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Abstract

The empirical literature on the stability of the Phillips curve has largely ig-

nored the bias that endogenous monetary policy imparts on estimated Phillips

curve coefficients. We argue that this omission has important implications.

When policy is endogenous, estimation based on aggregate data can be unin-

formative as to the existence of a stable relationship between unemployment

and future inflation. But we also argue that regional data can be used to identify

the structural relationship between unemployment and inflation. Using city-

level and state-level data from 1977 to 2017, we show that both the reduced

form and the structural parameters of the Phillips curve are, to a substantial

degree, quite stable over time.
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1 Introduction

We revisit the empirical debate on the stability of the Phillips curve over time, using

data from the United States. The main innovation is the use of state-level data for

that purpose. There are two principal reasons for this strategy. The first is that if a

central bank responds to shocks with the purpose of maintaining inflation close to

some target, aggregate data may be largely uninformative as to the existence of a

stable relationship between unemployment and future inflation. The second is that

as monetary policy responds to aggregate shocks only, state-level shocks can be used

to identify the key parameters.

The notion that endogenous policy may introduce an estimation bias is an old

one and has been applied in many contexts, including in models with Phillips curves.

We revisit this point in a very simple model in which a Phillips curve relationship is

assumed to be true. We also assume that the central bank optimally sets monetary

policy so as to fully stabilize inflation and show that model-generated aggregate data

alone cannot be used to identify the Phillips curve featured by the model. More

generally, if the central bank has a dual mandate, identification is possible, but if

the policy rule is misspecified, the estimates of the Phillips curve will be biased.

To motivate the empirical exercises that are the core of the paper, we use the

same model to show how regional data can be used to identify the relationship

between unemployment and future inflation. The main insight is that as mone-

tary policy reacts only to aggregate shocks, region-specific variation can be used to

uncover the true relationship between inflation and unemployment.1 We use this

last property to reassess the empirical debate over the existence of a stable Phillips

curve, which has dominated the monetary policy literature over the last decades.

The analysis with state-level data provides strong support to the notion that the

relationship between inflation and unemployment has remained quite stable since

1We thank Narayana Kocherlakota for raising this question to us during a 2012 policy briefing
at the Minneapolis Fed.
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the ‘70s in the United States.

The empirical analysis is done in two complementary ways. First, in Section 3 we

study reduced form relationships between inflation and unemployment. We address

the literature that, as in Atkeson and Ohanian (2001), has criticized Phillips curve

models that use reduced forms. We first document that, as is well known, the

estimated reduced form parameter using aggregate data does exhibit substantial

variation over time. We then show that when using state-level data, as suggested

by the theory, the estimate of the reduced form coefficient is remarkably stable over

time. This is so, even though we compare the period of high and unstable inflation

(1977–1985) with the subsequent decades, in which inflation was much lower and

stable.

Second, in Section 4, we present the estimation results of a standard New Keyne-

sian model with Calvo-type frictions in the setting of nominal prices and wages. We

show that the estimated Calvo parameters for prices using state-level data are strik-

ingly stable over time. Again, this is so even though there is substantial variation

in inflation and monetary policy across periods. The analysis does detect a small

statistical instability in the wage Calvo parameter. We do argue, however, that

when translated to either the slope of the Phillips curve or the implied frequency of

wage changes, the difference is of little economic significance. The estimates based

on aggregate data, however, are sensitive to the sample period and the assumptions

regarding the monetary policy rule.

Our results imply a value of about seven to eight months for the average duration

of price contracts and an average duration of between five and seven months for wage

contracts, both of which are in line with the micro evidence on nominal frictions, as

we discuss in Section 4.

The paper is organized as follows. Section 2 provides background about the

Phillips curve and discusses some key papers in the literature. In Section 3, we

first show in a simple theory how endogenous monetary policy can blur the true
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structural relationship in the aggregate. We also show how this is not the case for

the regional data, since regional variation can be used to identify the true structural

parameters. We then run the regressions implied by the theory, using data from

27 metropolitan statistical areas (MSAs) in the United States from 1976 to 2018.

As we show, the regressions are remarkably consistent with the notion of a reduced

form Phillips curve that has remained stable over time. In Section 4, we estimate

a full New Keynesian model separately on state and aggregate data. We find that

the estimates of the structural parameters that govern the frequency of price and

wage adjustments are found to be quite stable over time when using state-level data,

echoing the reduced form findings. On the contrary, the estimates using aggregate

data vary widely over different policy regimes.

2 Background on the Phillips Curve and Related Liter-

ature

The notion that a statistical relationship between inflation and unemployment im-

plied a trade-off that could be exploited by monetary policy was forcefully contested

on theoretical grounds by the path-breaking work of Lucas (1972). His analysis of

the interaction between the reduced form Phillips curve parameters estimated using

statistical analysis and the policy rule adopted by the central bank was a central ex-

ample in his famous critique of econometric policy evaluation methodology (Lucas,

1976). The “stagflation,” or joint increase of unemployment and inflation, that the

United States and many other developed countries experienced in the years follow-

ing Lucas’s work gave the theory a solid empirical backing and implied the death of

the Phillips curve in its simplest original form.

By the end of the ‘60s, a reincarnation of the Phillips curve adopted the NAIRU

hypothesis, which shared with Lucas’s model the notion that departures from full

4



neutrality of money could only last for a short time.2 This feature made the models

compatible, at least qualitatively, with the stagflation experience of the late ‘70s.

But NAIRU-type Phillips curve models departed from the stronger notion in Lucas

(1972) that any systematic attempt to affect the allocation of resources would be

futile. They thereby provided a rationale for an active monetary policy to stabilize

the economy. As these models lack microfoundations, the reasons why the full

monetary-neutrality property exhibited by Lucas (1972) did not hold could not be

studied and evaluated. This unsatisfactory feature gave rise to the development of

the New Keynesian family of models that have been widely adopted in the monetary

policy literature and in research divisions of central banks. By making explicit the

assumptions regarding the nature of the non-neutrality of money, these models could

be estimated and their structural assumptions challenged with data.

As an example, consider one of the most popular forms to introduce non-

neutrality in an otherwise neoclassical model, proposed by Calvo (1983). The key

assumption is that the ability to change a price (or a wage) is not available in every

period; rather, agents can change prices only with some exogenously specified prob-

ability typically called “the Calvo parameter.” Anyone who has ever participated

in a transaction knows that assumption to be absurd. However, as the intellectual

founders of the New Keynesian literature have argued, the assumption may well

approximate aggregate behavior if the underlying policy regime does not “change

too much.”3 The exact meaning of “too much” is, of course, a quantitative issue.

Addressing it belongs to the agenda pursued in this paper.

Alongside these theoretical developments, the hypothesis of an exploitable Phillips

curve continues to be controversial. For example, Atkeson and Ohanian (2001)

(henceforth AO) show that the empirical relationship between current aggregate

unemployment and inflation growth is highly unstable over the period 1960–2000

2NAIRU stands for the Non-Accelerating Inflation Rate of Unemployment. Details are spelled
out in Friedman (1968).

3See Woodford (2003), p. 141 and 142.
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in the United States. They forcefully argue this point by showing that a naive

prediction rule for inflation that simply uses past inflation is systematically better

than empirical Phillips curves at forecasting inflation. A natural interpretation of

their results follows from the observation that the period covered by the analysis

includes changes in the policy regime. Thus, the corresponding shift in parame-

ters is evidence that the relationship is not structural, an unavoidable corollary of

the Lucas’s critique. As mentioned above, even the most extreme defender of the

New Keynesian paradigm would agree with the notion that the Calvo parameter

is not invariant to any policy regime change. The quantitative question we pursue

is whether the Calvo parameters can be safely assumed to be policy invariant –

and therefore not subject to the Lucas critique – given the policy regime changes

actually experienced by the US in the postwar era. The evidence provided in this

paper points towards a positive answer to that question.

Recently, the stability of the Phillips curve relationship has again been put into

question. The “flattening” of the Phillips curve has been debated at length, fed by

the strong changes in unemployment rates in the United States during the 2008–2009

recession and the subsequent recovery, with little sign of inflation rates responding

to those movements. A series of papers addressing this issue followed the policy

debate.4

These criticisms exhibit two main characteristics. First, aggregate data are used

in the analysis.5 This is problematic since, as mentioned above, a bias arises when

monetary policy endogenously responds to shocks, as preceding literature discussed

in detail below has forcefully argued. Second, these criticisms are based, albeit most

of the time implicitly, on the behavior of reduced form parameters over time, which

4See Krugman (2015); Blanchard (2016); and, for a recent survey of the literature, Hooper,
Mishkin and Sufi (2019).

5Beraja, Hurst and Ospina (2019) and Jones, Midrigan and Philippon (2018) use state- and
aggregate-level data together as part of their identification procedure; however those papers were
not speaking to the issue we address – namely, the stability of Calvo price and wage parameters
over time. This paper also uses information on prices at the MSA level in estimation.
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makes addressing the identification problem hard.6 The paper of AO represents a

concrete example, and its virtue is that it is explicit regarding the nature of the

exercise. But arguing that the stagflation of the ‘70s represents evidence of an

unstable Phillips curve, as many do, also entails a reduced form discussion, and

so does arguing that the “missing” deflation in 2009 and 2010 and the subsequent

“missing inflation” represent evidence of a flattening of the Phillips curve. So, while

many times we will directly compare our results with a particular interpretation

of AO, it should be understood that our results speak to a broader literature that

evaluates the stability of the Phillips curve in its structural form as well.

Our empirical exploration using state-level data is consistent with the notion that

the slopes of price and wage Phillips curves in a standard New Keynesian model

are roughly invariant to the policy regimes experienced in the United States since

1977, the first year for which we have data. And it is consistent with the notion

that reduced form regressions of future inflation on current unemployment are also

stable across sub-periods.

These results suggest an alternative interpretation of the data used by propo-

nents of the “shifting Phillips curve”: the changes over time in the correlation

between unemployment and inflation observed in aggregate data are the results of

changes in the policy followed by the Federal Reserve over the period. Thus, the

stability of inflation from 2008 onwards is the result of monetary policy’s response to

the state of the economy, with the purpose of maintaining stable inflation. In addi-

tion, the evidence in AO is compatible with a change in the policy rule that started

somewhere in the ‘80s. And the stagflation of the ‘70s is the result of a monetary

policy that made inflation persistently higher, at a time in which the economy was

undergoing a recession.7 This rather brief account of the recent history of US mon-

etary policy evolved in an economy where the frequency of price and wage changes

remained quite stable over time – at least, so says our state-level analysis.

6There are a few exceptions, such as Coibion and Gorodnichenko (2015).
7See Gao, Kulish and Nicolini (2020) for an interpretation along these lines.
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As mentioned above, the notion that endogenous policy makes identification of

structural parameters problematic dates at least to the work of Samuelson and Solow

(1960) and Kareken and Solow (1963). It has since then been applied in several

contexts by Brainard and Tobin (1968), Goldfeld and Blinder (1972), Worswick

(1969), Peston (1972), and Goodhart (1989). Mishkin (2007); Carlstrom, Fuerst and

Paustian (2009); and Edge and Gurkaynak (2010) specifically apply it to a monetary

policy model with a Phillips curve. These papers show that if policy reacts to the

state of the economy, the relationship in the aggregate data can be blurred by the

policy rule. A full analysis that encompasses our discussion as a particular case is

developed in Haldane and Quah (1999). They assume that the central bank has a

dual mandate and optimally chooses policy and show that the estimated relationship

is a function of the relative weight that the central bank puts on inflation. We find

it useful to reproduce the simpler, particular case of a single inflation mandate in

here. We do so in order to illustrate, in a very transparent fashion, the pervasive

effect of endogenous policy on the ability to identify the underlying parameters and

also to provide an alternative interpretation of the analysis in Atkeson and Ohanian

(2001).

Nakamura and Steinsson (2014) used regional data to identify the fiscal multi-

plier. We borrow their idea and apply it to a Phillips curve model. This strategy,

spelled out in the working paper version of this paper (see Fitzgerald and Nicolini,

2014) has since been followed by Kiley (2015), Babb and Detmeister (2017), Leduc

and Wilson (2017), and more recently by Hooper, Mishkin and Sufi (2019) and

McLeay and Tenreyro (2020).

3 Reduced Form Analysis

In this section, we use a reduced form representation to guide some simple regression

analysis. The main reason to do so is that a sizeable share of the literature addressing
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the stability of the Phillips curve has framed the discussion in reduced form terms,

as discussed in detail in Section 2.

Consider an economy composed of a continuum of geographically separated re-

gions that potentially exhibit price frictions. All regions use the same unit of account

and face the same monetary policy. Let πt(s), ut(s) represent regional inflation and

unemployment for region s. Assume also that the equilibrium solution in each region

can be characterized by the following dynamic system:

πt+1(s) = bπt(s) + cut(s) + dit + eXt(s) + επt+1(s) + ξπt+1 (1)

ut+1(s) = b′πt(s) + c′ut(s) + d′it + e′Xt(s) + εut+1(s) + ξut+1, (2)

where εjt (s) and ξjt , for j = u, π, are the regional and aggregate shocks; it is the

interest rate determined by monetary policy, to be discussed below; and Xt(s) is

a vector that allows for the inclusion of control variables in the regression analysis

that follows. We call the dynamic system defined by (1) and (2) the reduced form of

some structural model. The vector Xt(s) is introduced to allow for control variables

in the regression analysis that follows. To simplify the algebra, we now set Xt(s) = 0

for all t, s.

We assume that the underlying structural model is such that all shocks have zero

unconditional means and regional shocks are independent of the aggregate shock.

The terms dit and d′it describe the effect of monetary policy on the system. The

timing indicates that the monetary authority decides on policy before observing the

t+ 1 shocks.

For simplicity of exposition, we assume that all regions have the same size.8

8This assumption is innocuous but simplifies the algebra that follows.
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Therefore, we can define aggregates as

πt+1 =

∫ 1

0
πt+1(s) ds

ut+1 =

∫ 1

0
ut+1(s) ds.

We obtain the following relationship between the aggregate variables:

πt+1 = bπt + cut + dit + ξπt+1 (3)

ut+1 = b′πt + c′ut + d′it + ξut+1. (4)

The focus of this section is the ability to identify and estimate the parameters of

the reduced form equations (3) and (4).

A particular example of a structural model that delivers a reduced form like the

one described above will be discussed in the next section, where we also estimate

its structural parameters. But the system defined by (3) and (4) is compatible with

many other models. In particular, as we show in Appendix A, this reduced form is

also consistent with a simple old Keynesian model essentially identical to the one

presented in Taylor (1999) and discussed in Cochrane (2011). As we show there,

under this interpretation, the coefficient c in (3) can be associated with the slope of

a NAIRU Phillips curve.

The stability over time of parameter c in equation (3), particularly across differ-

ent monetary policy regimes, has been the focus of much discussion in the literature.

In particular, the natural interpretation of the analysis in Atkeson and Ohanian

(2001) is that the estimate of c obtained using aggregate data is unstable over time.

We now address this issue.
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3.1 Exogenous Policy

To fix ideas, assume first that the monetary authority follows an exogenous constant

interest rate policy. Then, taking differences in (3), equilibrium inflation evolves as

πt+1 − πt = b (πt − πt−1) + c (ut − ut−1) +
(
ξπt+1 − ξπt

)
. (5)

Under this policy, standard econometric techniques should suffice to identify the

parameter c.

Figure 1 shows the rolling coefficient for c that results in estimating an equation

(5) using inflation and unemployment data for the United States from 1975 to 2017.

We estimate that equation using both headline and core inflation, which explains

why we have two solid lines in the figure. Specifically, for each of the two measures

of inflation, we first estimate the coefficient c in equation (5) using semiannual data

from the first semester of 1975 to the second semester of 1995.9 The resulting point

estimate is then plotted in Figure 1 as the value for the second semester of 1995.

We then repeated the estimation, but using data starting and ending one semester

after; plotted the point estimate for the first semester of 1996; and reproduced the

steps moving forward. Each point in the series thus represents the point estimate

of c for a sample size that starts 20 years before and ends at that point. The dotted

lines represent 90% confidence intervals.

The figure makes clear how the point estimate for c depends on the sample

period. For instance, when we use headline inflation, the first estimate is very close

to −1, but it decreases over time to become zero by the end of the sample. A similar

but less drastic change is apparent for the estimates using core inflation. The picture

explains why using a Phillips curve like (5) estimated using aggregate data would

perform poorly as an out-of-sample forecasting device. This explains the exercise in

9We use semiannual data because the frequency for which we have regional data is semiannual.
We also used a few controls, as explained in Appendix B. The results without controls, also reported
in Appendix B, are very similar.
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Figure 1: Coefficient from Rolling 20-Year Regression, Aggregate Level

Atkeson and Ohanian (2001).

To the extent that policy is exogenous, Figure 1 offers evidence that is inconsis-

tent with a stable value for c in this model. But our take is different: as policy is

not exogenous, the evidence provided in Figure 1 is in itself uninformative regarding

the value of the reduced form parameter c. We address this issue next.

3.2 Endogenous Policy

We now assume the central bank has a mandate to stabilize inflation. We also as-

sume the central bank knows the model economy. Specifically, it solves the following

policy problem:

min
it

1

2
Et
[
πt+1 − π∗t+1

]2
,

given πt, ut, and the solution for aggregate inflation (3) . The target for inflation is

given by π∗t+1 and is part of the policy rule. The objective function is defined as the

time−t expectation of the deviation of next period inflation relative to the target.

Implicit in this way of writing the problem is the assumption that the central bank
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chooses policy before observing time t+ 1 shocks.

As shown in the Appendix, the optimal policy rule10 is

iOptt =
1

d

[
π∗t+1 −

(
bπt + cut + Etξ

π
t+1

)]
, (6)

so the equilibrium value for inflation is given by

πt+1 = π∗t+1 + ξπt+1 − Etξπt+1. (7)

Inflation in equilibrium therefore equals the target plus a forecasting error that,

by definition, is orthogonal to any variable in the central bank’s information set at

time t. In particular, inflation is independent of all the model parameters. This is

the consequence of a central bank that knows the model of the economy and uses

it to design policy so as to stabilize a specific target.11 A direct implication of this

observation is that if the central bank’s only objective is to stabilize inflation and it

uses a model that describes the economy well, the behavior of inflation in equilib-

rium is completely uninformative regarding the underlying model that determines

inflation. It should be obvious by now that this property is independent of the

model that determines inflation, as long as the central bank knows it.

The behavior of equilibrium inflation depends on the behavior of the target ,

π∗t+1, which is not necessarily observable. To gain further insight, we next consider

two specifications. Consider first the case of a constant inflation target, so π∗t = π∗

for all t. Then, taking differences in (7),

πt+1 − πt =
(
ξπt+1 − Etξπt+1

)
− (ξπt − Et−1ξπt ) ,

so current unemployment would be related to the change in inflation to the extent

10We show in Appendix A that with this policy rule, there is a unique solution. See also Cochrane
(2011) for a discussion of determinacy in models of this type.

11As mentioned in the Introduction, this insight is not new. The simple case we discuss in what
follows is a particular case of the analysis in Haldane and Quah (1999).
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that the forecast error (ξπt − Et−1ξπt ) affects unemployment ut. But if an estimate

of the change in inflation that is different from zero is obtained, it is unrelated to

the direct effect of unemployment on future inflation, or c.

Assume next that

π∗t = πt−1, if πt−1 ∈ [πmin, π
max] (8)

π∗t = πmax, if πt−1 > πmax

π∗t = πmin, if πt−1 < πmin.

This case corresponds to a central bank that establishes a range for the target and,

to the extent that current inflation is within the bands, wants to keep inflation equal

to the previous period. As long as the target remains within the band, π∗t+1 = πt,

then

πt+1 − πt = ξπt+1 − Etξπt+1,

so inflation follows a random walk. In this case, current unemployment–or, for

that matter, any variable in the information set at time t–should not help predict

inflation growth. In this case, no forecasting rule for inflation could beat a random

walk. As shown in Appendix A, the reduced form (3) and (4) are consistent with a

simple NAIRU-type model. Therefore, such a model, coupled with the assumption

that the central bank stabilizes inflation around a target as defined in (8), generates

equilibrium observations that are fully consistent with the result that a random walk

is good predictor for inflation, as in AO. The example also rationalizes the difficulty

the literature encountered in its attempts at developing trustworthy forecasting

models for inflation, as explained in Stock and Watson (2009). In the next section

we explain why state-level data can be used to tackle the endogeneity problem.
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3.3 State-Level Data Regressions

We now show how to estimate the reduced form parameters exploiting the fact that

regional variables’ deviations from the national average will not be correlated with

policy.

We first replace the optimal policy (6) into the solution for inflation in each

region (1) and obtain

πt+1(s) = π∗t+1 + b (πt(s)− πt) + c (ut(s)− ut) + επt+1(s) + ξπt+1 − Etξπt+1. (9)

Notice that by exploiting state-level deviations from the national average, the

effect of policy does not enter the solution.

In order to estimate equation (9), we need to take a stand on the evolution over

time of the target for inflation. In what follows, we consider an agnostic specification.

Thus, we define a time dummy and run

πt+1(s) = Dt + b (πt(s)− πt) + c (ut(s)− ut) + επt+1(s) + (ξt+1 − Etξt+1) . (10)

The time dummy is naturally interpreted as an estimate of the inflation target for

each period.12

3.4 Results

In this section, we show the results using CPI inflation and unemployment data

for 27 metropolitan statistical areas in the United States. For many MSAs and

periods, the lowest frequency for the data is semiannual, so we used that frequency

to construct the database. The price data for MSAs are available only as non-

seasonally adjusted, so we compute yearly changes. In our regressions we define

12In the working paper version of this paper (Fitzgerald and Nicolini, 2014), we discuss more
specific assumptions that lead to alternative formulations for the regression. We also compare the
results of those regressions with this agnostic strategy.
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ut(s) as the period t unemployment rate for MSA s and πt+1(s) as the inflation rate

over the following year (i.e., CPIt+2(s)/CPIt(s)). We use headline as a measure of

inflation, for which we have data since 1977.13

There are a few issues that we need to address in order to clarify the way we will

interpret the estimated parameters of equation (10). Our first interpretation will

be based on our use of system (3) and (4) as representing purely a reduced form of

an unspecified structural model. As such, the estimates provide information only

on such a reduced form and lack any additional interpretation. For that purpose, a

simple OLS regression suffices, and the only relevant question is if the estimate of

the coefficient c is stable over time.

A second possibility is to interpret the system (3) and (4) as a reduced form

of a NAIRU (old) Keynesian model. Under that interpretation, the coefficient c

approximates the estimate of the slope of the NAIRU Phillips curve, as we show in

Appendix A. However, for the OLS estimator to be unbiased, it is necessary that

unemployment be uncorrelated with the shock, επt+1(s) + ξπt+1 −Etξπt+1. The second

component, being a forecast error, presents no difficulty. However, if the region-

specific shock is autocorrelated over time, there will be a bias. In that case, it may

be important to use instrumental variables. To this end, we will also report two-

stage least-squares (2SLS) results in what follows. We have no natural instrument,

but since the problem arises only if the regional shocks are autocorrelated, using

lagged values of the unemployment rate would naturally reduce the bias. Thus, we

use lagged values of the unemployment rate in the first stage. As further justification

for this interpretation, one can analyze the estimates of the autocorrelation of the

errors. We do so in the working paper version of this paper (Fitzgerald and Nicolini,

2014), where we show that there is no strong evidence of autocorrelation being a

major issue in our preferred specification.

We interpret the variables ut(s) and ut as deviations from the natural rate of

13Appendix C describes this dataset in detail.
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Table 1: Regressions with Headline Inflation

1977-2018 1977-1984 1985-1990 1991-2000 2001-2010 2011-2018

A. Headline Inflation, OLS, without Controls

c −0.28∗∗ −0.31∗∗ −0.41∗∗ −0.31∗∗ −0.24∗∗ −0.21∗∗

(0.04) (0.11) (0.11) (0.05) (0.06) (0.07)

Overall R2 0.88 0.83 0.69 0.45 0.70 0.51
Obs 2059 381 288 492 536 362

B. Headline Inflation, 2SLS, without Controls

c −0.27∗∗ −0.39∗∗ −0.29∗ −0.46∗∗ −0.21∗∗ −0.24∗∗

(0.04) (0.12) (0.15) (0.13) (0.08) (0.08)

Overall R2 0.88 0.79 0.71 0.39 0.70 0.51
Obs 2055 377 288 492 536 362

C. Headline Inflation, 2SLS, with Controls

c −0.33∗∗ −0.50∗∗ −0.45∗∗ −0.45∗∗ −0.28∗∗ −0.28∗

(0.05) (0.19) (0.14) (0.10) (0.10) (0.13)

Overall R2 0.88 0.76 0.65 0.40 0.70 0.54
Obs 1933 327 288 484 532 362

Standard errors in parentheses
∗ significance at 5% level, ∗∗ significance at 1% level

unemployment. To allow for the possibility that the natural rate of unemployment

differs across MSAs, we introduce a region fixed effect in the regressions. To con-

trol for potential heteroscedasticity, we compute the statistical tests using standard

errors that are clustered at the MSA level. All tests results are uniformly stronger

if we do not cluster the errors. Finally, in some specifications, we use a series of

regional controls that may correlate with shocks affecting local economic conditions,

like inflation expectations and government expenditures or temperature and precip-

itations, as well as lagged values of both inflation and unemployment. A detailed

explanation of the controls used is in Appendix B.

Table 1 provides estimates for the coefficient c in regression (10). Results are

reported for OLS and 2SLS without and with controls.14 We present results for

14We report the estimates for all other parameters in Appendix B.
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the whole period first and then for five sub-periods. The first sub-period is chosen

to contain the years of rising inflation and the Volcker stabilization. The second

sub-period contains the rest of the decade until 1990. We take these two to be the

ones with policy regimes that differ from the rest of the sample.

The results are striking. The point estimate for c using the whole period is close

to −0.3 for the three specifications and very precisely estimated. In addition, the

point estimate is similar for all the sub-periods and are all statistically significant. In

fact, for all specifications and almost all sub-periods, the point estimate is within one

standard deviation of −0.3. In Appendix B, we show the estimates of the inflation

target (the time dummy). The results confirm the obvious: the first two sub-periods

correspond to inflation target behavior that differs from the rest of the sample. We

also show that even stronger results are obtained if one uses core inflation, rather

than headline – with the caveat that we have data starting only in 1985.

As further evidence of the stability of the estimated coefficient, we show in Figure

2 an exercise like the one presented in Figure 1, but using state-level data to run the

rolling regressions, rather than aggregate data. In this case, it takes two pictures

(figures 1 and 2) to be worth a thousand words.

In the working paper version of this paper (Fitzgerald and Nicolini, 2014) and

its appendix, we performed several additional exercises. We first explored the pos-

sibility that results would be driven by a few MSAs so that other geographic issues

could affect the results. We also checked if the overlapping nature of our data is

important. We finally explored the extent to which autocorrelation of the errors

could be an issue, given the lack of a natural instrument in our 2SLS specification.

In there, we showed our results to be very robust to all these concerns.

These results can be thought of as consistent with an old Keynesian structural

model; they thereby relate to the criticism of Atkeson and Ohanian and others. But

they can be interpreted as reduced form regressions from the perspective of current

structural New Keynesian models. One may therefore wonder the extent to which
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Figure 2: Coefficient from Rolling 20-Year Regression, State Level

the results of this section speak to the stability of the frequency of price and wage

adjustment in structural New Keynesian models.

This is a natural question to raise, since the coefficients of reduced form solutions

are functions of the parameters of the corresponding structural model. Thus, we

now estimate a simplified version of the the state-level structural model of Jones,

Midrigan and Philippon (2018).

4 Structural Model

We now move beyond simple linear reduced forms and estimate an economy with

Calvo-type rigidities in prices and wages. We use our estimation results to evaluate

the stability of the parameters over time. As discussed in Section 2, the assump-

tions in Calvo are not to be understood as invariant to any policy regime change.

The question we address is whether those parameters have been stable across the

monetary regime changes that have prevailed in the United States since 1977, the

first year for which we have state-level data.
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We employ the simplest framework, which forms the basis of numerous models

in the literature. Thus, we use as a starting point the standard three-equation New

Keynesian model. In adapting that model to a series of geographically separated

units in which local shocks can move local pricing and employment decisions that

are different than those for the country as a whole, we do need to extend that

basic popular model to allow for tradable and non-tradable goods. This is the only

deviation from the standard textbook example of the New Keynesian model with

price and wage frictions. We make the model more precise below.

4.1 Model Description

The economy consists of a continuum of ex ante identical islands. These islands

form a monetary union and trade with one another. Consumers on each island

derive utility from the consumption of a final good and from leisure:

maxE0

∞∑
t=0

βt(s)

[
log(ct(s))−

ηnt (s)

1 + ν
nt(s)

1+ν

]
,

where s indexes the island, ct(s) is consumption, nt(s) is labor supplied, βt(s) is a

preference shock, and ηnt (s) is a labor disutility shock. The structure of the shock

processes is described below.

The final good yt(s) is assembled using inputs of non-traded goods yNt (s) and

traded goods yMt (s, j) imported from island j:

yt(s) =

(
ω

1
σ yNt (s)

σ−1
σ + (1− ω)

1
σ

(∫ 1

0
yMt (s, j)

κ−1
κ dj

) κ
κ−1

σ−1
σ

) σ
σ−1

,

where ω determines the share of non-traded goods, σ is the elasticity of substitution

between non-traded and traded goods, and κ is the elasticity of substitution across

varieties of traded goods. Letting pNt (s) and pMt (s) denote the inputs’ corresponding
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prices, the price of the final good on an island is

pt(s) =

(
ωpNt (s)1−σ + (1− ω)

(∫ 1

0
pMt (j)1−κdj

) 1−σ
1−κ
) 1

1−σ

. (11)

Notice that in the particular case of ω = 0, there are only traded goods and the

consumption basket in each location is the same as in the aggregate, in which case

inflation in each state is the same as in the aggregate and the model collapses to the

simple textbook three-equation model. Thus, the only innovation of our model is to

allow for non-traded goods at the state level, which in turns explains why inflation

at the regional level may differ from the aggregate.

The production technologies we use are standard in both the monetary and the

trade literatures. In particular, we model non-traded goods and traded export goods

yXt (s) on each island as CES composites of varieties k of differentiated intermediate

inputs with an elasticity of substitution ϑ:

yNt (s) =

(∫ 1

0
yNt (s, k)

ϑ−1
ϑ dk

) ϑ
ϑ−1

yXt (s) =

(∫ 1

0
yXt (s, k)

ϑ−1
ϑ dk

) ϑ
ϑ−1

.

The production of the varieties of non-traded goods and the varieties of traded

exports on each island is linear in labor:

yNt (s, k) = zNt (s)nNt (s, k)

yXt (s, k) = zXt (s)nXt (s, k),

where zNt (s) and zXt (s) are productivity shocks.

Nominal frictions affect this economy in a standard way. Individual producers of

tradable and non-tradable intermediate goods are subject to Calvo price adjustment

frictions–parameterized by λp, the probability that a firm cannot reset its price in a
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given period–and individual households supply differentiated varieties of labor that

are subject to Calvo wage adjustment frictions–parameterized by λw, the probability

that a labor variety cannot reset its wage in a given period. Labor is immobile across

states and is aggregated using a CES aggregator with an elasticity of substitution

across labor varieties of ψ. The optimal price and wage control problems thus give

rise to linearized Phillips curves in price and wage inflation.

At the aggregate level, monetary policy is set using a Taylor rule when the ZLB

does not bind, with the nominal interest rate it responding to its own lag with

weight αr; deviations of aggregate inflation πt with weight απ; deviations of output

yt from yFt , the level of output that prevails in the absence of nominal rigidities,

with weight αy; and the growth rate of the output gap with weight αx:

1 + it = (1 + it−1)
αr

[
(1 + ī)παrt

(
yt

yFt

)αy]1−αr ( yt
yt−1

/
yFt
yFt−1

)αx
exp(εit),

The following shocks drive fluctuations in the model. At the state level, we have

shocks to the rate of time preference of individual households, to the household’s

disutility from work, to productivity, and to non-tradable productivity.15 At the

aggregate level we also have shocks to the rate of time preference of individual

households, labor disutility, and aggregate productivity, in addition to shocks to the

interest rate rule εit and the aggregate price Phillips curve (via standard markup

shocks).16

The model in Jones, Midrigan and Philippon (2018) has households that also de-

rive utility from the consumption of housing goods, which must be used as collateral

for household borrowing. These features allow them to capture better the relative

state-level data around the Great Recession described in Mian and Sufi (2011, 2014)

and Jones, Midrigan and Philippon (2018). In Appendix E.3, we show our results

15In robustness exercises, we also allow for shocks to the household’s preference for housing and
the loan-to-value borrowing constraint (or credit shocks).

16Appendix D contains a full description of the model.
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to be very robust to adding these realistic features to the estimation.

4.2 Estimation Strategy

We use Bayesian methods, as is common in the literature. Our estimation on state-

level data for 51 states over the period 1977 to 2017, however, is not standard:

inflation data do not exist for around half of the 51 states in our panel. And

the inflation series that are available are observed at only a biannual frequency,

whereas the remaining state-level observables are observed annually. So, to rely on

as much data as possible, we estimate the state-level model on an unbalanced mixed-

frequency panel. To the best of our knowledge, the use of an unbalanced mixed-

frequency panel in the estimation of a structural model is new in the literature. We

describe the estimation in more detail below.

Approach To capture the period of zero nominal interest rates, we use a piecewise

linear approximation as proposed in Jones (2017) and Kulish, Morley and Robinson

(2017). Under this approximation, the reduced form solution of our model has a

time-varying VAR representation:

xt = Jt + Qtxt−1 + Gtεt,

where xt collects the state and aggregate endogenous variables and εt collects the

state and aggregate shocks. The time-varying coefficient matrices Jt, Qt, and Gt,

arise because of the non-linearities induced by the ZLB. In the particular case of

ω = 1, the vector xt includes the current values for the aggregate shocks as well as

inflation – which is the same across states – the output gap – which may be different

across states, owing to local shocks and the immobile labor force – and the nominal

interest rate.

Following Jones, Midrigan and Philippon (2018), we separate the state-level

variables from the aggregate variables. We decompose the vector of variables for
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each island s, expressed in log-deviations from the steady state as xt(s), into a

component due to state s’s dependence on its own history xt−1(s) and its own

shocks εt(s) and a component encoding the state-level dependence on aggregate

variables:

xt(s) = Qxt−1(s) + Gεt(s)︸ ︷︷ ︸
state-level component

+ J̃t + Q̃tx
∗
t−1 + G̃tε

∗
t︸ ︷︷ ︸

aggregate component

. (12)

The coefficient matrices that appear in the aggregate component, J̃t, Q̃t, and G̃t,

are time-varying because of the non-linearities induced by the ZLB. The vector x∗t

which contains the aggregate variables evolves as:

x∗t = J∗t + Q∗tx
∗
t−1 + G∗t ε

∗
t . (13)

Here, ε∗t are the aggregate shocks. Given this structure of our model, letting

x̄∗t =
∫

xt(s)ds denote the economy-wide average of the island-level variables, the de-

viation of island-level variables from their economy-wide averages, x̂t(s) = xt(s)−x̄∗t ,

is a time-invariant function of island-level variables alone:

x̂t(s) = Qx̂t−1(s) + Gεt(s), (14)

where we use the assumption that island-level shocks have zero mean in the aggre-

gate, that is,
∫
εt(s)ds = 0. We make explicit also that a key assumption we make

in (12) in order to arrive at (14) is that the parameters across states are the same

(that is, that the coefficient matrices Q and G for the state-level components are

not state-specific).

The use of deviations of state-level observables from aggregates in estimation

is crucial for our study. This is because by removing the dependence of state-

level outcomes on aggregate variables, the nominal interest rate drops out from the

reduced form just as it did in the reduced form analysis of Section 3.3 that led to
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specification (10). Equation (14) therefore circumvents, as (10) did, the problem of

having to rely on aggregate data to estimate the Phillips curve in the presence of

endogenous and possibly time-varying policy at the aggregate level.17 This argument

mirrors the one made in the reduced form analysis in Section 3.3, where subtracting

aggregate optimal policy from the solution for state-level inflation removes aggregate

quantities from its solution.18

In the particular case in which consumption is composed only of tradable goods

(ω = 1), the final goods price (11) – and therefore inflation – is the same in every

state, and the deviation from the aggregate is equal to zero in every state. In this

case, even with local state shocks moving the output gap, a representation like

(14) would fail to identify the Calvo price parameter, as there would be no relative

variation in state-level inflation data.

Practically, the use of equations (13) and (14) to estimate the model involves

first expressing each state’s observable variable as a deviation from its aggregate

counterpart by subtracting time effects for each year and each variable. It also

involves subtracting a state-specific fixed effect and time trend for each observable,

since in the model, all islands are ex ante identical.

We estimate the model using state-level data, following the strategy just de-

scribed. With the purpose of comparing results, we also estimate the model using

aggregate data. In doing so, we jointly estimate the structural parameters and the

policy rule.

In all cases, we use Bayesian methods to estimate the model’s structural param-

eters.19 To construct the posterior distribution, as the island-level shocks in (14)

17Another advantage of representation (14) is that we can overcome the curse of dimensionality
associated with all 51 states’ dependence on the time-varying aggregate structure, which would
otherwise make our estimation computationally infeasible. This was the focus in Jones, Midrigan
and Philippon (2018).

18More formal arguments can be found in the literature. As mentioned in Section 2, Haldane
and Quah (1999) were the first to show that endogenous policy leads to biases in estimating New
Keynesian models. A simple and very elegant argument is presented in McLeay and Tenreyro
(2020).

19We estimate λp, λw, αr, αp, αx, αy, and the persistence and standard deviations of the
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are independent and do not affect aggregate outcomes, we can write the likelihood

of the model as the product of each individual state’s likelihood, computed from

(14). When we estimate the model using aggregate data, we use equation (13) to

compute the aggregate likelihood. For the prior distributions for the model’s struc-

tural parameters, we follow standard practice and use the same priors Smets and

Wouters (2007) use for the Calvo parameters λp and λw. We use this procedure for

both the state-level data and the aggregate data estimations.20

As we want to illustrate the role that changing policy regimes may have on the

estimated values of the Calvo parameters using aggregate data, we do not wish to

take a strong stand on the priors for the Taylor rule parameters. For this reason,

in the estimates we report, we use uniform priors for αr, αp, αx, and αy. In Ap-

pendix E.3, we show that results are similar if we instead used the priors of Smets

and Wouters (2007) for the Taylor rule parameters.

Data We use a panel of employment, nominal output, wages, and inflation in the

cross section of 51 US states from 1977 to 2017.21

We use aggregate data from 1977 to 2015 on employment, output, wages, infla-

tion, and the Fed Funds rate.22 We construct these data in a similar way to the

state-level data. We also use sequence of expected durations of the ZLB between

2009 and 2015 from the Blue Chip Financial Forecasts survey from 2009 to 2010

and the New York Federal Reserve’s Survey of Primary Dealers from 2011 to 2015

(see Kulish, Morley and Robinson, 2017).

autoregressive exogenous processes. See Appendix E for the full estimation results.
20As it turns out, assumptions regarding prior distributions of the Calvo parameters can be quite

important in standard aggregate-level estimation. On the other hand, estimates using state-level
data are found robust to the assumed priors. See Jones, Kulish and Nicolini (2020), who discuss in
detail the role of priors in the estimation of New Keynesian models with aggregate and state-level
data.

21See Appendix C for details of data availability across states and time and how we construct our
series. We extend the set of observables to household debt and house prices in robustness checks.

22We extend the sample to 1965 onwards in robustness exercises reported in Appendix E. We
also extend the set of observables to include household debt and house prices in robustness checks.
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Mixed frequency/observation As mentioned above, our data is such that infla-

tion data do not exist for around half of the 51 states in our panel, and the inflation

series is biannual, while other state-level observables are annual. An innovation of

our analysis is to extend the estimation of the structural model to this unbalanced

panel. To do this, let N be the size of the model’s state-space, and define by zst the

(N̂ s
t × 1) vector of state s’s observable variables at time t. Note that the dimension

of state s’s observable vector is changing over time with the availability of data. We

map each state’s zst to the (N × 1) vector of model variables x̂st by the (N̂ s
t × N)

matrix Hs
t :

zst = Hs
t x̂
s
t .

Thus, to allow for estimation using different frequencies and observables, the differ-

ences across states and time are encoded in the matrix Hs
t , so that forecast errors

are computed only for the data series available at each point in time.23

To illustrate the procedure with an example, consider an estimation using an

unbalanced panel dataset consisting of two regions labeled A and B and two ob-

servables, inflation and the output gap (which, for simplicity, also define the state

space; that is, N = 2 in the dimension of x̂st ). With two observables, N̂ s
t can be 0,

1, or 2, depending on data availability.

Assume the following structure for the panel: from period t, the output gap is

observed every two periods for both regions, while inflation is observed every period,

but only for region A. Defining zt =

[
(zAt )′ (zBt )′

]′
as the vector of observable

variables, the panel’s structure implies that zt is of dimension N̂A
t + N̂B

t = 2 + 1 in

period t and has dimension N̂A
t+1 + N̂B

t+1 = 1 + 0 in period t + 1. To map these to

23We describe the full Kalman filter in Appendix D.
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the state vector, the coefficient matrices for region A are

HA
t =

1 0

0 1

 , HA
t+1 =

[
1 0

]
,

and the coefficient matrices for region B are

HB
t =

[
0 1

]
,

and HB
t+1 is of zero dimension. Notice that in period t + 1, region B exits the set

of observable variables that are used to compute forecast errors and the model’s

likelihood with the Kalman filter.

To the best of our knowledge, by using this procedure, ours is the first paper

to show how to bring an unbalanced panel dataset to the estimation of a struc-

tural macro model, which could prove useful in other contexts and applications.

More generally, this flexible approach opens up more possibilities of how to bring

regional-level data to identify key parameters of macro models, building on the work

of Nakamura and Steinsson (2014); Beraja, Hurst and Ospina (2019); and Jones,

Midrigan and Philippon (2018).

4.3 Estimation Results

The key objects of the estimated structural model that we focus on are the two

Calvo parameters. We thus discuss our results regarding λp and λw first. This

formal statistical analysis allows us to discuss the extent to which the parameters

of interest are statistically stable over time. However, in order to get a sense of the

extent to which any statistical difference brings about relevant economic differences,

we also discuss the implications of our results regarding two transformations of the

Calvo parameters. The first is to convert the Calvo parameters into slopes of the

corresponding price and wage Phillips curves. This is important, since those slopes
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Table 2: Posterior Distributions, Relative State Data Only

1977 to 2017 1977 to 1998 1999 to 2017

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

λp 0.60 0.59 0.61 0.57 0.55 0.60 0.62 0.60 0.64
λw 0.43 0.41 0.44 0.55 0.52 0.58 0.40 0.38 0.42

are the relevant objects governing the dynamics of the system. The second is to

convert the Calvo parameters into frequency of price changes by firms and wage

changes by unions in the model. This not only provides us with an alternative

metric but also allows us to compare our implied estimates with the micro estimates

found in the literature.

In light of the previous discussion, we first report in Table 2 the posterior dis-

tributions of the Calvo parameters λp and λw estimated using state-level data only.

The remaining structural parameters for all estimations are reported in Appendix E,

including all prior specifications. The first panel of Table 2 reports the results of the

estimation for the entire sample, 1977 to 2017. We find that the Calvo parameter

for prices is 0.60 at the posterior mode, and the Calvo parameter for wages is 0.43 at

the posterior mode. The posterior distributions for both parameters are very tight

around their respective modes, with 90% of the mass concentrated in barely 3 basis

points.

The second and third panels of Table 2 report the results for two sub-samples,

the first covering the 1977 to 1998 period and the second covering the 1999 to 2017

period.24 As the table makes clear, the estimates for the Calvo price parameter are

remarkably close to each other and to the estimate for the overall sample. Both of

them are also tightly estimated, with a 90% probability interval of 4 and 5 basis

points. The estimates for the Calvo wage parameter present some signs of instability.

24The natural way would be to split the sample equally, choosing 1997 as the break year. How-
ever, we will check the robustness of the estimates to a model that additionally uses household
debt during the buildup and subsequent bust around the financial crisis, as emphasized in Jones,
Midrigan and Philippon (2018). As the debt data at the state level start in 1999, we chose to start
the second sub-sample in that year.
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The estimate for the second sub-sample is very close to the estimate for the overall

sample and also very precisely estimated – a 90% probability interval of 4 basis

points. However, the estimate for the first sub-sample (0.55) is higher than the

estimate for the overall sample (0.43), with a probability interval of 6 basis points.

Table 3 shows the Calvo parameters of the same model estimated of aggregate

data alone. We also report the estimated Taylor rule parameters. In estimating the

model with aggregate data, there is no reason to restrict the estimation to a start

date in 1977. However, in order to make a comparison of the results with the ones

in Table 2, we use the exact same periods as in there. We explore and report a

larger sample period for the aggregate data estimation below.

Before turning to the discussion of the estimated Calvo parameters, notice that

the estimated coefficients of the Taylor rule vary substantially across the two sub-

periods. How these different policy regimes may affect the estimates is discussed

below.

Regarding the values for the Calvo parameters over the full sample, note first

that the difference with the ones estimated using state-level data is striking: the

mode of the Calvo price parameter is 0.92 (compared with 0.60 in Table 2), while

for the Calvo wage parameter, the mode is 0.84 (compared with 0.43 in Table 2).25

The sample size of the aggregate data is substantially shorter than the size of the

panel used in the state-level analysis. In spite of that, the Calvo price parameter is

quite precisely estimated, with a 90% probability band of 4 basis points. The case

of the wage Calvo parameter is slightly less precise, with a corresponding value of 8

basis points. In comparing the differences between the estimates of the two different

sub-samples we see differences (8 basis points for the Calvo price and 7 basis points

for the Calvo wage parameter), but they are orders of magnitude smaller than those

for the Calvo wage parameter in using state-level data (15 basis points).

25The finding that wages are more flexible at the state level compared with the aggregate-level
has already been pointed out in Beraja, Hurst and Ospina (2019) and in Jones, Midrigan and
Philippon (2018). We find that observation applies also to prices.
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Table 3: Posterior Distributions, Aggregate Data Only

1977 to 2015 1977 to 1998 1999 to 2015

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

Calvo Parameters

λp 0.92 0.90 0.94 0.85 0.79 0.89 0.93 0.90 0.95
λw 0.84 0.80 0.88 0.91 0.87 0.93 0.84 0.80 0.89

Taylor Rule Parameters

αr 0.81 0.73 0.85 0.63 0.38 0.78 0.81 0.71 0.86
αp 2.35 1.98 3.03 2.02 1.62 3.38 1.35 1.05 2.59
αx 0.46 0.37 0.65 1.72 0.99 1.96 0.17 0.13 0.25
αy 0.26 0.21 0.39 0.05 0.01 0.23 0.26 0.21 0.35

These rather small differences in the estimated Calvo parameters across the

two sub-periods using aggregate data mask much larger differences in the implied

slopes of the Phillips curves, which have been the elasticities focused on in the

literature (see the discussion in Section 2). Just as in standard New Keynesian

models, the slope of the Phillips curve in our model is a non-linear function of the

Calvo parameter. Indeed, the relationship between the Calvo parameter and the

implied coefficient in the slope of the respective Phillips curve is given by

slopek =
(1− βλk)(1− λk)

λk
, k ∈ {p, w}. (15)

A quick inspection of (15) reveals that a change in λk from 0.9 to 0.95, say, implies

a more drastic change in the Phillips curve slope than a change in λk from, say, 0.6

to 0.65.

With this non-linearity in mind, we map the implied Calvo price and wage es-

timates to the slopes of the Phillips curves in Table 4 to get a sense of what our

estimates for the Calvo price and wage parameters imply for the slopes of their

respective Phillips curves.26 As expected, the implied slopes vary considerably de-

26The slope of the curves may involve other parameters from preferences or technology. But the
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Table 4: Implied Slopes of Phillips Curve at Baseline Estimates

1977 to 2015 1977 to 1998 1999 to 2015

A. State-Level Estimates

Prices? 0.276 0.317 0.237
Wages† 0.814 0.363 0.892

B. Aggregate-Level Estimates

1977 to 2017 1977 to 1998 1999 to 2017

Prices? 0.008 0.030 0.006
Wages† 0.035 0.011 0.031

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp
†: Wage Phillips curve slope is (1− βλw)(1− λw)/λw

pending on whether we use the state-level estimates or the aggregate ones. Our

state-level estimate for the whole sample of λp implies a slope of 0.28. The ag-

gregate estimates give a much flatter slope, closer to 0.01, consistent with New

Keynesian models estimated with aggregate data in the literature. Incidentally, the

slope of the price Phillips curve implied by our whole sample estimate of the Calvo

price parameter, very close to 0.3, is statistically indistinguishable from the estimate

of the preferred specification in McLeay and Tenreyro (2020). The point estimate

they report is 0.379 with a standard deviation of 0.052 (see column 4 of Table 3

on page 273). They also use MSA-level data, but they use a limited information

approach, a somewhat different sample, and different observables than we do.

But the key finding we want to emphasize is how the estimates of the implied

slope of the Phillips curves change across sub-periods. As expected from the previous

discussion, there are no relevant differences across subperiods in the estimation of

the slopes for the price Calvo parameters using state-level data. But there are major

differences using aggregate data. For the case of the wage Phillips curve, there are

detectable differences in the implied slope using the state-level estimates. But the

term (15) is typically found in the formulas for the slopes (see Gaĺı, 2008).
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differences relative to the estimated slope using the whole sample are larger when

using aggregate data.

This is most apparent in Figure 3, which plots the posterior distribution of

the slopes implied by the posterior distribution of Calvo parameters for two sub-

samples, but they are normalized to the full sample mode to aid the comparison.

The distribution of Phillips curve slopes is not only significantly wider using the

estimates coming from aggregate data but also significantly different across periods.

In the case of the wage slope estimated of state-level data (bottom left panel of

in Figure 3), although the distributions suggest statistically different slopes across

periods, the difference is small and of little economic significance.

To see this in a different metric, note that the Calvo parameters governing

nominal rigidities in our model have a precise interpretation: the timing of price

and wage adjustments are time dependent, with an average contract duration of

1/(1−λk), k ∈ {p, w}. Thus, at the mode, these different slopes in the wage Phillips

curve correspond to a frequency of wage adjustment of 2 quarters for the 1977 to

1998 sample and 1.7 quarters for the 1999 to 2017 sample. For the comparable es-

timates on aggregate data, the frequency of wage adjustment is around 10 quarters

for the 1977 to 1998 sample but 6.2 quarters for the 1999 to 2017 sample. In Table 5,

we present a full analysis of the mapping between Calvo parameters and frequency

of price and wage changes for our estimates in Tables 2 and 3.

Table 5 highlights the close match between our state-level estimates and existing

micro evidence on the frequency of price and wage changes. Because of the impor-

tance of price stickiness for aggregate dynamics, a large literature has developed

that uses micro evidence to shed light on the frequency of price and wage adjust-

ments and thus λp and λw. Our estimates are surprisingly close to those reported

in these studies. For instance, Nakamura and Steinsson (2008) find average price

durations of about 7 to 9 months, while our range of estimates of between 0.55 and

0.64 for the Calvo price parameter λp over the subsamples implies average durations
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Figure 3: Distributions of Phillips Curve Slopes

Notes: Each sub period posterior distribution of slopes is normalized by the mode
of the full sample slope.

between 62/3 to 81/3 months. For wages, Bihan, Montornes and Heckel (2012) find

that the mean duration of a wage spell is just over 2 quarters or 6 months, using

firm-level data from France. Our range of estimates, depending on the sample, of

between 0.38 and 0.58 for the Calvo wage parameter λw implies an average duration

of a wage contract of about 1.6 quarters (or just under 5 months) to 2.4 quarters

(about 7 months).

The large differences in the distributions of the slope that emerge when rely-

ing on aggregate data reflect changes in the monetary policy regime, according to

our interpretation of the results presented so far. These differences are therefore
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Table 5: Average Contract Durations Implied by Calvo Parameters

State-Level Aggregate-Level

Mode 5% 95% Mode 5% 95%

A. Price Contracts (Quarters)

Full Sample 2.5 2.4 2.6 12.4 9.7 17.5
1977 to 1998 2.4 2.2 2.5 6.5 4.7 9.2
1999 to 2017 2.6 2.5 2.7 14.3 10.4 19.0

B. Wage Contracts (Quarters)

Full Sample 1.7 1.7 1.8 6.4 4.9 8.3
1977 to 1998 2.2 2.1 2.4 10.8 7.6 14.5
1999 to 2017 1.7 1.6 1.7 6.2 4.9 9.0

consistent with the evidence provided in Section 3: while the reduced form parame-

ter on state-level data was invariant to the sub-periods used for the estimation, the

slopes implied by the estimates using aggregate data that depends on the policy rule

changed over time. The structural estimation, however, allows us to move beyond

those qualitative statements and evaluate the quantitative relevance of the key con-

ceptual point raised by Haldane and Quah (1999): that endogenous changes in the

policy regime blur the ability to estimate the structural parameters using aggregate

data.

In order to do so, we show the results obtained from two exercises. In the first,

we use the fact that the estimated Taylor rule parameters αr, αp, αx, and αy vary

widely across the two sub-samples, as shown in Table 3. For instance, we find that

the weight on the growth rate of potential output is highest in the first sub-sample

of 1977 to 1998, while the weight on inflation deviations is smallest over the second

sub-sample (which includes the zero lower bound period).

With this fact in mind, we repeat the estimation using aggregate data only

over the full sample of 1977 to 2015, comparable with the first panel in Table 3.

But rather than jointly estimating the Taylor rule, we fix its parameters at the

35



sub-sample estimates from Table 3. Thus, we estimate the Calvo parameters for

the whole sample but fix the Taylor rule at the values estimated for the 1977 to

1998 sub-sample, as reported in the second panel of Table 3 (that is, αr = 0.85,

αp = 3.03, αx = 0.65, and αy = 0.39). Then, we repeat the same estimation but

fix the parameters of the Taylor rule at the values estimated for the 1999 to 2015

subsample (that is, αr = 0.81, αp = 1.35, αx = 0.17, and αy = 0.26).

These results are in Panel A of Table 6. The first column reports the estimated

Calvo parameters when the Taylor rule is estimated for the full sample. These are

the same as the ones reported in the first column of Table 3. We added them to

aid the comparison. To avoid clutter, we also chose not to report the confidence

intervals as they are similar to what was reported so far and the full results can be

found in the Appendix. The second column reports the estimates when the Taylor

rule is fixed at the estimated values of the first sub-period. The third column reports

the estimates when fixing the Taylor rule parameters at the estimated values of the

second sub-period.

In our second and final exercise, we repeat the estimation using aggregate data,

but without restricting the sample period to coincide with the state-level data. The

motivation to do so is the presumption that the period of increasing inflation and

subsequent stabilization that the US experienced starting in the mid ‘60s and ending

in the mid ‘80s was a different policy regime than the one that followed after the

Volcker stabilization. That presumption leads us to estimate the model for the whole

1965-2017 period as well as for the sub-periods that are obtained by dividing the

sample in 1985, much in the spirit of the results reported in Table 3, but without

restricting the estimation to be over the same sample period than with the state-

level data exercise. The results are reported in Panel B of Table 6. The bottom

panel shows the estimated values for the policy rule and confirms the presumption

of large variations across sub-periods.

Again, there is substantial variation over sub-periods in the estimated values
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Table 6: Mode of Posterior Distributions, Interaction With Policy Rules

A. Aggregate Data Only, Fixed Taylor Rule Parameters

Parameter 1977 to 2015? 1977 to 2015† 1977 to 2015‡

λp 0.92 0.89 0.92
λw 0.83 0.78 0.83

B. Aggregate Data Only, Policy Regime Periods

Parameter 1965 to 2015§ 1965 to 1985§ 1986 to 2015§

Calvo Parameters

λp 0.86 0.72 0.93
λw 0.90 0.91 0.87

Taylor Rule Parameters

αr 0.93 0.95 0.86
αp 4.02 4.48 2.42
αx 0.46 0.55 0.21
αy 0.77 0.82 0.27

?: Estimated Taylor Rule with uniform priors
†: Taylor Rule parameters fixed at 1977 to 1998 estimates (see Table 3)
‡: Taylor Rule parameters fixed at 1999 to 2015 estimates (see Table 3)
§: No credit or house price series and no credit or housing preference shocks
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Figure 4: Distributions of Phillips Curve Slopes, Interaction with Policy

Notes: Each sub-period posterior distribution of slopes is normalized by the mode
of the full sample slope.

for the Calvo parameters. The implications for the estimated slopes of the corre-

sponding Phillips curves presented in Figure 4 are even more pronounced, which is

consistent with these sub-samples capturing more clear policy regime changes. This

figure is comparable to Figure 3 and illustrates the wide dispersion of implied slopes

over the aggregate posterior distributions of λp and λw.

5 Conclusion

The empirical literature on the stability of the Phillips curves has largely ignored

the impact of endogenous monetary policy on Phillips curve regression coefficients.

38



As has been discussed in the literature, this omission has important implications:

when policy is endogenous, regressions on aggregate data are uninformative as to the

existence of a stable relationship between unemployment and future inflation. We

show how regional data can be used to identify the structural relationship between

unemployment and inflation. This insight guides our empirical strategy: we use

city-level and state-level data from 1977 to 2017 and show that both the reduced

form and the structural parameters of the Phillips curve are quite stable over time.

Our analysis implies that these parameters can be safely assumed to be invariant

to policy regime changes of the magnitude observed in the United States since the

mid ‘70s. These implications are consistent with the findings in Alvarez, Beraja,

Gonzalez-Rozada and Neumeyer (2018), which show that a model with exogenous

Calvo frictions approximates very well an estimated menu-cost model as long as

inflation rates are not much higher than 10% a year.

We therefore conclude that in designing monetary policy in the United States, the

assumptions that prices change on average about every 21/2 quarters while wages

change on average every 2 quarters are not subject, quantitatively, to the Lucas

critique.
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Gaĺı, Jordi, Monetary Policy, Inflation, and the Business Cycle: An Introduction

to the New Keynesian Frankework, Princeton University Press, 2008.

Gao, Han, Mariano Kulish, and Juan Pablo Nicolini, “Two Illustrations of

the Quantity Theory of Money Reloaded,” 2020.

Goldfeld, Stephen M. and Alan S. Blinder, “Some Implications of Endogenous

Stabilization Policy,” Brookings Papers on Economic Activity, 1972, 3 (3), 585–

644.

Goodhart, C. A. E., Money, Information and Uncertainty, second edition ed.,

Macmillan International Higher Education, 1989.

41



Haldane, Andrew and Danny Quah, “UK Phillips curves and Monetary Policy,”

Journal of Monetary Economics, 1999, 44 (2), 259–278.

Hamilton, James D., Time Series Analysis, Princeton University Press, 1994.

Hooper, Peter, Frederic S Mishkin, and Amir Sufi, “Prospects for Inflation in

a High Pressure Economy: Is the Phillips Curve Dead or is It Just Hibernating?,”

Working Paper 25792, National Bureau of Economic Research 2019.

Jones, Callum, “Unanticipated Shocks and Forward Guidance at the Zero Lower

Bound,” 2017.

, Mariano Kulish, and Juan Pablo Nicolini, “The Role of Priors in the

Estimation of New Keynesian Models with Aggregate and State-Level Data,”

2020.

, Virgiliu Midrigan, and Thomas Philippon, “Household Leverage and the

Recession,” Working Paper 2018.

Kareken, John and Robert M. Solow, Stabilization Policies, Englewood Cliffs,

New Jersey: Prentice-Hall, 1963.

Kiley, Michael T., “What Can the Data Tell Us About the Equilibrium Real Inter-

est Rate?,” Finance and Economics Discussion Series 2015-77, Board of Governors

of the Federal Reserve System 2015.

Krugman, Paul, “Anchors Away (Slightly Wonkish),” The Conscience of a Liberal,

New York Times December 4 2015.

Kulish, Mariano and Adrian Pagan, “Estimation and Solution of Models with

Expectations and Structural Changes,” Journal of Applied Econometrics, 2017,

32 (2), 255–274.

, James Morley, and Tim Robinson, “Estimating DSGE Models with Zero

Interest Rate Policy,” Journal of Monetary Economics, 2017, 88, 35–49.

42



Leduc, Sylvain and Daniel J. Wilson, “Has the Wage Phillips Curve Gone

Dormant?,” 2017.

Lucas, Robert E., “Econometric Policy Evaluation: A Critique,” Carnegie-

Rochester Conference Series on Public Policy, 1976, 1, 19–46.

Lucas, Robert E. Jr., “Expectations and the Neutrality of Money,” Journal of

Economic Theory, 1972, 4 (2), 103–124.

McLeay, Michael and Silvana Tenreyro, “Optimal Inflation and the Identi-

fication of the Phillips Curve,” NBER Macroeconomics Annual 2019, 2020, 34,

199–255.

Mian, Atif and Amir Sufi, “House Prices, Home Equity-Based Borrowing, and

the US Household Leverage Crisis,” American Economic Review, 2011, 101 (5),

2132–2156.

and , “What Explains the 2007-2009 Drop in Employment?,” Quarterly Jour-

nal of Economics, 2014, 82 (6), 2197–2223.

Mishkin, Frederic S., “Inflation Dynamics,” International Finance, 2007, 10 (3),

317–334.

Nakamura, Emi and Jon Steinsson, “Five Facts about Prices: A Reevaluation

of Menu Cost Models,” The Quarterly Journal of Economics, 2008, 123 (4), 1415–

1464.

and Jón Steinsson, “Fiscal Stimulus in a Monetary Union: Evidence from US

Regions,” American Economic Review, 2014, 104 (3), 753–792.

Peston, Maurice, “The Correlation between Targets and Instruments,” Econom-

ica, 1972, 39 (156), 427–431.

Samuelson, Paul A. and Robert M. Solow, “Analytical Aspects of Anti-

Inflation Policy,” The American Economic Review, 1960, 50 (2), 177–194.

43



Smets, Frank and Rafael Wouters, “Shocks and Frictions in US Business Cycles:

A Bayesian DSGE Approach,” American Economic Review, 2007, 97 (3), 586–606.

Stock, James and M. W. Watson, “Forecasting in Dynamic Factor Models

Subject to Structural Instability,” in Jennifer Castle and Neil Shepard, eds., The

Methodology and Practice of Econometrics: A Festschrift in Honor of David F.

Hendry, Oxford University Press, 2009, pp. 1–57.

Taylor, John B., “A Historical Analysis of Monetary Policy Rules,” in John B.

Taylor, ed., Monetary Policy Rules, University of Chicago Press, 1999, pp. 319–

348.

Woodford, Michael, Interest and Prices: Foundations of a Theory of Monetary

Policy, Princeton University Press, 2003.

Worswick, G. D. N., “Fiscal Policy and Stabilization in Britain,” Journal of

Money, Credit and Banking, 1969, 1 (3), 474–495.

44



Online Appendix

Not for Publication

A An Old Keynesian Model

In this appendix, we present a slightly modified version of the model used by Taylor (1999) and

discussed in Cochrane (2011). We show that model to deliver a reduce form like the one analyzed

in Section 3. The model specifies a NAIRU-type Phillips curve, where the growth rate of inflation

holds a negative linear relationship with the difference between the current unemployment rate and

a constant level (known as the natural rate of unemployment). Thus, we write

πt − πt−1 = −γ (ut−1 − u)− ε(ut − u) + eπt ,

where πt is the inflation rate; ut is the unemployment rate; γ, u, and ε are positive parameters, and

eπt is a shock. This is the same equation used by Taylor (1999), except that he assumes ε = 0.27

This assumption implies that the policy rate has no immediate effect on the inflation rate. By

letting ε > 0, albeit it is small, we allow for that immediate effect.

The second equation establishes a negative linear relationship between unemployment and the

difference between the policy interest rate and the inflation rate, so we write

ut = σ(it − πt − r) + eut ,

where σ, r are positive parameters and eut is a shock.28

In what follows, we interpret the unemployment rate as deviations from its steady state level

u, or, equivalently, we set u = 0.

Using the second in the first, we have

πt = πt−1 − γut−1 − ε (σ(it − πt − r) + eut ) + eπt

or

πt =
πt−1 − γut−1 + σεr − σεit − εeut + eπt

(1− εσ)
,

whereas using the first in the second, we have

ut(1− εσ) = σ(it − πt−1 + γut−1 − eπt − r) + eut
27Taylor’s model is expressed in terms of output deviations instead of unemployment deviations. Our specification

implies a negative linear relationship between output deviations and unemployment deviations.
28To the extent that the term in parentheses on the right-hand side of this equation aims at capturing movements

in the real interest rate as deviations from r (presumably its steady state value), the fact that πt rather than Etπt+1

is in this equation may appear surprising. However, as we show below, this equation—with a reinterpretation of the
parameters—will arise exactly as the solution in any case, as long as ε is zero. Given the lack of microfoundations,
this reinterpretation seems innocuous to us.
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ut = − σ

(1− σε)
πt−1 +

σγ

(1− σε)
ut−1 +

σit − σr − σeπt + eut
(1− σε)

.

Thus, we can write the system as[
πt

ut

]
=

[
1

(1−εσ) − γ
(1−εσ)

− σ
(1−σε)

σγ
(1−σε)

][
πt−1

ut−1

]
+

[
− σε

(1−εσ)
σ

(1−εσ)

]
(it − r) +

[
− ε

(1−εσ)
1

(1−εσ)
1

(1−σε) − σ
(1−σε)

][
eut

eπt

]
.

Recall that we had assumed that ε > 0, albeit it is small. Thus, the coefficient of unemployment

in the inflation equation is close to −γ, which is the slope of the NAIRU Phillips curve.

A.1 The Interest Rate Rule

If we assume, as Taylor (1999) and Cochrane (2011) do, that

it = r + φππt + φyyt,

then the solution is[
πt

ut

]
=

[
(1+σφu)

(1+σφu)+σ(φπ−1)ε − (1+σφu)
(1+σφu)+σ(φπ−1)εγ

σ(φπ−1)
(1+σφu)+σ(φπ−1)ε − σ(φπ−1)

(1+σφu)+σ(φπ−1)εγ

][
πt−1

ut−1

]
+

1

(1 + σφu) + σ(φπ − 1)ε

[
−ε 1

1 σ(φπ − 1)

][
eut

eπt

]
.

The two roots are given by

λ1λ2 = 0

λ1 + λ2 =
(1 + σφu)− (φπ − 1)σγ

(1 + σφu) + σ(φπ − 1)ε
,

so one root is zero, and the other is given by

(1 + σφu)− (φπ − 1)σγ

(1 + σφu) + σ(φπ − 1)ε
,

which is less than one as long as φπ > 1, as described in Taylor (1999). Therefore, the system has

a unique bounded solution.
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A.2 Characterizing the Optimal Policy Rule

Recall that the solution is given by[
πt

ut

]
=

[
1

(1−εσ) − γ
(1−εσ)

− σ
(1−σε)

σγ
(1−σε)

][
πt−1

ut−1

]
+

[
− σε

(1−εσ)
σ

(1−εσ)

]
(it − r) +

[
− ε

(1−εσ)
1

(1−εσ)
1

(1−σε) − σ
(1−σε)

][
eut

eπt

]
,

so, in the notation of the paper,

πt+1 = a+ bπt + cut + dit + ξπt ,

so

b =
1

(1− εσ)
, c = − γ

(1− εσ)
, d = − σε

(1− εσ)
,

and the optimal policy is

iOptt =
1

d

[
π∗t+1 −

(
a+ bπt + cut + Etξ

π
t+1

)]
,

so

iOptt =
1

− σε
(1−εσ)

[
π∗t+1 −

(
a+

1

(1− εσ)
πt +− γ

(1− εσ)
ut + Etξ

π
t+1

)]
or

iOptt =

[
−(1− εσ)

σε
π∗t+1 +

(1− εσ)

σε
a+

1

σε
πt −

γ

σε
ut − Etξπt+1

]
.

Thus, as long as σε < 1, which will hold for small values of ε, the conditions for a unique stable

solution are satisfied.

A.3 The Reduced Form Parameter versus the Structural Form Parameter

The solution of the model is given by[
πt

ut

]
=

[
(1+σφu)

(1+σφu)+σ(φπ−1)ε − (1+σφu)
(1+σφu)+σ(φπ−1)εγ

σ(φπ−1)
(1+σφu)+σ(φπ−1)ε − σ(φπ−1)

(1+σφu)+σ(φπ−1)εγ

][
πt−1

ut−1

]
+

1

(1 + σφu) + σ(φπ − 1)ε

[
−ε 1

1 σ(φπ − 1)

][
eut

eπt

]
,

so we can write the solution for inflation as

πt =
(1 + σφu)

(1 + σφu) + σ(φπ − 1)ε
πt−1 −

(1 + σφu)

(1 + σφu) + σ(φπ − 1)ε
γut−1 +

eπt − εeut
(1 + σφu) + σ(φπ − 1)ε

.
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Thus, the reduced form parameter γ̂ is equal to

γ̂ =
(1 + σφu)

(1 + σφu) + σ(φπ − 1)ε
γ =

1

1 + εσ(φπ−1)(1+σφu)

γ,

so it is lower than the structural parameter γ but arbitrarily close when ε is close to zero.

B Regression Specifications

In this section, we present more details on the empirical specifications presented in Section 3. In

Section B.1, we provide the list of variables that are used as controls in Table 1 and their sources.

In Section B.2, we present the regressions models we adopt in the main text. Section B.3 shows

additional results in the reduced form analysis.

B.1 Control Variables

• rgdp: state-level real GDP growth relative to national average in the same period, trend

term of HP filtered series with smoothing parameter 400.

Source: Bureau of Economic Analysis (BEA) https://apps.bea.gov/regional/downloadzip.

cfm, all MSAs since 1960.

• temp: MSA-level temperature relative to regional average in 1960 and 2018.

Source: National Centers for Environmental Information (NCEI), https://www.ncdc.noaa.

gov/cag/, all MSAs since 1960, except for Kansas City since 1972 and Honolulu since 1965.

• prec: MSA-level precipitation relative to regional average in 1960 and 2018.

Source of variable prec is the same as temp.

• infExp: division-level inflation expectation relative to national average in the same period.

Source: Survey of Consumers from the University of Michigan, https://data.sca.isr.

umich.edu/sda-public/cgi-bin/hsda?harcsda+sca, all divisions since 1978.

• bartik : interaction of regional exposure variable (combining regional industrial employment

composition and government expenditure shipment by industry ) with a measure of the growth

rate of real aggregate federal government consumption.

Source: constructed following McLeay and Tenreyro (2020).
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The variable x in region i in period t is denoted by xit, we further define its cross-sectional deviation

from US average ∆xit and its deviation from 1960–2018 regional average ∆Rxit as

∆xit = xit −XUS
t

∆Rxit = xit −
1

N

2018∑
t=1960

xit

B.2 Regression Specifications

• We specify the OLS regression models without controls in the following form:

πit+1 = b∆uit + c∆πit +
∑
s

I{t = s}αs.

• For the 2SLS without control regression models, we use ∆uit−1 as instruments for the first

stage.

• For the regression models with controls (both OLS and 2SLS), we extend the models with-

out controls to include ∆Rtempit, ∆Rprecit, ∆infExpit, ∆uit−2, ∆πit−1, ∆πit−2, and bartikt as

explanatory variables. However, we can use the bartik starting in 1990 only, owing to the

availability of data. We show that when adding this control to the sub-samples from 1990

onwards, the results do not change for headline or core inflation.

B.3 Full Reduced Form Results

In this subsection, we present a complete set of results corresponding to the regression analysis

of Section 3. First, we show the estimated value for the time dummy, which corresponds to the

estimate of the inflation target. We report the results using both core and headline inflation in

Figure 5.

In Tables 7 to 9, we report complete results for the regressions using headline inflation, including

OLS and 2SLS, with and without controls. We also show, in Table 10, results including the bartik

variable as a control, which we have only since the late 80s. As we show, the results barely change

when including that additional control for the period in which we have data. We report only the

case of 2SLS with controls, but the results are also robust for the other specifications and also when

we use core inflation rather than headline. We then present the results for OLS and 2SLS with and

without controls when using core in tables 11 to 13.
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Figure 5: Model Estimation of Inflation Target

Table 7: Headline without Controls

Model Coefficient 1977-1984 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018 1977-2018

OLS

c -0.31** -0.41** -0.31** -0.24** -0.21** -0.28** -0.28**
(0.11) (0.11) (0.05) ( 0.06) (0.07) (0.03) (0.04)

b -0.17** 0.00 0.21** 0.05 0.04 0.22** 0.10**
(0.06) (0.06) (0.06) ( 0.06) (0.07) (0.04) (0.05)

Overall R2 0.83 0.69 0.45 0.70 0.51 0.72 0.88

2SLS

c -0.39** -0.29* -0.46** -0.21** -0.24** -0.24** -0.27**
(0.12) (0.15) (0.13) ( 0.08) (0.08) (0.03) (0.04)

b -0.18** 0.05 0.14 0.06 0.03 0.24** 0.10**
(0.06) (0.09) (0.09) ( 0.06) (0.07) (0.05) (0.05)

Overall R2 0.79 0.71 0.39 0.70 0.51 0.74 0.88

Observations 377 288 492 536 362 1678 2055

* significant at 5% level, ** significant at 1% level
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Table 8: Headline OLS with Controls

Coefficient 1977-1984 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018 1977-2018

c -0.19 -0.43** -0.14* -0.26** -0.17 -0.28** -0.27**
(0.18) (0.09) (0.07) (0.07) ( 0.10) (0.04) (0.07)

b -0.30** -0.01 0.19** 0.06 0.02 0.23** 0.08
(0.10) (0.08) (0.06) (0.06) ( 0.07) (0.04) (0.04)

e(infExp) -0.30** -0.01 0.19** 0.06 0.02 0.23** 0.08
(0.10) (0.08) (0.06) ( 0.06) (0.07) (0.04) (0.04)

e(prec) -0.20 0.00 0.03 -0.01 0.07* 0.05 0.00
(0.13) (0.06) (0.04) ( 0.05) (0.03) (0.03) (0.03)

e(temp) 0.19** 0.01 -0.02 -0.09* 0.07 0.00 0.00
(0.07) (0.06) (0.03) ( 0.04) (0.04) (0.01) (0.02)

e(u(−1)) -0.21 -0.02 -0.27* -0.02 -0.10 -0.07 -0.06
(0.15) (0.12) (0.12) ( 0.09) (0.11) (0.05) (0.06)

e(u(−2)) -0.04 0.02 0.09 0.03 0.12 0.12* 0.08
(0.15) (0.07) (0.11) ( 0.12) (0.08) (0.05) (0.05)

e(π(−1)) -0.22* -0.23** 0.06 -0.09 -0.03 0.03 0.05
(0.11) (0.08) (0.05) ( 0.06) (0.06) (0.03) (0.04)

e(π(−2)) -0.23** -0.11 -0.09 -0.02 0.09 -0.01 0.00
(0.06) (0.08) (0.05) ( 0.06) (0.06) (0.03) (0.02)

Overall R2 0.80 0.64 0.46 0.70 0.54 0.73 0.88

Observations 327 288 484 532 362 1666 1993

* significant at 5% level, ** significant at 1% level
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Table 9: Headline 2SLS with Controls

Coefficient 1977-1984 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018 1977-2018

c -0.50** -0.45** -0.45** -0.28** -0.28* -0.35** -0.33**
(0.19) (0.14) (0.10) (0.10) ( 0.13) (0.05) (0.05)

b -0.29** -0.02 0.14 0.06 0.01 0.22** 0.08
(0.09) (0.09) (0.08) (0.06) ( 0.08) (0.04) (0.04)

e(infExp) -0.04 -0.07 0.17 0.11 0.08 0.16 -0.13
(0.33) (0.18) (0.17) ( 0.25) (0.23) (0.11) (0.15)

e(prec) -0.20 0.00 0.04 -0.01 0.08** 0.05 0.00
(0.13) (0.06) (0.04) ( 0.05) (0.03) (0.03) (0.03)

e(temp) 0.20** 0.01 -0.02 -0.09* 0.08* 0.00 0.00
(0.08) (0.06) (0.03) ( 0.04) (0.03) (0.01) (0.02)

e(u(−2)) -0.06 0.02 0.00 0.02 0.09 0.10** 0.07
(0.14) (0.06) (0.10) ( 0.11) (0.07) (0.04) (0.04)

e(π(−1)) -0.20* -0.22** 0.07 -0.09 -0.03 0.03 0.05
(0.10) (0.08) (0.06) ( 0.06) (0.06) (0.03) (0.04)

e(π(−2)) -0.21** -0.10 -0.09 -0.02 0.09 -0.01 0.00
(0.07) (0.08) (0.05) ( 0.05) (0.06) (0.03) (0.02)

Overall R2 0.76 0.65 0.40 0.70 0.54 0.74 0.88

Observations 327 288 484 532 362 1666 1993

* significant at 5% level, ** significant at 1% level

C Data

C.1 Description of Data for Reduced Form Exercises

This appendix describes our data sources and calculations for the reduced form exercises. We ana-

lyze semiannual CPI inflation and unemployment data for the United States and for 27 metropolitan

statistical areas (MSAs). All semiannual data for unemployment and CPI price indices are com-

puted as the arithmetic average of monthly data for the first and second half of each year. Inflation

and price data for MSAs are available only as non seasonally adjusted, so all the data are not

seasonally adjusted.

C.1.1 Inflation Data

The Bureau of Labor Statistics (BLS) publishes CPI data for 27 MSAs. The BLS publishes semian-

nual data for 13 MSAs and higher frequency data (monthly or bimonthly) for the other 14 MSAs.

We use semiannual data to obtain the largest possible sample. Headline CPI is available back

to 1941 for 23 MSAs, with data for the remaining MSAs starting in 1977, 1987, 1997, and 2002.

Core CPI is available back to 1982 for 24 MSAs, with data for the remaining MSAs starting in

1987, 1997, and 2002. When semiannual data are not available as a published series, we compute
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Table 10: Headline 2SLS with Controls Including Bartik Variable

Coefficient 1991-2000 2001-2010 2011-2018 1985-2018

c -0.47** -0.29** -0.28* -0.36**
(0.11) (0.10) ( 0.13) (0.06)

b 0.17* 0.06 0.00 0.20**
(0.08) (0.06) ( 0.08) (0.04)

e(infExp) 0.13 0.11 0.09 0.14
(0.16) ( 0.25) (0.24) (0.11)

e(prec) 0.06 -0.01 0.07** 0.04
(0.03) ( 0.05) (0.03) (0.03)

e(temp) -0.02 -0.09* 0.07* 0.00
(0.03) ( 0.05) (0.03) (0.01)

e(bartik) -1.09 3.59 2.41 -0.37
(5.60) ( 5.52) (2.98) (2.87)

e(u(−2)) 0.04 0.02 0.09 0.11*
(0.09) ( 0.11) (0.07) (0.05)

e(π(−1)) 0.07 -0.10 -0.03 0.02
(0.05) ( 0.06) (0.06) (0.04)

e(π(−2)) -0.06 -0.02 0.09 0.01
(0.05) ( 0.05) (0.06) (0.02)

Overall R2 0.55 0.69 0.54 0.70

Observations 532 532 362 1426

* significant at 5% level, ** significant at 1% level

Table 11: Core – without Controls

Model Coefficient 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018

OLS

c -0.47** -0.33** -0.34** -0.29** -0.32**
(0.10) (0.05) (0.07) ( 0.09) (0.04)

b 0.09 0.23** 0.10 0.06 0.26**
(0.06) (0.08) (0.06) ( 0.08) (0.04)

Overall R2 0.41 0.36 0.34 0.10 0.61

2SLS

c -0.34** -0.41** -0.25** -0.27** -0.24**
(0.15) (0.13) ( 0.08) (0.10) (0.04)

b 0.13 0.20 0.12* 0.07 0.30**
(0.11) (0.10) (0.06) ( 0.07) (0.04)

Overall R2 0.42 0.34 0.36 0.13 0.63

Observations 288 492 536 362 1678

* significant at 5% level, ** significant at 1% level
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Table 12: Core OLS with Controls

Coefficient 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018

c -0.44** -0.21* -0.37** -0.30** -0.36**
(0.09) (0.08) (0.07) (0.11) ( 0.05)

b 0.10 0.21** 0.12* 0.03 0.26**
(0.09) (0.08) (0.06) (0.07) ( 0.03)

e(infExp) 0.08 0.12 0.11 0.26 0.17
(0.22) (0.17) (0.30) ( 0.29) (0.12)

e(prec) 0.00 0.02 0.03 0.07 0.05*
(0.07) (0.04) (0.04) ( 0.05) (0.02)

e(temp) 0.03 -0.06 -0.08 0.00 -0.03*
(0.06) (0.04) (0.05) ( 0.05) (0.01)

e(u(−1)) -0.10 -0.22 0.00 0.01 -0.06
(0.10) (0.15) (0.11) ( 0.12) (0.07)

e(u(−2)) 0.13 0.14 0.04 0.04 0.16**
(0.10) (0.13) (0.14) ( 0.11) (0.05)

e(π(−1)) -0.17 -0.09* -0.07 0.07 0.06*
(0.09) (0.04) (0.06) ( 0.08) (0.03)

e(π(−2)) -0.08 -0.07 -0.10 0.01 -0.03
(0.08) (0.05) (0.06) ( 0.07) (0.02)

Overall R2 0.37 0.41 0.34 0.13 0.63

Observations 260 484 532 362 1638

* significant at 5% level, ** significant at 1% level
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Table 13: Core 2SLS with Controls

Coefficient 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018

c -0.57** -0.46** -0.37** -0.29 -0.41**
(0.15) (0.12) (0.13) (0.16) ( 0.06)

b 0.08 0.18* 0.12* 0.04 0.25**
(0.09) (0.08) (0.06) (0.07) ( 0.03)

e(infExp) 0.03 0.13 0.11 0.27 0.16
(0.19) (0.17) (0.30) ( 0.29) (0.13)

e(prec) 0.00 0.03 0.03 0.07 0.06*
(0.07) (0.04) (0.04) ( 0.05) (0.02)

e(temp) 0.04 -0.06 -0.08 0.00 -0.03*
(0.06) (0.04) (0.05) ( 0.05) (0.01)

e(u(−2)) 0.09 0.07 0.04 0.04 0.14**
(0.11) (0.11) (0.13) ( 0.09) (0.04)

e(π(−1)) -0.17 0.10* -0.07 0.07 0.06*
(0.09) (0.05) (0.06) ( 0.08) (0.03)

e(π(−2)) -0.08 -0.07 -0.10 0.01 -0.03
(0.08) (0.05) (0.06) ( 0.07) (0.02)

Overall R2 0.37 0.38 0.35 0.15 0.64

Observations 260 484 532 362 1638

* significant at 5% level, ** significant at 1% level

the semiannual average following BLS methodology: first, interpolate the missing monthly indices

using a geometric mean of values in adjacent months; second, calculate the arithmetic average of

the monthly data in the first and second half of each year.

C.1.2 Unemployment Data

The BLS publishes a monthly unemployment rate, not seasonally adjusted, for each of the 27

MSAs with corresponding CPI price indices. Published BLS data are available back to 1990. The

BLS has unpublished unemployment data back to 1976, but these data are not consistent with the

published data because of changes in the MSA geographic definitions and other factors. However,

the BLS also has unemployment and labor force data by county, going back to 1976. We used

the county-level data to construct a geographically consistent definition of MSAs, going back to

1976. The constructed unemployment and labor force series overlap very closely with the published

data in the post-1990 period. We combine our pre-1990 constructed unemployment rates with the

published data to obtain unemployment rate series back to 1976. The lack of readily accessible

unemployment data before 1976 is a limiting factor for our analysis.
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C.2 Description of Data for Structural Model Estimation

C.2.1 State Level

We use the MSA-level inflation data, described above, and map the 27 MSA regions into 20 states

with the mapping in Table 14. For states which contain multiple MSA regions (for example,

Cincinnati and Cleveland are both in Ohio), we select only the data of one of the MSA regions.

Table 14: MSA to State Mapping

State MSA

AK Anchorage
AZ Phoenix
CA Los Angeles
CO Denver
FL Miami
GA Atlanta
HI Honolulu
IL Chicago
KS Kansas City
MA Tampa
MD Baltimore
MI Detroit
MO St. Louis
NY New York
OH Cincinnati
OR Portland
PA Philadelphia
TX Dallas
WA Seattle
WI Minneapolis

For the other state-level data series, we use state-level data on employment, output, and com-

pensation. The observed state data are annual. To construct the data, we first take each state’s

series relative to its initial value, compute the devation of each state’s observation from the state

mean, regress that series on time dummies, weighted by the state’s relative population, and work

with the residuals. We then take out a linear trend from the resulting series, for each subsample

studied.

Main estimations Here, we provide more details on each series.

• Output: We use state-level data on Gross Domestic Product in current dollars. (BEA

SAGDP2S). The data are available for download at the BEA website.
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• Employment: We use state-level data on total employment from the BEA annual table SA4.

In our empirical analysis, we scale this measure of employment by each state’s population.

• Labor Compensation: We use state-level data on compensation of employees from the BEA

annual table SA6N.

• Wages: To construct our wages series, we divide total labor compensation by the number of

employed individuals, using the two series described above.

• Population: We use state-level data on population from the BEA annual table SA1-3.

Robustness Exercises In robustness exercises, we use the following data series.

• Income: We use state-level data on personal income from the BEA annual table SA4.

• Household Debt: We use data from the FRBNY Consumer Credit Panel Q4 State statistics

by year. Our measures of debt include auto loans, credit card debt, mortgage debt and

student loans. This database also provides information on the number of individuals with

credit scores in each state, which we use to express the debt data in per capita terms. We

then construct a debt-to-income series by dividing this measure of per capita debt by per

capita income, using the data described above on income and population from the BEA.

• House Prices: We used data on the not seasonally adjusted house price index available on the

FHFA website.

• Consumption: For the robustness exercise with consumption, we use state-level data on total

personal consumption expenditures by state from the BEA, net of housing. The data are

available for download at the BEA website.

C.2.2 Aggregate Level

At the aggregate level, we use the GDP deflator for inflation, employment, output, wages, the Fed

Funds rates, and ZLB durations from NY Federal Reserve Survey Data. The codes for each raw

data series are as follows:

• Gross Domestic Product: Implicit Price Deflator (GDPDEF).

• Gross Domestic Product: (GDP).

• Cumulated nonfarm business section compensation (PRS85006062) minus employment growth

(PRS85006012) and deflated by the GDP deflator.

• Total employment net of construction, over the civilian noninstitutional population.

In robustness exercises, we use:
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• Household Debt from FRED (code CMDEBT) deflated by PCE deflator, and expressed rel-

ative to income (from the BEA Table 2.1).

• House Prices from Case-Logic.

• Personal Consumption Expenditures (BEA Table 2.4.5U). Current, $. We subtract housing

from consumption.

Fed Funds rate: the interest rate is the Federal Funds Rate, taken from the Federal Reserve

Economic Database.

ZLB Durations: we follow the approach of Kulish, Morley and Robinson (2017) and use the

ZLB durations extracted from the New York Federal Reserve Survey of Primary Dealers, conducted

eight times a year from 2011Q1 onwards.29 We take the mode of the distribution implied by these

surveys. Before 2011, we use responses from the Blue Chip Financial Forecasts survey.

D Structural Model

The model description follows Jones, Midrigan and Philippon (2018). We describe the model with

the full operative credit channel. But we note that absent this credit channel and the tradeable

production structure, the model would reduce to the familiar 3-equation New Keynesian model.

D.1 Full Model with Credit Channel

Household problem The economy consists of a continuum of ex ante identical islands of measure

1 that belong to a trading bloc in a monetary union. Consumers on each island derive utility from

the consumption of a final good, leisure, and housing. Let s index an individual island and pt(s)

denote the price of the final consumption good. Individual households on each island belong to labor

unions that sell differentiated varieties of labor. We assume perfect risk-sharing across households

belonging to different labor unions on a given island. Labor is immobile across islands and the

housing stock on each island is in fixed supply. The problem of a household that belongs to labor

union ι is to

maxE0

∞∑
t=0

t−1∏
j=0

βj(s)

[∫ 1

0
vit(s) log (cit(s)) di+ ηht (s) log (ht(s))−

ηnt (s)

1 + ν
nt(ι, s)

1+ν

]
(16)

where ht(s) is the amount of housing the household owns, nt(ι, s) is the amount of labor it supplies,

and cit(s) is the consumption of an individual member i. The term vit(s) ≥ 1 represents a taste

29See the website here. For example, in the survey conducted on January 18 2011, one of the questions asked
was: “Of the possible outcomes below, please indicate the percent chance you attach to the timing of the first federal
funds target rate increase” (Question 2b). Responses were given in terms of a probability distribution across future
quarters.
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shifter, an i.i.d random variable drawn from a Pareto distribution:

Pr(vit(s) ≤ v) = F (v) = 1− v−α. (17)

Here, α > 1 determines the amount of uncertainty about v. A lower α implies more uncertainty.

The terms ηht (s) and ηnt (s) affect the preference for housing and the disutility from work, while

βt(s) is the household’s one-period-ahead discount factor. We assume that each of these preference

shifters have an island-specific component and an aggregate component, all of which follow AR(1)

processes with independent Gaussian innovations. The household’s budget constraint is:

pt(s)xt(s) + et(s)(ht+1(s)−ht(s)) = wt(ι, s)nt(ι, s) + qtlt(s)− bt(s) + (1 + γqt)at(s) +Tt(ι, s), (18)

where xt(s) are transfers made to individual members in the goods market, et(s) is the price

of housing, wt(ι, s) is the wage rate, and Tt(ι, s) collects the profits households earn from their

ownership of intermediate goods firms, transfers from the government aimed at correcting the

steady state markup distortion, and the transfers stemming from the risk-sharing arrangement.30

We let at(s) denote the amount of coupon payments the household is entitled to receive in period

t, bt(s) the amount it must repay, and qt the economy-wide price of the securities described below.

Thus, qtat(s) represents the household’s total asset holdings (savings), while qtbt(s) represents its

outstanding debt. We describe a household’s holdings of the security by recording the amount of

coupon payments bt that the household has to make period t. Letting lt(s) denote the amount of

securities the household sells in period t, the date t+ 1 coupon payments are

bt+1(s) =

∞∑
i=0

γilt−i(s) = lt(s) + γbt(s). (19)

The household also faces a liquidity constraint limiting the consumption of an individual member

to be below the amount of real balances the member holds:

pt(s)cit(s) ≤ pt(s)xt(s). (20)

The household also faces a borrowing constraint

qtlt(s) ≤ mt(s)et(s)ht+1(s). (21)

The law of motion for a household’s assets is given by

qtat+1(s) = pt(s)

(
xt(s)−

∫ 1

0
cit(s)di

)
. (22)

30We assume that households on island s exclusively own firms on that particular island.
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There are no barriers to capital flows, so all islands trade securities at a common price qt. The

credit limit mt(s) evolves as the product of an island-specific and aggregate component, both of

which are AR(1) processes with Gaussian disturbances.

At this point, we note that as α → ∞, vit(s) → 1. In this case, there is no idiosyncratic

uncertainty. There is no meaningful role for the liquidity constraints and, since housing is separable

in the utility function and exogenously fixed, there is no role for credit, and the economy collapses

to the standard 3-equation New Keynesian model (see Jones, Midrigan and Philippon, 2018, for

details and a discussion of this point).

Final goods producers Final goods producers on island s produce yt(s) units of the final good

using yNt (s) units of non-tradable goods produced locally and yMt (s, j) units of tradable goods

produced on island j and imported to island s:

yt(s) =

(
ω

1
σ yNt (s)

σ−1
σ + (1− ω)

1
σ

(∫ 1

0
yMt (s, j)

κ−1
κ dj

) κ
κ−1

σ−1
σ

) σ
σ−1

, (23)

where ω determines the share of non-traded goods, σ is the elasticity of substitution between traded

and non-traded goods and κ is the elasticity of substitution between varieties of the traded goods

produced on different islands. Letting pNt (s) and pMt (s) denote the prices of these goods on island

s, the final goods price on an island is

pt(s) =

(
ωpNt (s)1−σ + (1− ω)

(∫ 1

0
pMt (j)1−κdj

) 1−σ
1−κ
) 1

1−σ

. (24)

The demand for non-tradable intermediate goods produced on an island is

yNt (s) = ω

(
pNt (s)

pt(s)

)−σ
yt(s), (25)

while demand for an island’s tradable exports yXt (s) is an aggregate of what all other islands

purchase:

yXt (s) = (1− ω)pMt (s)−κ
(∫ 1

0
pMt (j)1−κdj

)κ−σ
1−κ

(∫ 1

0
pt(j)

σyt(j)dj

)
. (26)

Intermediate goods producers Traded and non-traded goods on each island are themselves

CES composites of varieties of differentiated intermediate inputs with an elasticity of substitution

ϑ. The demand for an individual variety k for non-tradeable goods (for example) are

yNt (s, k) =
(
pNt (s, k)/pNt (s)

)−ϑ
yNt (s).

Individual producers of intermediate goods are subject to Calvo price adjustment frictions. Let
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λp denote the probability that a firm does not reset its price in a given period. A firm that resets

its price maximizes the present discounted flow of profits weighted by the probability that the price

it chooses at t will still be in effect at any particular date. As was the case earlier, the production

function is linear in labor, but it is now subject to sector-specific productivity disturbances zNt (s)

and zXt (s), so that

yjt (s, k) = zjt (s)n
j
t (s, k), for j ∈ {N,X}

so that the unit cost of production is simply wt(s)/z
j
t (s) in both sectors.

For example, a traded intermediate goods firm that resets its price solves

max
pX∗
t (s)

∞∑
j=0

(
λjp

j−1∏
i=0

βt+i(s)

)
µt+j(s)

(
pX∗t (s)− τp

wt+j(s)

zXt+j(s)

)(
pX∗t (s)

pXt+j(s)

)−ϑ
yXt+j(s), (27)

where µt+j(s) is the shadow value of wealth of the representative household on island s – that is,

the multiplier on the flow budget constraint (18) – and τp = ϑ−1
ϑ is a tax the government levies

to eliminate the steady state markup distortion. This tax is rebated lump sum to households on

island s. The composite price of traded exports or non-traded goods is then a weighted average of

the prices of individual differentiated intermediates. For example, the price of export goods is

pXt (s) =
[
(1− λp)pX∗t (s)1−ϑ + λpp

X
t−1(s)

1−ϑ
] 1

1−ϑ
. (28)

Wage setting We assume that individual households are organized in unions that supply differ-

entiated varieties of labor. The total amount of labor services available in production is

nt(s) =

(∫ 1

0
nt(ι, s)

ψ−1
ψ dι

) ψ
ψ−1

, (29)

where ψ is the elasticity of substitution between labor varieties. Demand for an individual union’s

labor given its wage wt(ι, s) is therefore nt(ι, s) = (wt(ι, s)/wt(s))
−ψ nt(s). The problem of a union

that resets its wage is to choose a new wage w∗t (s) to

max
w∗
t (s)

∞∑
j=0

(
λjw

j−1∏
i=0

βt+i(s)

)τwµt+j(s)w∗t (s)( w∗t (s)

wt+j(s)

)−ψ
nt+j(s)−

ηnt+j(s)

1 + ν

((
w∗t (s)

wt+j(s)

)−ψ
nt+j(s)

)1+ν
 ,

(30)

where λw is the probability that a given union leaves its wage unchanged and τw = ψ−1
ψ is a labor

income subsidy aimed at correcting the steady state markup distortion. The composite wage at

which labor services are sold to producers is

wt(s) =
[
(1− λw)w∗t (s)

1−ψ + λwwt−1(s)
1−ψ
] 1

1−ψ
. (31)
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D.2 Monetary Policy

Let yt =
∫ 1
0 pt(s)yt(s)/pt ds be total real output in this economy, where pt =

∫ 1
0 pt(s)ds is the

aggregate price index. Let πt = pt/pt−1 denote the rate of inflation and

1 + it = EtRt+1 (32)

be the expected nominal return on the long-term security, which we refer to as the nominal interest

rate. Aggregation over the pricing choices of individual producers implies, up to a first-order

approximation,

log(πt/π̄) = β̄Et log(πt+1/π̄) +
(1− λp)(1− λpβ̄)

λp
(log(wt)− log(zt)) + θt,

where we add an AR(1) disturbance θt to individual firms’ desired markups, β̄ is the steady state

discount factor, and π̄ is the steady-state level of inflation.

We assume that monetary policy is characterized by a Taylor rule when the ZLB does not bind:

1 + it = (1 + it−1)
αr

[
(1 + ı̄)παπt

(
yt
y∗t

)αy]1−αr ( yt/y
∗
t

yt−1/y∗t−1

)αx
exp(εrt ),

where εrt is a monetary policy shock; αr determines the persistence; and απ; αy; and αx determine

the extent to which monetary policy responds to inflation, deviations of output from its flexible

price level y∗t , and the growth rate of the output gap, respectively. We assume that ı̄ is set to a

level that ensures a steady state level of inflation of π̄. When the ZLB binds, then

it = 0.

The interest rate may be at zero either because aggregate shocks cause the ZLB to bind, or because

the Fed commits to keeping it at 0 for a longer time period than implied by the constraint. We

thus implicitly assume that the Fed can manipulate expectations of how the path of interest rates

evolves, as in Eggertsson and Woodford (2003) and Werning (2015). In our estimation we use

survey data from the New York Federal Reserve to discipline the expected duration of the zero

interest rate regime during the 2009 to 2015 period.

Since we assume that an individual island is of measure zero, monetary policy does not react

to island-specific disturbances. The monetary union is closed so aggregate savings must equal

aggregate debt: ∫ 1

0
at+1(s)ds =

∫ 1

0
bt+1(s)ds. (33)
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D.3 Likelihood Function

We use Bayesian likelihood methods to estimate the parameters of the island economy and the

shocks. We use a panel dataset across states for the state-level estimation, and aggregate data

and the ZLB for the aggregate-level estimation. We formulate the state-space of the model so as

to separate our estimation into a collection of regional components to make it computationally

feasible.

We discuss the likelihood function of the state/regional component and then the likelihood

function of the aggregate component.

D.3.1 Likelihood of the State Component

We use Bayesian methods. We first log-linearize the model. The log-linearized model has the state

space representation

xt = J + Qxt−1 + Gεt (34)

zt = Htxt. (35)

The state vector is xt. The error is distributed εt ∼ N(0,Ω), where Ω is the covariance matrix of

εt. We assume no observation error of the data zt.

Denote by ϑ the vector of parameters to be estimated. Denote by Z = {zτ}Tτ=1 the sequence of

Nz × 1 vectors of observable variables, combined over states. By Bayes law, the posterior P(ϑ | Z)

satisfies

P(ϑ | Z) ∝ L(Z | ϑ)× P(ϑ).

With Gaussian errors εt, the likelihood function L(Z | ϑ) is computed using the sequence of

structural matrices and the Kalman filter, described below:

logL(Z | ϑ) = −
(
NzT

2

)
log 2π − 1

2

T∑
t=1

log det St −
1

2

T∑
t=1

ỹ>t (St)
−1 ỹt,

where ỹt is the vector of forecast errors and St is its associated covariance matrix.

D.3.2 Kalman Filter

The Kalman filter recursion is given by the following equations. The state of the system is (x̂t,Pt−1).

In the predict step, the structural matrices J, Q and G are used to compute a forecast of the state
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x̂t|t−1 and the forecast covariance matrix Pt|t−1 as

x̂t|t−1 = J + Qx̂t

Pt|t−1 = QPt−1Q
> + GΩG>. (36)

We update these forecasts with imperfect observations of the state vector. This update step involves

computing forecast errors ỹt and their associated covariance matrix St as

ỹt = zt −Htx̂t|t−1

St = HtPt|t−1H
>
t .

The Kalman gain matrix is given by

Kt = Pt|t−1H
>
t S−1t .

With ỹt, St and Kt in hand, the optimal filtered update of the state xt is

x̂t = x̂t|t−1 + Ktỹt,

and for its associated covariance matrix,

Pt = (I −KtHt) Pt|t−1.

The Kalman filter is initialized with x0 and P0 determined from their unconditional moments and

is computed until the final time period T of data. We can show that the stationary P0 has the

expression

vec(P0) = (I−Q⊗Q)−1 vec(GΩG>) (37)

D.3.3 Kalman Smoother

With the estimates of the parameters on a sample up to time period T , the Kalman smoother

gives an estimate of xt|T , or an estimate of the state vector at each point in time given all available

information. With x̂t|t−1, Pt|t−1, Kt, and St in hand from the Kalman filter, the vector xt|T is

computed by

xt|T = x̂t|t−1 + Pt|t−1rt|T ,

where the vector rT+1|T = 0 and is updated with the recursion

rt|T = H>t S−1t
(
zt −Htx̂t|t−1

)
+ (I −KtHt)

>P>t|t−1rt+1|T .

64



Finally, to get an estimate of the shocks to each state variable under this model’s shock structure,

denoted by et, we can compute

et = Gεt = Grt|T .

D.3.4 Block Structure

The regional component of the model has a block structure separated by state. For example,

consider two states so that the log-linearized state-space representation is[
x1t

x2t

]
=

[
J1

J2

]
+

[
Q1 0

0 Q2

][
x1t−1

x2t−1

]
+

[
G1 0

0 G2

][
ε1t

ε2t

]

Under this block structure, the forecast covariance matrix Pt|t−1 also has a block structure. This

is clear from the expressions (36) and (37).

The block structure is also helpful for computational reasons. The log-likelihood becomes a

weighted sum of state-by-state log-likelihood functions. To show this: because Pt|t−1 has a block

structure, so does St. And because St has a block structure

log det St = log
∏
j

det Sjt =
∑
j

log det Sjt .

Also, because St has a block structure, so does its inverse, so that the last term in the log-

likehood can also be separated by state. The log-likelihood is then

logL(Z | ϑ) =
∑
s

logLs(Zs | ϑ).

D.4 Likelihood of the Aggregate Component

D.4.1 Solution with Zero Lower Bound

We write the model that approximates the ZLB in the following way. Under the ZLB, the economy

has time variation in the evolution of the model’s structural parameters At, Bt, Ct, Dt, and Ft,

where

Atxt = Ct + Btxt−1 + DtEtxt+1 + Ftεt.

For example, if the ZLB binds, the equation describing the Taylor rule becomes it = 0, changing

the structural matrices At, and so on. With time-varying structural matrices, the solution we seek

is the time-varying VAR representation:

xt = Jt + Qtxt−1 + Gtεt, (38)
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where Jt, Qt and Gt are conformable matrices that are functions of the evolution of beliefs about

the time-varying structural matrices At, Bt, Ct, Dt, and Ft (Kulish and Pagan, 2017). These

matrices satisfy the recursion

Qt = [At −DtQt+1]
−1 Bt

Jt = [At −DtQt+1]
−1 (Ct + DtJt+1)

Gt = [At −DtQt+1]
−1 Et,

where the final structures QT and JT are known and computed from the time invariant structure

above under the terminal period’s structural parameters–that is, the no-ZLB case.

Given a sequence of ZLB durations, the state-space of the model is

xt = Jt + Qtxt−1 + Gtεt

zt = Htxt.

The observation equation is time-varying because the nominal interest rate becomes unobserved

when it is at its bound.

Denote by ϑ the vector of parameters to be estimated and by T the vector of ZLB durations that

are observed each period. Denote by Z = {zτ}Tτ=1 the sequence of vectors of observable variables.

With Gaussian errors, the likelihood function L(Z,T | ϑ) for the aggregate component is computed

using the sequence of structural matrices associated with the sequence of ZLB durations, and the

Kalman filter:

logL(Z,T | ϑ) = −
(
NzT

2

)
log 2π − 1

2

T∑
t=1

log det HtStH
>
t −

1

2

T∑
t=1

ỹ>t

(
HtStH

>
t

)−1
ỹt.

D.4.2 Kalman filter

The state of the system is (x̂t,Pt−1). In the predict step, the structural matrices Jt, Qt, and Gt

are used to compute a forecast of the state x̂t|t−1 and the forecast covariance matrix Pt|t−1 as

x̂t|t−1 = Jt + Qtx̂t

Pt|t−1 = QtPt−1Q
>
t|t−1 + GtΩG>t .

This formulation differs from the time-invariant Kalman filter used at the state level, because in

the forecast stage, the matrices Jt, Qt and Gt can vary over time. We update these forecasts with

imperfect observations of the state vector. This update step involves computing forecast errors ỹt
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and its associated covariance matrix St as

ỹt = zt −Htx̂t|t−1

St = HtPt|t−1H
>
t .

The Kalman gain matrix is given by

Kt = Pt|t−1H
>
t S−1t .

With ỹt, St, and Kt in hand, the optimal filtered update of the state xt is

x̂t = x̂t|t−1 + Ktỹt,

and for its associated covariance matrix:

Pt = (I −KtHt) Pt|t−1.

The Kalman filter is initialized with x0 and P0 determined from their unconditional moments and

is computed until the final time period T of data.

D.4.3 Kalman Smoother

With the estimates of the parameters and durations in hand at time period T , the Kalman smoother

gives an estimate of xt|T , or an estimate of the state vector at each point in time given all available

information (Hamilton, 1994). With x̂t|t−1, Pt|t−1, Kt and St in hand from the Kalman filter, the

vector xt|T is computed by

xt|T = x̂t|t−1 + Pt|t−1rt|T ,

where the vector rT+1|T = 0 and is updated with the recursion:

rt|T = H>t S−1t
(
zt −Htx̂t|t−1

)
+ (I −KtHt)

>P>t|t−1rt+1|T .

Finally, to get an estimate of the shocks to each state variable under this model’s shock structure,

denoted by et, we compute:

et = Gtεt = Gtrt|T .

D.5 Posterior Sampler

This section describes the sampler used to obtain the posterior distribution of interest. We compute

the likelihood function at the state level and the aggregate level, together with the prior. The
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Table 15: Calibrated Parameters

Parameter Value Description Source/Target

ν 2 Inverse labor supply elasticity
β 0.995 Quarterly discount factor 2% annual real rate
ω 0.7 Weight on non-traded goods
σ 0.5 Elasticity traded/non-traded
κ 4 Elasticity traded goods Simonovska and Waugh (2014)
ψ 21 Elasticity labor aggregator Christiano, Eichenbaum and Evans (2005)

posterior of our full model P(ϑ | T,Z) satisfies

P(ϑ | T,Z) ∝ L(Z,T | ϑ)× P(ϑ).

We use a Markov Chain Monte Carlo procedure to sample from the posterior. It has a single

block, corresponding to the parameters ϑ.31 The sampler at step j is initialized with the last

accepted draw of the structural parameters ϑj−1.

First, start by selecting which parameters to propose new values. For those parameters, draw a

new proposal ϑj from a proposal density centered at ϑj−1 and with thick tails to ensure sufficient

coverage of the parameter space and an acceptance rate of roughly 20% to 25%. The proposal ϑj

is accepted with probability
P(ϑj |T,Z)
P(ϑj−1|T,Z) . If ϑj is accepted, then set ϑj−1 = ϑj .

E Additional Structural Model Estimation Results

E.1 Calibrated Parameters

Table 15 details the small set of parameters that are calibrated prior to estimation.

E.2 Full Structural Model Estimation Results

Tables 16 and 17 give the full prior and posterior distributions of the estimated structural param-

eters using state and aggregate data, respectively.

The parameters are the Calvo parameter on prices λp, the Calvo parameter on wages λw,

the persistence of TFP shocks ρz, the persistence of labor disutility shocks ρn, the persistence of

preference shocks ρb, the persistence of non-tradeable TFP shocks ρNz , and the respective standard

deviations of those four shocks. At the aggregate level, we also have the persistence of markup

shocks ρp, the standard deviation of markup shocks σp, and the standard deviation of policy interest

rate shocks σr. The Taylor rule parameters are given by αr, αp, αx, and αy.

31It is worth noting that as in Kulish, Morley and Robinson (2017), in addition to the structural parameters, one
can estimate the expected zero lower bound durations, in which case an additional block is needed in the posterior
sampler.
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Table 16: Structural Estimation, State Data Only

Prior Posterior

Parameter Dist Mean SD Mode 5% 95%

λp B 0.5 0.1 0.602 0.586 0.614
λw B 0.5 0.1 0.427 0.411 0.444
ρz B 0.5 0.2 0.993 0.990 0.995
ρn B 0.5 0.1 0.956 0.950 0.964
ρb B 0.5 0.2 0.960 0.954 0.963
ρNz B 0.5 0.2 0.961 0.955 0.968
σz IG 2.0 1.4 1.507 1.464 1.545
σn IG 2.0 1.4 0.033 0.031 0.036
σb IG 2.0 1.4 0.717 0.656 0.822
σNz IG 2.0 1.4 1.372 1.312 1.423

We choose the same prior as Smets and Wouters (2007) for the Calvo parameters. Our remaining

priors are chosen to be wide/diffuse. We choose a relatively tighter prior on the persistence of labor

disutility shocks at the state-level as preliminary estimations took ρn to a value of 1. We use

uniform priors over a wide range for the parameters of the Taylor rule.

E.3 Robustness

E.3.1 Estimation with Credit Channel

Results with an active credit channel and the use of household debt and house prices as observables

are shown in Tables 18 to 22. The structure of the results is similar to that of the main tables

reported in the text.

E.3.2 Smets and Wouters (2007) Priors on Calvo and Taylor Rule Parameters

Table 23 shows the estimated structural parameters when the same priors as Smets and Wouters

(2007) are used on the Calvo parameters and on the Taylor rule parameters. In these estimations,

there is a role for the credit channel.

E.3.3 State-Level Estimation with Consumption

The results from an estimation using state-level consumption spending are given in Table 24. The

estimated nominal frictions are lower–in the model, nominal output equals nominal consumption,

and since consumption is less volatile than output, the model estimation explains relatively more

volatile prices and wages with more flexible prices. The addition of credit shocks does not change

the estimated λp and λw, as for the estimation using nominal output.
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Table 17: Structural Estimation, Aggregate Data Only

Prior Posterior

Parameter Dist Mean SD Mode 5% 95%

λp B 0.5 0.1 0.920 0.897 0.943
λw B 0.5 0.1 0.844 0.796 0.880
ρz B 0.5 0.2 0.959 0.939 0.975
ρn B 0.5 0.2 0.065 0.032 0.176
ρb B 0.5 0.2 0.859 0.840 0.879
ρp B 0.5 0.2 0.905 0.858 0.945
σz IG 2.0 1.4 0.586 0.531 0.644
σn IG 2.0 1.4 0.097 0.067 0.206
σb IG 2.0 1.4 2.755 2.365 3.256
σp IG 2.0 1.4 0.389 0.287 0.523
σr IG 2.0 1.4 1.485 1.290 2.086
αr U 0.5 0.3 0.809 0.725 0.848
αp U 4.5 2.6 2.351 1.983 3.031
αx U 1.0 0.6 0.460 0.370 0.653
αy U 1.0 0.6 0.260 0.210 0.391

Table 18: Posterior Distributions, Relative State Data Only, with Credit

1977 to 2017 1977 to 1998 1999 to 2017

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

λp 0.59 0.58 0.61 0.58 0.55 0.60 0.62 0.61 0.64
λw 0.38 0.35 0.39 0.50 0.46 0.54 0.40 0.39 0.43

Table 19: Posterior Distributions, Aggregate Data Only, with Credit

1977 to 2015 1977 to 1998 1999 to 2015

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

Calvo Parameters

λp 0.92 0.89 0.94 0.84 0.79 0.89 0.93 0.90 0.94
λw 0.83 0.81 0.94 0.90 0.87 0.93 0.84 0.79 0.88

Taylor Rule Parameters

αr 0.80 0.72 0.85 0.68 0.40 0.78 0.77 0.70 0.84
αp 2.38 1.93 2.82 2.00 1.52 3.13 1.06 1.03 1.85
αx 0.44 0.37 0.65 1.56 0.89 1.94 0.18 0.13 0.24
αy 0.27 0.20 0.36 0.07 0.01 0.24 0.23 0.20 0.30

Notes: Beta(0.5, 0.1) prior on Calvos. Uniform priors on Taylor Rule parameters
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Table 20: Implied Slopes of Phillips Curve at Baseline Estimates, with Credit

1977 to 2015 1977 to 1998 1999 to 2015

A. State-Level Estimates

Prices? 0.279 0.306 0.228
Wages† 1.044 0.517 0.882

B. Aggregate-Level Estimates

1977 to 2017 1977 to 1998 1999 to 2017

Prices? 0.008 0.032 0.007
Wages† 0.034 0.012 0.031

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp
†: Wage Phillips curve slope is (1− βλw)(1− λw)/λw

Table 21: Posterior Distributions, Interaction with Policy Rules, with Credit

A. Aggregate Data Only, Fixed Taylor Rule Parameters

1977 to 2015? 1977 to 2015† 1977 to 2015‡

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

λp 0.92 0.89 0.94 0.87 0.80 0.89 0.92 0.89 0.94
λw 0.83 0.81 0.94 0.71 0.67 0.73 0.95 0.80 0.95

B. Aggregate Data Only, Policy Regime Periods

1965 to 2015 1965 to 1985§ 1986 to 2015§

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

λp 0.86 0.83 0.90 0.72 0.67 0.77 0.93 0.90 0.95
λw 0.90 0.87 0.93 0.91 0.88 0.94 0.87 0.83 0.90
αr 0.93 0.90 0.95 0.95 0.86 0.96 0.86 0.81 0.91
αp 4.02 3.30 7.29 4.48 2.81 9.43 2.42 1.85 3.62
αx 0.46 0.40 0.59 0.55 0.44 0.79 0.21 0.15 0.27
αy 0.77 0.46 1.13 0.82 0.34 1.72 0.27 0.20 0.38

?: Estimated Taylor Rule with uniform priors
†: Taylor Rule parameters fixed at 1977 to 1998 estimates (see Table 3)
‡: Taylor Rule parameters fixed at 1999 to 2015 estimates (see Table 3)
§: No credit or house price series and no credit or housing preference shocks

71



Table 22: Implied Slopes of Phillips Curve at Aggregate Estimates

1977 to 2015 1977 to 1998 1999 to 2015

A. Aggregate-Level Estimates, Fixed Taylor Rule

Prices? 0.008 0.020 0.008
Wages† 0.034 0.117 0.003

B. Aggregate-Level Estimates, Policy Regime Periods

1965 to 2005 1965 to 1985 1986 to 2005

Prices? 0.022 0.107 0.006
Wages† 0.012 0.009 0.020

?: Price Phillips curve slope is (1− βλp)(1− λp)/λp
†: Wage Phillips curve slope is (1− βλw)(1− λw)/λw

Table 23: Aggregate-Level, Smets and Wouters (2007) Priors on Calvos and Taylor Rule

1977 to 2015 1977 to 1998 1999 to 2015

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

λp 0.92 0.89 0.94 0.87 0.82 0.91 0.92 0.90 0.94
λw 0.84 0.79 0.88 0.90 0.87 0.93 0.84 0.80 0.89
αr 0.79 0.75 0.82 0.80 0.74 0.84 0.78 0.72 0.82
αp 1.70 1.53 1.87 1.61 1.44 1.81 1.41 1.24 1.62
αx 0.30 0.26 0.35 0.33 0.28 0.39 0.15 0.11 0.20
αy 0.20 0.16 0.25 0.18 0.13 0.24 0.23 0.19 0.26

Table 24: Posterior of Calvo Prices λp and Calvo Wages λw

(1) (2)

Mode 10% 90% Mode 10% 90%

λp 0.57 0.55 0.58 0.58 0.57 0.60
λw 0.33 0.31 0.35 0.34 0.33 0.36

(1): 1999 to 2015, consumption spending and no credit shocks
(2): 1999 to 2015, consumption spending
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