. Phillips [27], we adopted that setup because it facilitated dis-
cussion of the identification problem. For purposes of actually imple-
menting the estimators, there are great advantages to having the formulas
of the present paper, which do not require staéking the system into a first-

order vector differential equation. Even though substitute formulas could



be derived in the context of Phillips [27 or Hansen and Sargent [8] by
suitably stacking the system into a first-order equation, those alternative
formulas would probably be less useful computationally because of the
wasteful presencé of many zeroes in the system matrices.

A variety of examples fit into the general class of models studied
in this paper. Several examples can be obtained by adapting the discrete-
time examples given by Hansen and Sargent [10]}, or by reading the papers
of Lucas [13, 14, 157, Mortemsen [197], Treadway [29, 307, or Gould [5].

This paper is organized as follows. Section 2 déscribes and solves
the optimum problem faced by the agent in the model. Section 3 discusses
practical means of computing the decision rule. Section 4 then advances
an interpretation of the "error term" in the equation to be fit by the
econometrician. Section 5 describes how the free parameters of the con-
tinuous time model can be estimated. Section 6 describes modifications
required when some of. the discrete time data are unit averages (i.e.,
integrals of flows such as GNP or sales) while others are point-in-time

observations. Various technical matters are described in three appendices.



2. The Model

This section describes and solves the problem that is faced by the
/

"agent" in the model.:

We define the following objects. Let -

e be an (nx1l) wvector of variables that enter the
agent's objective function and which the agent
can control at time ¢t.

p:d be a (pxl) vector of uncontrollable stochastic
processes. At time t the agent observes

{x,:u <t}. The vector x_ can be partitioned as

1,t
T B WS
*3,¢
where X, and th. are both tn><l) vectors.
h be an (nxl) wvector of constants.

H1 and H2 be (nxn) symmetric matrices, where

H is positive semidefinite and H

1

definite.

is positive

2

m

+GD+ - +G D 1 , where D 1is the
]. ml

derivative operator with respect to time

I
dt

G() = GO

(D Y s GO’ Gl, ceas Gm are each (nXn),

1
and Gm is nonsingular.

1
r -be a fixed positive diséount rate.



At time t, the agent has the instantaneous return function

m

(2.1) F(Xt’ Yes Dyt, ese s D

1 "rt Vd ’
= -
Yo t)=e {(h+ Xl,t+X2,t) Ve "EYt H vy,

~xeMy, 1" 8, 6@y 1}

The agent faces an x process which affects his instantaneous return

through (2.1) , but which he cammot control. The vector x, = [xl't, X7 ‘77

2t *3¢
is described by the stochastic differential equation

(2.2) o (D) X, = y(D) wt

The operator 6(D) can be represented as

)
= + F
8(D) = 8, + o, D +em2D

where 6 (p xp) matrix, while the operator (D)

is a can be
|
represented as

!
YD) = Yo T ¥4, D "'"“"‘l!m D
3

where q;j is a (pxp) matrix. We assume that the zeroes of det 8(s)

are less than r/2 in real part, and that the zeroes of det y(s) are

less than or equal to zero in real part. The (px1l) vector w is a

continuous time white noise with generalized autocovariance function

Ew w

t
= §(t -~ Ve®
t t-u (£-u) Ve

where V is a positive definite matrix, and where & 4is the Dirac delta
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generalized function. Further, define ¢(s) = e(s)-l $(s) where s

/

is a complex variable.2’ We assume that the order of the denominator

polynomial of cpij (s) exceeds the order of the numerator polynomial
for all i =1, ..., . and j =1, ..., my . We note as an impli-
catTon of the assumption that the zeroes of det y(s) are less than
or equal to zero in real part, it follows that the error in forecasting
Xt from a linear function of {XV: v < t} can be expressed as an
integral of {Wt+v: 0 <v <u}. We also note that while w 1is not a
physically realizable stochastic process, the restrictioms placed on
cpij(s) imply that =x 1is physically realizable.i/

The assumption that the zeroes of det6(s) are less than r/2 in
real part implies that X, is of mean exponential order less than r/2.
Furthfar, the assumptions that the zeroes of det 0(s) are less than zero
in real part, and that Ewtwt'_u = 86(t-u)Ve'" imply that the variance
of x 1is of expomential order less than r . Alternative assumptions
about ©6(s) and Evnzwg_u would also be workable econometrically.

In particular, we could assume that the zeroes of det §(s) are less

4

than zero in real part, and that Ewtwt-u =6(t - u)V. With minor

qualifications and modifications, the procedures that we describe below

would apply.

At time zero, the agent is assumed to maximize the objective function &/
T m,
(2.3) lim ono F(X., ¥.5 DY,5 .05 D Ty, £)dt

T—®

subject to (2.1), (2.2) and initial conditions Vo = yg, Dyo = (Dyo)o, cens
m, -1 ml-l

D Yo = (D yo) . Here Et denotes the mathematical expectation

operator conditioned on information Qt that the agent possesses at time

t . The information set Qt includes at least Yeey for u >0 and

X for uz=0.
t-u



The agent is assumed to maximize (2.3) subject to (2.2) and
the initial conditions by choosing a time invariant linear contingency
m
plan expressing D y. as a function of the information that is
possessed at t. This linear decision rule or policy function can

be expressed as

m m,-1

1 1
Dy, = PG, Dy, «.os D7y, {x._ 3u 20}, c)

where ¢ is a vector of constants and P is a linear function. That
a time invariant policy maximizes (2.3) follows from the specification
of the return function (2.1) and from the infinite horizon in 2.3) .
The linearity of the optimum policy function can be rationalized either
by assuming that x is Gaussian, or else by simply restricting the
optimization to the class of linear policy functions.

We proceed to derive an expression for the optimum decision rule
that is econometrically traétable. We emphasize here that the econometric
tractability of our results is what causes us to exploit some of the
special features of the problem and to solve it by classical procedures.
As in the corresponding discrete time problem (see Hansen and Sargent
[101), it is possible to formulate the problem (2.1} - (2.3) as a con-
tinuous time stochastic optimal linear regulator problem, and to.solve
it by methods described, for example, by Kwakernaak and Sivan [12].
However, the classical method of solution described here has the advantage
of delivering expressions for the optimum decision rules that are as
close to being in closed form as is possible. For the purposes of imple-
menting- the nonlinear estimators that we describe below, this feature

of our solution is a great practical advantage.



-8 -

Our solution procedure mimics that used by Hansen and Sargent [107
for discrete time analogues of problem (2.1) - (2.3). We exploit what
Theil and Simon called the certainty equivalence property, and first solve
the certain version of our problem that emerges upon setting LA identically
to zero for all t 2 0. By using the variational methods described by
Luenberger- 187, the Euler equation for the certainty version of problem

(2.1) - (2.3) can be shown to be

; m m
(2.4) o O R R R CENE Eele eICIE
.yt yt aD yt

The Euler equation (2.4) is a set of necessary conditions that the path

for Y. implied by the optimal rule must satisfy. From (2.1) we have that

F ; -rt
(a) Ss—rt - {h+xl,t+X2,t-Hlyt'Gon[G(D)yt]} ©
(2.5)
BF L -rt
® aply B, ey e
t

Differentiating (2.5b) j times with respect to t gives

(2.6) Dj i = - (D-::')j Gj'H2 [G(D)yt] e ' for ij=1,2, ..., m

J
BDyt

Substituting (2.5) and (2.6) into the Euler equation (2.4) gives

htx  +x  -Hy - [BE-D)'HeM]y, =0

or

2.7 [H1+G(r -D)'HZG(D)]yt=h+x + x

1,¢t 2,t '

The Euler equation (2.7) gives a set of necessary conditions for an

optimum. However, they are not sufficient conditions because a class of

-



nonoptimal paths or decision rules for y also satisfy (2.7). In order

to justify the particular solution to the Euler equation that we choose,

some additional technical conditions must be imposed on our problem. The
general conditions on our problem that are sufficient to validate our
solution procedure are given in Appendix A. Briefly, the conditions

require that the associated optimal linear regulator problem is "stabilizable"
and "detectable". Alternative sets of restrictions can be imposed on our
problem that are sufficient to satisfy these requirements. For example,

the following two alternative sets of conditions are sufficient:

Assumption 1: TIn addition to the assumptions already

made, it is assumed that H is of full rank and so

1

is positive definite.

Assumption 2: In addition to the assumptions already

made, it is assumed that the zeroces of detG(s) are
less than r/2 1in real part.

It is to be emphasized that each of these sets of assumptions is
sufficient, but not necessary to validate our solution procedure. Often-
times, for a given applied problem, it is a routine matter to verify the
weaker stabilizability and detectability sufficient conditions given in
Appendix A.

For the remainder of this paper we will assume that H is positive

1
definite (Assumption 1). Under this céndition, an additional necessary

condition for optimality, namely,

® -rt .,
(2.8) jb e e Hlyt dt <+ ®

is sufficient to determine the unique optimum path or decision rule for vy

that satisfies the Euler hquation (2.7).
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To construct the rule for y that satisfies (2.7) and (2.8) we

argue as follows. Let the Laplace transform of H, + G(r-D)~’ HZG(D) be

1

defined as

L(s) = H1 + G(r -~ 8)7 HZG(S) .

Let s =3 - r/2 . Then we have

L¥(s*) = L(s* + r/2) = Hy + G(x/2 - 8%)° H, G(x/2 + ¥y .

The matrix function L* 1is the Laplace transform of the autocovariance
function of a certain generalized stochastic process. It is an implication
of the spectral factorization theorem described by Rozanov [257 that L*(s™)

can be represented as

(2.9) L¥s®) = c(-s™) 7 c(s™)

m
*
where C(s*) =C. +C. 8 + ++++C g~ 1, where C, is an (nxn) matrix,
0 1 m; j
and the zeroes of detC(s¥) are less than zero in real part. The repre-
sentation (2.9) is unique up to premultiplication of C(s¥) by a unitary
matrix. From (2.9) and the definitiom of L* in terms of L, it follows

that
L(s) = L¥(@s - r/2) = C(- s+ 1r/2)" C(s - r/2) .

Using the above representation for L(s) = H1 + G(r - 8)° HZG(S), we can

write the Euler equation as

c(-D + r/2)'C(D--r/2)yt = [h + X, . * x, t] .

It can be shown, as a consequence of the condition that Hl’ H2, and G

oy

are of full rank, that the unique solution of the Euler equation that also

satisfies (2.8) can be represented as
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r - -1
(2.10) c( - 2) v, = c(-D + 2) (h + Xl,t + XZ,t) .

In order to comvert (2.10) to an econometrically useful repre-
sentation, we first obtain a matrix partial fractions decomposition of

4 -
C(-s*) l. Assume that the zeroes of detC(s*) are distinct, so that

’ * *
det C(s*) * = pf (s* - p¥) +-- (s¥ - pp)

where k = nm, . Then we have
%y -1 adi C(s™)’
C =
S pE(s™ - p) - (s™ - pr
or
(2.11) c(s® 7" = ;;—?l-;- b g
pl S 'gk
where
pp L adi Cp))
B, = .
S )
h=
We therefore have
. B B
C(- S+£) -1=_._...__.l__. G e +—k'_
2 # , T * , r
S TSt
=—__Bl +¢¢. +_.—Bk'
TR TS T Py
where p, = p; - % for j=1, ..., k . Notice that since the zeroes

p? of det C(s*)’ are less than zero in real part by construction, it

follows that ‘pj is less than - % in real part for j =1, ..., k
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Next, we recall from the property of Laplace transforms that

B. @® p.u
S = J
(2.12) T th+x  +x ] B, joe (h+x

1,t+u + XZ,t+u> du

Using (2.12) in conjunction with (2.11) and (2.10) shows that the

decision rule at time t can be expressed as

® p.u
- = J +
(2.13) C-1/2)y, J_z_ ByJoe?l h¥xy o tx, ) du
Now represent C(D - r/2) as
!
(2.14) C( -1r/2)=A_+A D+°**-+A D = A(D)
0 1 my
where
mp ml-j ml-l -J -1 i
A, =(. (- £/2) c_ +1. (- r/z) C -+ | Jc.
i 3 my 3 m, -1 i’3
for j =0, 1, > My Substituting (2.14) into (2.13), pre-
multiplying by A;l ,» and rearranging gives
1
m ~m, =1
1 -1 1
(2.15) D Ty, = -A (AO+A1D+ +A_ D ) 7e
1 1
_]_ k'. J
+A ny 12 Z, j I (h-l-xl’t+u + Xz,t+u) du
1
Equation (2.15) expresses the decision rule for D Ve in terms of Y,
m,~1
Dyt, evey D L Ve and the actual entire future values of the time functions

x, and Xy Our assumption about (2.2) that the zeroes of det6(s) are
less than r/2 in real part, and our finding that the real part of pj is
less than - r/2 imply that the integrals on the right side of (2.15)

converge.
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&/
With or without uncertainty, it can be verified that the decision

rule (2.15) satisfies both the Euler equation (2.7) and the additional
necessary condition (2.8). However, where there is uncertainty (i:e., where

W, or () in “(2.2) is not identically zero), the rule (2.15) requires

the agent to use more information than we have assumed that he possesses.
That is, with uncertainty the rule (2.15) 1is "anticipative" or "non-

realizable'" because it requires the agent to know future values of %) and

X To derive the appropriate ''realizable" or "nonanticipative" linear

5 *
decision rule under uncertainty that satisfies the first order necessary

and x

X1, thu 2, t4u

in (2.15) with the corresponding linear least squares forecasts,

conditions for the problem, one simply replaces future

conditioned on information that the agent possesses at time ¢t . Then

under uncertainty the optimal decisions satisfy

m R
1 = -1 ceee = m1 .)
(2.16) D Ve = Am]_ <AO + AlD + +Am1:1D - Ve
-1 k w pju -
+ d
+ Aml j§1 ByE, Io e (h+xl’t+u X2,t+u) u

To make (2.16) econometrically operational, it remains to derive a

closed form expression for the terms

® pju .
Etfo e : Xt+udu for =1, ..., k .
Let
m,-1 . my-1
-1 i 2 k-
(2.17) G, D) =0(-p)° " pd 5 e, (-pfd
j=0 =]
Ma-1 , my~1
= -1 i3 k-j
(2.18) bolp, D) = - 0(-p) ~ £ D° & 4 . (-p)
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In Appendix B, it is proved that

- ® p,u
J =
(2.19) E IO e X4, U ul(pj, D) x, + “Z(pj’ D) W,

Substituting (2.19) into (2.16) gives our final expression for the

decision rule

m _ ml-l .
(2.20) ply =-a1 5 a pdly
t m, s= 3 t
1]
+471 ch B,M[u. (p., D)x_+u, (p., D) w ]+c(r/2)"1h
my §=1 i %1 i’ £t T2 3? t
where M is an (nxp) matrix such that Mxt =X, + Xop We also have
(2.2} e(D)‘xt+S = (D) L .

Equations (2.20) and (2.2) form a statistical model of the joint
(yt, xt) stochastic process. The model is subject to an extensive set

of cross-equation restrictions which are summarized in the following

equations:
C(-D +x/2)°C(D-1t/2) = H, +G(r - D) "H, G(D)
/_1 Bl Bk
(2.11) C(s*) = g +
S - g S - p
1 k
where
. %
s = Q0 Ladj c(p®) *
j - k_ * _ A%
h#j
h=1
l
(2.14) C(D—r/2)=A0+AlD+...+Am D
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mz-l . Mma-1

= o(- )7t ki k-]
(2.17) wy (> D) = 6(-p) jgo D kzj O r (-0
- m3lmg-l k-
(2.18) up(es D) = = 0G0 B F gy () I

These cross-equation restrictions play a key role in determining the
identification and optimal estimation of the parameters {Hl, HZ’ G(D),
8(D), $(D), V} of the continuous time model from-a discrete time data
record.

Before we proceed to issues of identification and estimation, several
preliminary issues must be dealt Witﬁ. In the next section, we describe
feasible computational methods for computing the optimal decision rule
(2.20). While this section can be skipped on first reading, it is im-
portant practically since procedures such as are described are needed in
order to compute and to maximize the likelihood function of the discrete
time data record. The succeeding section then specializes (2.20) and
(2.2) somewhat in order to build a tractable model of the "error term"
facing the econometrician. In section 5, we will finally return to

describing procedures for estimating the free parameters of the model.

3. Computing the Decision Rule

There are two nontrivial computational tasks involved in implementing

our formula (2.20) for the decision rule. First, there is the task of

factoring the matrix L*(s*) in the manner called for in (2.9). Second,

there is the task of conveniently computing the matrix partial fractions

4
decomposition of C(s¥) -1 indicated in (2.11) . 1In this section, we

describe how each of these jobs can be dome.
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First, consider the job of achieving the factorization

H1 + G(r - 8)’ H2 G(s) = C(-s + r/2)" C(s - ©/2)

where the zeroes of det C(s - r/2) are less than r/2 1in real part.
Here we describe a procedure analogous to one used by Hansen and Sargent
[9] for a discrete time model. The idea is to use the solution of the
nonstochastic optimal linear regulator problem for an auxiliary problem
to compute the "feedback part" of the control law, and to deduce the
factorization of H +G(r - s) ‘ H,G(s) from the feedback part.

The relevant auxiliary problem is simply the version of the ceftainty
problem in which x_= 0 and w_ = 0 for all t and h =0. TFrom (2.15)

t

it is immediate that the optimal decision rule for the auxiliary problem is

my -1 ml-l
(3.1) D V.= - Am (A0 + AlD-+ 4-Am —lD )yt
1 1
Our first goal is to solve for A—lA s seey A-lA from the objective
my 0 my ml-l '
function parameters G., ..., G_ , H and H, . To do this, we formulate
0 m; 1 2

the auxiliary problem as a continuous time optimal linear regulator problem

(see Kwakernaak and Sivan [127). Let

Upps = G0 ¥ iyg

7

X

: Dml-l i m1-2 N
t+s

yt—!-s’ D Terg? 002 yt:+s>

f be an n ¥ mn matrix given by [0 I]

=
NS
~
fas
o
il
+
D=
1)
]
]
ot
= =]
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The law of motion for the state vector Xt is

m m, -1
D ly ¢l -¢le ceo-cle -ele fp by gt
t m, m,-1 m, m,-2 m, 1 m, O t+s m
1 71 171 1 1
ml-l ml-2
D e I 0 0 0 D Y ers 0
. = . . . +|. U
D Ve 0 0 0 Y g 0
})yt ] 0 0 I 0 __?t+s | ? |
which we write
r
(3.2) DXt = GXt + @Ut

The objective for the auxiliary problem can be represented as minimizing
N T ’ 4

(3.3) '}j-];mcn E, jo 2Rz + UlR(e)u.Tde
subject to the law of motion (3.2) . This establishes that the auxiliary
problem is an example of the optimal linear regulator problem.

The parameters of the integrand of the criterion function (3.3) are
dependent on & via Rl and ﬁ2 . It is convenient for us to transform
the variables so that this dependence disappears. This will allow us to

use results for the "time invariant" optimal linear regulator problem.

For a given t, let

..t
% _ -2
Xt = @ Xt
s
2
U* =
e Ut
ot
Z* = e 2 Z .
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Note that
* _ _ *
DXt r/2Xt + e DX .
Substituting from (3.2) , we have

* _ ek S
(3.4) DXt = Q Xt + (BUt
where

a*=a-r/21 .
Criterion function (3.3) can be written

. T * s % */
(3.5) lim EOJ“O [zt B, Z7 + U7 H

U* 7 dt
T 1% t

2

where

&

* o py*
2= 9%

Minimization of (3.5) subject to (3.4) 1is a time invariant version
of the optimal linear regulator problem.

We assume that the pair (d*, ®) is stabilizable and the pair (a*, 9)
is detectable (see Kwakernaak and Sivan [12] and Appendix A). It follows
that our time invariant guxiliary problem satisfies sufficient conditions
for solution via the eigenvalue decomposition of the state - cd-state

transition matrix that is described by Vaughan [31], let

The matrix M 1is known to have eigenvalues that are symmetric with respect

to the imaginary axis. Assuming the eigenvalues are distinct, we let A
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denote the matrix with eigenvalues on the diagonal such that

A1 0
(3.6) A= [ ]
0 = Ay

where the real parts of the eigenvalues in Al are greater than zero
in real part. We define |y to be a nonsingular, normalized matrix
whose columns are eigenvectors corresponding to the eigenvalues A,

so that
-1
W "Mmw = A .
Partition |y conformably with A in (3.6) to obtain

W W
2
w=[ll 1

Wyp  Wyo

The optimal control for the auxiliary problem is given by

o -1, -1,

Partition F conformably with Xt to obtain

Using the definitions of Ut and Xt » we have

ml ml-l
Gm1 D yt+---- + Goyt = le-lD yt4~"'+ FOyt
or
! -1 m -1 -1
(3.8) D Ve = Gm (Fm 1T G 1) D1 yt+---+Gm (FO - Go)yt

1 1 o 1



Comparing (3.8) to

(3.9)

Thus we have a numerical algorithm for determining Aé' A
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(3.1) we conclude that

-1
- Gm (FO -GO)
1
-1
-G (.-G )
1 my 1 my 1

1

’
1 0

given the criterion function parameters H, and G(D) .

To complete our discussion of the factorization of H

recall that

1

1

(3.10) H1 + G(r - s)’HZG(s) = C(-s + r/2)°C(s - ¥/2) ,

C(s - r/2) = A(s)

and

From (3.9) and (3.10),

m
Al +a Tt Aas+ . r1s BH=clags - 2/2)
m 0 m 1 m
1 1 1
We can also compute
-1 -1 -1 -1 2 v
(3.11) C "C(-s+/2)=A "A +A "A (r-s)+A A, (r-s)+...+1(r-s)
my ml 0. ml 1 ml 2

From

H,+G(r-s)‘H

1

we can verify that

2

we know how to compute

G(s) =C(-s+1x/2)'C(s-1r/2)

s 00

+G(r - 8) 'HZG(S) s

m



Now

H, + G(r - s)'HzG(s) = C(-s+1r/2) C(s-1/2)
- P R -1
=C(-s+r/2)’C “C”“C C C(s-1/2)
e e M M |
= G(- s+r/2)'C-l’G' H,G c'lc(s -x/2)
ml ml ml ml
The feedforward polynomial is simply
c(-s+r/2)7c tar H,G_ = G(-s+1/2)°C
e s B | oy

which can be computed from (3.11) given knowledge of %; H2 and the
1

feedback polynomial
C-lC(s - r/2) .
m
1
The feedback polynomial is determined from numerically solving the
auxiliary problem. So we have described an algorithm capable of factoring

H, + G(x - s)’H2(3(s) in the desired way.

1
The second computational issue that we wish to mention is the partial

fractions decomposition (2.11), which is equivalent with attaining a de-

composition of

sl o+t = st/ e T

1 1
While the formula given under (2.11) 1is correct, a numerically efficient
algorithm for calculating the p*'s and Bj's is described in some detail
in Hansen and Sargent [107. There the authors suggest an adaptation of an
algorithm proposed by Emre and Hiiseyin [3]. It is straightforward to adapt

Hansen ~and- Sdigent's. computation to the present problem, essentialty by

replacing "z" in Hansen' and Sargent's formulas with "s".
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4. A Model of the Disturbance Term

Our agent has been assumed to maximize over contingency plans for

Ve the criterion

. T -rt , __]_._ .
(4.1) %imm EOJ"O e {(hg+x;  tx, Iy -5y H ¥,

- 3 [6my, 176, [e® vy 1} dt

subject to initial values of Yo D , ..., D Yo and also subject

Yo
to the law of motion

e
(4.2) 6@ [ x5 | = 4(@) w,

%3¢.

The maximizing choice of y. was shown to have the representation
m ml-l .
(2.20) Dly = - s T a pdy
1 j=0 J

-1 k =1
+ Am]_ JE]_ Bj Mﬂbl (pjs D) xt+“'2 (pja D) Wt] + C(x/2) h
where Aj’ Bys Hyo pj, Bj’ and C(*) are all defined in section 2. We

have assumed that w is "fundamental for the x process'" in the sense

that linear least squared errors in forecasting X 4, on the basis of

{Xt-u :u 2 0} can be expressed as an integral of {w :v>2u 20} . This

t+u
assumption implies that v, can be expressed as a function of current and
lagged x's . Equivalently, since we have assumed that the zeroes of

det ¢(s) in (4.2) are less than zero in real part, upon operating on

both sides of (4.2) with ¢(D)-1 we obtain

-1
y(d) ~ 8(D) =W, .
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Since the zeroes of det (D) are less than zero in real part, the
poles of ¢(D)‘l 6(D) are less than zero in real part. Thus, the above
equation expresses wt as a convolution integral of current and past x's.

This observation means that equation (2.20) expresses the law of motion

m m,-1
for D 1yt as an exact function of D t Vs =0 Yy and the observations

on current and past x's which the agent possesses. From the agent's
point of view; there is no random term on the right side of the decision
rule (2.20). This reflects the fact that the agent is playing a "game
against nature" and so finds it optimal to employ a nonrandom strategy.
For econometric purposes, it is necessary to have a specification
that includes a random error, at least from the econometrician's per-_
spective. In the interests of specifying a tractable and plausible model
of the error term, we shall assume that the econometrician possesses less
information than does the economic agent. In particulaf, we assume that
the econometrician never observes X while the private agent does. As
noted previously, the economic agent sees X, at all real t. Since
this data record is continuous, the agent, in effect, observes derivatives

-

of X, also. On the other hand, the econometrician only has data on the

’

levels of [yg, XZ,t’ xg’t] at discrete points in time, t belonging to
the integers, and does not observe their time derivatives.

In the interests of comstructing a tractable model of the error term,
we further restrict the specification of the stochastic process governing

X, - We define

We partition 6(D), ¢(D), and L conformably with the partitioning
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‘= x z’ and assume that
e = e Feo

1,t"
Wt = .
zZ,t
elm o .
4.3 @ = )
-0 g (D)
ety o
y) = ) ]
Lo a6))

where el(D) and ¢1(D) are each (nxn) operators and ez(D) and
ﬁz(D) are each (p-n) x(p-n) operators. Substituting the special
assumptions about ¢ and § into (4.2) and premultiplying both sides

by q;(D)'-l gives

1 -1 1 _
\1! (D) ) (D) Xl,t - Wlt s

(4.4)

2 -1 2 -
T etz =, :

where the poles of \l;]'(s)-l and ¢2(s)-1 are each less than zero in
real part-by virtue of our assumption that the zeroes of det {(s) are
less than zero in real part. Equation (4.4) together with these

conditions on the location of the poles of q;]‘(s)-1 and \1;2(5)“l imply

that LA is contained in the space spanned by {xl aies t}, and
. 3 H
that Y, . is contained in the space spanned by {zu: u <t} . There-
2
fore, Wi 1is fundamental for X, and Wz’t is fundamental for z, -

It then follows from (4.4) that for all t and u,

(4.5) E[xl,tl X1 ,v? %y for v suls= E[Xl,t‘ X y. for v < uj}-
and
(4.6) E[zt' Xl,v » 2z, for vs u] = E[ztw z, for v < u] .



- 25 -

Equation (4.5) asserts that =z £fails to Granger cause X s while
equation (4.6) asserts that Xy fails to Granger cause =z . Recall,
however, that where Ewtwt G(t-u)Vert, we have permitted V to
have nonzero off-diagonal elements, so that X1 and z, are permitted

to be correlated.
We now derive a special version of the decision rule (2.20) that
incorporates the special assumption (4.3) about (D) and (D). Define

2 2 X
By and o analogously to ty and by in (2.17) and (2.18) to be

-1 -1
_lnq . m2 s
%.7) w2, D) = 02¢-0 1 5 bl & 6% (-pk]
1 k+1
=0 k=j
Ma-1 ma-1
2 2 -1 3 i 3 k-
(4.8) uyes D =8°C-p)"" 3 bl 3 P, (o)
i=0  k=j
oy

Employing (4.4) we can write the decision rule for D Y. as

-1 _,-1 k 2 2 -1
(4.9 AmlA(D) yt—Aml jEIBj Jz[ul(pj, D)zt+u2(pj,D)Wz’t]*'c(r/z)

where J, 1is an nx (p-n) matrix such that Jpz = X, and

+<Dgs

(4.10) e, = A ml le Etj tte ds .

Since & 1is not observed by the econometrician, we view it as the dis-

turbance vector in the decision rule. In Appendix B it is shown that

- 1 -
® p.u "oty - et e el o)
Etj‘eJx du=-[e J J]w
0 1,t+u D + pj 1,t
Hence
1k oot e
(4.11) e, =-A" I B, [ d 2 } vyt -
T =1 J D +p, ’
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a
Let el(s)-l =9_d§il where @ is the adjoint of el and ed is
8 (s)
the determinant of el. Applying ed(D) to both sides of (4.11) we
obtain
1 d 1 1

d .1k 6% (D) § (0) - 6%(D) @ (-pj)w (-pj)

(4.12) 6 (D) g, = -Am % B, -V
1 j=1 4 D+ o, B

Applying Gd (D) to both sides of (4.9) and using (4.12) then gives

d -1 _ -1 k d 2 d 2
(4.13) OEMSIOER AmljzfjJ?_[e @3 (o ,D)z, + 8 DIy (p 1 ,DIw, ]
Lk el -efmel-p )ty 0,
- A = B.l J J le N
mlj=l J D + QJ ’
rof®ced th .

The stochastic differential equation (4.13) and the equation
(%.14) o’ z, = ¥ D) w
: t zZ,t

forma system of linear stochastic differential equations in (yt', zé) that

is driven by the vector white noise (wi ). Ignoring the constant

’ w/
t zt

in (4.13) , the system can be represented compactly as

K@ K@)y, Q@ Q@
(4.15) =
0 K, @ ||z, 0 Q™ || v, .
or
yt
«»|,] = ey w,

t
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where
_ .d -1
Kll(D) =9 (D)AmlA(D)
K,,(D) = - A~ I'513 J d(D) 2 D)
12 moyog j 2 @ SR
_ 2
(4.16) 1k ea(D)q:l(D)-ed(D)el(-ijl\bl(-pj)
0 - -t B a ]
ml j=1 k| D+ pj
_.-1 k d 2
Q (D) = Aml j§-1 13j J, 8" (D), (gj, D)
\

2
Qy, (@) = (D)

The model (4.15) is subject to an extensive set of cross-equation

restrictions, which we collect here for convenience:

C(-D+-§-) ‘¢ -g) = H,+G(xr-D)’ H,6(D)

m
r 1
C(D-=) =A +A D+ ... +A D
2*_1 0 1 . m, .
Po ~ adi C(pj) i=1, ..., k
B =
j I (pF - o = n .
hgj Py 7 o) k=n-m
KN ¢ _ * - * * - %
det C(s®) "’ = o (s gl) (s Qk)
= A% _ X
G.17 Dj Qj 5
-1 My~1
2 2 -1 & i -
uyGe, D =6 ¢-p7" £ pl § el (-t
j=o k_:j
-1 mq-1
2 1 . 2 k-
by D) =-6% -0t 2 pI Py (-
j=0 k:j

ol (D) X, = tbl(D) LA 6?(s) = adj et (s) , ed(s) = det Gl(s)

st

2 _ .2
8- (D) z, = U] (D)Wz .

’
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The free parameters of the model are the parameters Hl’ HZ’ GO, ey Gm
1

of the agent's criterion function, and the parameters of 6(D) and ¢(D)

which appear in his "constraints'", that is, in the law of motion for x .
The model is linear in the variables (yg, zé) that are observable to
the econometrician, but is highly nonlinear in the free parameters of
Hy» Hy, GD), 6(D) and (D).

The restrictions that we have imposed in this section on the re-
lationship of the information possessed by the econometrician, who only
seds (yt, zt) s to that possessed by the agent, who sees (yt, X oo zt),
delivers the continuous time model (4.15). In this model, the white
noise process v, gives rise to an econometrically tractable error term
in the projection of Y. on the continuous time process {Zu tu = t,

u real} . The model (4.15) is now in a form that we can consider the
problem of estimating the parameters of the continuous time model from
discrete time data on {yt, z, t=1,2, ..., T} .

i

5. Estimation and Identification

We assume that the econometrician has observations on (y, z) sampled
at the integers, but does not possess observations on i(Djy', Djz) for any
positive j at any point in time. Since the continuous time model for
(v, z) characterized by (4.15) involves derivatives and convolution
integrals of (y, z), the econometrician faces a massive problem of

systematically missing data. The approach that we take to the estimation

~— - problem that the econometrician faces is conceptually straightforward. We —

seek to obtain an expression for the likelihood function of a discrete

record of data on (yt, zt) for t=1, ..., T. The estimator we recom-

mend is obtained by maximizing the likelihood function of this discrete time
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data record with respect to the free parameters of the continuous time
model ‘Hl’ HZ’ G(D), 6(D) and §(D) . The parameters of the continuous
time model are in general identified from the discrete time likelihood
function because of the extensive cross-equation rational expectations
restrictions described in (4.17) . That such cross-equation restrictions
could breag the aliasing identification problem was the message of Hansen
and Sargent [7].

In this section, we show how the likelihood function of a discrete
time record of data can be calculated from (4.15) - (4.16). Our first
task is to convert (4.15) into a slightly altered form. Recall -(4.15),

"y

(4.15) R(D) [ t

Z

= QD) w )
] - oo,

and our specification that

Ew w = §(t - u)ertV

,
t t-u

where V 1is a positive definite symmetric matrix. We shall introduce
the following transformations of variables

; - r/2 t

t Y
~ _ -r/2¢t
(5.1) z_=e zZ,
~ - x/2¢t
v, =e W, .

Then it is readily verified that (4.15) 1is equivalent with

r -§t]__ r, ~
(5.2) K® + 2) lgt = Q(D +~§) v, .

Notice that

Ewtwt_u = §(t - u) V .
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Further recall from section 2 that the zeroes of det G(s - r/2) = det A(8)
were shown to be less than r/2 in real part, and that the zeroes of
det 6(s) were assumed to be less than r/2 in real part. Therefore,
gsince from (4.16) we have
_ .d -1
Kll(s) = 9 (s8) Aml A(s)

Ky, (s) = 6%(s) ,

it follows from (4.15) that the zeroes of detK(s) are less than 1r/2
in real part. It immediately follows that the zeroes of detK(s + r/2)
are less than zero in real part. This condition on the zeroes of

detK(s + r/2) together with the assumption that IEGtGE = §(t - g) V
implies that if we regard the system as having started up in the infinite
past, then (5.2) describes a continuous time covariance stationary

stochastic process. Let us rewrite (5.2) as

~

~ yt
5.3 k@ | | = do 3,
Z
t
where
K(D) = R(D + r/2)
(5.4)
QM) = Q@ + r/2) .

From the preceding observations, the zeroes of detK(s) are less than
zero in real part.
The covariogram of the (¥, Z) process is defined as the (p Xp)

matrix function

yt yt"T
R(T) = E
L2l L%eaq
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The spectral density matrix of the (¥, Z) process is defined as the

Fourier transform of R(T) , namely,
® - i;-w'r
(5.6) S =[] e R(T) dT .

It can be shown (see Phillips [21] or Kwakernaak and Sivan [12]) that

for our model (5.2), S(w) is given by

ll

(5.7) 5@ = K(io+5 ™ Qo+ V- 10+5) k(- 10+ E)
or

’

R (ie) L (10) T3 (~"tw) “RETa) L

It

S(w

Equation (5.7) provides a convenient expression for the spectral
density of the continuous time process (;t, Et). For our estimation
problem, to obtain the likelihood function we require an expression for
the spectral density of the discrete time data. The discrete time spectrum
Sd(w) is related to the continuous time spectrum via the "folding" relationship

d o)
(5.8) ST (w) = ¥ S(w+2mk) , ~mswsmn .
k=-®

(For example, see Koopmans [11].)

For the econometric applications that we have in mind, creating
Sd(w) numerically from (5.8) 1is feasible, but much more expensive
than the following procedure,.which utilizes results of A, W. Phillips [217].

Assume that the zeroes of detﬁ(s) are distinct and let

detR(s) = Aols = A) = v - (s - xm4>

where m, is the number of zeroes of detK(s) .
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Define

-ladi RADITG) VA= 2,) 7 [ads BE- 25D 17
(5.9) W= ] i i

tn.4

2, 1

2 ., .- -\, -
Moty Oq MO GAg =AY

k]

Expanding (5.7) in partial fractions gives

(5.10) S(@) = ¥ i - ¥
iw=2,) . i+
=1 ( Ay j=1 (iw Kj)
Since the real part of Aj is negative, the inverse Fourier transform
of Wj/(iw-kj) is given by the function
A.s
Wje J for s =90
0 s <0

Therefore, taking inverse Fourier transforms of each side of (5.10) gives

T s
2, W, e for s =20
=1 3
(5. 11) R(s): -
m , - }"js
Z Wj e for s <O
j=1

By sampling (5.11) at integer s, we obtain the covariogram of the

~

discrete time process (?t, Zrt= 0, t1, * 2, ...) . The essential

element in writing down the likelihood function of the discrete time data

&
as a function of the model's free parametersj 'Hl, H2, G(s) , 6(s), and
y(s) is the ability to represent R(T) sampled at the integers as a
function of those free parameters. Expression (5.11) and the steps leading
up to it accomplish this task.

"

It will also prove useful to have another expression for the spectrum

A
of the sampled (?t, Et) process. To derive it, let @, =e J and write
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(5.11) sampled at the integers as

W =0
jgl j aj T
(5.12) R(T) =
Y% e, 1.7
oW, (o) T+ <0 . '
j=1 J 3

Define the covariance generating function
@ . T

(5.13) g(p) = & R(T ¢
T=-0

Using (5.12) we readily obtain

m -1

(5.14) =z (—-—1 ) P (==
. gt) = © W, + 7 oW
1-q. . -1
j=1 3 ;G =1 4 V1 -¢f o
Evaluating (5.14) at t = e-iw giVes the spectral density of the integer-
sampled process (?t, Zt):
o - a. e +iw
-1 4 i
5.15)  s%w =g = ¥ Wj(’ o ) tE W-’( ; -‘> °
. -1y . LW
j=1 L - aye j=1 L - a;e

With these results in hand, we can now indicate how to construct the

likelihood function for a set of observations on (?t, Z),t=1, ..., T,

t

assuming that LA is a Gaussian process. Define the stacked matrices of

observations on ?t and Z t=1, ..., T as

t 3
Yl zl
?2¥N z2
(5.15) Vp = . . z, =
I | %t
L -~ L ol
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The pT x pT covariance matrix FT can be computed as a function
of the free parameters of the continuous time model Hl’ HZ’ G(s), 0(s),
and {¥(s) wusing (5.15), (5.16) and the results leading up to (5.12) .

The normal log likelihood for (§£, ET) is given by

LTy

* 1 1 ~s=,m =177
(5.17) 3:T= -ETplog 21T-Elog detl"l, -%[yTzT] I‘T {E ] .
T

The log likelihood fumction (5.16) is to be maximized with respect to
the free parameters Hl’ H2, G(s), 0(8), and {(s) of the continuous time
model. These parameéers make their appearance in (5.17) through the
covariance matrix FT'

The maximization of (5.17) must be achieved by the application of
numerical procedures, such as the "acceptable gradient' methods described
by Bard [1]. From the standpoint of these iterative hill-climbing procedures,
(5.17) 1is a formidable function because the PT xpT matrix FT must be
inverted each time (5.17) 1is evaluated for different points in the space
of free parameters of {Hl, HZ’ G(s), 6(s), ¥(s)}. Since the matrix FT
is liable to be very large, this difficulty has led researchers such as
Hannan [7] and Phadke and Kadem [207] to propose frequency domain approxi-

mations to the normal likelihood function that economize on computations.

~ o~ 27y

Let the periodogram of the (yt, zt) process at frequency uﬁ = —Ei”
j=1, ..., T be the pXp matrix I(Qﬁ) . The approximations used are
then

I . T d, -1

Iyl zllr ~ T trace [S" (w,) ~I(w,)]

T “T" ‘T |- . 3 3
Zp j=1

T Y
log det Tp ~ jEllog det 'S (%jl): .
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Substituting the above approximations into (5.17) gives the approximate

log likelihood function

B loptogam -l 3 log det st
(5.18) £T = -3 Tplog 2m - jzl og det (uﬁ)
T
-1 ¥ trace [Sd(w.) lI(w )]
2 421 3 3
Equation (5.15) and the results leading up to it express Sd(uﬁ) as a

function of the free parameters of the continuous time model
{Hl, H2, G(s), 6(s), ¢(s)} . By maximizing (5.18) instead of (5.17),
the analyst avoids the need to invert the (pT xpT) matrix fi at each

function evaluation, and instead has to invert the (p Xp) matrix Sd(

“ﬁ) .
Expression (5.18) 1is a good approximation to (5.17) in the sense that
maximizing it delivers estimators asymptotically equivalent to those
obtained by maximizing (5.17) .

Identification of the free parameters @ = {Hl, HZ’ G(s), 6(s), Y(s)}
of the continuous time model from the discrete time data record {§T’ ET}
can be addressed as follows. Let the true values of the parameters be g%,
and the true spectral density matrix be Sd(w; BO). Let the value of the

spectral density matrix implied by the parameter vector B be Sd(m; B) .

Then consider the function

- T
(5.19) fjr' = - —;’-Tp log 27 - —2]: Y log det Sd(w. 5 B)
3=1 ’
T -
- % % trace [Sd(w HEC)) 1 Sd(w'; 8°)1]
5=1 J ?

which is formed by setting Sd(u)j ; BO) = I(wj) in (5.18). Setting
Sd(wj; so) = I(wj) amounts to assuming that the sample moments equal

population moments. The function (5.19) of 8 achieves a maximum at
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B = BO . If the parameter value g = Bo is the unique maximizer of

(5.19) , the model is said to be identified.

Recall from (4.15) and (5.3) that the model being estimated is

K@ Ky, Q1 ® Q@) vy,
(5.20) . = . .
O, K22(D) zt 0 Q22 (D)_ _Wz,t
where
= a4 Iyt x
.0 =-2"1 £ 5 160+ 4 ¢ D +%)
12 m, . jU2 27 M1 Py 2
1 j=1
R (D) = 62+
22 2
(3.21) | Lk [for elo+d -edo+D o -0 v k-0
o - - h| ]
~ -1k d r r
= £ + =
Qp® = A" £ B3, e 0+ D uy(p, DF D)
1 j=1
- 2 xr

The parameters on the right side of (5.21) are written as functions of
the free parameters of the model {Hl, HZ’ G(s), 6(s), y(s), V) in
equation (4.17) . A distinguishing feature of the model (5.20) - (5.21)
is the presence of an extensive set of restrictions across the parameters
of the Z process and the § process. In particular, the parameters of
the operators ﬁlz(D) and 612(D) are themselves nonlinear functions of
the parameters of EZZ(D) = 62(D + %) and QZZ(D) = ¢2(D + %) . Such
cross-equation restrictions are a hallmark of rational expectations models.
Even more so than in models in which the agent and the econometrician use

data at the same level of time aggregation, in the present setting these

cross-equation restrictions play a crucial role in permitting identification
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of the parameters of the continuous-time model from the discrete-time
data record. In particular suppose we consider the Z process from

(5.20) in isolation from the § process, namely,

(5.22) - KZZ(D) z_ = QZZ(D) Voot
or
2 ry ~ _ .2 Iy ~
6@ +3) Zt~¢(D+2)Wz’t
with

Ea

Wztht-u = §(t - u) V2 .

The parameters of ez(D + %) . ¢2(D + %) and V, are among the free

2
parameters of the continuous-time model. One can imagine proceeding as
above to write down the likelihood function of a discrete-time record of

ET given the model (5.22) . However, it is known that the parameters

of (5.22) are not in general identified from the discrete-time likelihood
functions. That is, the counterpart of (5.19) in general has a multi-
plicity of maximizers. This is the classical aliasing identification
problem for linear stochastic systems. We summarize this identification
problem for (5.22) intsﬂébgggégfic, where it is shown that in general
alternative settings for the free parameters of ﬁzz(D) and 522(D) give
rise to the same discrete-time autocovariance function R(T) sampled at
the integers, and so to the same discrete-time spectrum Sd(w). So in
the absence of the cross-equation restrictions (5.21) and (4.17) , even
the free parameters of the driving process Et are not identifiable.6
Thus> if even the parameters of K22 and 522 of the driving process %

are to be identifiable, the cross-equation restrictions (5.21) and (4.17)

must be exploited and the (¥, Z) must be estimated jointly.
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In many cases, the cross-equation restrictions (5.21) and 4.17)
are sufficiently stringent that the parameters of the continuous-time model
are identified from the likelihood function of the discrete-time data record
[§T ’ET] . The question of identification is studied in some detail by
Hansen and Sargent [8]. In the present confext, it is useful to illustrate

how the cross-equation rational expectations restrictions serve to identify

the continuous time parameters in the following example. We let X in
(4.1) be a scalar stochastic process. We let Xy equal z, another
scalar stochastic process. The process X . will generate the error term

in the econometrician's model. We let the agent choose the scalar stochastic

process y to maximize

t b

2

i BL [ 1 1 2
lim E J“O (G +2)y, -5y - 5H, (6D y 1" }ae

T =@ T t

subject to Ve given at t and the laws of motion

Xpp T DW
2 . 2 2.2, 2. 2
(g T 67D+ 9,0z = (g + § DIw

= =1 = = -]
We have set r = 0. We set H =3, H, =1, G(O) G, + G D, G, = &,

G1 = 1. We further assumed that the EVﬁ:Wé = 18(t-s), where I 1is
-3
the (2 x2) identity matrix.
We computed the bivariate (yt, zt) process implied by this optimization

problem for two separate settings for GZ(D) and ¢2(D) . For the first

example, we chose

02(D) = (2 + 2D + D) , 42D = (2JZ + 2D)
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For the second example, we chose
2 2 2
87 (D) = (54.04479 + 2D + D7), (D) = (14.70303 + 2.0D)

It can be verified using the methods of Appendix C that these two processes
for Z,. have been constructed to give rise to dutocovariances for z, that

agree.at the integers. In particular, the first example is chosen so that

_ =T
Eztzt_T RZZ(T) =e cos T for >0 s

while the second example was chosen so that

sz(T) = e-T cos ((L+2mT) for T7>0

For examples 1 and 2, Tables 1 and 2, respectively, report K(D) and
Q() , calculated according to (4.16) and (4.17). The tables also report
parts of the covariogram R(7) and the spectral denmsity Sd(w) of the
sampled process, calculated according to the formulas described above.
Notice that the RZZ(T)'S in the two examples agree at the integers, but
’ﬁot in between the integers. Notice also that the discrete spectral iemsities
of the =z process, S;z(w), are equal in the two examples. These features
illustrate the presence of the aliasing identification problem for the z,
process considered in isolation from the ¥y, process. Next, notice that
even at the integers, Rll(T), Rlz(T) and R21(¢) disagree between the
two examples. Similarly, Sil(uﬂ s sz(w), and Sgl(w) disagree between
the two examples. The cross-equation rational expectation restrictiomns are
responsible for these differences. On the basis of such differences, the

analyst can discriminate among the continuous time models from discrete time

observations on Ve and L
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.049
.098
<147
.196
.245
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.343
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.50
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1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
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3.75
4.00
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Table 1
EXAMPIE 1
1 - .2 0 0\ yt -1 - .4 0 O]
+ D+ ) D2 = + D
0 2 0 1 2 0 22 0 zJ
roots of det K(s) = 0: Py = - 1+ 1i
’ Py = - 1 -1
Py = -1
Rll("r) Rlz(’r) Ryq () Rz?_(n—)
.606 .333 .333 2.000
.490 404 .226 1.509
.390 405 .139 1.064
.305 -364 072 .691
.236 .302 .025 .397
.179 .234 - .005 .180
134 .169 - .024 .031
.099 112 - .033 - .061
.072 .066 - .035 - .112
.052 .032 - .032 - 132
.037 .007 - .028 - .131
.026 - .008 - .022 - .118
.019 - 017 - .017 - .098
.013 - .021 - 012 - .077
.010 - .021 - .008 - .056
.007 - .020 - .004 - .038
.006 - .017 - .002 - .023
.004 - .013 - .000 - .012
d d
Slz(w) SZl(w)
d
11(w) re “imie re im
1.284 .638 . 000 .638 - .000
1.282 . .638 - .019 .638 .019
1.275 .639 - .038 .639 .038
1.263 .639 - .057 .639 .057
1.248 .641 -.077 641 077
1.229 .642 - .097 .642 .097
1.207 .643 - 117 .643 117
1.181 . 644 -.137 . 644 .137
1.154 .645 - .157 .645 .157
1.125 .645 -.177 .645 177

d
Szz(w)

2.343

2.346
2.353
2.365
2.382
2.403
2.428
2.456
2.488
2.522



0

1

0

1.0 -.05259
+
54.04479
T
0
.25
.50
.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
d
W Sll(w)
.000 1.083
.049 1.080
.098 1.073
.147 1.061
.196 1.046
.245 1.026
.294 1.003
.343 .977
.392 .950

44l

.920

.0

2.

roots of det K(s) = 0:

-.01753

0

_Table 2.

EXAMPLE 2

D+
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0

0 1

Ry, (1) Ry, (7)
.500 .027
.389 - .005
.303 - 026
.236 .004
.184 .007
.143 - .010
L111 - 004
.087 . 004
.067 - .001
.052 - .004
041 .001
.031 .000
.024 - .002
.019 - .000
.015 - .000
011 - .000
.009 - .000

d

5o (W
re im
.031 . 00000
.031 . 00009
.031 . 00019
.031 .00027
.032 .00033
.032 .00036
.032 .00037
.033 .00034
.034 .00029
.034 .00019

v, -1.0 -.03506
zt 0 14.7030
p, = - 1+ (1+2m1i
pz = -1 - (L+2mi
Ps =-1
Ry (M Ryp ()
.027 2.000
- .006 - .385
- .013 -1.064
.009 .643
. 004 .397
- .007 - .543
. 000 - .031
. 004 341
- .001 - .112
- .002 - .164
.001 . 131
.000 .048
- .001 - .098
.000 .008
.000 .056
- .000 - .026
- .000 - .023
d
321(m)
re im
.031 . 00000
.031 - .00009
.031 - .00019
.031 - .00027
.032 - ,00033
.032 - ,00036
.032 - .00037
.033 - .00034
.034 - .00029
.348 - .00019

0 0

0 2.0

W

1t

2t
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6. Time Averaged Data

The procedures of the preceding section assume that the discrete time
data are point-i;;time observations on the underlying continuous time
data. Often, however, one or more of the available series consist of
unit averaged data, which correspond to integrals of continuous flows
over a month or quarter, for example. Observations on éNP, sales, and
man-hours are usually recorded in this way. When some or all of the data
are recorded in this way, the procedures of the preceding séction must be
modified. Fortunately, these modifications are straightforward and utilize
virtually the same technical apparatus employed in Section 5. Basically,
the idea is simply to take into account the implications of time averaging
of the continuous time data for the resulting discrete time spectral density

and covariogram.

The preceding section deduced the continuous time autocovariance

function
0y N

(6.1) R(s) = & W, e d for s =20 |,
[

and supplied forumlas for the Wj 's in terms of the parameters of the

economic model. Recall that

F\ 5.\
(6.2) R(s) = E(2t> (Nt‘s) , s=0 .

Ze) \Zag

We can indicate completely the effects of time averaging by supposing that

?t and Zt are both scalar processes, so that R(s) is a (2 x 2) matrix
T11(8) xpp(®

r91(8) 1Tyy(s)

discrete data on Zt are point in time, while those on ?t are unit

function of 8, with R(s) = { ] . We suppose that the

averaged. In particular, we consider the unit averaged process

- 1
V. = jO' ¥i_gds .
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We define the cross-covariogram of the joint (§t, Zt) process as

i -2 1] [1]

R(T) = E| . ~ for 1integer -
Zt Zt
[fu ™ E, <T>]
rap (M Ty (M '

Evidently, 2‘22 (1) = r,, (T), so that we have only to compute the terms

22
;ll (1) and 1-212 (T) . Evaluating these terms will indicate how to compute
the discrete time autocovariogram and spectral density of a general (NyxL1)
vector process, some of whose members correspond to point-in-time obser-
vations, while others are unit averaged observationmns.

We first compute rll (T) . We shall find it convenient to handle

the terms for T = 1 separately from 0) . We first wish to compute

r1q €
511 () for T=z21. We have

r; (M

W

1 1
E IO Xlt-s ds fo xlt-T-u du

1 1
IO ‘J‘O E [xlt-s e S Jds du

J‘ljlrll (T+u-s)dsdu
0 O

Wll W12.
Let us write Wj =[ %1 '2] } . Substituting this into the above line gives
W, w,
J J
- my A (T+u-s)
(6.3) r.. (T)= % W]fl Il 1 e ds du for T =21
11 =1 3 ‘o ‘o

We thus have to evaluate the double integral

1 1 Ay(mHu-s) AT 1 AU 1 -A.s
I ej dsdu = e 7 eJduIest
0 Y0 0 0

|
[t]
>
(S
_‘l
|
o
>
o (2N
| I
o
-
[]
)
>
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Substituting back into (6.3) we obtain

X s =A
(6.4) Ell(T) = 11214 w?_]'l [e 2- 1] [-e)\j+1] e}\jT for 721
j=1 k| 3
Next we compute
1 1
;11(0) =J:) .J; rll(u - 5) duds
1 s 1 1
(6.5) = fo jo rll(u - 8) duds + "[‘0 J"SV’ ty (u - 8) duds

From (6.1) we need to evaluate the integral

1 g -A,(u -~ s) Agu
‘J" I e J duds = ej j‘ e du ds
0 0 0 0
-A.u_s
L )\jS e J
= e ]0 ds
0 'Kj
X.s -A.s
= le J [1 - & . } ds
0 As
A
= i[e i1 _ 1]
}‘j }\j

We also need the integral

1 1 A,(a-s) 1 -A.s7 "3 71
ej du ds =I e J [e ] ds
0 ds

A A
__1_[ Ja - e 3 1]
3
o
ST
ALy

Using the results from these integrations in (6.1) and (6.5) gives

- _ 2 e 1 11
(6.6) rll(o) 2 ')\—'L - l] Wj
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Collecting our results, we have

W, A
- 2 led -1 11
(6.6) =3z = [— - ] -
rll j=1 )\j )Lj WJ
I W -A
. s i IS ALT
(6.4) r, (7 = = wil le - 1] [e - + 1] e J
j=1 j i

Using (6.4) and (6.6), we want to derive the spectral demsity of the

discrete time unit-sampled process for it . Let
A -\
V11=w711[eJ-1H-e J+1}
| j . A
J J AJ i
A
J
. = e
%

Then from (6.4) it follows that

my,
- 11 7
'rll(T) = jzl Vj dj - if +>1
A
m .
L 2 1 -1
(6.7) = 3 -—[—-—e y ]WP if 7=0

3=1 3 i i

To obtain the z-transform of 511(7) we first calculate

© Vll o, Z

¥ V].'l OIT ZT = -]_—J—_—Jz

=1 J J dj
Hence the z-transform of Ell is

11 11 -1

m

4oV, o,z Wy v, oo,z A

=1 7™ 4o (g2 LA L 2y .

. ; -iw

Substituting e for z in (6.8) gives the discrete time spectral

density for the unit averaged process §t

Next we compute for + 20

1
5 3 = T
Eztyt-fr j;)er (T + u) du
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From (6.1) we need to evaluate

1 T
1 A, (rtu) AT e}‘jUl e}‘j Ay
e J du = e 3 : = e ¥ -1] .
0 jco °i
Using this integral in (6.1) gives
A,
m
- 4 d . -
r21(T) = 3 W%l ol A& K 1 T2 0 .
The 2z-transform of 521 is then
A
21 x 12 -1 i .
m -
6.9) VPt edony Wy ot l)+zw21§ 1)
: 1- . Z
j=1 ( c‘jz) A =l (1-q.2 Ha =1 3 kj
3 3
Substituting e-iw for z in (6.9) gives the discrete time cross-

spectrum between the unit averaged process v and the point-in-time
P 23 P Yt P

sampled process Et .

Finally, the =z-transform of 522 is
22 -
my Wj O[j z my sz o. Z 1 my 29
(6.10) = T+ z ____JL__T + ¥ W, .
j=1 -oﬁ z 1 a Z j=1 J

The construction leading to (6.8) can be used to calculate the
discrete time cross-spectrum or cross-covariogram between two processes
each of which has been unit averaged. Similarly, the calculations leading
to (6.9) comstruct the cross-spectrum and cross-covariogram between a
unit averaged and a point-in-time sampled process. Thus, (6.8) and (6.9)
could be used to construct the spectral demsity and matrix covariogram
of an (N x 1) vector process, some of whose members are unit averaged,

while the others are point-in-time observationms.
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With (6.8) and (6.9) in hand, the estimation strategy advocated in
Section 5 can be implemented in an appropriate way. In particular, an
approximate likelihood function can be constructed for a discrete-time
data set which is an arbitrary mixture of series, some of which are unit
averaged while others are point-in-time observations. As in Section 5,
the approximate likelihood function is to be viewed as a function of
the free parameters of the underlying continuous time model, and to be

maximized with respect to them.

7. Conclusion

This paper has shown how to estimate members of a class of continuous
time rational expectations models from discrete time observations. As
Sims [277, Geweke [47], and others have documented in somewhat related
contexts, serious errors in inference about parameters can be made if the
analyst ignores the temporal aggregation problem that exists when economic
activity is proceeding at a finer level of time than are the analyst's
observations. The results in this paper provide a set of methods for
resolving this time aggregation problem in essentially an ideal fashion.

The tools developed in this paper could be used to study the nature
of the approximation errors that would be committed by an analyst who
erroneously assumed that economic activity is occurring in discrete time
when it is in fact going on continuously. This problem has a variety of
interesting aspects in the context of rational expectations models, some
of which we propose to study in subsequent work. We also plan to implement

the estimators described in this paper in several applications.
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Appendix A

In section 2, we considered the Euler equation

(A.1) c<-n+§)’c<n-§)yt=[h+x +x. ] ,

1,t" *2,¢

where Hl + G(r-s)'HzG(s) = C(-s-F%)'C(s-—%) and the zeroes of

detC(-'s+-§)' exceed zero in real part and the zeroes of det C(s -%)

P Y

are less than zero in real part. We asserted that under some side .. =

conditions on our problem, the appropriate solution of the Euler equation

]_ nT -rt ’
that satisfies lim E '-J e H
T @ 0Tdg t1

by solving the "stable roots backwards and the unstable roots forwards."

ytdt <+ o is found from (A.1)

In this appendix we indicate the nature of these side conditions.

Our method of solving (A.l) chooses the unique solution that

&elivers a closed loop system governing the joint (yt, xt) process that
is of expomential order less than r/2. Under the appropriate regularity
conditions, the optimal closed loop system matrix for the discounted
infinite time optimal linear regulator problem is known to be of exponential
/2 .

order less than Consider the discounted optimal linear regulator

problem, to minimize

lim J‘Te'rt[Y’Y + U’ QU _Jdt

To® Y0 tt £ Tt
subject to .

DX_ = AX_+ BU

t t t

Yt = CXt
where X is (Nxl1), A is (NxN), B is (KxN), C is (L xN), and
Q is a (KxK) positive definite matrix. Define the transformed variables
it = e_r/2 tXtand ﬁt = @ -r/2c Ut . Then transform the problem to the
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undiscounted problem, to minimize

T ~, ~ o~ o~
lim _J“O b, ¥+ UtQUt] dt

T @
subject to
r ~ ~
= - = +
D‘Xt A ZI]Xt BU,
Yt = CXt .

With suitable definitions of X, Y, U, A, B, and C, the certainty version
of our problem is a version of this deterministic linear regulator problem.

For example, we would define X (t)’ = [y(t)’, x(t)’]. It is known that

r

2

r

I, B] 1is stabilizable, and the pair (A 5

if the pair [A - I, C) is

-~

detectable, then the optimum closed loop system for Xt is stable, and

the associated optimum closed loop system governing Xt is of exponential

order less than /2. For the problem analyzed in the text, sufficient

RS
2

z

I, B] to be stabilizable and (A - >

conditions for T[A - I, C) to be
detectable will be satisfied by virtue of the conditions that we have im-

posed on the zeroes of det ©6(s),. provided that some side conditions are

imposed on H1 and the Gj 's. For example, imposing full rank on Hl
will imply stabilizability of (A --%I, B) and detectability of
(A -'EI, C) , as can be checked using the conditions for stabilizability

2
and detectability described by Kwakernaak and Sivan [12]. The optimal

closed loop system describing (yt, Xt) of the text can be of exponential
order less than r/2 if and ounly if the Euler equation (A.l) 1is solved

in the manner in the text, namely by premultiplying both sides of (A.1)

by C(-D + %5'-1 . This procedure picks out the unique optimal solution

of the Euler equations.

It should be noted that the full rank condition on H1 is sufficient

to imply that the optimal closed loop system is of exponential order less



than r/2, but is not necessary. For example, an alternative set of
sufficient conditions would drop the full rank condition on Hl and
replace it with the condition that the zeroes of det G(s) are less
than r/2 1in real part (the condition that the zeroes of det 6(8) are
less than r/2 must also be retained). With this alternative condition,
the stabilizability and detectability conditions for the linear regulator
problem afe met.

The full rank condition on Hl is appropriate for many problems.
We conclude this appendix by indicating in terms of classical methods
how the nonsingularity of Hl is sufficient to make our solution to the
Euler equation (2.7) the unique one that satisfies condition (2.8).

First, we rewrite (2.7) as

: +G(x-D)’ =x
(A.2) (8, +6(r-D)'H,6(D) ]y, = x] for t =0
where
x*=h+x + x and lim e re/2 x¥ =0
t 1,t 2,k t
tm-®
Second, we obtain a particular solution to (A.2). To accomplish this,

we take a partial fractions decomposition of [Hl + G(xr - s) ’HZG(S)] -1

of the form
* * *

g* G, H H
(B, +6(r-8) H,G(s)]7" = ——+ -+ + Lk
SN Pr P1 S-pp~ T
A particular solution to (A.2) 1is given by
+m u p,u ) p.u p.u
P_ _ * P1 * Fk * * 1 %* k| ru ¥
e j‘O (Gle + +er )xt_l_udu+J‘O(H1e +---+er Je xt_udu.

Third, we obtain a general solution to the homogeneous differential

equation in which x: is set to zero for s =2 0. Let A’;, ey Ak’ B’f,

* - . . .
ey Bk be n dimensional vectors with unit norm such that
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]
o

, *
[H1+G(r+pj) HZG(- pj)]Aj

[, +G(- p‘)'HZG(r+pj)]B;‘ =0 for 3=1, ..., k .

]

The general solution to the homogeneous equation is

: (pyo)t (o o)t

*
+ f.e B_1+ +fk.e Bk

h Mt Py

f f, are arbitrary scalar comstants. Finally,

K?F1P T

we obtain a representation for the solutions to the Euler equation by

where Cis +=es C

adding yE and yz.

Since there are 2k arbitrary constants and only m initial

. o 0 ml_l o 1
condition vectors Yo Dy0 s seey D Yo corresponding to k initial

conditions, we have a whole family of solutions to the Euler equation (A.2).
However, we know that (2.8) has to be satisfied for the optimal decision
path. We rewrite the requirement below

+ @
(A.3) fo e rsyé Hy <to
where the matrix Hl is positive definite. Recall that -pj >r/2 for

j=1, ..., k., For a nonzero cj

+ -2p,s
- 1 v *
IO e rse J c,A:_;'H A, ds =+ @ :

Thus in order for (A.3) to be satisfied, it must be the case that ¢y = 0
. . . o o m, -1 o
for =1, ..., k. The initial condition vectors Ygo Dyo, ceey D Yo

uniquely determine the correct values for fl’ ey fk . The solution for
m

D lyt provided in the paper corresponds to the solution described above.
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Appendix B

In this appendix we discuss the derivation of the optimal prediction
formulas used in the decision rule deviation in section 2. We accomplish
this task by employing Laplace transforms and appealing to some results
from elementary complex analysis. The strategy we employ is analogous
to one used fg;Adi’screte-timéﬂ_yép(:»%mal prediction analyzed in Appendix A
of Bansen and Sargent [d].'

Let us begin with a convolution operator ¥ defined by a square
integrable functiom 1§ . More specifically, for a scalar stochastic

process "a'" we define

+ @
Y[a]t = ‘Im y(8) ai_g ds
+®
where I w(s)zds <+ @ .
-®

The Laplace transform of this operator is given by

+ ®
VO = [ %) as =T (0 + (D

- ®

+ @ -
T—*—(g) =‘J’ efgsq;(s) ds

0

~ o —
Y (D =‘f e G8 y(s) ds
$w

Writing (¢ = Ql + gzi where ‘31 and gz are real variables, we note
~ ~—

that ¥ () defines an analytic function for €; >0 and ¥ ({) defines
an analytic function for gy < 0 . For gl = 0 we define

~ +

¥ (ig,) =1lim ¥ (¢, + C, 1)

2 1 2
gllo

¥ (1 C,) = lim ¥ (€, + 5 D)
QlTO
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where the above limits are taking with respect to the L2 metric
defined by Lebesque measure on the real line. Thus ¥ is at least
well defined almost everywhere for gl = 0. It turns out that ﬁ given
by E(gz) = ?+(i§2) + T'-(igz) is the Fourier transform of .-
The annihilation operator applied to Laplace transforms of convolution

operators is defined by
= o+
Foyp=f 0 .

Thus the annihilation operator instructs us to "ignore" {(s) for s < 0.
We now restrict ourselves to cases in which ¥ ({) 4is analytic for gy < R
for some R > 0. Under this additional assumption @(g) defines an
analytic function in the region 0 < gl < R. This prepares us for con-

sidering a lemma analogous to the lemma in Appendix A of Hansen and Sargent [9].

Lemma Suppose A 1is a meromorphic function in 0O £ { such that
(1)  A(Q = v (¢) for O < g, <R .
(ii) The function A has at most a finite number of
. . 1 2 k
singularities (', (5 «.e5 in 0 < gl’ with
Pl’ PZ’ ey Pk denoting the corresponding principal
parts of the Laurent series expansion of A at these
points.

(iii) lim A(Q) = O .
g-oCD

- k
Then  [¥(Q)], =4(D - jgl PO
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k
Proof: Let B(Q) =A(D - ¥ Pj (C) . A standard result from
§=1
analytic function theory assures us that B is analytic
in 0 < ¢y - The function Pj is analytic for lgl # (;j
and é&g& Pj () =0 for j=1,2, ..., k. Thus
éim B(Z) = 0. Using a result in Beltami and Wohlers [2]
e

we know that there exists a generalized function that has

its support [0, © and has B as its Laplace transform.

Since

0 . ] .
— .. e Cs eg °ds for g, = gJ
(g_gj)m ‘o 1 1

we are guaranteed that there 1s a square integrable function
that has B as its Laplace transform. We are also assured
that there is a square integrable function that has zle‘
as its Laplace transform and has (-®, 0] as its sug;ort

get. This is sufficient to deliver the desired conclusion

that ¥ (£) = B(p) .

We now wish to show how to use this lemma to solve the prediction

problem
+ @

g s
Et g e Xt+s ds
where
= w
JOENERTOLS
as in equation (2.2) and the real part of p is negative. We begin
by assuming that x 1is a covariance stationary linearly indeterministic

process. Embedded in this assumption is the requirement that the zeroes

of 0({) are less than zero in real part. Now

% = o YD = e w, .
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Since the order of the numerator polynomial of mij(g) is less than
the order of the denominator and since the zeroes of the denominator
polynomial are less than zero in real part, we know that @ij(g) is
the Laplace transform of a one-sided convolution operator. In other

words
+o
. — *
Py §(DIVy, = J Pyi(8) W, g ds
0

. * . th
for some square summable function @ij where w, is the 3 element

3

of w. Evaluating the integral,

+ @

I epsegsds = - o i C

0
for gl less than real part of - p. Therefore

+®

PS _ “ds = - 1 - _ 1
gne Xite p +D *t o +p e W,

Remembering that the forecasting errors in forecasting x given Qt

t+s
can be expressed ag an integral of {“E+u: 0 <u<r¢l we use the
continuous-time version of the Weiner-Kolmogorov formulas to ascertain

that

+@ .
ps = =
Ee g e x . gs [p + D CP(D)L_ Y

Our goal is to evaluate

1
[p +C W;)L

using the lemma in this appendix. The meromorphic function

(9]
p+

&

has

(Y

as its only singularity in gl =2 0 a first order pole at -p. The

principal part of the Laurent series expansion of %%g% at p is @(- p)
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@4 (0
P+
order exceeds its numerator polynomial order,

Since is a rational function whose denominator polynomial

tim 20
gﬁm pFC 0

Thus the lemma is appropriate and

[mz] = PO ~p(-p)
pt+ Cis p+C

We conclude that

+ @
os _ [em - (-p)]
(8.1) By g e X, g [ D +Qpp Ve

Formula (B.l) provides a solution to the prediction problem dis-
cussed in section 2. An alternative representation of this solution is

also valuable. First, write

90 == _ 8@ W@ - 8- 4 +0(-0) "L 40 - 8- )Ly p)
C+o ’ p+C

@t e e +e- ) ) - ¥ 0) ]
p + L

Recalling that (D) W, = 8 (D) X, we have

CP(D) "(p(" Q) e(D)“l - - -1 1 oy - i
[ D+'9_""} w = [ D+ec§ p) J $(D) w_+68(-p) [_\lf_(_]))__+_¢;__92jwt

- (- p)-l[e(- p) - 9(D>]xt+e(- p)-lqu(n) - 1lf(p— p)] o

D + p J t
Now
-1
() ~6(-0) _ - ™
——'gm— 91+92( p) + ‘*‘sz(" p)
m2—2 mz-l
+[ez+93<-o)+~-+em2<-p> T dg et 6
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An analogous formula can be obtained for

[g(d) - §(-p)7]

D+ p '
Thus
+w -1 s mol
oS = af. -1 B j B2 _ k-]
(B.2) E. [ = = 06(-p) F DT ey o) Uxy
0 j=0 k=
-1 . -1 ;
-1 U3 k-
B YR P REI A B bepg O Tw
j=0 k=]

This provides us with an expression for the solution of the forecasting

problem in terms of Xps Voo m2-l derivatives of X, and m,-1

3

derivatives of v o

Although =x 1is not assumed to be covariance stationary in the text,

it is assumed that x can be transformed into a covariance stationary

process. It is easily verified by using the transformation suggested in

the text that formula (B.2) remains valid.
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Appendix C

In this appendix we discuss the aliasing phenomenon in the context
of a continuous time vector mixed autoregressive moving average process.
The notation in this appendix does not quite match up with that in the
text, but the analysis can be thought of as applying to the % process
discussed in the text. For sake of simplicity, tildes and sﬁbscripts
have been suppressed. Also we adopt a slightly different normalization.

More specifically.

C. =

(C.1) 8(D) z, ¢ v

where

)
8(D) = 90 + elD+---+ID
fc!

§(D) =y, + ¢1D+-0~+¢m3 D
sztht::u = I68(t-u)

Both ¢ and @ are (p-n) x (p-n) and the elements of W, are

linear combinations of the elements of the instantaneous forecast errors

in forecasting 2z from its past. We impose the normalization that q;m
3

is lower triangular. For the purposes of this discussion we make the

additional assumption that m, = m,-1. Let

R (s)

il
=
ot
N
N
o}

and

+ o
SO = [ &% Res)as
-

As noted in the text we know that

c.2) s@W=0@ Yy @ ool
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Let Al’ eee A

m. denote the zeroces of det6§ ({) where m_ = (n--p)m.2

5 5

Assuming these zeroes are distinct we let
Adj A =) Adie (-r)”
i Qj) ¥ ( j)wk( AJ) jo ( kj)

Wj:-

22, T )
)\.jl;—:l (?Lj')\k) (‘Kj )\k.
Kt

Expanding S({) in matrix partial fractions we obtain

o5 W, My W,
s =3 — - ¥ L

Following the reasoning in section 5 we have

m5 }\.,S
R(s) = ¥ W.e J for 8 =20
=1 3

We are now in a position to address the aliasing phenomenon. Recall

eZnik -

that 1 for all integer k. Suppose that ) is a complex

1

root, Without loss of generality we can let kz denote its complex
conjugate. Now

)\18 (}\1+2'rrik) )

e = e

d .
an N (\,-2mik)s

e

ZS =g

for s sampled at the integers and for any integer k. Thus

(K1+2nik)s e(AZ-Zﬂik)s mg .S

RE(s) = We + W + Y W.eld
2 j=3 3

is equal to R(s) for s sampled at the nonnegative integers. If we
. s . + -+ .
can construct a continuous time stochastic process =z that has R as its

autocovariance function, then when sampled at the integers this stochastic
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process will have the same covariance properties as =z sampled at the
integers. It will not be possible to distinguish the parameters governing
z+ from the parameters governing z from discrete-time data. This is
what is meant by the aliasing phenomenon.

We proceed to illustrate how to construct such a z+ process using
results from Phillips [217]. We are interested in constructing a

(p-n) x (p-n) matrix polynomial

+ m

e+(g) = eo+e"1'g+---+ Ig 2

This is accomplished by solving the following equations

+ . _
6 G, - 2mk) W, = 0
) W
O W, =0 £ =3
8 (xj) 5= or j =3, ..., mg .
Phillips [217] shows that the Wj 's are of rank ome. Thus these equations
provide (p-—n)zm2 linearly independent equations in the (p-—n)zm2 elements
of ég, 9;, ooy e; a1 " Solving these equations yields the matrix polynomial
2
e+(g). Define
W W/ W
+ .+ b o0 1 1 2
@y -0 _e(g)i.g-xl-znik C+)\1+2ﬂik+ I
T2 + H;S N ngj —WJ——} o (-0 ”
+ - 2qik -, +A.
Chag-2mik © gy Coay T2, Chy
It can be verified that ¢+ is a (mz-l) order polynomial and can
+ +
be chosen so that ¢m is lower triangular, However, ¢ ({) is not

2-1
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necessarily constrained to have real coefficients in its polynomial
. . + .
representation. TFor choices of k in which ¢ ({) is a real polynomial
+
we can generate a 2z  process so that
+ + _ o+ +
8 (D) z = v (D) v, .

This process has R%(s) as its autocovariance function. By choosing
different values of k we can generate a family of parameters that are
obgservationally equivalent from the standpoint of discrete-time data.

The constraint that ¢+(g) have real coefficients in its polynomial
representation provides additional identifying information. This is
analogous to results obtained in Hansen and Sargent [8]. There they show
that restricting the continuous time innovation intensity matrix to be
positive semidefinite is potentially important in identifying the parameters

of a first-order stochastic differential equation from discrete-time data.
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Footnotes

In what follows, the term "agent" should be interpreted liberally
enough to include the fictitious social planner who computes the

equilibrium of the model, as in Lucas [14].

Under uncertainty) i.e., with a positive definite V matrix, the
criterion function (2.3) becomes unbounded as T~ ®, under our
assumptions. The decision rule that we compute is optimal for
criterion function (2.3) under uncertainty, in the sense that it
maximizes

oy

.1 T
%imo: 7o j’o F(%.5 ¥» DY¥es -ovsD "y, £)dt

rt . . .
The assumption that E\wtwé_u = §(t-u) Ve is made with a view
toward guaranteeing that the random process (e-r/2t M e_r/2t xt)
will be covariance stationary. Large parts of our results would go

through under a weaker condition on E\ﬂtwg_s . In particular, all

of our results on the equilibrium decision rule would obtain under

the very general assumption that Exﬂtwé_u = 6(t-—u)Vt where Vt
is any sequence of positive definite matrices. Also for many
applications, the assumption that Evvtwg_u = §(t-u) V would imply

that the (yt, xt) process itself is covariance stationary. However,
making (yt, Xt) covariance stationary in addition requires stricter
conditions on H1 and G(D) than we have imposed. Covariance
stationarity is desirable because it facilitates estimation and

underlies the procedures advocated in section 5.

As it stands now, (2.2) is overparameterized, in the sense that

normalizations must be imposed on 8 and V to make the parameters

00 Vo>
of (2.2) identifiable from the continuous time spectral density of x .
For example, 90 =1, ¢0 = I 1is one workable normalization. At this
point, we impose no particular normalization. All of our results up

to section 4 will hold for any acceptable normalization, at which point

we shall specialize the. setup somewhat.
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The matrix V also belongs in this .list in general.

parameters of V

However, the
can always be normalized, that is set entirely

a priori, provided emough parameters of 6(D) and ¢(D)
left free.

are

In the model where agents and the econometricians both operate on
the basis of data sampled at the same equispaced discrete points

in time, the parameters of the Z process are identified without
taking into account the restrictions across the ¥ and z

z processes.
See Hansen and Sargent [97, [10].
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