
 

 

STAFF REPORT 
No. 618 
 
 
 
 

Behavior and the Transmission of COVID-19 
 
 
February 2021 
 
 
 
 
 
 
 
Andrew G. Atkeson 
University of California, Los Angeles, 
Federal Reserve Bank of Minneapolis, 
and NBER 
 
Karen Kopecky 
Federal Reserve Bank of Atlanta 
 
Tao Zha 
Federal Reserve Bank of Atlanta, Emory 
University, and NBER 

 

 
 
DOI: https://doi.org/10.21034/sr.618  
Keywords: COVID; Behavior; Epidemics  
JEL classification: E1, E17, I10, I18 
 
The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the 
Federal Reserve System. 

https://doi.org/10.21034/sr.618


Behavior and the Transmission of

COVID-19∗

Andrew G. Atkeson† Karen Kopecky‡ Tao Zha§

December 31, 2020

Abstract

We show that a simple model of COVID-19 that incorporates feedback from

disease prevalence to disease transmission through an endogenous response of

human behavior does a remarkable job fitting the main features of the data on

the growth rates of daily deaths observed across a large number countries and

states of the United States from March to November of 2020. This finding,

however, suggests a new empirical puzzle. Using an accounting procedure akin

to that used for Business Cycle Accounting as in Chari et al. (2007), we show

that when the parameters of the behavioral response of transmission to disease

prevalence are estimated from the early phase of the epidemic, very large

wedges that shift disease transmission rates holding disease prevalence fixed

are required both across regions and within a region over time for the model to

match the data on deaths from COVID-19 as an equilibrium outcome exactly.

We show that these wedges correspond to large shifts in model forecasts for

the long-run attack rate of COVID-19 both across locations and over time.

Future research should focus on understanding the sources in these wedges in

the relationship between disease prevalence and disease transmission.

∗We are grateful to Hongyi Fu for superlative research assistance and Ben Moll for very useful

discussions. The views expressed herein are those of the authors and do not necessarily reflect the

views of the Federal Reserve Banks of Atlanta and Minneapolis, the Federal Reserve System, or

the National Bureau of Economic Research.
†Department of Economics, University of California, Los Angeles, NBER, and Federal Reserve

Bank of Minneapolis, e-mail: andy@atkeson.net
‡Federal Reserve Bank of Atlanta, e-mail: karen.kopecky@atl.frb.org
§Federal Reserve Bank of Atlanta, Emory University, and NBER, e-mail: zmail@tzha.net



1 Introduction

Since the outbreak of the COVID-19 pandemic in early 2020, epidemiologists and

economists have raced to develop models of the disease to be used for forecasting the

progression of the epidemic, for understanding the interaction of the epidemic with

the economy, and for evaluating the effectiveness of various interventions aimed at

mitigating the spread of the disease.1 The models developed by economists often dif-

fer from those developed by epidemiologists in that they include equations intended

to capture the impact of endogenous changes in human behavior undertaken in re-

sponse to the epidemic on the progression of the epidemic itself.2 We refer to such

models as behavioral SIR, or BSIR, models.

In this paper we develop and implement an accounting procedure to decompose

the variation in transmission rates needed to account for the data on COVID deaths

for a large number of countries and states of the United States into a portion that

is accounted for by a simple behavioral SIR model3 and a portion that must be

accounted for by a wedge between the transmission rate implied by the BSIR model

and that observed in the data.4 To implement this procedure, we first estimate the

parameters that govern the relationship between disease transmission and disease

prevalence for each region using data from the initial phase of the pandemic. Then,

1The CDC published a Science Agenda for COVID-19 on November 12, 2020 and
named improvements in mathematical modeling as an important scientific objective going for-
ward. See Priority Area 1, Objective 4 in https://www.cdc.gov/coronavirus/2019-ncov/more/
science-agenda-covid19.html.

2Tomas Phillipson pioneered the application of such models to the HIV epidemic. See, for exam-
ple, Phillipson and Posner (1993). For examples of economic models applied to COVID-19, see Eksin
et al. (2019), Keppo et al. (2020) (slides available at https://www.lonessmith.com/wp-content/
uploads/2020/04/pandemic-slides.pdf), Farboodi et al. (2020), Eichenbaum et al. (2020), Guerrieri
et al. (2020), Kaplan et al. (2020), Toxvaerd (2020), Acemoglu et al. (2020), Krueger et al. (2020),
Gans (2020) and many others.

3The model we use is derived from one first presented by Gianluca Violante at the Spring NBER
EFG meeting in slides available at http://conference.nber.org/confer/2020/EFGs20/Violante.pdf.
Our model is also very similar to that presented by John Cochrane’s at https://johnhcochrane.
blogspot.com/2020/05/an-sir-model-with-behavior.html. See also Eksin et al. (2019).

4Our COVID-accounting procedure follows the methodology for Business Cycle Accounting laid
out by Chari et al. (2007).
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given this parameterization of our simple BSIR model, we back out the “wedges” to

the equations used to model the relationship between disease incidence and disease

transmission needed to have the model account for the observed data on deaths as

an equilibrium outcome exactly in each location that we study. We argue that these

wedges are of interest because they correspond to shifts in the transmission rate of

COVID-19 holding behavior fixed. We also show that these wedges correspond in

magnitude to shifts in the model-implied forecast for the long-run attack rate for

COVID-19 both across locations and over time.

One central prediction of BSIR models is that the growth rate of infections and

daily deaths from the disease should fall in the initial phase of the pandemic much

more rapidly than would be predicted from standard SIR epidemiological models.

Behavioral models predict that humans endogenously reduce their interactions with

each other in response to rising disease prevalence, thus reducing the transmission

rate of the disease well before the population approaches herd immunity.5 A second

central prediction of these BSIR models is that, after an initial peak of infections and

daily deaths, the growth rate of infections and daily deaths from the disease should

remain relatively close to zero. This is due to an equilibrium outcome determined

by the endogenous response of human behavior to the prevalence of the disease.

Shocks that raise infections and daily deaths should lead to an endogenous reduction

in human activity, reducing transmission, and shocks that reduce infections and

daily deaths should lead to an endogenous increase in human activity, increasing

transmission. Thus, the endogenous behavioral response should lead, in equilibrium,

to a linear, rather than exponential, rate of increase of cumulative cases and deaths

from the disease.

We show that data on the growth rate of daily deaths from 69 countries and 34

states of the United States from March into November of 2020 conform to these

predictions of our simple BSIR model remarkably well, even when the model does

not include wedges to force the model to match the data. We show in the data that

5Eksin et al. (2019) apply a simple BSIR model to the study of data on prior epidemics and
emphasize that standard SIR models routinely overpredict the severity of epidemics.
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the growth rate of daily deaths in these locations started at high and highly dispersed

levels in the early days of the epidemic and then fell toward zero fairly rapidly. The

growth rates of daily deaths observed in these locations since this initial phase of the

epidemic have remained in a relatively narrow range around zero into mid-November.

This has remained true even with substantial second and third waves of daily deaths

observed in many locations this Fall and Winter.

Despite this remarkable match between the predictions of a BSIR model for the

growth rates of daily deaths and the evolution of deaths from the COVID-19 pan-

demic observed to date, other important features of the evolution of the pandemic

in many locations remain unexplained. The level of daily deaths per capita from the

disease has varied tremendously both across locations at a point in time and across

time in a given location. Many locations in Europe, such as Italy for example, saw a

big initial peak of daily deaths in the Spring, then experienced a substantial decline

in daily deaths to very low levels in the Summer, and now in the Fall, have seen

daily deaths return to their Spring peaks. Japan shows a similar pattern of multiple

waves of daily deaths, although at substantially lower levels throughout than have

been seen in Italy. Other locations, such as Arizona for example, showed a slow

and steady growth in daily deaths for several months in the initial phases of their

epidemics. When viewed through the lens of a behavioral SIR model, what forces

are driving these different disease outcomes across locations?

We use our accounting procedure to show that many of the patterns in daily deaths

observed in countries and states of the United States cannot be accounted for by our

simple BSIR model without large dispersion in wedges to the relationship between

disease prevalence and disease transmission across locations at a point in time and

large variation in these wedges in a given location over time. Moreover, the wedges

uncovered by our accounting procedure, interpreted as shifts in the transmission

rate of COVID-19 holding disease incidence fixed, are, after the initial phase of

the pandemic, very large in magnitude when interpreted in terms of the model-

implied forecast for the long-run attack rate. The intuition for the result that large

wedges are needed to account for the data is simple: because human behavior adjusts
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endogenously in a BSIR model to disease incidence, the magnitude of wedge needed

to match a given change in the growth rate of daily deaths is much larger than would

be the case if there were no endogenous offsetting response of behavior.

We see this result as an empirical puzzle: what might account for the very large

wedges required to have a BSIR model match the data? A great deal of research in

economics on the early phase of the COVID epidemic points to spontaneous changes

in human behavior as central to the changing dynamics of the epidemic relative to the

direct impact of government policies.6 We confirm this finding regarding the early

phase of the pandemic with our accounting procedure: our BSIR model without

wedges accounts for the data on deaths in the early phase of the epidemic quite well.

In contrast, after the initial phase of the epidemic, we find that the clear negative

relationships between disease incidence and the growth rate of daily deaths observed

in the data for many locations disappear — the wedges play a much more important

role in shaping outcomes.

Given the simplicity of our model, this cross-section and time-series variation in

“wedges” impacting COVID transmission could represent a wide array of factors

that might account for the discrepancies between the predictions of our simple BSIR

model and the data. Our hope (and our aim in future research) is to promote

further empirical study of what factors might account for these “wedges”, both in

terms of their sign and their magnitudes. Are government-mandated lockdowns or

mask mandates key? Is seasonality in virus transmission key? Are these wedges the

result of model mis-specification? Is adding behavioral or network heterogeneity to

the model key for accounting for these “wedges”? Future research should aim at

shedding light on the answers to these questions.

In this paper, we examine the implications of one potential factor that might

account for the wedges in our model — pandemic fatigue. By this term, we mean a

substantial reduction in the responsiveness of behavior to disease prevalence. We offer

6See, for example, Cronin and Evans (2020), Goolsbee and Syverson (2020), Fetzer et al. (2020),
Gupta et al. (2020), Arnon et al. (2020), Correia et al. (2020), Sheridan et al. (2020), and Chapter
2 of the October 2020 edition of the IMF’s World Economic Outlook.
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this measurement of the wedges implied by an alternative specification of our model

as an exercise to illustrate what might be learned from our procedure. We show that

if we recalculate the wedges implied by our model under the assumption that the

reduced-form response of disease transmission to disease prevalence falls substantially

in each location after the initial phase of the pandemic, then the dispersion of wedges

required to have this alternative model match the data exactly also falls substantially.

The flip side of this finding is that the median wedge required to have this al-

ternative model match the data is now large and negative. In other words, for our

model with pandemic fatigue to match the data on deaths, one must assume that

disease transmission holding behavior fixed fell substantially across the large number

of countries and states of the United States that we study. Absent future shifts in

the wedges, such a model would imply that the forecast for the long-run attack rate

for COVID-19 has fallen substantially in many locations across the world. If this

alteration of the model-implied forecast for the long-run attack rate of COVID-19

were correct, then the model’s predictions for the fraction of the world’s population

that needs to be vaccinated to control the further spread of the disease might be

much lower than is currently estimated. We see this finding as illustrating what

might be learned with further research into the source of the wedges uncovered by

our accounting procedure.

The remainder of our paper is organized as follows.

In section 2, we present the epidemiological model that we use for measurement

of the dynamics of the COVID-19 pandemic in the 69 countries and 34 states of

the United States that we study. This model is a standard SIR model in which the

transmission rate is allowed to vary over time in an arbitrary manner. We use this

model to interpret data on cumulative deaths, daily deaths, and the growth rate of

daily deaths in a region at a point in time in terms of the fractions of the population

in a region that remain susceptible, are actively infected, or are recovered or dead

at that point in time as well as the effective reproduction number and transmission

rate of the disease in that region at that point in time. This measurement procedure
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establishes the targets in the data we seek to account for with our BSIR model.

In section 3, we present the method we use to estimate the level of cumulative

deaths, daily deaths, and the growth rate of daily deaths in each region over time.

This estimation procedure is designed to overcome the problem that data on COVID

deaths is reported with considerable noise and that we require consistent estimates

of cumulative deaths, daily deaths, and the growth rate of daily deaths from these

noisy data. In this estimation procedure, we fit a mixture of modified log-logistic

densities to the reported data on daily deaths in each location. We use this mixture

of modified log-logistic densities to compute the growth rates of daily deaths, the

level of daily deaths, and the cumulative level of daily deaths for each location. We

choose to use a mixture of modified log-logistic densities to fit the data on daily

deaths in part because this distribution has the property that the implied growth

rate of daily deaths remains bounded as is required by the structure of an SIR model

with a time-varying transmission rate.

We then use this estimation procedure and our measurement model to establish

four key facts about the evolution of the COVID pandemic seen in the countries and

states of the United States that we study. We do this in subsection 3.1. These four

key facts are as follows. First, the growth rate of daily deaths fell rapidly everywhere

from high, and initially highly dispersed levels, down to much lower levels in the

first 30 days after each region reached 25 cumulative deaths. Second, after this

initial period, the growth rate of daily deaths in each location has hovered within a

relatively narrow band that includes zero. Third, the dispersion in the cross section

across regions of the growth rate of daily deaths fell rapidly in the first 10 days or

so of the epidemic and has remained at a relatively low level since then. And finally,

fourth, when interpreted through the lens of a variety of epidemiological models,

these first three facts regarding the growth rates of daily deaths also apply to the

estimated effective reproduction numbers and disease transmission rates implied by

the deaths data and our simple SIR model for measurement.

In section 4, we then introduce our behavioral SIR model and analyze the dynamics
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implied by this model. In our BSIR model, we assume two simple relationships that

govern the transmission rate of disease. One relationship is that between the current

severity of the epidemic measured as the level of daily deaths (or equivalently the

current fraction of the population actively infected) and the level of human activity.

The other relationship is between the level of human activity and the transmission

rate of the epidemic. We introduce “wedges” in the model as shifts in these two

relationships. We analyze the reduced form of the model that combines these two

relationships into a single reduced-form relationship between the current severity of

the epidemic measured as the level of daily deaths and the transmission rate of the

disease and consider a single composite wedge to this relationship.7

In section 5, we first review some of the key implications of our simple BSIR model

that can be derived analytically when the “wedges” are all equal to zero. We highlight

that this model can account for a rapid decline in the growth rate of daily deaths

(and the associated effective reproduction number) in the initial phase of a pandemic

from high and highly dispersed levels. This model-implied decline in the growth rate

of daily deaths occurs well before a substantial portion of the population becomes

immune to the disease, and thus the BSIR model implies a much lower peak of

infections and daily deaths than is predicted by an equivalent SIR model that does

not incorporate an impact of changes in human behavior on disease transmission.

We analyze the phase diagram that characterizes the model-implied dynamics of the

disease to discuss how, absent “wedges”, this BSIR model implies that, after an

initial peak, the growth rate of daily deaths should settle in to a level a little below

zero with a corresponding effective reproduction number a little below one.8

We then use this phase diagram to discuss some discrepancies between the model’s

implications for the growth rate of daily deaths and the data observed in many

7Note that we do not directly model optimizing behavior by rational agents as is done in many
economics papers cited in footnote 2 above. While our modeling approach suffers in this respect
that it is not fully structural, it does allow us to sidestep the issues connected with modeling agents’
information and expectations in shaping individual behavior. We leave the measurement of wedges
in such a model to future work.

8We thank Ben Moll for introducing us to this phase diagram.
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countries and states of the United States if the model does not allow for “wedges”.

First, we use the phase diagram that characterizes the model implied dynamics of the

disease to argue that by itself, the BSIR model cannot account for the rapid decline

in daily deaths to very low levels found in many locations such as Italy, Japan, Spain,

New York, Sweden, etc. that were first hit hard with the disease. To account for

the patterns over time in these data on daily deaths, we must introduce “wedges”

that reduce the disease transmission rate in the model below the levels that would be

implied if the behavioral relationships assumed in the model were stable over time.

Moreover, our BSIR model cannot account for steady positive growth rates of daily

deaths observed in many locations, such as in Arizona, or in second or third waves

occurring in many places after the summer of 2020. To account for the patterns over

time in these data on daily deaths, we must introduce “wedges” that increase the

disease transmission rate in the model above the levels that would be implied if the

behavioral relationships assumed in the model were stable over time. We also show

how these wedges correspond to shifts over time in the model-implied forecast for

the model-implied long-run attack rate.

In section 6, we then turn to our accounting procedure. To set the parameters

of the BSIR model that we use for our accounting exercise, we estimate the two

behavioral parameters of our BSIR model for a large number of countries and states

of the United States using data from the earliest phase of the pandemic. One of

these parameters corresponds to the basic reproduction number of COVID-19 in

each location at the start of the epidemic. The other corresponds to the semi-

elasticity of the transmission rate with respect to the level of daily deaths implied

by the reduced-form of the equilibrium of the model. We describe this estimation

procedure in subsection 6.1.

We then use this estimated version of our model in each location to back out the

“wedges” required to account for the data on deaths found using our measurement

procedure above. in subsection 6.2, we summarize our main findings for the whole

group of countries and US states that we study. In subsection 6.3, we look at results

for Italy, Arizona, and Japan specifically to highlight variation in wedges over time
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within a given region.

In subsection 6.4 we compute the wedges implied by an alternative specification

of our model with pandemic fatigue.

In section 7, we conclude.

2 Interpreting deaths data with an SIR model

The SIR epidemiological model we use to interpret the data on deaths from COVID-

19 is as follows. For notational simplicity, we suppress reference to the region i.

The population is set to N . At each moment of time, the population is divided into

four categories (states) that sum to the total population. These states are susceptible

S, infected I, resistant R , and dead D. Agents that are susceptible are at risk of

getting the disease. Agents that are infected are contagious and may pass it on to

others through some form of interaction with susceptible agents. Agents that are

resistant are not at risk of getting the disease, either because they have immunity

built up from a vaccine or from previous experience with this or similar diseases.

Likewise, those who have died from the disease are no longer at risk of getting the

disease. We normalize the total population N = 1, so all results regarding S, I, R

and D should be interpreted as fractions of the relevant population.

We use R(t) to denote the effective reproduction number of the disease at date t.

This effective reproduction number is the ratio of the rate at which infected agents

infect susceptible agents to the recovery rate of infected agents from the disease at

date t.

The equations of the model can be stated in terms of the effective reproduction

number as9

dS(t)/dt = −R(t)γI(t) (1)

9A discrete-time version of a SIR model is discussed in Fernandez-Villaverde and Jones (2020).
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dI(t)/dt = (R(t)− 1) γI(t) (2)

dR(t)/dt = (1− ν)γI(t) (3)

dD(t)/dt = νγI(t) (4)

The parameter γ governs the rate at which agents who are infected stop being

infectious and hence stop transmitting the disease. We refer to this parameter as

the recovery rate. This parameter is considered a fixed parameter determined by the

biology of the disease. We denote the fatality rate from the disease by ν.

The parameter β(t) is the rate at which infected agents spread the virus to others

that they encounter at date t. We refer to this parameter as the transmission rate.

We define the ratio β(t)/γ to be the normalized transmission rate. It is standard to

refer to the value of the normalized transmission rate at the start of the pandemic

before any mitigation measures and use of prophylactics are undertaken as the basic

reproduction number of the disease. We denote this basic reproduction number by

R0 ≡ β(0)/γ.

We assume that infected agents interact randomly with other agents in a uniform

manner so that the effective reproduction number of the disease is given by the

product of the normalized transmission rate and the fraction of agents who remain

susceptible to the disease:

R(t) =
β(t)

γ

S(t)

N −D(t)
. (5)

We see from equation (5) that the effective reproduction number can fall either due

to changes in the normalized transmission rate or changes in the fraction of the

population remaining susceptible to the disease.
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To invert this model to interpret data on deaths note that from (4), we have

I(t) =
1

νγ
dD(t)/dt. (6)

Using (3) and (4) together and the assumption that R(0) = D(0) = 0, we have that

R(t) =
1− ν
ν

D(t). (7)

Using that the states must sum to one, we have

S(t) = 1− 1

ν
D(t)− 1

νγ

dD(t)

dt
. (8)

To obtain the effective reproduction number implied by deaths data, note that from

equations (2), (6), and the time derivative of this second equation, we have

R(t) = 1 +
1

γ

d2D(t)
dt2

dD(t)
dt

(9)

where the last term in this equation can be interpreted as the time derivative of the

logarithm of daily deaths.

Note that this equation (9) implies that there is a linear relationship between the

growth rate of daily deaths (here measured as the time derivative to the logarithm

of daily deaths) and the model-implied effective reproduction number. This repro-

duction number is equal to one when the growth rate of daily deaths is equal to zero.

The slope of this relationship is given by 1/γ corresponding to the number of days

on average that an infected individual remains infectious. To compute estimates of

the effective reproductive number that are consistent with our estimated paths for

the growth rate of daily deaths, we set γ = 0.2. This value implies that if the growth

rate of daily deaths is 30 percent per day initially, the basic reproduction number,

the value of the effective number at date t = 0, is 2.5. These values are in line with
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CDC estimates.10.

Given these equations, one can obtain an estimate of the normalized transmission

rate of the disease from equations (5) and (8). Thus, one can use this estimate to

determine the extent to which the model-implied effective reproduction number has

changed due to changes in the transmission rate versus a reduction in the fraction of

the population remaining susceptible to the disease. For this exercise we also need

to set a value for the infection fatality rate ν. We set ν = 0.005. This level is equal

to that recommended to modelers by the CDC for those aged 50-69. 11 The level

of the fatality rate, if held constant, does not impact our estimates of the evolution

of the effective reproduction number in equation 9. In the appendix we discuss the

impact of changes in the fatality rate over time on the estimation of R(t).

3 Death Data and Estimation

We now discuss how we recover consistent estimates of the growth rate of daily

deaths, the level of daily deaths, and the level of cumulative deaths from noisy

reported data on daily deaths.

The data sources for daily deaths are New York Times for U.S. states and Johns

Hopkins University for other countries. For each location i, our estimation period

begins at the location specific date when cumulative deaths reached 25 in that loca-

tion and ends on November 12, 2020. The 69 countries and countries that we study

are Afghanistan, Algeria, Argentina, Armenia, Australia, Bangladesh, Belarus, Bel-

10See the range of estimates of the basic reproduction number for COVID-19 recommended by
the CDC for use in models available in Table 1 at https://www.cdc.gov/coronavirus/2019-ncov/
hcp/planning-scenarios.html. The range of estimates of R0 that the CDC recommends (as of
September 2020) is from 2 to 4 with a most likely estimate of 2.5

11See Table 1 at https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html. See
also O’Driscoll et al. (2020). We make the simplifying assumption that the infection fatal-
ity rate from COVID has remained constant over time. See https://www.nature.com/articles/
d41586-020-03132-4 for a recent discussion of evidence that this fatality rate has declined some-
what over time.
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gium, Bolivia, Bosnia, Brazil, Bulgaria, Canada, Chile, China, Colombia, Costa Rica,

Czechia, Denmark, Dominican Republic, Ecuador, Egypt, El Salvador, Ethiopia,

France, Germany, Guatemala, Honduras, Hungary, India, Indonesia, Iran, Ireland,

Israel, Italy, Japan, Jordan, Kazakhstan, Kenya, Krygyzstan, Mexico, Moldova, Mo-

rocco, Nepal, Netherlands, Nigeria, North Macedonia, Oman, Pakistan, Panama,

Paraguay, Peru, Philippines, Poland, Portugal, Romania, Russia, Saudi Arabia,

South Africa, Spain, Sudan, Sweden, Switzerland, Tunisia, Turkey, the United King-

dom, and Ukraine. The 34 US states that we study are Alabama, Arizona, Arkansas,

California, Colorado, Connecticut, Florida, Georgia, Illinois, Indiana, Iowa, Kansas,

Kentucky, Louisiana, Maryland, Massachusetts, Michigan, Minnesota, Mississippi,

Minnesota, Missouri, Nevada, New Jersey, New Mexico, New York, North Carolina,

Ohio, Oklahoma, Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas,

Virginia, Washington and Wisconsin. The rest of the U.S. is counted as another

region.

One problem that we face is that the data on daily deaths due to COVID-19

are noisy. In many regions, there are both substantial day-of-the-week effects and

occasional large spikes in reported deaths due to, among other things, changes in the

criteria used to classify deaths as being due to COVID-19. To estimate the trend

growth of daily deaths from these noisy data, we assume that the trend path of daily

deaths in each location is given by a mixture of modified log-logistic density functions

which we estimate using a Bayesian procedure.

The modified log-logistic distribution that we use is given as follows. The jth

distribution in the mixture of distributions for region i has cumulative distribution

function Fi,j(t) = 0 for t = 0 and, for t ≥ 0,

Fi,j(t) =
Hi,j(t)

1 +Hi,j(t)
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and density fi,j(t) = 0 for t < 0 and, for t ≥ 0,

fi,j(t) =
H ′i,j(t)

(1 +Hi,j(t))
2 (10)

with

Hi,j(t) =

(
t+ qi,j
ai,j

)bi,j
−
(
qi,j
ai,j

)bi,j
with parameters ai,j, bi,j, qi,j > 0.

With this specification of the distribution of deaths, we have that the growth rate

of deaths corresponding to the jth distribution in the mixture of distributions for

region i is equal to zero for t < 0 and, for t ≥ 0,

gi,j(t) =
f ′i,j(t)

fi,j(t)
=
bi,j − 1

t+ qi,j
− 2

bi,j
ai,j

(
t+qi,j
ai,j

)bi,j−1
1 +

(
t+qi,j
ai,j

)bi,j
−
(
qi,j
ai,j

)bi,j (11)

We see here one feature of the modified log-logistic distribution is that, if qi,j > 0,

then the growth rate of the density remains bounded for all t as is required by

any distribution of deaths produced as an outcome of an SIR model with bounded

transmission rates.

We assume that observed daily deaths are the sum of a mixture of modified log-

logistic density functions and a residual whose magnitude is regime-specific. The

regime-switching residuals allow us to effectively deal with erratic noises in the data.

The Bayesian procedure allows us to construct posterior probability bands around

the estimate. It also allows us to derive smooth estimates of the first and higher

derivatives of daily deaths that we need to recover estimates of the effective repro-

duction numbers and transmission rates of the disease from several structural SIR

models.

Our estimation methodology begins by scaling the cumulative death data in lo-

cation i so that Di(t)/(1 + di)Di(T ) lies between zero and one, where Di(T ) is the
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cumulative number of deaths in location i at the end of the estimation period and

di > 0 is a scale parameter to be estimated as described in the appendix. Let ∆DData
i,t

be the daily measured object for dDi(t)/dt and denote

∆D̃Data
i,t =

∆DData
i,t

(1 + di)DData
i,T

.

Given the daily death data and the value of di, we run a non-linear regression with a

mixture of modified log-logistic density functions and regime-switching heteroskedas-

tic errors:

∆D̃Data
i,t =

J∑
j=1

wi,j fi,j (t− t0,i − ci,j) + σi,ktεi,t,

where εi,t is an iid standard normal random residual, weights wi,j are non-negative

and sum to one across j, and fi,j is defined as in equation 10 with parameters

ai,j, bi,j, qi,j when t− t0,i− ci,j ≥ 0 and t0,i is the time when the cumulative death toll

reached 25 for location i. The density fi,j is equal to zero when t− t0,i−ci,j < 0. The

parameters ci,j control the date at which each density in the mixture starts relative

to the date t0,i when cumulative deaths first reach 25 in region i.

The switching state kt ∈ {1, . . . ,K} follows a Markov-switching process and can

accommodate both a large surge in daily deaths and a low death volatility typically

associated with a low number of deaths.12

Given the estimates of our death model parameters, we construct the estimates of

death growth rates by taking the time derivative of our estimated mixture of modified

log-logistic densities

ĝi(t) =
J∑
j=1

wi,j gi,j(t)
fi,j (t− t0,i − ci,j)∑J

j=1wi,j fi,j (t− t0,i − ci,j)

where gi,j(t) is given in equation 11.

12For the selection of K and estimation details, see Appendix ?? and Atkeson et al. (2020).
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Figure 1 shows the fit of our estimation to the noisy daily death data for three

selected locations: Italy, Arizona, and Japan. We use these three regions as examples

throughout the paper. The x-axis of these panels also show the starting date at which

each of these regions first reached 25 cumulative deaths. The left panel shows the fit

of the model to the data on daily deaths. The right panel shows the fit of the model

to the data on cumulative deaths.

3.1 Findings

Our estimation results yield the following four stylized facts about the COVID-19

epidemic.

Fact 1. The growth rate of daily deaths from COVID-19 fell rapidly everywhere

within the first 30 days after each region reached 25 cumulative deaths.

Fact 1 is shown in Figure 2. The solid black line shows that the median estimated

growth rate of daily deaths fell rapidly from an initial level of about 12 percent to

zero within the first 30 days of the estimation period. Notice that the 66% and 95%

posterior probability intervals computed across all locations that we consider, the

dashed lines in the figure, follow a similar pattern.13

Fact 2. After this first period of rapid decline, the growth rate of daily deaths in all

regions has hovered in an interval including zero.

As Figure 2 shows, after the initial 30-40 day period, the median growth rate of

daily deaths has been nearly flat and slightly below zero. The 66% and 95% posterior

probability intervals have also been low relative to their initial range.

Fact 3. The cross-regional standard deviation of growth rates of deaths fell rapidly

in the first 20 days of the epidemic and has, subsequently, remained low relative to

its initial level.
13The posterior probability intervals in Figure 2 include both location uncertainty and sampling

uncertainty. However, most of the cross-sectional dispersion in growth rates in the figure is driven
by location uncertainty as sampling uncertainty within a location is small.
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Fact 3 can also be seen in Figure 2. The shrinking of the two-thirds and 0.95%

posterior probability intervals shows that the dispersion in death growth rates across

locations fell sharply within the initial 20 days of the epidemic. Overall levels of

dispersion remain small relative to their initial values since that initial phase of the

pandemic, despite large second waves observed in the Fall in many locations.

Equation (5) illustrates that the effective reproduction number can fall due to

both declines in the normalized transmission rate and declines in the fraction of the

population remaining susceptible to the disease. We use our estimated paths for daily

deaths and the equations of the SIR model to determine the relative contributions

of each. We find that the rapid decline in daily death growth rates early on in the

epidemic is primarily due to a rapid fall in the transmission rate of the disease as

illustrated by the bottom panel of Figure 2. Disease transmission rates, like the

effective reproduction numbers, fell early on in the epidemic from widely dispersed

initial levels and and have since remained close to 1.

To explore the robustness of our results to model uncertainty, we consider three

variants of the baseline SIR model: an SEIR model which extends the SIR model by

assuming agents first become exposed to the disease before becoming infectious, an

SIHR model which allows for a longer period between infection and death by adding

a hospitalized state, and an SEIHR model which extends the SIR model by adding

both the exposed state and the hospitalized state. Following a similar procedure as

with the baseline SIR model, for each model extension we are able to express the

effective reproduction number as a function of model parameters, as well as, daily

deaths and its derivatives.

4 A Behavioral SIR model

Our behavioral SIR model is built on the SIR model in section 2 with dynamics given

in equations 1 to 5. That model for measurement allows the transmission rate β(t)

to be an arbitrary function of time. The behavioral aspect of the BSIR model that
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we study introduces a specific model of the evolution of the transmission rate β(t)

over time as an endogenous response to the prevalence of the disease. This model of

the transmission rate is given by two relationships described as follows.

We assume that the transmission rate of the disease at time t in region i, denoted

by βi(t), is a function of human activity in the region Yi(t) at that date

βi(t) = β̄iYi(t)
α exp(ψβ,i(t)) (12)

The parameter β̄i in equation 12 is a fixed coefficient that captures features of the

population and environment of region i determined prior to the epidemic that might

impact transmission. Factors considered in the literature include population den-

sity, modes of transportation (subway vs. car, etc.), household and demographic

structure, cultural norms (bowing vs. shaking hands or kissing), temperature and

humidity, etc.

The parameter α captures the elasticity of transmission with respect to activity.

For simplicity, we assume that this parameter is common across regions. We set

this parameters α = 2 to capture the idea that the number of interactions between

individuals goes up with the square of the activity level of all individuals.

The parameter ψβ,i(t) represents a potentially time-varying wedge shifting the

region-specific relationship between activity and transmission. This wedge may rep-

resent the impact of policy and/or natural variation in the transmission of the virus

over time.14 When interpreting variation in ψβ,i(t) as representing the impact of poli-

cies, here we are thinking about policies such as mask-wearing, ventilation, physical

distancing, redesign of workspaces, or other measures implemented after the start of

the epidemic that reduce transmission given a fixed level of activity.

We normalize ψβ,i(0) = 0 and we normalize the level of activity at the start of the

14Seasonality in virus transmission is one candidate for a natu-
ral force. See, for example https://www.sciencemag.org/news/2020/03/
why-do-dozens-diseases-wax-and-wane-seasons-and-will-covid-19 for a discussion of seasonal-
ity in the transmission of COVID-19 and a variety of other viral diseases.
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pandemic to Yi(0) = 1. Given these normalizations, the parameter β̄i determines the

transmission rate of the virus in region i at the start of the epidemic, with the basic

reproduction number of the virus in this region given by R0,i = β̄i/γ.

Next, we introduce the behavioral component of the model. We assume that

individuals’ decisions to engage in activity in region i at time t, Yi(t), are a declining

function of the time derivative of cumulative deaths, Ḋi(t), which we refer to as the

current level of daily deaths. We specify this function describing behavior as

Yi(t) = exp(−κiḊi(t) + ψy,i(t)) (13)

Here, κi > 0 represents the semi-elasticity of activity Yi(t) with respect to daily

deaths. Note that we allow the semi-elasticity κi to vary by region. This semi-

elasticity might vary depending both on individuals’ opportunities to reduce activity

by working from home, etc. and depending on their beliefs about the personal trade-

offs involved in exposing themselves to virus transmission.

The variable ψy,i(t) in equation 13 represents a time-varying shifter to the region-

specific relationship between deaths and activity. We might interpret ψy,i(t) as re-

flecting policies such as lockdowns or closures that would reduce activity below what

agents might choose in a decentralized fashion. Note that if such policies are imposed

conditional on the state of the disease, with restrictions on activity becoming more

severe as the level of daily deaths rises (as in ψy,i(t) = −ηiḊi(t) with ηi > 0), then

this dimension of policy heterogeneity across regions would also be a reason for why

the semi-elasticity of activity with respect to daily deaths would vary across regions.

Thus, we interpret differences in the semi-elasticity of activity with respect to daily

deaths as due to either private behavior or systematic public policy.

Observe that by substituting equation 13 into equation 12, we get a reduced-form

relationship between the current level of daily deaths and the transmission rate given

by

βi(t) = β̄i exp(−ακiḊi(t) + ψi(t)) (14)
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where ψi(t) is the composite wedge

ψi(t) ≡ αψy,i(t) + ψβ,i(t) (15)

In what follows, we focus on measuring this composite wedge ψi,t without breaking

it down into its components ψy,i(t) and ψβ,i(t). We leave this further decomposition

to future work.

Recall that since from equation 4, daily deaths Ḋi(t) are directly proportional to

the fraction of the population that is currently actively infected Ii(t), we can rewrite

equation 14 as

βi(t) = β̄i exp(−ασiIi(t) + ψi(t)) (16)

with σi = κiνγ.

To solve this model for a particular region i, we first specify initial conditions

Si(0), Ii(0), Ri(0), Di(0), parameters γ, ν, β̄i, α, σi, and time paths for the composite

wedge ψi(t). We then solve for the implied evolution of the disease using equations

1 - 5 the reduced form for transmission in equation 16. To solve for the path for

activity Yi(t), one must separately specify paths for “wedges” ψy,i(t) and ψβ,i(t).

5 BSIR model implied dynamics

We now study the epidemiological dynamics implied by our BSIR model. We are

able to derive two analytical results by studying the phase diagram of the dynamics

of the model with no wedges (so that ψβ(t) = ψy(t) = ψ(t) = 0 for all t). We then

demonstrate a third result with numerical examples. Finally we illustrate the role of

time varying wedges, as modeled by changes over time in ψ(t) on the model-implied

dynamics of the epidemic, and demonstrate that the magnitude of the “wedges”, as

measured by the shift in transmission rates holding disease prevalence constant, are

much larger than the corresponding equilibrium shifts in the effective reproduction

number induced by these wedges.
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5.1 Analytical results: single peak of and slow decline in

daily deaths

The first of our two analytical results is that the BSIR model implies that the path of

active infections I(t) and daily deaths Ḋ(t) are both single-peaked. With no wedges,

the model cannot generate multiple waves of infections and daily deaths. This is a

property that our BSIR model shares with the standard SIR model.

The second analytical result is that, after the peak of infections and daily deaths,

these outcomes cannot fall rapidly to a low level without substantial depletion of the

pool of susceptible agents in the population S(t). Thus, with no wedges, the model

cannot account for the patterns of daily deaths seen in many of the regions that were

initially hard hit followed by a steep decline in daily deaths to very low levels.

To establish these results, we develop the phase diagram representing the model

dynamics implied by equations 1 to 5 and 16 as follows. Given that N = S(t)+I(t)+

R(t) + D(t) for all t and that the levels of R(t) and D(t) are directly proportional

to each other when R(0) = D(0) = 0, we can summarize the state of the model and

the associated model dynamics with the mapping between the state of the model as

captured by the pair (S(t), I(t)) and the implied dynamics (Ṡ(t), İ(t)). We do so in

the phase diagram shown in Figure 3.

Figure 3 shows S/N on the x-axis and I/N on the y-axis. The arrows in the figure

show the signs of Ṡ(t) and İ(t) in each region of the state space S/N ∈ (0, 1) and

I/N ≥ 0. From equation 1, we have that Ṡ(t) < 0 for all values of (S, I) such that

S, I > 0. Observe from equation 5 that the effective reproduction R(t) > 1 when
β(t)
γ
S(t) > 1 and R(t) < 1 when β(t)

γ
S(t) < 1. Thus, from equation 2, we have that

İ(t) > 0 when β(t)
γ
S(t) > 1 and İ(t) < 0 when β(t)

γ
S(t) < 1. From equation 16, we

have that the transmission rate β(t) is a strictly decreasing function of I(t). Thus,

equation 16 defines a locus of points (S̃, Ĩ) such that İ = 0. We show this locus of

points as a black curve in Figure 3. We then have that İ > 0 when (S, I) lies below

this locus of points and İ < 0 when (S, I) lies above this locus of points.
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Note that this locus of points such that İ = 0 intersects the x-axis at a point S̄

marked in the figure the level of which is determined by the basic reproduction num-

ber implied by our BSIR model of R0 = β̄/γ. In fact, this point given by S̄ = 1/R0

also corresponds to the herd immunity threshold in a standard SIR model with a

constant transmission rate β̄. Thus, the long-run cumulative fraction of the popula-

tion infected in our BSIR model is at least as large as the fraction corresponding to

the herd immunity threshold in a standard SIR model. Hence, we interpret 1− S̄ as

our model’s forecast for the long-run attack rate.

The red curve in Figure 3 shows the path of (S(t), I(t)) followed in the solution

of the model. This pair of outcomes (S(t), I(t)) starts in the lower left corner of

the figure with S(0) very close to one and I(0) positive but very close to zero. The

fraction of the population infected rises rapidly initially and crosses over the black

locus of points such that İ = 0 and then falls slowly, remaining above that locus

until the fraction of agents remaining susceptible falls below the point S̄ where the

locus of points such that İ = 0 intersects the x-axis and I(t) asymptotes to zero.

We obtain our two analytical results immediately from this phase diagram. First,

the path of infections I(t), and hence daily deaths Ḋ(t), is single-peaked. This follows

from the observations that I(t) rises until the red line crosses over the black locus of

points such that İ = 0 and I(t) falls after that point. Note that I(t) cannot cross

back over the black locus of points such that İ = 0 so it cannot start rising again.

Second, note that the fraction of the population infected I(t), and the correspond-

ing level of daily deaths Ḋ(t) from equation 4, cannot fall to a low level after reaching

a first peak without a substantial decline the fraction S(t) of the population suscep-

tible to the disease. This result follows from the observation that I(t) cannot cross

back over the black locus of points such that İ = 0 from above. Thus, this locus of

points defines a lower bound on the fraction on the population infected and the cor-

responding level of daily deaths that can be observed after a first peak of infections

and deaths.

In Figure 4, we show a version of this phase diagram for our model with three
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different specifications of the parameter σ governing the semi-elacticity of the trans-

mission rate with respect to infections in equation 16. We see in this figure that the

qualitative features of the solution of the model observed in Figure 3 hold even if

this semi-elasticity varies.

5.2 Numerical Result: without wedges the BSIR model can-

not generate relatively slow but steady growth in daily

deaths.

We establish a third result with numerical examples. This third result is that the

BSIR model cannot produce outcomes with a relatively slow but steady growth of

daily deaths in a region (growth on the order of 2 to 5 percent per day over a month

or so) unless the basic reproduction number in that region is relatively low — on the

order of R0 = 1.2 or 1.3. Thus, the BSIR model cannot reproduce patterns of daily

deaths seen in locations such as Arizona or Brazil unless COVID in such locations

have quite low basic reproduction numbers relative to CDC estimates of this number.

In Figure 5, we show the paths of the basic reproduction number and daily deaths

per million corresponding to the three solutions of our BSIR model shown in the

phase diagram space in Figure 4. These three examples all set the basic reproduction

number of the model to R0 = 2.5, in line with CDC preferred estimates of that

number. We see in Figure 5 that while the paths of daily deaths per million implied

by these three different specifications of our model differ substantially by the peak

level of daily deaths, they all three imply similar paths for the effective reproduction

number of the disease, starting at R0 = 2.5 and then falling rapidly below one. From

equation 9, with our choice of γ = 1/5, these dynamics of the effective reproduction

number correspond to a drop in the growth rate of daily deaths from 30 percent per

day to a growth rate below zero over a period of about one month to six weeks.

Figure 5 illustrates our third result. Specifically, if our BSIR model has a basic

reproduction number of 2.5, it cannot produce outcomes with a steady growth of daily
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deaths in a region on the order of 2 to 5 percent per day (an effective reproduction

number on the order of R(t) = 1.1 to 1.25) over an extended period of time. Instead,

as we see in the figure, the growth rate of daily deaths and the associated effective

reproduction number falls rapidly over time from a high level to a level below zero.

In Figure 6 we show alternative simulations of the model with the basic repro-

duction number R0 = 1.25 rather than 2.5. In this case, we see that the model

can produce a period of roughly 180 days of growth in daily deaths starting from a

growth rate of daily deaths of 5 percent per day and falling to zero over the six month

time period. But in this case, we assume that the basic reproduction number of the

disease is much smaller than the preferred estimates of this number for COVID-19

in the literature.

5.3 BSIR model dynamics with wedges

We now consider the impact of variation over time in the wedge ψ(t) in equation

16 linking the level of daily deaths and the transmission rate on the equilibrium

dynamics implied by our model. Changes over time in ψ(t) change our phase diagram

shown in Figure 3 as follows. Changes in the wedge ψ(t) generate shifts in the locus

of points (S̃, Ĩ) such that İ = 0 shown in black in that figure to the left and right.

In particular, the point S̄ shifts over time with

S̄(t) =
γ

β̄
exp(−ψ(t)) (17)

Shifts over time in the wedge ψ(t), our BSIR model can produce the a wide range of

model outcomes. To illustrate that point, we consider the solution of our model with

ψ(t) set to follow a cosine wave over time with a frequency of one year. We illustrate

the dynamics implied by the model over the course of three years in Figures 7 and

8. We set ψ(t) = 0.35(cos(2πt/365)− 1). The two black curves in Figure 7 represent

the highest and lowest levels of the locus of points for which İ = 0. The red curve

represents the solution of the model for (S(t), I(t)) over the course of three years.
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The basic reproduction number in this simulation of the model oscillates between

R0 = 2.5 and 1.25 (note that exp(−0.7) = 0.5). We see in Figure 8 that the effective

reproduction number in this simulation falls from its initially high value of 2.5 below

one and then oscillates within a relatively narrow band around one after that, with

daily deaths following a sequence of waves of slowly diminishing magnitude.

Note that at time t = 0, we have that S̄(0) is given by the inverse of the basic

reproduction number of the disease 1/R0. Thus, we interpret

log
(
S̄(t)

)
− log

(
S̄(0)

)
= log (R0)− log

(
β̄

γ
exp(−ψ(t))

)
= ψ(t) (18)

as a measure of the impact of the wedge ψt on the transmission rate of the virus

holding fixed behavior. Note that the equilibrium response of virus transmission to

a shift in the wedge ψ(t) is given by log
(
β̄
)
− log (β(t)).

In the numerical example shown in Figures 7 and 8, the time variation in the wedge

ψ(t) results in a reduction in the transmission rate in half from peak to trough holding

activity fixed. These fluctuation in the wedge ψ(t) result in a shift in the fraction of

the population left susceptible in the long run from S̄(t) from 0.4 when transmission

is at its peak and 0.8 when transmission is at its trough. In terms of implied long-

run outcomes, this difference in transmission rates is very large. If the wedge ψ(t)

were to remain at its peak level forever, then, in the long run, at least 60% of the

population would contract the disease and, with a fatality rate of ν = 0.005, then

0.3% of the population would be predicted to die from the disease, corresponding

to roughly 990,000 deaths in the United States. In contrast, if the wedge ψ(t)

were to remain at its lowest level forever, then, in the long run, a bit more than

20% of the population would contract the disease and roughly 330,000 deaths would

be expected in the United States. These calculations illustrate the point that the

magnitude of the variation in transmission rates holding behavior fixed induced by

our time varying wedge are much larger than the induced equilibrium variation in the

effective reproduction number. These calculations also illustrate how the magnitude

of the wedges in our model can be interpreted in terms of changes in the model’s
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forecast for the long-run attack rate of the disease.

6 Accounting for COVID dynamics with a BSIR

model

We now present our procedure for using the BSIR model to account for the dynamics

of the COVID epidemic for a large number of countries and states of the United

States. After presenting our procedure, we present detailed results for three locations:

Italy, Arizona, and Japan, to illustrate the performance of the model and the role

of behavior and the wedge ψi(t) in shaping the dynamics of the epidemic. We then

summarize our findings for all regions considered.

The procedure we use to account for the dynamics of the COVID epidemic with

our BSIR model has two steps. In the first step, we use data from the initial phase of

the epidemic in each region i to estimate the model coefficients β̄i and σi. We then

back out the values of the “wedges” ψi(t) needed so that our BSIR model matches

exactly the data on COVID deaths in that region estimated using the procedure in

section 3.

Specifically, once we have estimated parameters β̄i and σi for each region, we then

construct the wedges ψi(t) as follows. Recall from section 2 that, given estimates of

time paths for cumulative deaths Di(t), daily deaths dDi(t)/dt, and the growth rate

of daily deaths (d2Di(t)/dt
2)/(dDi(t)/dt) starting from time t0,i obtained as in section

3, we can construct SIR model-implied time paths for Si(t), Ii(t), Ri(t), and for the

effective reproduction number Ri(t) from equations 6, 7, 8 and 9. The corresponding

path for the transmission rate βi(t) is then obtained from from equations (5) and

(8). Then, given this estimate of the actual time path of βi(t), we use equation 16

to recover the wedge ψi(t) as

ψi(t) = log

(
βi(t)

β̄i

)
+ ακiḊ

Data
i (t) (19)

26



6.1 Estimation of the BSIR model

In each region i, we estimate σi and β̄i via simulated methods of moments using the

data on daily deaths in the region during the initial phase of the epidemic, period

t0,i to t1,i. Date t0,i is the date when cumulative deaths first reached 25 in the region.

Absent any wedges, transmission rates in the BSIR model are a function of daily

deaths as shown in Equation (14) above. We choose the end of the initial phase, t1,i,

in a region as the point where this functional relationship breaks down in the data.

That is we compare Ḋdata
i (t) and log βdatai (t) which were estimated in Section 3 and

choose t1,i to be the largest value of t such that for all Ḋdata
i (t) with t0,i ≤ t ≤ t1,i

there is exactly one value of log βdatai (t).

After setting the initial phase, for each region i, we choose σi to minimize the dis-

tance between daily deaths in the data as given by our Bayesian estimation procedure

and daily deaths generated by the BSIR model with no wedges, or

t1,i∑
t=t0,i

[
Ḋdata
i (t)− Ḋi(t)

]2
To solve the BSIR model, we set the initial fractions of susceptible, infected, recov-

ered, and dead at date t0,i to their values based on estimated daily deaths in the data

and the SIR model as described in Section 2. For each value of σi, β̄i is set such that

the transmission rate at date t0,i in the BSIR model corresponds to the rate implied

by the SIR model and the death data. This is achieved by setting

β̄i = βdatai (t0,i) exp(ακiḊ
data
i (t))

where κi = σi/νγ.
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6.2 Summary of Findings

We now examine the fit of our BSIR model with and without wedges to the data on

deaths for each location that we study. We summarize two main empirical findings in

this subsection. In the next subsection, we look in greater detail at results for three

specific regions. We then show the wedges implied by an alternative specification

of our model with pandemic fatigue and briefly discuss an interpretation of these

results.

The two main empirical findings that we summarize here are as follows.

First, the estimated BSIR model without wedges fits fairly well the main stylized

facts regarding the distribution of growth rates of daily deaths across regions and

over time shown in the data in Figure 2 and reviewed in section 3.1, both within the

estimation period and outside the estimation period. We show this result in the top

panel of Figure 9, which shows the distribution of growth rates of daily deaths for all

the regions that we consider implied by our estimated BSIR model without wedges

both within the estimation period and afterwards. Compare these predictions of

our BSIR model without wedges shown in the top panel of 9 to the data on the

distribution of growth rates of daily deaths shown in Figure 2. In both figures, we

see that the growth rates of daily deaths was quite high and highly dispersed across

regions in the initial phase of the pandemic. In both figures we see that the growth

rates of daily deaths fell toward zero over the course of a month or less and that the

dispersion of growth rates of daily deaths across regions has remained in a relatively

narrow range that includes zero for the months that have followed this initial phase

of the pandemic.

On closer inspection of these two figures, however, we see an important discrepancy

between the predictions of our BSIR model without wedges for the growth rates of

daily deaths from COVID and the data. As shown in Figure 9, the dispersion in the

growth rates of daily deaths predicted by the model after the initial month or two

of the pandemic is substantially smaller than the dispersion in the growth rates of
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these deaths observed in the data in Figure 2. In the BSIR model without wedges,

there are no realizations of growth rates substantially above or below zero, while in

the data there are.

This observation leads us to our second finding regarding the magnitude of the

wedges required to allow our BSIR model with wedges to match the data on daily

deaths exactly. These wedges must be very large in magnitude. We show the dis-

tribution of those wedges ψi(t) in the bottom panel of Figure 9. We see in that

figure that the dispersion in wedges required to have the BSIR model fit the data

grows substantially over time. To get a sense of the quantitative implications of

these wedges, recall from equation 14, a wedge of ψi(t) scales the transmission rate

β(t) holding fixed the level of daily deaths by exp(ψi(t)). Thus, if ψi(t) = 1, the

transmission rate holding fixed the level of daily deaths is shifted by a factor of more

than 2.7. Likewise, from equation 18, this value of ψi(t), if it were to persist forever,

would shift the fraction of the population remaining susceptible at the end of the

epidemic S̄i(t) by a large amount. For example, if a region were to start with a

basic reproduction number of R0 = 2 corresponding to a herd immunity threshold

of S̄i(0) = 0.5, then a wedge of ψi(t) = 1 would shift that herd immunity threshold

to S̄i(t) = 0.18 corresponding to a basic reproduction number over R0 = 5. The

corresponding shift in the model’s forecast in the long-run attack rate would be from

50% to 92%.

These figures highlight our two main empirical results: that a simple BSIR model

matches the main features of the data on the growth rates of daily deaths from

COVID from a large number of countries and states of the United States, but such a

model requires large shifts in the model-implied transmission rate of COVID holding

disease incidence fixed to match the data on daily deaths exactly. We explore these

findings in greater detail for three specific regions next.
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6.3 Results for Italy, Arizona, and Japan

We now look in detail at the results from our accounting procedure for three locations:

Italy, Arizona, and Japan. These three regions experienced quite different patterns

of daily deaths over time.

We see from the estimation results shown in Figure 2 that Italy experienced a large

first peak of daily deaths and then saw a rapid decline in those deaths (relative to

what would be predicted from a BSIR model without wedges) to very low levels in

the summer. We see in the same figure that Arizona experienced relatively slow and

steady growth in daily deaths in the first few months of the pandemic, reaching a first

peak level of daily deaths only in midsummer. Finally, we see that Japan experienced

a first peak in daily deaths relatively early on, but this peak level was much smaller

than experienced in either Italy or Arizona. Japan then experienced a rapid decline

in daily deaths to a very low level during the summer before experiencing a second

wave of daily deaths into the early fall. In this subsection, we examine how our

BSIR model with wedges accounts for these different patterns of the evolution of the

epidemic.

We begin with Italy. In Figure 10, we show our estimation results for the BSIR

model and a comparison of the predictions of our estimated model for the growth

rate of daily deaths, the level of daily deaths, and cumulative deaths, with (in red)

and without (in blue) wedges.

The two panels in the upper left portion of Figure 10 shows our estimation results

for the equation 14. The blue line in these panels shows the predicted value of the

log of the transmission rate given from equation 14 using the estimated parameters

β̄i and κi and data on daily deaths Ḋdata
i (t) plotted against the level of daily deaths.

The red curves in these panels shows the data on daily deaths and log transmission

rates for each day Ḋdata
i (t), log

(
βdatai (t)

)
, with these variables estimated as in section

3. By comparing the blue and red curves in these panels, one can see the extent

to which wedges ψi(t) in equation 14 are needed to account for the variation in the
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logarithm of the transmission rate relative to variation in the level of daily deaths.

The panel on the left of the two panels in the upper left portion of Figure 10 shows

the fit in the estimation period. The panel on the right shows the fit over the entire

time period available. As one can see in these panels, the fit of the model without

wedges is fairly good in the estimation period. After the estimation period, however,

there is little apparent relationship between the data on the level of daily deaths and

the logarithm of the transmission rate. This pattern suggestive of a change in regime

shift in the relationship between daily deaths and the logarithm of the transmission

rate and this pattern is quite common across all the countries and U.S. states that

we examine.

The remaining panels in Figure 10 show the evolution over time of the BSIR

model’s predictions for the growth rate of daily deaths, the level of daily deaths, and

cumulative deaths over time, from the estimated model without wedges in blue and

the model with wedges in red. The time paths for these data are shown with a thin

solid line in each panel. As one can see, the red line indicating the model solution

with wedges lies on top of the data (by construction). The vertical black line in each

of these panels indicates the end of the estimation period.

As is evident in Figure 10, the BSIR model without wedges (in blue) captures

the main features of the dynamics of the growth rate of daily deaths over time. For

Italy, this growth rate started at a high level and then fell rapidly over time to a level

below zero. But small and persistent differences in growth rates translate into large

differences in the levels of daily and cumulative deaths. In the data, the growth rate

of daily deaths remained substantially below the level predicted by the BSIR model

without wedges through the Summer, leading to a much more rapid decline in daily

deaths after the initial peak and a much lower level of cumulative deaths by the end

of the summer than would be predicted than would be predicted by the BSIR model

without wedges.

In Figure 11, we show the simulated paths for Si(t) and Ii(t) for Italy from the

BSIR model without wedges in blue and with wedges in red in the phase plane. We
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also show the locus of points for which İ = 0 for various dates implied by the time

path of the wedge ψi(t). The initial locus of points for which İ = 0 corresponding to

ψi(0) = 0 is shown as a solid black line with no markers. For Italy, this line intersects

the x-axis just below S = 0.3. This intersection corresponds to a basic reproduction

number for Italy of R0 = 3.44. The blue curve in the figure shows the evolution

of the epidemic implied by the BSIR model without wedges, with a first peak of

infections smaller than what occurred in the data followed by a slow decline in the

level of infections as the model outcome evolves slightly above this initial locus of

points for which İ = 0.

In contrast with the curve in blue, we see from the curve in red that the BSIR

model with wedges (and the data) had a higher initial peak of infections and then

a rapid decline to a very low level. To have the BSIR model with wedges account

for this pattern, we see first a rightward shift of the locus of points for which İ =

0 corresponding to negative values of ψi(t) at seven and fourteen days after Italy

first reached 25 cumulative deaths, and then an acceleration of transmission holding

behavior fixed corresponding to positive values of ψi(t) 21 and 28 days, followed to a

dramatic decline in transmission holding behavior fixed to a level corresponding 84

days in to a value of S̄i(t) = 0.97 or a basic reproduction number barely above one.

The main conclusion we draw from Figure 11 is that the magnitude of the time

variation in the wedges needed to account for the patterns of daily deaths observed

in Italy are very large relative to variation over time in the growth rates of daily

deaths and the corresponding effective reproduction numbers implied there. If one

were to project long run outcomes for Italy based on the level of the wedge ψi(t) at

a point in time, one would forecast that anywhere between 3% and 80% of Italians

would eventually contract the disease. Put another way, the transmission rate β(t)

holding behavior fixed implied by the BSIR model with his varying by a factor of

five.

The results for Arizona are presented in Figures 12 and 13. Those for Japan are

in Figures 14 and 15. The arrangement of the panels in each figure is the same as for
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Italy. In the upper left panels of Figures 12 and 14, we see the fit of the estimated

BSIR model reduced form relationship between daily deaths and the logarithm of

the transmission rate is fairly good during the estimation period and then completely

breaks down afterwards as was the case with Italy. Again, this pattern is pervasive

across the locations that we study.

As shown in Figure 1, in Arizona, the rate of daily deaths built slowly to a late peak

relative to Italy and Japan. As shown in Figure 12, the BSIR model without wedges

(in blue) does not match this peak. Instead, wedges that raise the transmission rate

and the growth rate of daily deaths after the estimation period are required to have

the model match the data. This is the opposite of what we found for Italy, where the

wedges initially reduced the transmission rate relative to what the model without

wedges predicted after the estimation period.

In the phase diagram for Arizona in Figure 13, we again see how large the required

wedges are when measured in terms of the corresponding fraction of the population

left susceptible in the long run (indicated by where the shifting İ = 0 scheduled

intersect the x-axis). At our estimated value of β̄i for Arizona, the basic reproduction

number at the start of the epidemic was on the order of 1.66, corresponding to a

long-run attack rate of 40%. This level then shifts out to nearly 88% by day 105,

corresponding to a basic reproduction number over 8, and it started shifting back

substantially after that. So again, we see that the wedges needed to match the data

correspond to very large shifts in the transmission rate holding disease prevalence

constant.

As shown in Figure 1, qualitatively, Japan shows a pattern of multiple waves of

daily deaths from COVID similar to that observed in Italy and other locations. In

Figure 14, we see that this pattern is matched with wedges that first lower the

transmission rate holding disease prevalence fixed and then raise it back up again.

But quantitatively, Japan is quite different from Italy in that it has not yet experi-

enced a high level of deaths from COVID. We see why in the phase diagram in Figure

15. In that figure, we see that the transmission rate holding disease prevalence fixed,
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as measured by the points at which the İ = 0 schedule intersects the x-axis, has

never been high in Japan. This model implied long-run attack rate has been below

50% for the duration of the pandemic and it shifted to a very low level, less than

15%, around day 56. So again, the wedges required to match the data are large in

magnitude.

6.4 Pandemic Fatigue

We now consider the wedges implied by an alternative specification of our model that

includes pandemic fatigue. We model pandemic fatigue as a reduction in each region

in the reduced-form semi-elasticity of the transmission rate to disease incidence when

measured by daily deaths corresponding to the parameter ακi in equation 14. Note

that the reduction in this parameter can be interpreted as a change in the sensitivity

of the transmission rate with respect to activity (the parameter α in equation 12 )

or in the sensitivity of activity to disease prevalence (the parameter κi in equation

13) or some combination of the two. We consider specifically a reduction in ακi in

each region by a factor of five relative to what we estimate in the initial phase of the

epidemic. Thus we compute the wedges implied by our model for each region from

equation 19 using the value of β̄i estimated from the initial phase of the epidemic

throughout and using the estimated value of ακi during the estimation period and

replacing this parameter by one-fifth of its estimated value for all dates after the

estimation period.

The evolution of the cross-section distribution of wedges implied by this alternative

specification of our model is shown in Figure 16. The black solid line in both charts

represents the median posterior estimate. The two red dash-dotted bands in this

chart contain two thirds of the posterior probability at each point in time and the

two blue dashed bands, 0.90 of the posterior probability. This figure should be

compared to the bottom panel in Figure 9 which shows the same evolution of the

distribution of wedges implied by our baseline model.
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What we see from this comparison of the wedges implied by our baseline and

alternative model with pandemic fatigue is that the dispersion of the wedges required

to have this alternative model with pandemic fatigue match the data outside the

estimation period is considerably reduced. That is, the distance between the two

red dashed-dotted lines and between the two blue dashed lines in Figure 16 is much

smaller than that between the corresponding pairs of lines in the bottom panel of

Figure 9.

We also see in Figure 16, however, that the levels of the median and percentiles of

distribution of wedges outside of the estimation period in this alternative specification

of our model with pandemic fatigue are shifted substantially downward (toward neg-

ative wedges) relative to the level of those shown for our baseline model in Figure 9.

The intuition for this finding can be seen in Figure 4 which shows the phase diagram

for our model with different reduced form semi-elasticities of disease transmission

with respect to disease prevalence. As shown in this figure, if this semi-elasticity is

reduced, all else equal, infections (and hence deaths) should rise, and hence the mea-

sured transmission rate βi(t) should also rise. Since this rise in transmission rates

is not seen in the data, negative wedges are required lowering the transmission rate

holding behavior fixed to have the alternative model with pandemic fatigue match

the data on deaths and transmission.

Note from Figure 16 that the magnitude of this median wedge is quite large —

on the order of ψ(t) = −0.5. For a region that started the pandemic with a basic

reproduction number of R0 = 2.5 and hence a model-implied long run attack rate

of 60%, a wedge of this magnitude corresponds to a reduction of the model-implied

long-run attack rate to 34%. If such a model-implied forecast were correct, it would

correspond to a substantial reduction in the portion of the population needed to be

vaccinated to bring the epidemic to a halt.
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7 Conclusion

Qualitatively, the push by economists to introduce theories of behavior into epidemi-

ological models of COVID-19 has been a big empirical success. As we demonstrate,

even a simple BSIR model matches the main features of the dynamics of the growth

rate of deaths observed in many locations around the world.

But, as our accounting procedure shows, much of the dynamics of the level of daily

and cumulative deaths are left unexplained by a simple BSIR model. Such a model

much be augmented with very large wedges to the transmission rate holding disease

prevalence constant to match the data on deaths. What these wedges stand in for is

an important topic for future research.
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Figure 1: Estimates of Daily and Cumulative Deaths for Italy, Arizona, and Japan through
November 12.
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Figure 2: Location and sampling uncertainty. The black solid line represents the median posterior
estimate. The two dash-dotted bands in both charts contain two thirds of the posterior probability
at each point in time and the two dashed bands, 0.95% of the posterior probability. The growth
rates of death is estimated according to the fitted mixture of modified log-logistic density functions.
Day 0 is the earliest date when the cumulative death toll reached 25 in each location.
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Figure 3: Phase diagram for our BSIR model. The fraction of the population susceptible St is
on the x-axis, the fraction of the population currently infected is on the y-axis. The black curve is
the locus of points (S, I) such that İ = 0. The red curve shows the model implied path of (St, It).
When (S, I) lie below the black curve, İ > 0 and Ṡ < 0. When (S, I) lie above the black curve,
İ < 0 and Ṡ < 0. The point at which the black curve intersects the x-axis is determined by the
basic reproduction number β̄/γ with the formula given by S̄ = γ/β̄. Model steady-states all have
I = 0 and hence lie along the x-axis.
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Figure 4: Phase diagram for our BSIR model for various values of the semi-elasticity σ of the
transmission rate with respect to infections. The fraction of the population susceptible St is on the
x-axis, the fraction of the population currently infected is on the y-axis. The black curve is the locus
of points (S, I) such that İ = 0. The red curve shows the model implied paths of (St, It). When
(S, I) lie below the black curve, İ > 0 and Ṡ < 0. When (S, I) lie above the black curve, İ < 0
and Ṡ < 0. The point at which the black curves intersect the x-axis is determined by the basic
reproduction number β̄/γ with the formula given by S̄ = γ/β̄. This basic reproduction number is
held constant across all three model simulations. Model steady-states all have I = 0 and hence lie
along the x-axis.
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Figure 5: The path of the effective reproduction number and daily deaths per million of population
for three simulations of our BSIR model with different values of the semi-elasticity of transmission
with respect to daily deaths as shown in Figure 4.
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Figure 6: The path of the effective reproduction number and daily deaths per million of population
for three simulations of our BSIR model with different values of the semi-elasticity of transmission
with respect to daily deaths. These specifications of the model differ from those in Figure 5 in that
these specifications have a basic reproduction number of R0 = 1.25.
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Figure 7: Phase diagram for our BSIR model with ψ(t) following a cosine wave given by ψ(t) =
0.35(cos(2πt/365) − 1). The two black curves represent the highest and lowest levels of the locus
of points for which İ = 0. The red curve represents the solution of the model for (S(t), I(t)) over
the course of three years.
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Figure 8: The path of the effective reproduction number and daily deaths per million of population
for a three year long simulation our BSIR model with ψ(t) following a cosine wave given by ψ(t) =
0.35(cos(2πt/365)− 1). The basic reproduction number of the model in these simulations oscillates
between 2.5 and 1.25.
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Figure 9: Top panel of this figure shows the distribution of growth rates of daily deaths (on the
left axis) and the associated effective reproduction number (on the right axis) predicted by our
estimated BSIR model without wedges. The bottom panel of this figure shows the distribution of
wedges ψi(t) required to make the BSIR model fit the observed data on deaths. The black solid
line in both charts represents the median posterior estimate. The two red dash-dotted bands in
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dashed bands, 0.90 of the posterior probability.
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Figure 10: The BSIR model without (in blue) and with (in red) wedges for Italy. The upper left
graphs show in blue the relationship between daily deaths and the logarithm of the transmission
rate implied by equation 14 and our estimates of β̄i and κi without wedges. The red curve shows
the pairs (Ḋi(t), log(βi(t)) from the data. The subpanel on the right shows the entire time period,
the one on the left for the estimation period. The upper right graph shows the evolution of the
growth rate of daily deaths implied by the BSIR model without wedges (in blue) and with wedges
(in red), with the estimates from the data shown as a solid black line. (THIS PANEL NEEDS
UPDATING). The lower graphs show the evolution of daily deaths and cumulative deaths implied
by the BSIR model without wedges (in blue) and with wedges (in red), with the estimates from
the data shown as a solid black line. The vertical black lines in these figures shows the end of the
estimation period.
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Figure 11: Phase diagram for our BSIR model with wedges for Italy. The fraction of the population
susceptible St is on the x-axis, the fraction of the population currently infected is on the y-axis.
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Figure 12: The BSIR model without (in blue) and with (in red) wedges for Arizona. The upper
left graphs show in blue the relationship between daily deaths and the logarithm of the transmission
rate implied by equation 14 and our estimates of β̄i and κi without wedges. The red curve shows
the pairs (Ḋi(t), log(βi(t)) from the data. The subpanel on the right shows the entire time period,
the one on the left for the estimation period. The upper right graph shows the evolution of the
growth rate of daily deaths implied by the BSIR model without wedges (in blue) and with wedges
(in red), with the estimates from the data shown as a solid black line. The lower graphs show the
evolution of daily deaths and cumulative deaths implied by the BSIR model without wedges (in
blue) and with wedges (in red), with the estimates from the data shown as a solid black line. The
vertical black lines in these figures shows the end of the estimation period.
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Figure 13: Phase diagram for our BSIR model with wedges for Arizona. The fraction of the
population susceptible St is on the x-axis, the fraction of the population currently infected is on
the y-axis.
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Figure 14: The BSIR model without (in blue) and with (in red) wedges for Japan. The upper left
graphs show in blue the relationship between daily deaths and the logarithm of the transmission
rate implied by equation 14 and our estimates of β̄i and κi without wedges. The red curve shows
the pairs (Ḋi(t), log(βi(t)) from the data. The subpanel on the right shows the entire time period,
the one on the left for the estimation period. The upper right graph shows the evolution of the
growth rate of daily deaths implied by the BSIR model without wedges (in blue) and with wedges
(in red), with the estimates from the data shown as a solid black line. The lower graphs show the
evolution of daily deaths and cumulative deaths implied by the BSIR model without wedges (in
blue) and with wedges (in red), with the estimates from the data shown as a solid black line. The
vertical black lines in these figures shows the end of the estimation period.
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Figure 15: Phase diagram for our BSIR model with wedges for Japan. The fraction of the
population susceptible St is on the x-axis, the fraction of the population currently infected is on
the y-axis.
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Figure 16: This figure shows the distribution of wedges ψi(t) required to make the BSIR model
with pandemic fatigue fit the observed data on deaths. The black solid line in both charts represents
the median posterior estimate. The two red dash-dotted bands in this chart contain two thirds of
the posterior probability at each point in time and the two blue dashed bands, 0.90 of the posterior
probability. This figure should be compared to the bottom panel in Figure 9 which shows the same
evolution of the distribution of wedges implied by our baseline model.
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Fiorin, Margarita Gómez, Gordon Kraft-Todd, Friedrich M Götz, and Erez Yoeli.
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