
 

 

STAFF REPORT 
No. 644 
 
 
 
 

On the Efficiency of Competitive Equilibria 
with Pandemics 
 
 
April 2023 
 
 
 
 
 
 
 
V. V. Chari 
University of Minnesota and Federal 
Reserve Bank of Minneapolis 
 
Rishabh Kirpalani 
University of Wisconsin-Madison 
 
Luis Perez 
University of Minnesota 

 
 

 
 
DOI: https://doi.org/10.21034/sr.644  
Keywords: Virus exposure; Lockdowns; Local public goods 
JEL classification: D62, E60, H41 
 
The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System. 

 

https://doi.org/10.21034/sr.644


On the Efficiency of Competitive Equilibria
with Pandemics∗

V. V. Chari† Rishabh Kirpalani‡ Luis Perez§

March 2023

Abstract

The epidemiological literature suggests that virus transmission occurs only

when individuals are in relatively close contact. We show that if society can

control the extent towhich economic agents are exposed to the virus and agents

can commit to contracts, virus externalities are local, and competitive equilibria

are efficient. The SecondWelfare Theorem also holds. These results still apply

when infection status is imperfectly observed and when agents are privately

informed about their infection status. If society cannot control virus exposure,

then virus externalities are global and competitive equilibria are inefficient,

but the policy implications are very different from those in the literature. Eco-

nomic activity in this version of our model can be inefficiently low, in contrast

to the conventional wisdom that viruses create global externalities and result

in inefficiently high economic activity. If agents cannot commit, competitive

equilibria are inefficient because of a novel pecuniary externality.
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1 Introduction

In this paper, we argue that pandemics induce local externalities. We begin by not-

ing that the epidemiological evidence suggests that viruses travel only relatively

short distances. This property implies that infected individuals can transmit the

virus to others only if they are engaged in relatively close contact. We will refer to

such interactions as meetings. If society can control the extent to which people are

exposed to the virus by choosing the types of people who meet each other with-

out loss of output, then the external effects induced by viruses are appropriately

thought of as local externalities. We show that with controllability of exposure and

commitment to contracts, competitive equilibria are efficient. To illustrate the key

role of controllability, we show that if people cannot control their exposure to the

virus, the externalities turn out to be global, and the equilibrium is inefficient. To

illustrate the key role of commitment, we show that without commitment, the local

external effects induce a novel pecuniary externality, and equilibria are inefficient.

We show that our efficiency results continue to hold even if agents are privately in-

formed about their infection status. Our methods can be adapted straighforwardly

to awide variety of environments with local externalities or local public goods, and

our results suggest that competitive equilibria remain efficient in these settings.

Much of the existing literature on the external effects of viruses treats these

external effects as inducing global externalities. A typical formulation is to assume

that the rate atwhichnew infections formdependson the existingmasses of infected

and susceptible individuals as well as on measures of aggregate economic activity.

Not surprisingly, competitive equilibria in such environments are inefficient, and

corrective policies, including Pigouvian taxes, are desirable. Put simply, there is no

technical difference in the existing literature between the externalities induced by

the emission of greenhouse gases and the externalities induced by the transmission

of viruses. Given that the epidemiological literature decisively shows that virus

transmission is relatively local, and given that exposure is controllable, we argue

that the global-externality view is inappropriate for the analysis of pandemics.

Instead, analyzing pandemics requires a theory in which pandemics are treated as

local externalities.

We develop such a theory by combining elements from the literatures on com-

petitive search, epidemiology, and club goods. Models in the competitive search
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literature use the metaphor of islands to describe competition among firms and

households, which take prices as given. This metaphor seems particularly appro-

priate for analyzing environments inwhich people can control their exposure to the

virus. In equilibrium, it turns out that islands differ in the extent to which people

are exposed to the virus. This metaphor is also closely related to the original idea

in the local-public-goods literature of locations competing with each other to pro-

vide local public goods (see, for example, Tiebout, 1956). From the epidemiology

literature, we adapt the SIR model to study how viruses transmit infections. From

the club goods literature, we adapt the idea that the value of belonging to a club

(in this case, an island) depends on the composition of its members.

For expositional reasons, we begin with the simplest version of our model, in

which each individual’s infection status is public information. Agents can be of

one of three types: susceptible, infected, and recovered. Production takes place

on “work” islands. In each work island, a single consumption good is produced

each period, using a constant-returns-to-scale technology for which labor is the

only input. This technology is the same across all work islands. In addition, the

economy has a “home” island, in which no production takes place. Each work

island is characterized by a triple of wages, one for each type. The interpretation

is that any firm that produces in a work island must pay a worker of a particular

type the wage associated with that type on that island. Each agent supplies one

unit of indivisible labor and chooses a lottery over the work and home islands.

Competitive insurance firms provide consumption insurance over the outcomes of

the lotteries. Each firm employs at most one worker. A constant-returns-to-scale

matching technology describes how firms and workers on a particular island are

matched with each other. Unmatched workers on work islands are described as

unemployed. This formulation is essentially the same as that in the competitive

search literature.

Our main point of departure from the competitive search literature is that we

allow for local externalities in the formof infections. We assume that individuals on

a particular work island randomly “meet” each other in the process of production.1

A susceptible worker who meets an infected worker is infected with a probability

1While we explicitly model infections as occurring in “production,” we think of individuals as

getting infected in the process of conducting economic transactions such as consumption, recreation,

and other leisure activities. Our model can be easily generalized to allow for infection in such

activities.
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that is given by the infection technology. Given the assumption that meetings in

an island are random, the probability that a susceptible worker is infected on a

particular island depends on the fraction of infected agents relative to the total

number of workers on that island; that is, the infection technology has constant

returns to scale. Since no production takes place on the home island, no meetings

do either, and so the probability of infection is zero. Workers derive utility from

consumption and suffer a utility cost if they are infected. Infected workers recover

with a probability given by the infection technology. We assume for simplicity that

recovered workers cannot get re-infected. The proportion of susceptible, infected,

and recovered workers in period zero is exogenously given.

Our definition of competitive equilibrium is standard. We show that any com-

petitive equilibrium is efficient, and furthermore, any efficient allocation can be

implemented as a competitive equilibrium with suitably chosen lump-sum taxes

andtransfers. In equilibrium, islands vary in their degree of exposure to the virus.

In this sense, our model captures the idea that controllability is essential to ensure

that competitive equilibria are efficient. Our finding is in sharp contrast to those

in much of the literature. The reason for the contrast is that the literature mod-

els virus transmission as a global externality. Since the epidemiological literature

makes a convincing case for virus transmission as a local phenomenon, modeling

this transmission as a local externality seems to be the appropriate way of analyz-

ing policy interventions. Our result shows that once we allow for controllability,

competitive forces will produce efficient outcomes. It turns out that with public

information, the equilibrium can be implemented as a sequence of static equilibria

so that commitment plays no role.

We show that our efficiency result does not depend on the assumption that

types are perfectly observable. To do so, we analyze an environment in which

some workers are infected but asymptomatic; therefore, neither they nor anyone

else knows that they are infected. We allow workers to sign contracts with insur-

ance firms that can offer intertemporal insurance contracts as well as help solve

the coordination problem typical in models with public goods. We show that the

welfare theorems continue to hold in this environment. Our efficiency result does

not depend on the assumption of public information. We show that the equilibrium

outcomes with private information coincide with those with public information,

and are, therefore, efficient, as long as recovered agents’ types are public informa-
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tion. The intertemporal contracts offered by insurance firms play a central role in

implementing the equilibrium, and equilibrium outcomes cannot be implemented

by sequences of static equilibria.

It turns out that in the competitive equilibrium, susceptible agents have strong

incentives to mix with recovered agents, since there is a positive congestion exter-

nality associated with the presence of a type of worker who is known not to be

infected. These incentives imply that, in the competitive equilibrium, initially re-

covered agents consume more than their marginal product and susceptible agents

consume less than their marginal product. The result that the equilibrium has

mixing illustrates that our efficiency results do not depend on complete sorting

by infection status. We go on to show that our efficiency results continue to hold

with multiple occupations with complementarities as long as infection status and

occupational status are independent. In equilibria with multiple occupations, we

have mixing in islands of different types of people employed in different types of

occupations. These findings are of interest because Stiglitz (1982) and others have

criticized models that obtain efficiency with local public goods because they seem

to depend on equilibria being completely sorting.

Our efficiency results do not hold if virus exposure is not controllable. To un-

derstand the role of controllability, we consider a version of ourmodel in which the

economy has only one work island. In this case, the externalities induced by the

pandemic are (almost) global rather than local. Not suprisingly, competitive equi-

libria are no longer efficient. We show, however, that the nature of the inefficiency

and the associated optimal policy interventions are very different from those com-

monly supposed in the literature that models pandemics as global externalities.

For example, in a static version of our model, it turns out that susceptible agents

work too little in the competitive equilibrium, comparedwith the efficient outcome.

The reason is that susceptible agents who allocate more labor to the work island

confer a positive congestion externality to other susceptible agents on that island.

They do so because by working, they increase the probability that other susceptible

agents will meet them rather than meeting infected agents. No susceptible agent

internalizes this benefit that is conferred on other susceptible individuals. While

in the dynamic model it is in principle possible for susceptible agents to work too

much, we show that they work too little for a wide range of parameter values.

We go on to show that policy interventions that use type-independent Pigouvian
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taxes are worse than targeted lockdown policies. Within the class of such Pigou-

vian policies, we show that susceptible agents work more in the efficient outcome

than in the competitive equilibrium. Taken together, these findings suggest that

the conventional wisdom that economic activity in a competitive equilibrium is

inefficiently too high in a pandemic is incorrect.

We find that with imperfect observability of infection status, commitment, in

addition to controllability, is crucial for our efficiency result. To understand the

role of commitment, we consider an environment in which workers can quit at any

time and join other insurance firms. We show that this form of limited commitment

induces a pecuniary externality so that the equilibrium outcomes are inefficient.

This pecuniary externality arises because the value of outside options for theworker

depends on the populationmix of workers by infection status. This populationmix

is determined by the decisions of all firms in previous periods. No individual firm

internalizes that its decisions affect the population mix and therefore the value of

the outside option. The planner, however, does internalize the effect on the value

of the outside option. Thus, the solution to the planning problem differs from the

competitive equilibrium.

Finally, we show that in the controllable version of our model, competitive

equilibria are efficient even if the infection technology has increasing returns to

scale as in Farboodi et al. (2020) and Acemoglu et al. (2020).

Literature

An extensive epidemiological literature has addressed how viruses are transmitted

(see Kermack and McKendrick, 1927; Morawska et al., 2020; Bourouiba et al., 2014;

Bourouiba, 2020; Somsen et al., 2020). The consistent finding in this literature is that

viruses require individuals to come into relatively close contact with each other in

order for infections to spread. This literature compels economic analysts to regard

pandemics as situations with local rather than global externalities.

An extensive literature in economics has analyzed various aspects of pandemics.

See, for example, Eichenbaum et al. (2020), Farboodi et al. (2020), Toxvaerd and

Rowthorn (2020), Toxvaerd (2019), Bethune and Korinek (2020), Goodkin-Gold

et al. (2020), Bisin and Gottardi (2020), Moser and Yared (2020), Atkeson (2020),

Alvarez et al. (2020), Glover et al. (2020), Acemoglu et al. (2020), Baqaee et al. (2020),

Berger et al. (2020). Some of this literature explicitly analyzes the inefficiencies
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associated with pandemics (see Eichenbaum et al., 2020; Toxvaerd and Rowthorn,

2020; Toxvaerd, 2019; Goodkin-Gold et al., 2020; Bisin and Gottardi, 2020; and

Bethune and Korinek, 2020.) All of the papers in this area regard pandemics as

creating global externalities.

Our formulation has obvious and immediate predecessors in the literature on

local public goods and that on clubs. See, for example, Tiebout (1956), Buchanan

(1965), Stiglitz (1982), Cole and Prescott (1997), and Ellickson et al. (1999). This

literaturehasdiscussedhow local public goods andclubs canbe efficientlyprovided

as long as firms and households compete effectively with each other. We have

adopted many ideas from this literature.

We find it convenient to formulate the local-public-goods problem using ideas

from the competitive/directed search literature. See, for example, Peters (1984),

Moen (1997), Guerrieri et al. (2010), and Wright et al. (2021). Following that lit-

erature, we think of firms as choosing locations that are indexed by a variety of

characteristics, including prices. This formulation is particularly convenient for

studying the provision of local public goods.

2 A Pandemic Model with Controllability

In this section, we develop a model in which infection status is perfectly observ-

able and virus exposure is controllable. We show that the welfare theorems hold

and that the competitive equilibrium can be implemented as a sequence of static

equilibria so that commitment plays no role.

Consider a discrete-time, finite-horizon model that combines elements of mod-

els from the literatures on competitive search, epidemiology, and club goods.2 The

model has a continuum of workers of mass one and a continuum of locations,

denoted by j ∈ J and referred to as “islands.” The model has one consumption

good per period. In one of the islands, denoted by j = 0 and described as the

“home” island, no production takes place. In each of the other islands, described

as the “work” islands, the consumption good is produced according to a constant,

returns-to-scale production function in which one unit of labor produces A units

2Our results immediately apply to the infinite-horizon model if we consider equilibria that are

limits of the finite-horizon equilibria.
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of the consumption good. Workers are endowed with one unit of time per period.

Eachworker is in one of threemutually exclusive health states, η ∈ {S, I,R}, where S,

I, and R denote susceptible, infected, and recovered types, respectively. In this sec-

tion, we assume that health states are publicly observable. Let µt = (µSt,µIt,µRt)

denote the masses of susceptible, infected, and recovered agents at the beginning

of period t so that

µSt + µIt + µRt = 1. (1)

Infected agents can transmit the disease to susceptible agents only if they meet

susceptible agents in one of the islands. Susceptible agents at the beginning of

period t are workers who have not been infected in any previous period. Infected

agents are workers who are infected and currently infectious. Recovered agents

are workers who were previously infected but are not currently infectious. We

assume that recovered agents cannot be re-infected and that the allocations for each

individual agent can depend only on the current type and the current period.3 This

assumption is without loss of generality, since health states are publicly observable.

In later sections, when types are not perfectly observable, we will allow allocations

to depend on private and public histories.

The allocation of labor time is indivisible in the sense that a worker can allocate

labor time to atmost one island in any period. We allow for lotteries so that workers

choose a probability distribution over which islands to allocate their labor time to.4

Let lηt = (ljηt)j∈J denote a probability measure over islands for agents of type η in

period t so that

´
ljηtdj = 1. Here, ljηt is also the fraction of agents of type η who

are allocated to island j. We can interpret these lotteries in two equivalent ways.

One way is that ljηt is the probability that a worker of a given type is allocated

to a given island. Another is to think of workers as belonging to families whose

members are all of the same type, so that ljηt is the fraction of family members

allocated to island j.

Next, we describe how infections propagate. Let λjηt ≡ µηtljηt/Ljt be the

fraction of type η on island j in period t, where Ljt ≡
∑
η µηtljηt is the total labor

supply on the island. We assume that the probability that a susceptible agent

is infected depends only on λjIt. This infection technology has constant returns

3Our results continue to hold if we allow agents to die.

4The lotteries are inessential for public information but play an important role in later sections.

We introduce lotteries here so as to use common notation throughout our analysis.
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to scale because the probability that a susceptible agent is infected on an island

depends on the ratio of the labor supply of infected agents relative to total labor

supply on that island. In island 0, we assume that infections do not occur, and so

the infection probability is zero.5

For expositional purposes, in most of our analyses, we assume that the infection

technology is linear in that

ψ (λjIt) = χλjIt for j 6= 0 and Ljt > 0, (2)

where χ > 0 is a constant. An alternative technology that maintains constant re-

turns to scale is as follows. Suppose that in the process of production, a susceptible

person randomly meets M other agents per unit of time. The probability of in-

fection in any single meeting is proportional to the fraction of infected agents on

the island and is given by χ̂λjIt for some constant χ̂ > 0. Thus, the probability

of not being infected in M meetings is (1 − χ̂λjIt)
M
, and so the probability that

a susceptible agent is infected on island j is 1 − (1 − χ̂λjIt)
M
. Our results hold

with this specification of the infection technology. In Section 6, we consider a class

of non-constant, returns-to-scale infection technologies and show that our main

results are unchanged.

An infected person in period t exits the infection state with probability α > 0

and enters the recovered state. The mass of agents of each type in the economy as

a whole then evolves according to the Markov transition matrix

µt+1 =

µSt+1

µIt+1

µRt+1

 =

1 −
´
j6=0 ljStψ (λjIt) dj 0 0´

j6=0 ljStψ (λjIt) dj 1 − α 0

0 α 1


µStµIt
µRt

 . (3)

Here, the integrals in the Markov matrix are evaluated only over those islands in

which Ljt > 0.

We think of each island as indexed by wage rates for each type, denoted by

wjt = {wjηt}. Competitiveproductionfirms choose the islandsonwhich they locate.

Let γjt be the mass of firms that locate in island j in period t. Workers and firms on

5The assumption that the probability of infection is zero on the home island is purely for

convenience. Our results would be unchanged if the probability of infection on the home island

were strictly positive but lower than that on the work islands.
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island j are matched according to a matching technologyM (Ljt,γjt). We assume

that this technology is constant returns to scale. It is convenient to define themarket

tightness on island j by θjt ≡ γjt/Ljt. As is standard, letmw (θjt) =M (1,γjt/Ljt)

be the probability that aworker ismatchedwith afirmandmf (θjt) =M (Ljt/γjt, 1)

be the probability that a firm ismatchedwith aworker on island j in period t. Upon

being matched, a firm-worker pair produces A units of the final good per unit of

time if a positive measure of workers are present on that island and zero otherwise.

The assumption that a positive measure of workers must be present in order for

production to take place captures the idea that the production process necessarily

involves meetings among workers. If we allowed individual workers to produce

on their own, it is trivially feasible to produce the final good without any meetings

and without any associated infections. Our assumption rules out such trivial

possibilities. Finally, we also assume that unmatched workers do not produce but

can be infected.

Agents’ preferences over the final consumption good are given by

U (c) =
∑
t>0

βtu (ct) ,

where u(·) satisfies the usual assumptions of continuity, monotonicity, differen-

tiability, and concavity. Infected workers suffer an additive utility cost given by

κ.

An allocation is a tuple Z = (µ,Θ, l,λ, c), where µ ≡ {µt},Θ ≡ {θjt}, l = {ljηt},

λ = {λjηt}, c ≡ {cηt}, and µt is the mass of each type at the beginning of each period

t, θjt is the market tightness on island j in period t, ljηt is the fraction of agents of

type η allocated to island j in period t, λjηt is the mass of type η agents on island j,

and cηt denotes the consumption for an agent of type η. Note that themass of firms

on any island can be recovered from the labor input of workers and the market

tightness on that island.

Clearly, λjηt is implied from the state µηt and the labor allocation ljηt as long

as Ljt > 0. We include λ as part of the allocation, because in our definition of

competitive equilibrium, we will need to endow agents with beliefs about the

probability of meeting different types of agents if they happen to choose an island

that has no agents in it.

Note that in defining an allocation, we do not consider lotteries over consump-

10



tion or allow for consumption to depend on the island to which a given worker is

allocated. We do so because given our assumption that the utility cost of infection

is separable from the utility of consumption, the planner optimally chooses to give

all workers of a given type the same consumption level regardless of the realization

of the lottery. In our analysis of competitive equilibrium, we assume that perfect

insurance markets are available to insure against these realizations. An allocation

is feasible if, for all t, it satisfies

∑
η

µηtcηt 6
ˆ
j6=0

∑
η

(µηtmw (θjt)Aljηt) dj, (4)

ˆ
ljηtdj = 1, (5)

λjηt =
µηtljηt

Ljt
, for all Ljt > 0, (6)

and (3). Equation (4) is the resource constraint: it requires that aggregate consump-

tion be less than or equal to aggregate output.

We have described an environment in which the extent of virus exposure de-

pends on the mix of agents of various types in an island. In our environment, it

is feasible to allow for any mix of agents without loss of output, and so the mix of

agents can be controlled without sacrificing output. In this sense, virus exposure

is controllable.

An allocation is associated with a set of active islands to which at least one type

of agent is assigned with positive probability. Formally, let the set of active islands

at time t be denoted by

Γt ≡ {j ∈ J : ljηt > 0 for some η ∈ {S, I,R}} .

Definition. An allocation is Pareto optimal if it is feasible and there is no feasible

allocation that makes some type η strictly better off without making some other

type strictly worse off.

Next, we turn to defining a competitive equilibrium. For simplicity, in doing so

we assume that no intertemporal insurance markets are available.6 Since we allow

6We show later that competitive equilibria with restricted markets yield Pareto optimal alloca-

tions, so that allowing for intertemporal and insurance markets cannot improve outcomes.
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only for static trade, commitment plays no role. Weuse a recursive representation of

each agent’s problem. Let λt (µt) = {λjηt (µt)}j denote the fraction of type η agents

on island j in period t, and letΘt (µt) = {θjt (µt)} denote the market tightness in

each island. Each individual susceptible agent takes as given the fraction of infected

agents, market tightness, and the evolution of the state µt+1 = G (µt). In terms of

the labor allocation, we think of each agent as choosing a probability distribution

over islands. Let lj denote the probability that the agent chooses island j. Each

susceptible agent chooses consumption and the labor probability distribution to

solve

Vt (S,µt) = max
c,lj

u (c)+

ˆ
j

lj
(
ψ
(
λjIt

)
[−κ+ βVt+1 (I,µt+1)] + β

(
1−ψ

(
λjIt

))
Vt+1 (S,µt+1)

)
dj,

subject to

c =

ˆ
j6=0

ljmw (θjt (µt))wjStdj,

ˆ
ljdj = 1.

Note that the consumption of the agent is simply the expected value of labor

earnings over all work islands. This formulation of the budget constraint captures

the idea that agents can insure themselves perfectly in terms of their consumption

regardless of the realization of the lottery. That is, insurers can diversify away the

idiosyncratic risk associated with the realization of the lottery. We suppress the

insurance firms for notational convenience. In defining a competitive equilibrium,

it is useful to define the value associated with choosing a particular island j with

probability one in period t and returning to the optimal strategy in all future

periods for arbitrary beliefs λ̂t. This value is given by

V̂t

(
j,S,µt; λ̂t

)
= u (c)+ψ

(
λ̂jIt

)
[−κ+ βVt+1 (I,µt+1)]+β

(
1−ψ

(
λ̂jIt

))
Vt+1 (S,µt+1) ,

where

c =

mw (θjt (µt))wjSt, if j > 0

0, if j = 0
.

The values for the other types are defined similarly.

Definition. An equilibrium is an allocation (µ,Θ, l,λ, c), values {Vt (η,µt)}η,t, and

ameasureof active islands Γt (µt) = {j ∈ J : ljηt (µt) > 0 for some η ∈ {S, I,R}} such

that
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1. lηt (µt) solves each agent’s recursive problem;

2. mf (θjt)
∑
η λjηt [A−wjηt] 6 0 for all j, with equality if j ∈ Γt;

3. for any j ∈ Γt, λjηt satisfies (6);

4. the law of motion µt+1 = G (µt) for the state is given by (3);

5. for any j ∈ Γct , if A−wjηt > 0 for all η thenmf (θjt) = 0 andmw (θjt) = 1;

6. for j ∈ Γct such that V̂t

(
j,η,µt; λ̂t

)
< Vt (η,µt) for all λ̂t, λjηt = 0.

To understand these conditions, note that conditions 1, 3, and 4 are entirely

standard. Condition 2 is a free-entry condition which guarantees that firm profits

are non-negative. Conditions 5 and 6 impose our refinements. To understand 5,

consider an inactive island j ∈ Γct such that A − wjηt > 0 for all η. Firms would

make strictly positive profits if they believed that theywould be able to hireworkers

on that island. The free-entry condition 2 requires that on such an island, either no

workers join—that is, λjηt = 0—or firms believe that the probability that they are

matched with workers is zero—that is, mf (θjt) = 0. The spirit of this refinement

is that on an island where wages are less than marginal product for every type of

worker, the mass of potential firms is large relative to the mass of potential workers

seeking to locate on that island. This refinement is satisfied if workers are forced

to mix across all islands with strictly positive probability through, say, a tremble.

In this case, the mass of firms that would seek to locate on an island with strictly

positive profits would have to be very large to prevent profits from being arbitrarily

large.

To understand refinement 6, consider an inactive island j that makes some type

η strictly worse off under all possible beliefs. The refinement requires that the

fraction of type η on that island is zero in equilibrium. This refinement can be

thought of as arising from a reasonable restriction on higher-order beliefs. If there

is no set of beliefs for which a set of agents of type ηwould switch to island j, then

in equilibrium, agents of type η̂ should reasonably believe that the probability of

meeting agents of type η in island j is zero.

Next, we characterize the equilibria. Amixing equilibrium is one in which there

exists some t and some island j ∈ Γt such that ljIt > 0 and ljSt > 0. A sorting
equilibrium is one in which for all t and all islands j ∈ Γt, if ljIt > 0, then ljSt = 0.
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An equilibrium has cross-subsidization if there exist some t and some j ∈ Γt such
that for some η,η ′ with ljηt, ljη ′t > 0, we have that wjη < A and wjη ′ > A.

Proposition 1 (Characterization). Any competitive equilibrium features sorting and has
no cross-subsidization and no unemployment in the sense thatmw (θjt) = 1 for all t and
j ∈ Γt.

All proofs, except those mentioned below, are in the Online Appendix. In the

competitive equilibrium, agents consume A units of the final good in each period,

and susceptible agents never get infected. Thus, in equilibrium, all susceptible

people are assigned to a separate island in which their wage is given by A, all

infected people are assigned to a separate island in which their wages are also

given byA, and recovered people are arbitrarily assigned to any island where their

wage is given by A. The proof that in equilibrium, susceptible agents are assigned

to a separate island relies critically on the idea that the environment allows wages

to depend on infection status and allows for islands in which wages are different

from productivityA. That is, it is feasible to allocate susceptible workers to islands

in which wages are lower and virus exposure is also lower than on other islands.

This feasibility captures the idea that virus exposure is controllable.

Note that in our baseline formulation, there are no vacancy-posting costs and no

involuntary unemployment in equilibrium. In Appendix B, we allow for vacancy

posting costs and show that the main results are unchanged.

Given the equilibrium characterization, it follows immediately that the equilib-

rium is Pareto optimal.

Proposition 2. The competitive equilibrium is Pareto optimal.

Next, we establish a version of the Second Welfare Theorem. To do so, it is first

useful to define histories for all agents. The initial history for any agent simply

consists of that agent’s type, so h0 = η0. The aggregate initial history is simply

H0 = µ0. The allocation in period 0 for an individual agent is given by z0 = (c0, l0),

and the firm allocation is given by γ0. The individual history ht is recursively

defined as

ht = (ht−1,η) .

The individual-allocation rule specifies the consumption and labor allocation as a

function of individual histories: zt (ht) = (ct (ht) , ljt (ht)). The aggregate history
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is given by

Ht = (µt,γt−1,Ht−1) .

The firm-allocation rule specifies firm allocations as a function of aggregate his-

tories, denoted by γt (Ht) . A collection of individual-allocation rules and firm-

allocation rules induces a probability distribution over histories denoted by πt (ht)

in the following manner:

πt+1 (ht,S) = πt (ht−1,S)

(
1 −

ˆ
j6=0

ljt (ht−1,S)χλjItdj

)
, (7)

where

λjIt =

∑
ht−1

πt (ht−1, I) ljt (ht−1, I)∑
ht−1

∑
η πt (ht−1,η) ljt (ht−1,η)

,

πt+1 (ht−1,S, I) = πt (ht−1,S)

ˆ
j

ljt (ht−1,S)χλjItdj, (8)

πt+1 (ht−1, I, I) = (1 − α)πt (ht−1, I) , (9)

πt+1 (ht−1, I,R) = απt (ht−1, I) , (10)

πt+1 (ht−1,R,R) = πt (ht−1,R) . (11)

Thus, given some utility levels {V (I) ,V (R)}, any Pareto optimal allocation solves

the following programming problem:

max
∑
t>0

βt
∑
ht

π (ht | S)

[
u (ct (ht | S)) − 1{ηt=S}

ˆ
j

ljt (ht | S)ψ (λjIt) djκ− 1{ηt=I}κ

]
,

(12)

where ht | S refers to histories in which h0 = S, subject to

∑
t>0

βt
∑
ht

π (ht | h0)

[ˆ
j

ljt (ht | h0)
[
u (ct (ht | h0)) − 1{ηt=I}κ

]]
> V (h0) , h0 ∈ I,R,

∑
ht

π (ht | h0) ct (ht) 6
∑
ht

π (ht | h0)

[ˆ
j6=0

mw (θjt)Aljt (ht) dj

]
, (13)

ˆ
ljt (ht) dj = 1, (14)
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and (7)-(11). As we vary V (I), V (R), we can trace out the Pareto frontier.

Proposition 3. Consider any allocation that is Pareto optimal. There exists a lump-sum
tax system which supports that outcome as an equilibrium.

2.1 Multiple Occupations and/or Multiple Commodities

For expositional reasons, we have considered a model with a single type of output

good and a single input. In this section, we show that our results continue to hold

if we allow individuals to differ in the type of the labor input and/or in the types of

goods that they consume. To develop this extension, suppose first that the economy

hasM different types of labor inputs and a single final good. The technology for

producing the final good is

Yt = Af (L1, ...,LM) ,

where Li denotes the amount of labor of input type i. These input types can be

interpreted as occupations. Each household in this economy specializes in the type

of labor input that it can supply. The fraction of households that can supply labor

of input type i is νi.

We assume that the probability of being infected on a particular island depends

onlyupon the aggregate labor supplyby infected, susceptible, and recoveredpeople

and continues to be given by (2). The probability of infection does not depend on

the composition of occupation types on the island. We also assume that the initial

fraction of agents who are infected is the same across all occupation types.

The definition of an allocation is unchanged except that we now have to index

µ, l, λ, c by the occupation type in addition to the infection type. Wages in each

island are now indexed by both the occupation type and the infection type. With

this definition of wages and allocations, the definition of competitive equilibrium

is essentially the same as in the single-occupation-type economy.

It is immediate that if both the infection probabilities and the initial distribution

of infected agents are independent of occupation type, Proposition 1 continues

to hold in the sense that the the competitive equilibrium has sorting, no cross-

subsidization and no unemployment. It is also immediate that the analogs of the

First and Second Welfare Theorems hold.
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Wecan also straightforwardly extend our economy to an economywithmultiple

consumption goods. To see how the economy can be extended, suppose that the

economy has N different types of goods. The technology for producing each one

of these goods is given by

Yi = AiL,

where the subscript i denotes the type of consumption good. Households’ utility

over these consumption goods is given by u (c1, ..., cN). An allocation is defined in

a similar way to that above. A competitive equilibrium now consists of a vector of

prices for each consumption good aswell aswage rates. Again, it is straightforward

to prove that Proposition 1 and the welfare theorems continue to hold in this

environment.

3 A Pandemic Model with Imperfect Observability

In theprevious sectionwithobservable types, the equilibriumallocationhadperfect

separation between susceptible and infected agents, which immediately implied the

welfare theorems. We show that the efficiency results continue to hold even if we

allow for asymptomatic infected agents who are indistinguishable from susceptible

agents. The possible agent types are now described by η ∈ {US,UI, I,R}with initial

masses denoted by µη0. Let US denote susceptible agents and UI denote infected

asymptomatic agents. Agents of typeUS andUI cannot be distinguished from each

other and therefore must receive the same allocations. Let U denote the type of

such an agent, which we refer to as the unknown type, and µUt = µUSt+µUIt for all

t. Let I denote the symptomatic infected agents and R denote the recovered agents.

We assume that recovered agents can be identified even if they were previously

asymptomatic. This assumption is purely for convenience. Agents of type UI

become symptomatic with probability φ and recover with probability α. Similarly,

newly infected agents are also symptomatic with probability φ.

We assume that the economy has a large number of insurance firms. We in-

troduce these firms for two reasons. First, they provide agents the opportunity to

purchase inter-temporal insurance contracts. With imperfectly observable types,

agents can get infected in equilibrium and thus would like to insure themselves.

Second, as we discuss below, insurance firms help solve the coordination problem
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that arises in environments with local public goods. Neither the insurance mo-

tive nor the coordination issues arise with perfectly observable types, and thus we

abstracted from insurance firms in the previous section to simplify notation.

We assume that competitive insurance firms offer contracts in period 0 con-

tingent on the entire history of an individual. Both firms and workers are com-

mited to these contracts. The relevant individual history in period t is given by

ht = (η0, ...,ηt) ,with ηt ∈ {U, I,R}. Insurance firms offer contracts that specify con-

sumption and labor for each individual history taking as given the public history.

Let z = (c, l) = {ct (ht) , ljt (ht)} denote an arbitrary contract, and let z∗ = (c∗, l∗)

denote the equilibrium contract.

Let

λIjt =

∑
ht−1

[πt (ht−1,UI) ljt (ht−1,U) + πt (ht−1, I) ljt (ht−1, I)]∑
ht−1

∑
η [πt (ht−1,η) ljt (ht−1,η)]

denote the fraction of infected agents on island j, where infected agents include

those who are symptomatic as well as those who are asymptomatic. An allocation

induces an evolution of the masses of various types of agents according to

πt+1 (ht−1,US,UI) = (1 − φ)πt (ht−1,US)

ˆ
j6=0

ljt (ht−1,U)χλIjtdj, (15)

πt+1 (ht−1,US, I) = φπt (ht−1,US)

ˆ
j6=0

ljt (ht−1,U)χλIjtdj, (16)

πt+1 (ht−1,US,US) = πt (ht−1,US)

[
1 −

ˆ
j6=0

ljt (ht−1,U)χλIjtdj

]
, (17)

πt+1 (ht−1,UI,UI) = (1 − φ) (1 − α)πt (ht−1,UI) , (18)

πt+1 (ht−1,UI, I) = φ (1 − α)πt (ht−1,UI) , (19)

πt+1 (ht−1,UI,R) = απt (ht−1,UI) , (20)

πt+1 (ht−1,R,R) = πt (ht−1,R) . (21)

An allocation is resource feasible if∑
ht

πt (ht) ct (ht) 6
∑
ht

πt (ht)

ˆ
j6=0

mw (θjt)Aljt (ht) dj.
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Production firms are identical to those described earlier. Let L∗jt be the mass of

workers allocated to island j in period t by all other insurance firms. An individual

insurance firm takes L∗jt as given, as well as the masses of agents of various types

employed by other firms. If L∗jt > 0, then firms take as given the relative mass of

infected agents in that island, λ∗jIt. This relative mass is given by

λ∗jIt =

∑
ht−1

[
π∗t (ht−1,UI) l

∗
jt (ht−1,U) + π

∗
t (ht−1, I) l

∗
jt (ht−1, I)

]
L∗jt

, (22)

where

L∗jt =
∑
ht−1

∑
η

[
π∗t (ht−1,η) l

∗
jt (ht−1,η)

]
.

In other words, an individual insurance firm does not internalize the effect of its

choices on the infection probability on an island in which there is a positive mass

of agents signed by other insurance firms.

Let π̃0 (h0)denote themass of agents of typeh0 that an individual insurance firm

attracts in period 0. Given these initial masses, let π̃t (ht−1,ht) denote the mass of

agents associatedwith history (ht−1,ht)who are signed by this firm. Thesemasses

evolve according to (15)-(21) if L∗jt > 0. If L∗jt = 0, we assume that the relative mass

of infected agents on that island is given by

λjIt =

∑
ht−1

[π̃t (ht−1,UI) ljt (ht−1,U) + π̃t (ht−1, I) ljt (ht−1, I)]∑
ht−1

∑
ht

[π̃t (ht−1,ht) ljt (ht−1,ht)]
. (23)

Thus, in this case, the insurance firm internalizes the effects of its choices on

the infection probability on that island. This arises from our assumption that

pandemics generate local externalities and that an insurance firm can no longer

be considered “small” on an island if it is the only one allocating agents to that

particular island.

A contract is an allocation for a particular firm i, denoted by zi. It is convenient

here to define explicitly the problem these firms solve, which is

max
z,π̃0(η0)

(∑
t>0

Qt
∑
h0

∑
ht

π̃ (ht | h0)

[ˆ
j6=0

mw (θjt)Aljt (ht | h0) − ct (ht | h0)

])
,

(24)
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subject to

π̃0 (h0)
∑
t>0

βt
∑
ht

π̃t (ht | h0)

π̃0 (h0)
vt (ht | h0) > π̃0 (h0)V (h0) , ∀h0,

where

vt (ht | h0) ≡ u (ct (ht | h0))−

ˆ
j6=0

ljt (ht | h0) 1{ηt=US}ψ (λjIt) κ− 1{ηt=UI,I}κ, (25)

and (15)-(21), where λjIt is given by (23) if L∗jt = 0 and (22) if L∗jt > 0.

As in the case in which types are perfectly observable, virus exposure is con-

trollable in that it is feasible to allow for any mix of agents of various publicly

observable types without loss of output. Thus, virus exposure can be controlled

without sacrificing output.

We now define a competitive equilibrium.

Definition. A competitive equilibrium is an allocation z∗, prices Qt, market tight-

nessΘ, and market utilities {V (h0)}h0
such that

1. given prices Qt and market utilities V (h0), {z
∗,π0 (h0)} solves (24);

2. mf (θjt)
∑
η λjηt [A−wjηt] 6 0 for all j, with equality if j ∈ Γt;

3. {V (h0)}h0
is such that the firms make zero profits; that is, the value of (24) is

zero;

4. the resource constraint is satisfied:∑
ht

πt (ht) ct (ht) =
∑
ht

πt (ht)

ˆ
j6=0

mw (θjt)Aljt (ht) dj, ∀t;

5. for any j ∈ Γct , if A−wjηt > 0 for all η thenmf (θjt) = 0 andmw (θjt) = 1.

Without loss of generality, we can consider a representative insurance firm that

allocates agents to islands in which L∗jt = 0. In the following proposition, we show

that any competitive equilibrium features no involuntary unemployment and no

mixing between U- and I-type agents.
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Proposition 4 (Characterization). In any competitive equilibrium, there is no mixing
betweenU- and I-types, and no unemployment in the sense thatmw (θjt) = 1 for all t and
j ∈ Γt.

Since mixing the U and I types on the same island increases the infection

probability for the U types without any additional benefit, it is always optimal to

separate these two types. By contrast, pooling U and R agents is valuable, since

such pooling lowers the infection probability for the U types and leaves the R

types unaffected. This observation suggests that firms will pool these types in

equilibrium. We now prove the existence of such a pooling equilibrium; moreover,

in this equilibrium the initial U agents pay a premium in order to pool with the

initially recovered agents. We also show that this equilibrium is efficient. To do so,

it is useful to define the maximum value that the initially unknown types would

receive if they never mixedwith initially infected or initially recovered agents. This

value is

V (U) = max
∑
t>0

βt
∑
ht

π (ht | U)
[
u (ct (ht | U)) − lt (ht | U) 1{ηt=US}ψ (λIt) κ− 1{ηt=UI,I}κ

]
,

subject to ∑
ht

π (ht | U) (ct (ht | U) − lt (ht | U)A) 6 0, ∀t,

and

λIt =

∑
ht−1

[πt (ht−1,UI) lt (ht−1,U)]∑
ht−1

∑
η={U,R} [πt (ht−1,η) lt (ht−1,η)]

.

Similarly, let V (R) and V (I) define themaximum values that the initially recovered

and symptomatic infected agents would receive if they did not mix with any other

agents. These are:

V (R) =

T∑
t=0

βtu (A) ,

V (I) =
∑
t>0

βt
∑
ht

πt (ht | I)
[
u (A) − 1{ηt=I}κ

]
.

Finally, let Vη denote the equilibrium value for the initial η types.

Proposition 5. A competitive equilibrium with the following properties exists:

• There is mixing between U and R type agents.
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• VU > V (U), VR > V (R), and VI = V (I).

• The equilibrium is efficient.

Proof. See Appendix.

In such a competitive equilibrium, both initially unknown and initially recov-

ered types are made strictly better off than if they were on their own. In particular,

the initially recovered types consume an amount greater than their marginal prod-

uct, while the initially unknown types consume an amount less than their marginal

product. This is because the unknown-type agents are willing to give up some

consumption in order to pool with recovered-type agents, since they reduce the

infection probability. Note that if there were an initial mass of vaccinated agents,

then they would be identical to recovered agents and so would also get higher

consumption in equilibrium.

We emphasize that commitment by firms and workers is critical in ensuring

efficiency. Obviously, if firms cannot commit, they will not honor contracts that

generated negative present value of profits for any history. Later, we show that

the equilibrium is inefficient if workers cannot commit. We also emphasize that

insurance firms play a crucial role in solving the coordination problem that arises

because of these local externalities. If agents were to individually decide how to

allocate their time across islands, equilibria in which unknown-type and recovered

agents are on separate islands could arise. In such cases, forcing recovered and

unknown-type agents to inhabit the same island would make both types strictly

better off. Insurance firms solve this coordination problem, since they understand

how infections transmit between agents who sign contracts with them. Similar

coordination problems arise in the local public goods literature and are solved by

the presence of “clubs.”

3.1 Efficiency with Private Information

Suppose now that the types of U and I agents are privately observed and that the

type of R agents is public information. We show that the equilibrium with public

information described above is also an equilibrium with private information. To

see this result, note that in the equilibrium with public information, type-I agents

receive consumption equal to A, and type-U agents receive consumption less than
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or equal to A. Thus, type-I agents prefer to reveal their type rather than pretend to

be of type U, and U-type agents prefer to reveal their type rather than pretend to

be I. The reason is that in the equilibrium with public information, they receive a

utility at least as large as that if they pooled with I types. The assumption that R

types are public information is important because otherwise an I type would have

an incentive to pretend to be an R type. Clearly, the equilibrium is efficient. We

summarize these results in the following proposition.

Proposition 6. Suppose thatU and I types are private information, but the R type is public
information. Then, the equilibrium characterized in Proposition 5 is still an equilibrium
and is efficient.

4 A Pandemic Model without Controllability

A crucial assumption underlying the efficiency results in the previous section is

that virus exposure is controllable, so pandemics generate local externalities. In

this section, we consider a special case of our model in which virus exposure is

not controllable, so pandemics generate (almost) global externalities. This is the

assumption made by much of the economics literature studying pandemics. While

it is unsurprising that equilibria will typically be inefficient, we show that the

implications for optimal policy are more subtle than those in that literature.

Consider a version of our benchmarkmodel with only onework island, denoted

j = 1, and a home island, denoted j = 0.7 Weassume that thework island is indexed

by w1η = A for all η ∈ {U, I,R}. Note that in this environment, it is not feasible to

allow for any mix of agents of various types without loss of output. That is, the

mix of agents cannot be controlled without sacrificing output. In this sense, virus

exposure is not controllable.

As in the previous section, insurance firms offer contracts that specify con-

sumption and labor allocations for each individual history, taking as given the

public history. Let z = (c, l) = {ct (ht) , lt (ht)} denote an arbitrary contract, and

let z∗ = (c∗, l∗) denote the equilibrium contract. Since we have only one work

island, we let lt denote the labor allocation to the work island and 1 − lt denote

the labor allocation to the home island. We think of competitive insurance firms

7The externalities here are almost global, because agents are exposed to the virus only if they are

present on the work island.
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as simultaneously offering contracts to all agents in period 0 as functions of their

initial histories h0 = η0. Each agent chooses the contract that offers the highest

utility. Let V0 (h0) denote the highest utility offered by all other firms. We think of

this highest utility as the market price. Let Qt denote the Arrow-Debreu price for

consumption in period t. Insurance firms trade with each other at these prices. An

individual firm takes as given these market prices and the labor allocations chosen

by other firms when offering a contract that maximizes expected profits. These

labor allocations induce infection probabilities according to

ψ (λ∗It) = χ

∑
ht−1

[πt (ht−1, I) l
∗
t (ht−1, I) + πt (ht−1,UI) l

∗
t (ht−1,U)]∑

ht−1

∑
η πt (ht−1,η) l∗t (ht−1,η)

.

Let π̃ (h0) denote the mass of agents of type η0 attracted to this particular contract,

and let π̃ (ht | h0) be the corresponding mass of these agents in period t with

history ht . The individual firm takesmarket prices and the equilibrium allocations

induced by the choices of other firms as given and solves

max

(∑
t>0

Qt
∑
h0

∑
ht

π̃ (ht | h0) [lt (ht)A− ct (ht)]

)
, (26)

subject to

π̃0 (h0)
∑
t>0

βt
∑
ht

π̃t (ht | h0)

π̃0 (h0)
vt (ht | h0) > π̃0 (h0)V (h0) , ∀h0,

and the laws of motion for types given by (15)-(21) for the single-work-island case

in which the fraction of infected agents is given by λ∗It. Obviously, in equilibrium,

π̃0 (h0) = µη0.

4.1 Competitive Equilibrium

Definition 1. A competitive equilibrium is then an allocation z∗, prices Qt, and

market utilities {V (h0)}h0
such that

1. given Qt and market utilities V (h0), {z
∗,π0 (h0)} solves (26);
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2. the resource constraint is satisfied:∑
ht

π (ht) [lt (ht)A− ct (ht)] = 0, ∀t,ht.

Note that if the resource constraint is satisfied, the insurance firms make zero

profits.

Proposition 7. In any competitive equilibrium, there is no cross-subsidization, and symp-
tomatic infected and recovered agents supply one unit of labor in the work island in all
periods. If u ′ (0)A > κ/(1 − β), there is mixing in the sense that unknown-type agents
work a positive amount in at least one period.

The proposition says that in contrast to the controllable case, unknown-type

and symptomatic infected agents will mix in equilibrium.

4.2 Efficiency of Competitive Equilibrium

We now show that when competition across islands is restricted, competitive equi-

libria are in general inefficient. A Pareto optimal allocation for the model without

controllability is defined identically to that in the model with controllability with

the restriction that the economy has only one work island.

Proposition 8. The competitive equilibrium is inefficient.

The reason for the failure of the First Welfare Theorem is that private insurance

firms do not internalize the effect of the choice of labor supply on the probability

of infection. For example, increasing the labor supply of symptomatic infected

agents increases the probability of infection for susceptible agents and thus lowers

their welfare. This effect is not internalized by private firms offering contracts to

individual agents.

While the presence of an externality in themodelwithout controllability is clear,

the relationship between the optimal and the equilibrium labor supply allocation

is more subtle. We illustrate this result by comparing the optimal and equilibrium

allocationswhen the planner has access to a full set of instruments with thosewhen

the planner has access only to untargeted Pigouvian taxes.

First, we characterize the set of Pareto optimal allocations that maximize the

welfare of unknown-type agentswhile leaving symptomatic infected and recovered
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agents at least as well off as in the competitive equilibrium. To do so, we develop

an assumption that ensures that the pandemic is sufficiently costly that lockdowns

are desirable. We start from an allocation in which all agents are working and

the proportion of symptomatic infected agents is ε ∈ (0, 1). In this case, reducing

the mass of symptomatic infected agents who work to zero confers a utility gain

of χκε to each unknown susceptible agent. For symptomatic infected agents to

be at least as well off as in the competitive equilibrium, each of them must be

compensatedwithAεunits of consumption. This amount can be raised by reducing

the consumption of each unknown-type agent by Aε/µU0. The utility cost of this

reduction isu ′ (A)Aε/µU0 to a first order. We say that pandemics are socially costly

if the marginal benefits from this policy exceed its marginal costs. In our model,

the condition for pandemics to be socially costly is

u ′ (A)
A

µU0

− µUS0χκ < 0. (27)

Under the assumption that pandemics are socially costly, we show that if the

measure of initially infected agents is sufficiently small and the probability of

becoming symptomatic sufficiently large, optimal policy requires all symptomatic-

infected agents to stay at home.

Lemma 1. Suppose that (27) holds and φ is sufficiently large. Then, there exists some
µ∗I ,µ

∗
UI
> 0 such that ifµI0 < µ∗I andµUI0 < µ∗UI , the solution to the Pareto problem has no

symptomatic infected agents working, and unknown-type agents working more than in the
competitive equilibrium. Recovered agents supply one unit of labor in both the equilibrium
and the Pareto optimal allocation.

This lemma shows that if pandemics are socially costly and the fraction of

initially infected agents is sufficiently small, the policy that maximizes the welfare

of the unknown-type agents while leaving symptomatic infected and recovered

agents at least as well of as in the competitive equilibrium involves subsidizing

symptomatic infected agents to stay home and allowing all unknown and recovered

types to work. When the share of initial asymptomatic infected agents µUI0 is

small and the probability of becoming symptomatic is large, unknown-type agents

work more than they would in the competitive equilibrium. The payments to the

symptomatic infected agents are obtained by taxing unknown-type agents at work.
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Note the sharp contrast with the competitive equilibrium, where all infected agents

always work.

4.3 Simple Pigouvian Taxes

Suppose that the government does not have access to targeted policies and can only

levy untargeted Pigouvian taxes on labor income. We first consider the optimal

Pigouvian taxes in a static model and then consider the dynamic model.

4.3.1 Pigouvian taxes in a static model

Assume that the government can impose a linear tax on labor income τ on all agents,

with proceeds rebated lump-sum to the agents. Since we are interested in the role

of these taxes to correct externalities, we abstract from redistributive concerns and

assume that the tax revenue collected from a particular type is rebated lump-sum

to that type.

Standard duality arguments imply that one can write the insurance firm’s prob-

lem as maximizing the welfare of the initially unknown types subject to a budget

constraint and the participation constraints for the other agents. From Proposition

7, we know that all symptomatic infected and recovered agents supply one unit of

labor and consume A units of the consumption good. Thus, the problem of the

firm is

max
l0(U)∈[0,1]

u ((1 − τ)Al0 (U) + T) − ξ0l0 (U)χλ
∗
Iκ− (1 − ξ0) κ, (28)

where ξ0 = µUS0/µU0 and

λ∗I =
µI0 + µUI0l

∗
0 (U)

µU0l
∗
0 (U) + µI0 + µR0

.

Note that all symptomatic infected and recovered agents continue to supply one

unit of labor, since working does not yield disutility to these agents. The first-order

condition for this problem is

u ′ ((1 − τ)Al (U) + T)A (1 − τ) − ξ0χλ
∗
Iκ = 0. (29)

Let l (U; τ, T , l∗ (U)) denote the best-response function that solves this problem. It
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must be that

l∗ (U; τ) = l (U; τ, τl∗ (U) , l∗ (U)) . (30)

Note that l∗ (U; 0) refers to the equilibrium labor supplywith no taxes. It is straight-

forward to show that the optimal untargetedPigouvian tax implements the solution

to the following problem:

max
l
u (Al) − ξ0lχ

µI0 + µUI0l

µU0l+ µI0 + µR0
κ− (1 − ξ0) κ. (31)

Let lopt (U) be the solution to this problem. We first consider a local perturbation

of l around the equilibrium labor supply with no taxes, l∗ (U; 0). Consider the total

derivative of (31):

u ′ (lA)Adl− ξ0χλIκdl− ξ0χ
∂λI

∂l
κdl. (32)

Evaluating (32) at l = l∗ (U; 0) and using the first order condition (29) yields

−ξ0χ∂λI/∂lκdl. We have

∂λI

∂l
= µU0

(µI0 + µR0)µUI0 − µI0

(µU0l+ µI0 + µR0)
2 ,

which is negative iff µUI0 6 µI0 (µI0 + µR0)
−1
. Thus, if µUI0 is small, at least locally,

the welfare of the U agents can be increased by forcing them to work more than in

the competitive equilibrium. This result establishes that the conventional wisdom

that economic activity in the competitive equilibrium is always too high relative

to the efficient level is incorrect, at least in the static model. Our result shows

that economic activity can be lower than the efficient level, at least locally. The

reason for our result is straightforward. When the mass of asymptomatic infected

agents is relatively small, increasing the mass of U agents who work reduces the

probability that any susceptible agent will be infected. In effect, in our economy,

the labor supply of unknown-type agents induces a positive congestion externality

by increasing the probability that a susceptible agent will meet a susceptible agent

and reducing the probability that a susceptible agent will meet a symptomatic

infected agent. In a competitive equilibrium, no individual unknown-type agent

internalizes this effect.

Under restrictions on policies, it turns out that for a wide variety of utility

functions, the economic activity is globally too low in the competitive equilibrium.
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Lemma 2. Suppose that u (c) = log (c). Then, for sufficiently small µUI0, lopt (U) >
l∗ (U; 0). Thus, the optimal Pigouvian policy is a subsidy on labor.

For utility functions of the form u (c) = c1−σ/ (1 − σ) we have computed a

variety of numerical examples and shown that in every case, for sufficiently small

µUI0, l
opt (U) > l∗ (U; 0).

4.3.2 Pigouvian taxes in a dynamic model

Consider next the inefficiency in the labor supply of susceptible agents in the

dynamic model. For ease of exposition, for this subsection we assume that µUI = 0

and φ = 1 so that there are no asymptomatic agents. However all our results go

through if µUI is sufficiently small and φ is sufficiently close to one. Let λ∗It be the

equilibrium fraction of infected agents relative to the total mass of agents on the

work island, which is given by

λ∗t =
µ∗It

µ∗Utl
∗
t (U) + µ

∗
It + µ

∗
Rt

since symptomatic infected and recovered agents always work. Let the mass of

agents associated with an individual firm who were initially of type i ∈ {U, I,R} be

denoted by πt = (πt (U) ,πt (I) ,πt (R)). As in the static case, initial I and R agents

work one unit on all future periods and consume A. We can then write the dual

problem of the firm recursively as choosing (cη, lη) to maximize

Vt (πt, λ
∗
It) = max

ct(η),lt(η)

∑
πt (η)

[
u (ct (η)) − lt (U)ψ (λ∗It) κ1{η=U} − κ1{η=I}

]
(33)

+ βVt+1

(
πt+1, λ

∗
It+1

)
,

subject to ∑
η

πt (η) ct (η) 6
∑
η

πt (η) lt (U) (1 − τ)A+ T

and

πt+1 =

πt+1 (U)

πt+1 (I)

πt+1 (R)

 =

1 − lt (U)ψ (λ∗It) 0 0

lt (U)ψ (λ∗It) 1 − α 0

0 α 1


πt (U)πt (I)

πt (R)

 . (34)
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It is straightforward to show that for any t > 0, cη = cη ′ . The first order condition

for lt (U) (noting that lt (I) = lt (R) = 1) is:

πt (U)u
′ (ct (U))A (1 − τ) −ψ (λ∗It) κ− β

∂Vt+1

∂πt+1 (U)
ψ (λ∗It)

+βψ (λ∗It)

(
πt (U)

∂Vt+1

∂πt+1 (U)
− πt (I)

∂Vt+1

∂πt+1 (I)

)
= 0.

As in the static problem, the optimal Pigovian tax chosen at time t implements

the solution to a planning problem in which the planner chooses lt(U) while

internalizing its effect on the infection probabilities.

Weconsider a local perturbationof lt(U) around the equilibriumchoice l∗t (U; 0) .

This welfare change is given by the total derivative of (33). Note that changing

l∗t (U; 0) affects welfare in three ways. The first is the effect on the probability of

infection for susceptible agents in the current period. The second is that l∗t (U; 0)

affects the transition law for the mass of agents of various types, (34), and hence

affects the probability of infection in future periods. Evaluating the total derivative

at the competitive-equilibrium allocation, we obtain

−µ∗Utl
∗
t (U; 0)ψ ′ (λ∗It)

∂λ∗It
∂l∗t (U; 0)

κ+ β

[
∂Vt+1

∂πIt+1

−
∂Vt+1

∂πUt+1

]
µ∗Utl

∗
t (U; 0)ψ ′ (λ∗It)

∂λ∗It
∂l∗t (U; 0)︸ ︷︷ ︸

externality from current infection

+ β
∂Vt+1

∂λ∗It+1

∂λ∗It+1

∂l∗t (U; 0)
.︸ ︷︷ ︸

externality from future infection

See the proof of Lemma 3 for details. Whether such a local perturbation increases

welfaredependson the combinationof the twoexternalities that arise in the compet-

itive equilibrium. The first arises because increasing the labor supply of unknown-

type agents in the current period changes the infection probability implied by λ∗It

for all susceptible agents in the current period. We label this the externality from
current infection. The second externality arises because increasing the labor supply

by unknown-type agents in the current period changes the infection probability

in future periods implied by λ∗t+1, λ
∗
t+2, . . .. We label this effect the externality from

future infection.
The current-infection externality in turn has a static component, which is iden-
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tical to that in the static model, and a dynamic component. Given that µUI0 = 0

andφ = 1, the sign of the static component is positive, since an increase in themass

of unknown-type agents has a positive congestion externality, as discussed earlier.

The dynamic component arises because a change in aggregate labor supply alters

the infection rates for each individual firm and affects the masses of various types

of agents associated with that firm. While the sign of the dynamic component is

ambiguous in general, in the appendix, we show that if α is sufficiently small or

T = 2, this term is positive.

The future-infection externality arises because the change in l∗t (U; 0) affects the

probability of infection in future periods. It is straightforward to show that the

continuation value is decreasing in the probability of infection in future periods

implied by λ∗t+1. Since an increase in current labor supply reduces the relativemass

of susceptible to infected agents, it is easy to show that the infection probability

is increasing in l∗t (U; 0). Thus, in contrast to the static model, in the dynamic

model reducing the labor supply of unknown-type agents may raise welfare. We

summarize these results in the following lemma.

Lemma 3. The effect on welfare of a small increase in labor supply of unknown-type
agents from the competitive equilibrium can be decomposed into an externality from current
infection and an externality from future infection. Ifα is sufficiently small or T = 2, welfare
rises because of the externality from current infection and falls because of the externality
from future infection. The overall effect on welfare is ambiguous.

In Figure 1, we plot the period-0 aggregate labor supply in the competitive equi-

librium, the Pareto optimal allocation, and under the optimal Pigouvian policies

as we vary parameters in our model. We see that, quite generally, aggregate labor

supply under these policies is larger than in the competitive equilibrium.8 Thus,

economic activity is inefficiently too low in the competitive equilibrium. The con-

ventional presumption in the pandemic literature is that just like those caused by

greenhouse gases, the externalities created by pandemics cause economic activity

to be too high in a competitive equilibrium. The policy implication in this literature

is that curbing economic activity through lockdowns and other such measures is

beneficial. We have shown that economic activity is too low and that stimulating it

through various policies may well be beneficial.

8In Appendix C, we plot the aggregate labor supply in the second period as well as the labor

supply for each type.
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Figure 1: Employment in the first period as a function of parameters.
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Figure Notes. Aggregate employment LCE in the competitive equilibrium, LPO in the Pareto optimum, and LPigou with

optimal Pigouvian taxes. Default parameter values: σ = 2 (CRRA),β = 0.9 (discount factor),A = 2 (productivity of labor),
χ = 1 (infectivity rate), κ = 40 (cost of infection), φ = 0.5 (symptomatic rate), α = 0.1 (recovery rate), µUS

= 0.9025
(mass of unknown susceptible), µUI

= 0.0475 (mass of asymptomatic infected), µI = 0.05 (mass of symptomatic infected).

The upper-left panel varies the initial mass of recovered agents,µR, so thatµUS
+µUI

+µR = 0.95. The upper-right panel
varies the initial mass of asymptomatic infected so that µUS

+µUI
= 0.95.

5 A Pandemic Model without Commitment

Thus far, we have assumed that firms and workers can commit to contracts. We

now ask if our efficiency result continues to hold when workers can unilaterally

walk away from contracts. We show that in this case, the competitive equilibrium

can be inefficient because of the presence of a novel pecuniary externality.

Assume for ease of exposition that the economy lasts for two periods, t = 0, 1.

We assume that insurance firms whose contracts are accepted in period 0 are

committed to those contracts, but workers are not. Specifically, workers at the
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beginning of period 1 can leave their current insurance firms and accept contracts

offered by other firms.

Associated with any competitive equilibrium is a set of market utilities for each

type in periods 0 and 1. Let V̄0 (h0) denote the market utilities for type h0 and

V̄1 (h1) denote the market utilities for type h1 in period 1. The contracts offered by

insurance firms in period 0 must have a continuation utility in period 1 at least as

large as V̄1 (h1). Similarly, the contracts offered by poaching firms in period 1 must

also offer a utility level at least as large as V̄1 (h1). We begin with the problem of

poaching firms in period 1. This problem is

max
c1(h1),π̃1(h1)

∑
h1

π̃1 (h1)

[ˆ
j6=0

mw (θj1)Alj1 (h1) − c1 (h1)

]
, (35)

subject to

π̃1 (h1) [v1 (h1 | h0)] > π̃1 (h1) V̄1 (h1) , ∀h1,

where v1 (h1 | h0)was defined in (25). Sincewe look for equilibria inwhich period-0

firms retain all their workers, market clearing requires that poaching firms do not

employ any workers. That is, π̃1 (h1) = 0 solves (35).

The period-0 insurance firm’s problem is

max
z,π̃0(η0)

(∑
t>0

Qt
∑
h0

∑
ht

π̃ (ht | h0)

[ˆ
j6=0

mw (θjt)Aljt (ht | h0) − ct (ht | h0)

])
,

(36)

subject to

π̃0 (h0)
∑
t>0

βt
∑
ht

π̃t (ht | h0)

π̃0 (h0)
vt (ht | h0) > π̃0 (h0) V̄ (h0) , ∀h0

and the limited commitment constraint

π̃1 (h1 | h0) v1 (h1 | h0) > π̃1 (h1 | h0) V̄1 (h1) , ∀h1, (37)

and (15)-(21), where λjIt is given by (23) ifL
∗
jt = 0 and (22) ifL∗jt > 0. Market clearing

requires that themasses ofworker types that solve (36) equal the populationmasses

of these types.
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Definition 2. A competitive equilibrium consists of an allocation {z∗0, z∗1}, prices

{Q0,Q1}, market tightness {Θ0,Θ1}, andmarket utilities

{
V̄0 (h0) , V̄1 (h1)

}
h0,h1

such

that

1. given V̄1 (h1), poaching firms solve (35) and cannot attract any workers in the

sense that if π̃1 solves this problem, π̃1 = 0;

2. given the market utilities, the allocations solve (36); furthermore, the masses

of agents chosen by insurance firms equal population masses;

3. π1 is induced from π0 by the allocations z∗0 in that they satisfy (15)-(21);

4. mf (θjt)
∑
η λjηt [A−wjηt] 6 0 for all j, with equality if j ∈ Γt, for all t > T−1;

5. the market utilities are such that insurance firms make zero profits;

6. the resource constraint is satisfied:∑
ht

πt (ht) ct (ht) =
∑
ht

πt (ht)

ˆ
j6=0

mw (θjt)Aljt (ht) dj, ∀t > 0;

7. for any j ∈ Γct , ifA−wjηt > 0 for all η, thenmf (θjt) = 0 andmw (θjt) = 1 for

all t > 0.

It will be useful to define a static competitive equilibrium in which the economy

lasts for one period. This competitive equilibrium is simply a collection of alloca-

tions, market tightness, and market utilities such that all firms solve (35), insurance

and production firmsmake zero profits, the resource constraint is satisfied, and our

refinement holds. For future use, note that the allocations in a static competitive

equilibrium depend on masses of various types in the population.

Next, we show that any competitive equilibrium is inefficient.

Proposition 9. With limited commitment, the competitive equilibrium is inefficient.

In the proof, we show that the competitive equilibrium is inefficient because

of an externality. To understand this externality, note first that in a limited-

commitment economy, the outcomes in the last period coincide with those in a

static, competitive equilibrium. The utility levels in this equilibrium depend on the

masses of types in the population. Next, note that an individual insurance firm

34



in period 0 takes as given the continuation utility levels of its workers and under-

stands that the choice of work effort determines the probabilities that its workers

in the last period will be of various types. It does not, however, internalize that

the continuation utilities will be determined by the population distribution of the

various types. Finally, note that by contrast, the social planner internalizes that the

choice of work effort determines both the probability that an individual worker’s

type will change and the resulting change in the population distribution in the last

period. Thus, the competitive equilibrium is inefficient.

6 A Model with an Alternate Infection Technology

So far, we have assumed a simple linear infection technology. We now consider a

generalization of the infection technology in the spirit of Acemoglu et al. (2020). As

we will show, the efficiency results in the model with controllability do not depend

on the form of the infection technology. However, the implications for optimal

policy in the model without controllability can depend on the technology.

We start by discussing themodel with controllability. Assume that if themasses

of agents are given by µ, the probability of infection in a given work island is (with

some abuse of notation)

ψ (µ, l) = χ
µUIlj (U) + µIlj (I)

[µUlj (U) + µIlj (I) + µRlj (R)]
2−ω , (38)

where ω ∈ [1, 2] is the parameter that governs the returns to scale in the infection

technology. With ω = 1, the technology displays constant returns, and with

ω ∈ (1, 2], it displays increasing returns. It is important to note that with ω = 1,

technology (38) nests our baseline case, while with ω = 2, it nests the quadratic

technology used in the literature.

For simplicity, we restrict attention to the static model. With increasing returns,

we need to add a minimum size constraint on the problem confronting insurance

firms. This constraint is ∑
η

π (η) lj (η) > L1lj>0, j 6= 0. (39)

Without this constraint, if the technology displays increasing returns to scale, firms
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will have incentives to continuously split the population of U types across an

increasing number of islands, and thus there will be no equilibrium.

The problem for the insurance firm is

max
z,π̃(η)

(∑
η

π̃ (η)

[ˆ
j6=0

mw (θj)Alj (η) − c (η)

])
, (40)

subject to

π̃ (η)

[
u (c (η)) −

ˆ
j6=0

lj (η) 1{η=US}ψ (µ, l) κ− 1{η=UI,I}κ

]
> π̃ (η)V (η)

and (39).

Assume that

π (η) > L, ∀η,

so population masses are large enough to meet this constraint.

We now prove that if an equilibrium exists, it is efficient. Any equilibriummust

be of the following form: the representative firms will choose J + 1 work islands

so that all the symptomatic infected agents will be on a single island. On each of

the other J islands, the firm will allocate a fraction π (U) l (U) /J of the U types and

a fraction π (R) /J of the recovered agents. The number of islands J and the labor

allocation in each island, l (U), satisfy

π (U) l (U) + π (R) > JL.

Therefore, if an equilibrium exists, it must solve

max
{c(η)}η∈{U,R}J,l(U)

u (c (R))

π (U) c (U) + π (R) c (R) = AJ [π (U) l (U) + π (R)] ,

u (c (U)) − ξJl (U)χψ (µ, l/J) κ− (1 − ξ) κ > VU,

π (U) l (U) + π (R) > JL,

where ξ = µUS/µU, for some VU. It is immediate that this is just a Pareto prob-
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lem, and thus the equilibrium must be efficient. We summarize this result in the

following proposition.

Proposition 10. With an increasing returns to scale technology and an appropriate mini-
mum size constraint, any competitive equilibrium is efficient.

Proving the existence of an equilibrium with this technology is challenging

because the problem is highly non-convex.

6.1 Model without Controllability

We now study how optimal policies change in the model without controllability

andwith thismore general infection technology. Since there is no role for insurance,

we drop the insurance firms and just consider incentives of individual agents to

supply labor. As was the case before, all symptomatic infected and recovered

agents choose to spend all of their time on the work island. The problem for an

unknown-type agent is

max
l
u (Al) − ξlχ

µUIl
∗ + µI

(µUl∗ + µI + µR)
2−ωκ− (1 − ξ) κ,

where l∗ is the labor supply of all otherU-type agents, and ξ is themass of unknown

susceptible agents relative to that of unknown-type agents. The equilibrium level

of labor supply of the U type agent is min {l∗, 1} , where l∗ solves

u ′ (Al)A = ξχ
µUIl

∗ + µI

(µUl∗ + µI + µR)
2−ωκ.

As in the baseline model, it is straightforward to see that the competitive equilib-

rium is inefficient. Specifically, agents do not internalize the effect of their labor

supply on the infection probability. Moreover, using a similar argument, we note

that if the mass of asymptomatic infected agents is small, in the efficient allocation

the planner has them spend all their time on the home island and finances their

consumption by taxing U and R types.

We also consider the optimal Pigouvian tax policy that maximizes the welfare
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of the U-type agents. As in the earlier section, this policy solves

max
l
u (Al) − ξlχ

µUIl
∗ + µI

(µUl∗ + µI + µR)
2−ωκ− (1 − ξ) κ.

In Figure 2, we plot the aggregate labor supply in the competitive equilibrium, in

the efficient allocation, and under the optimal Pigouvian policy.

Figure 2: Employment as a function of the returns-to-scale parameter.
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Figure Notes. Aggregate employment LCE in the competitive equilibrium, LPO in the Pareto optimum, and LPigou with

optimal Pigouvian taxes. Default parameter values: σ = 2 (CRRA),A = 2 (productivity of labor), χ = 1 (infectivity rate),

κ = 40 (cost of infection), µUS
= 0.9025 (mass of unknown susceptible), µUI

= 0.0475 (mass of asymptomatic infected),

µI = 0.05 (mass of symptomatic infected).

7 Conclusion

We show that if virus exposure is controllable and agents can commit to contracts,

pandemics generate local externalities, and competitive equilibria are efficient. This

result is in sharp contrast to the literature that models pandemics as yielding global

externalities. If we assume that virus exposure is not controllable, pandemics gen-

erate global externalities, and competitive equilibria are inefficient. In this case,

however, aggregate economic activity is inefficiently low in the competitive equi-

librium. We show that this result arises because of a positive congestion externality

associated with the labor supply of susceptible agents. By considering an envi-

ronment with one-sided commitment and showing that equilibria are inefficient

because of the presence of a novel pecuniary externality, we also show that the

effiiciency result depends crucially on commitment.

38



References

Acemoglu, D., V. Chernozhukov, I. Werning, and M. D. Whinston (2020): “Optimal

targeted lockdowns in a multi-group SIR model,” Report Working Paper no.

27102, National Bureau of Economic Research. 6, 35

Alvarez, F. E., D. Argente, and F. Lippi (2020): “A simple planning problem for

covid-19 lockdown,” Report Working Paper no. 26981, National Bureau of Eco-

nomic Research. 6

Atkeson, A. (2020): “What will be the economic impact of COVID-19 in the US?

Rough estimates of disease scenarios,” ReportWorking Paper no. 26867, National

Bureau of Economic Research. 6

Baqaee, D., E. Farhi, M. J. Mina, and J. H. Stock (2020): “Reopening scenarios,”

Report Working Paper no. 27244, National Bureau of Economic Research. 6

Berger, D. W., K. F. Herkenhoff, and S. Mongey (2020): “An SEIR infectious disease

modelwith testing and conditional quarantine,” ReportWorkingPaper no. 26901,

National Bureau of Economic Research. 6

Bethune, Z. A. and A. Korinek (2020): “Covid-19 infection externalities: Trading

off lives vs. livelihoods,” Report Working Paper no. 27009, National Bureau of

Economic Research. 6, 7

Bisin, A. and P. Gottardi (2020): “Efficient policy interventions in an epidemic,”

Report Discussion Paper no. 15386, Centre for Economic Policy Research. 6, 7

Bourouiba, L. (2020): “Turbulent gas clouds and respiratory pathogen emissions:

Potential implications for reducing transmission of COVID-19,” JAMA, 323(18),
1837–1838. 6

Bourouiba, L., E. Dehandschoewercker, and J. W. Bush (2014): “Violent expiratory

events: On coughing and sneezing,” Journal of Fluid Mechanics, 745, 537–563. 6
Buchanan, J. M. (1965): “An economic theory of clubs,” Economica, 32(125), 1–14. 7
Cole, H. L. and E. C. Prescott (1997): “Valuation equilibrium with clubs,” Journal
of Economic Theory, 74(1), 19–39. 7

Eichenbaum, M. S., S. Rebelo, and M. Trabandt (2020): “The macroeconomics of

epidemics,” Tech. rep., National Bureau of Economic Research. 6, 7

Ellickson, B., B. Grodal, S. Scotchmer, and W. R. Zame (1999): “Clubs and the

market,” Econometrica, 67(5), 1185–1217. 7
Farboodi, M., G. Jarosch, and R. Shimer (2020): “Internal and external effects of

39



social distancing in a pandemic,” Report Working Paper no. 27059, National

Bureau of Economic Research. 6

Glover, A., J. Heathcote, D. Krueger, and J.-V. Ríos-Rull (2020): “Health versus

wealth: On the distributional effects of controlling a pandemic,” ReportWorking

Paper no. 27046, National Bureau of Economic Research. 6

Goodkin-Gold, M., M. Kremer, C. M. Snyder, and H. Williams (2020): “Optimal

vaccine subsidies for endemic and epidemic diseases,” Report Working Paper

no. 28085, National Bureau of Economic Research. 6, 7

Guerrieri, V., R. Shimer, and R. Wright (2010): “Adverse selection in competitive

search equilibrium,” Econometrica, 78(6), 1823–1862. 7
Kermack, W. O. and A. G. McKendrick (1927): “A contribution to themathematical

theory of epidemics,” Proceedings of the Royal Society of London. Series A, Containing
Papers of a Mathematical and Physical Character, 115(772), 700–721. 6

Moen, E. R. (1997): “Competitive search equilibrium,” Journal of Political Economy,
105(2), 385–411. 7

Morawska, L., J. W. Tang, W. Bahnfleth, P. M. Bluyssen, A. Boerstra, G. Buonanno,

J. Cao, S. Dancer, A. Floto, F. Franchimon, et al. (2020): “How can airborne

transmission of COVID-19 indoors be minimised?” Environment International,
142, 105832. 6

Moser, C. A. and P. Yared (2020): “Pandemic lockdown: The role of government

commitment,” Report Working Paper no. 27062, National Bureau of Economic

Research. 6

Peters, M. (1984): “Bertrand equilibrium with capacity constraints and restricted

mobility,” Econometrica, 52(5), 1117–1127. 7
Somsen, G. A., C. van Rijn, S. Kooij, R. A. Bem, and D. Bonn (2020): “Small droplet

aerosols in poorly ventilated spaces and SARS-CoV-2 transmission,” Lancet Res-
piratory Medicine, 8(7), 658–659. 6

Stiglitz, J. E. (1982): “The theory of local public goods twenty-five years after

Tiebout: A perspective,” Report Working Paper no. 0954, National Bureau of

Economic Research. 5, 7

Tiebout, C. M. (1956): “A pure theory of local expenditures,” Journal of Political
Economy, 64(5), 416–424. 3, 7

Toxvaerd, F. (2019): “Rational disinhibition and externalities in prevention,” Inter-
national Economic Review, 60(4), 1737–1755. 6, 7

40



Toxvaerd, F. and R. Rowthorn (2020): “On the management of population immu-

nity,” Report Working Paper. 6, 7

Wright, R., P. Kircher, B. Julien, and V. Guerrieri (2021): “Directed search and

competitive search equilibrium: A guided tour,” Journal of Economic Literature,
59(1), 90–148. 7

41



Appendix

Proposition 5. A competitive equilibrium with the following properties exists:

• There is mixing between U and R type agents.

• VU > V(U),VR > V(R), and VI = V(I).

• The equilibrium is efficient.

Proof. To characterize the competitive equilibrium, consider the Pareto frontier.

Clearly, in any Pareto optimal allocation there is no mixing of infected agents with

other agents. Let island 1 be the island to which all symptomatic infected agents

are assigned. We consider a Pareto problem in which the initially infected simply

receiveA units of consumption in all periods. We let VU denote the utility of agents

who are initially of unknown type. We consider the problem of maximizing the

utility of the initially recovered agents, whose value is denoted VR (VU). As we

vary VU, we trace out the Pareto frontier. This Pareto problem is then given by

VR (VU) = max
∑
t>0

βt
∑
ht

πt (ht | R)u (ct (ht | R)) , (41)

subject to

∑
η0

∑
ht

πt (ht | η0)

[
A

ˆ
j6=0

ljt (ht | η0) dj− ct (ht | η0)

]
> 0, ∀t,ht,

ct (ht | I) = A, l1t (ht−1, I | I) = 1, ∀t,

and ∑
t>0

βt
∑
ht

πt (ht | U)

π0 (U)
vt (ht | U) > VU,

where λjIt is given by (23).

Next, we prove the following lemma.

Lemma 4. Any Pareto optimal allocation must have mixing between agents of unknown
types and recovered agents.

Proof. Consider the infection probability of agents of unknown type in some
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period:

ψ (λjIt) = χ

∑
ht−1

[πt (ht−1,UI) ljt (ht−1,U) + πt (ht−1, I) ljt (ht−1, I)]∑
ht−1

∑
η [πt (ht−1,η) ljt (ht−1,η)]

.

As we increase the mass of recovered agents assigned to island j, the probability

of infection decreases. Thus, unknown-type agents are willing to give up some

consumption to be mixed with recovered agents. Assigning recovered agents to

an island with unknown-type agents and increasing the consumption of recovered

agents by a suitable amount—that is, by reducing the consumption of unknown-

type agents as to satisfy the resource constraint—is Pareto improving. Q.E.D.

Lemma 5. VR (VU) is a decreasing function. Moreover, VR (V (U)) > V (R) and
limVU→∞ VR (VU) =∑T

t=0 β
tu (0).

Proof. The proof that VR is a decreasing function follows from the inspection

of the programming problem. Suppose VU = V (U). Reallocating some of the

unknown-type agents to mix with the recovered agents reduces the infection prob-

ability of the unknown-type agents. Thus, these agents will be willing to give up

some of their consumption tomixwith the recovered agents. This consumption can

be redistributed to the initial recovered agents, and thus VR (V (U)) > V (R). The

last statement of the lemma follows by inspection of the programming problem.

Q.E.D.

Next, we prove a lemma in which we provide an alternative characterization of

the firm’s problem (24).

Lemma 6. The firm’s problem (24) can be written as

max
z,π̃0(η0)

π̃0 (R)

(∑
t>0

βtu (ct (ht | R)) − V (R)

)
, (42)

subject to

(∑
η0

∑
ht

π̃ (ht | η0)

[ˆ
j6=0

mw (θjt)Aljt (ht | η0) − ct (ht | η0)

])
= 0 ∀t > 0, ∀ht,

(43)
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π̃0 (η0)
∑
t>0

βt
∑
ht

π̃t (ht | η0)

π̃0 (η0)
vt (ht | h0) > π̃0 (h0)V (h0) , ∀h0 6= R.

Proof. Consider the dual of the firm’s problem in (24) given by

max
z,π̃0(η0)

π̃0 (R)

(∑
t>0

βtu (ct (ht | R)) − V (R)

)
(44)

∑
t>0

Qt
∑
η0

∑
ht

π̃ (ht | η0)

[ˆ
j6=0

mw (θjt)Aljt (ht | η0) − ct (ht | η0)

]
= 0 (45)

π̃0 (η0)
∑
t>0

βt
∑
ht

π̃t (ht | η0)

π̃0 (η0)
vt (ht | h0) > π̃0 (h0)V (h0) , ∀h0 6= R.

In any competitive equilibrium, the resource constraint implies that profits must

be zero period-by-period. Thus, if a contract is part of a competitive equilibrium,

we can replace (45) by the requirement that profits be zero in every period. This

requirement is simply (43). Note that once we have solved this problem, we can

simply set prices so that firms have no incentive to engage in inter-temporal trade.

Proof of Proposition 5. Consider the firm’s problem (24). As shown above,

this problem is equivalent to (42). By an earlier argument, we know that there

is no cross-subsidization in favor of the initial asymptomatic infected types, so

ct (ht | I) = A, lt (ht | I) = 1. Thus, we can separate out the allocations of the

initial symptomatic infected types from the above problem. From Proposition

4, it is also optimal to pool all the U and R types on the same island and have

the symptomatic infected on a separate island. Thus, as long as the solution has

π̃0 (R) > 0, we can write the problem as (assuming no equilibrium unemployment,

which is true by an earlier argument)

VER (VU) = max
z,π̃0(η0)

∑
t>0

βtu (ct (ht | R)) , (46)

subject to(∑
η0

∑
ht

π̃ (ht | η0)

π̃0 (R)

[ˆ
j6=0

Aljt (ht | η0) − ct (ht | η0)

])
= 0 ∀t > 0, ∀ht,
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∑
t>0

βt
∑
ht

π̃t (ht | U)

π̃0 (U)
v (ht | U) > VU.

Notice that in this problem the masses π̃0 (U) and π̃0 (R) do not show up separately

but only as a ratio π̃0 (U) /π̃0 (R). For example,

π̃1 (U,U)

π̃0 (R)
=
π̃0(U) [1 − φξ0l0(U)χλI0−α (1 − ξ0) − (1 − α)φ (1 − ξ0)]

π̃0(R)
,

where ξ0 = µUS0/ (µUS0 + µUI0) is a constant. A similar argument holds for all

future periods/histories. Thus, the problem can be written as one in which the

firm chooses z and the relativemass ρ = π̃0 (U) /π̃0 (R). SupposeVU < V (U). Then,

it must be that the consumption of the U types is less than A
´
j6=0 ljtdj. Then, the

value of the firm’s problem can be increased by increasing the mass of unknown-

type agents attracted to the firm, allocating them to an island of their own, and

providing them with the appropriate level of consumption needed to deliver VU.

Thus, ρ (VU) = ∞. Suppose next that VU is arbitrarily large. Then, VER (VU) is

arbitrarily small and initially recovered agents in particular receive consumption

less thanA. Then, the value of the firm’s problem can be increased by reducing the

mass of unknown-type agents relative to recovered agents and providing them the

consumption. Thus, for VU large enough, ρ (VU) = 0. By continuity, it follows that

there exists some V∗U > V (U) such that ρ (V∗U) = π0 (U) /π0 (R).

Next, we show that VER (V∗U) > VR. Suppose that this is not the case and that

VER (V∗U) 6 VR. If VER (V∗U) < VR; then, the solution to the firm’s problem would

involve choosing ρ = 0 and thus giving utility VR to the recovered agents. Thus,

suppose that VER (V∗U) = VR. Consider a deviating contract that chooses ρ̃ = ρ − ε

for ε > 0 but small. In this case, since there are relatively more recovered agents,

by pooling R and U-type agents, the probability of infection for the U-type agents

decreases, which implies that their participation constraint is slack. Clearly, in this

case, the recovered agents can be made strictly better off, which is a contradiction.

To seewhy this allocation constitutes a competitive equilibrium, notice that if all

other firms offer the contracts associated with the allocation above, no individual

firm can profitably deviate. Moreover, the firm’s problem at VU = V∗U corresponds

to a Pareto problem. Thus, the equilibrium is efficient, and it has pooling between

U and R types.
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A Omitted Proofs

Proposition 1. Any competitive equilibrium features sorting and has no cross-

subsidization and no unemployment in the sense thatmw(θjt) = 1 ∀t and j ∈ Γt.

Proof. Consider the last period T . We will begin by showing that for any j ∈ ΓT
with ljIT > 0, wjIT > A. To see this result, suppose, by way of contradiction that

wjIT < A. Then, consider some j ′ ∈ ΓcT such that wjIT < wj ′IT and wj ′ηT < A for

all η. From equilibrium condition 5, we have thatmw (θj ′T ) = 1. Thus, an infected

agent is strictly better off by choosing island j ′; this result is a contradiction. A

similar argument establishes that wjRT > A for j ∈ ΓT .
We use this result to show that there is no cross-subsidization in period T . To

see this result, suppose there exists some island j ∈ ΓT such that wjST < A. Then,

consider some island j ′ ∈ ΓcT with wjST < wj ′ST and wj ′ηT < A for all η. From

equilibrium condition 5, we have that mw (θj ′T ) = 1. From equilibrium condition

6, we have that neither infected nor recovered agents will choose island j ′. Thus,

the probability of infection in island j ′ is zero. Therefore, the susceptible agent is

strictly better off by choosing island j ′; this result is a contradiction.

Next, we show that there is no unemployment in period T . Suppose there exists

some j ∈ ΓT such that mw (θjT ) < 1. Suppose that ljIT > 0. Consider an island

j ′ ∈ ΓcT such that mw (θjT )wjIT < wj ′IT < A and wj ′η ′T < mw (θjT )wjη ′T for all

other η ′. Then, condition 5 says thatmw (θj ′T ) = 1 and so the infected agent ismade

strictly better off by switching to this island. Next, suppose that ljST > 0. Consider

an island j ′ ∈ ΓcT such thatmw (θjT )wjST < wj ′ST < A andwj ′η ′T < mw (θjT )wjη ′T
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for all other η ′. Then, condition 6 of the equilibrium implies that the infection

probability on island j ′ is zero. Moreover, condition 5 says thatmw (θj ′T ) = 1, and

so the susceptible agent is made strictly better off by switching to this island.

We complete the argument for period T by showing that the equilibrium is

separating. To do so, suppose that the equilibrium has mixing so that there is

some j ∈ ΓT such that ljST , ljIT > 0. Consider some island j ′ ∈ ΓcT such that

wj ′ηT < wjηT for all η and wjST − κψ (λjIT ) < wj ′ST . Then, condition 5 guarantees

thatmw (θj ′T ) = 1, and condition 6 guarantees that λj ′IT = 0. Thus, the susceptible

agent is made strictly better off by switching islands, and we have a contradiction.

These arguments imply that VT (S,µT ) > VT (I,µT ) for all µT . Next, consider

period T − 1. Using the monotonicity result, we can repeat all the arguments above

to show that there is no cross-subsidization, unemployment, or mixing in period

T − 1. The argument for the other periods follows by induction.

Proposition 3. Consider any allocation that is Pareto optimal. There exists a

lump-sum tax system which supports that outcome as an equilibrium.

Proof. Using arguments similar to those in Proposition 1, we have that any allo-

cation in which susceptible agents get infected is dominated by an allocation in

which these agents are assigned to an otherwise identical island with no infected

agents. It follows that susceptible agents never get infected in a Pareto optimal

allocation. Since productivity in island 0 is strictly below that in any other island,

and since the social planner can always assign enough firms to any island so that

the probability of unemployment is zero, we have that aggregate per capita output

is simply A. Now consider any Pareto optimal allocation that assigns some level

of consumption to each agent as a function of that agent’s type. By appropriately

choosing lump-sum taxes, it is immediate that this Pareto optimal allocation can

be implemented in a competitive equilibrium.

Proposition 4. In any competitive equilibrium, there is no mixing between U- and

I-types, and no unemployment in the sense thatmw(θjt) = 1 for all t and j ∈ Γt.

Proof. As a first step, notice that in any equilibrium, zero profits on the part of
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production firms implies that for any t and island j,∑
ht−1

∑
{η:ljt(ht−1,η)>0}

(πt (ht−1,η)wjηt) = A.

Thus, since we are considering insurance firms, it is without loss of generality to

focus on equilibria such thatwjηt = A for all j ∈ Γt and η such that ljt (ht−1,η) > 0

for some ht−1.

Next, we show that mixing between U and I types can never be part of an

equilibrium. To see this, suppose that there is mixing in some period t and on

some island j. The period utility for type (ht−1,U) on this island is given by

u (c∗t (ht−1,U)) −
π∗t(ht−1,US)

π∗t(ht−1,U)
l∗jt (ht−1,U)ψ

(
λ∗jIt
)
κ−

π∗t(ht−1,UI)

π∗t(ht−1,U)
κ,

where

λ∗jIt =

∑
ht−1

[
π∗t (ht−1,UI) l

∗
jt (ht−1,U) + π

∗
t (ht−1, I) l

∗
jt (ht−1, I)

]∑
ht−1

∑
η

[
π∗t (ht−1,η) l∗jt (ht−1,η)

] .

Notice that

λ∗jIt > λ̃jIt =

∑
ht−1

[
π∗t (ht−1,UI) l

∗
jt (ht−1,U)

]∑
ht−1

∑
η6=I

[
π∗t (ht−1,η) l∗jt (ht−1,η)

] .
Consider an island j ′ ∈ Γct such that wj ′It = A− ε, where ε is such that

u (c∗t (ht−1,U) − ε) −
π∗t(ht−1,US)

π∗t(ht−1,U)
l∗jt (ht−1,U)ψ

(
λ̃jIt

)
κ−

π∗t(ht−1,UI)

π∗t(ht−1,U)
κ

>u (c∗t (ht−1,U)) −
π∗t(ht−1,US)

π∗t(ht−1,U)
l∗jt (ht−1,U)ψ

(
λ∗jIt
)
κ−

π∗t(ht−1,UI)

π∗t(ht−1,U)
κ,

and wjηt < A for all η 6= I. Consider an alternate contract that is identical

to the equilibrium except that l̃j ′t (ht−1, I) = l∗jt (ht−1, I), l̃jt (ht−1, I) = 0 and

c̃t (ht−1,U) = c∗t (ht−1,U) − ε. By condition 4, mw (θj ′t) = 1, so this contract

is feasible, makes type (ht−1,U) strictly better off, and leaves all other types at least

aswell off as before. Thus, there exists a feasible contract that yields strictly positive

profits for the firm; and we again have a contradiction.
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Finally, we argue that there is no unemployment. Suppose that for some t and

j ∈ Γt,mw (θjt) < 1. Then, consider an alternate contract where the insurance firm

moves all agent types from j to some j ′ ∈ Γct such that

mw (θjt)wjηt < wj ′ηt < A

for all η. From condition 4,mw (θj ′t) = 1, and so this contract leaves the firm with

strictly larger resources and leaves all agents at least as well off as before. Thus, the

firm can make strictly positive profits, which is a contradiction.

Propisition 7. In any competitive equilibrium, there is no cross-subsidization, and

symptomatic infected and recovered agents supply one unit of labor in the work

island in all periods. If u ′(0)A > κ/(1 − β), there is mixing in the sense that

unknown-type agents work a positive amount in at least one period.

Proof. Define

Π (η0) ≡
∑
t>0

Qt
∑
ht

π (ht | η0) [lt (ht | η0)A− ct (ht | η0)]

to be the profits for the insurance firm associated with each type η0. Since there is

perfect competition, it must be that firms make zero profits; i.e.,∑
η0

π̃ (η0)Π (η0) = 0.

We now argue that Π (η0) = 0 for all η0. Suppose not. Then Π (η0) > 0 for some

η0. This implies that there exists some t and ĥt such that lt

(
ĥt | h0 = η0

)
A −

ct

(
ĥt | h0 = η0

)
> 0. Consider a deviating firm offering the following contract:

c̃t (ht | h0 = η0) = ct (ht | h0 = η0) ,∀ht 6= ĥt,

c̃t

(
ĥt | h0 = η0

)
= ct

(
ĥt | h0 = η0

)
+ ε,
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where 0 < ε < lt

(
ĥt | h0 = η0

)
A− ct

(
ĥt | h0 = η0

)
, and

c̃t (ht | h0 6= η0) = 0,∀ht.

Clearly, for this deviating firm, π̃ (h0 = η0) = π (h0 = η0) and π̃ (h0 6= η0) = 0.

Therefore, this firm makes strictly positive profits, yielding a contradiction. Con-

sequently, there is no cross-subsidization.

Next, consider the contract offered to the types η0 = I. Suppose that lt (ht | I) <

1 for any t and ht. Notice that increasing l strictly increases the profits for the firm

and leaves the participation constraint for this type unchanged. Thus, by increasing

lt (ht | I) , the firm makes strictly positive profits, yielding a contradiction. This,

alongwith the result that there is no cross-subsidization, implies that ct (ht | I) = A.

An identical argument holds for h0 = R.

Finally, consider the contract offered to types η0 = U. Suppose this contract

specifies lt (ht−1,U) = 0 for all t. Then, the no-cross subsidization result implies

that c0 (U) = 0. Consider a firm offering the following deviating contract, which is

identical to the equilibrium contract, except

l̃0 (h0 = U) = ε > 0,

c̃0 (h0 = U) = εA.

Clearly, the firm continues to make zero profits under this contract. The change in

welfare for the initial unknown type agents is given by

∆W(U) = u(εA) − (1 − ξ0) κ− ξ0εψ (λ∗I0) κ+ [β (1 − ξ0) (1 − α)φ+ βξ0εψ (λ∗I0)φ]V1(U, I)

+ [β (1 − ξ0) (1 − α)(1 − φ) + βξ0 [1 − εψ (λ∗I0)] + βξ0εψ (λ∗I0) (1 − φ)]V1(U,U)

+ β (1 − ξ0)αV1(U,R) − [u(0) − (1 − ξ0) κ+ β (1 − ξ0) (1 − α)φV1(U, I)]

− [[β (1 − ξ0) (1 − α)(1 − φ) + βξ0]V1(U,U) + β (1 − ξ0)αV1(U,R)] ,

where ξ0 = µUS0/ (µUS0 + µUI0). Differentiating the above expression with respect

to ε and evaluating at ε = 0 yields

u ′(0)A− ξ0ψ (λ∗I0) κ+ βξ0φψ (λ∗I0) [V1(U, I) − V1(U,U)] .
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Note that in any equilibrium contract, the insurance firm will completely insure

future consumption of all initialU types. Let ct denote the consumption associated

with the original contract. Therefore,

V1 (U,U) 6
T∑
t=1

βt−1u (ct) ,

and

V1 (U, I) >
T∑
t=1

βt−1u (ct) −
1 − βT

1 − β
κ.

Hence, the above derivative is bounded from below by

u ′ (0)A− κ− β
1 − βT

1 − β
κ = u ′ (0)A−

1 − βT+1

1 − β
κ,

which is strictly positive given our assumption. Thus, a deviatingfirmcan construct

a contract thatmakes both it and the unknown-type agent strictly better off, yielding

a contradiction. Thus, there is mixing in at least one period.

Proposition 8. The competitive equilibrium is inefficient.

Proof. As a first step, notice that using standard duality arguments and the result

that in any equilibrium, profits must be zero in every period (i.e., the resource

constraint must hold period by period), we can write the problem of the firm as∑
t>0

βt
∑
ht

π (ht | U)
[
u (ct (ht | U)) − lt (ht | U) 1{ηt=US}ψ (λ∗It) κ− 1{ηt=I,UI}κ

]
,

subject to ∑
ht

π (ht) [lt (ht)A− ct (ht)] > 0, ∀t > 0,ht,

∑
t>0

βt
∑
ht

π (ht | η0)
[
u (ct (ht | η0)) − 1{ηt=I}κ

]
> V (η0) , for η0 ∈ {I,R} ,

and (15)-(21) for the single-work-island case. Compare this problem with that of

the planner described in (12), but restricted to the one-work-island case. The proof

follows immediately from the observation that the planner internalizes the effects

of the labor allocation on the relative mass of infected agents on the work island,
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λIt, and thus on the probability of infection ψ (λIt). Since this is not internalized

by the firm, competitive equilibria in general will be inefficient.

Lemma 1. Suppose that (27) holds and φ is sufficiently large. Then, there exists

some µ∗I ,µ
∗
UI
> 0 such that if µI0 < µ

∗
I and µUI0 < µ

∗
UI
, the solution to the Pareto

problem has no symptomatic infected afents working, and unknown-type agents

working more than in the competitive equilibrium. Recovered agents supply one

unit of labor in both the equilibrium and the Pareto optimal allocation.

Proof. Assume first that µUI0 = 0 and φ = 1. In the model with a single work

island, the relevant individual history in period t is given by ht = (η0, ...,ηt) = η
t
.

Thus, we can write the period-0 planner’s problem as follows

max
{ct(ηt),lt(ηt),πt(ηt)}

u (c0 (U)) + l0 (U)χλI0 (π0, l0) [−κ+ βV1 (U, I)]

+ [1 − l0 (U)χλI0 (π0, l0)]βV1 (U,U) ,

where (with some abuse of notation)

λIt (πt, lt) =

( ∑
ht−1

πt (ht−1, I) lt (ht−1, I)∑
ht−1

∑
η πt (ht−1,η) lt (ht−1,η)

)
,

V1 (U, I) = u (c1 (U, I)) − κ+ βαV2 (U, I,R) + β (1 − α)V2 (U, I, I) ,

V1 (U,U) = u (c1 (U,U)) + l1 (U,U)χλI1 (π1, l1) [−κ+ βV2 (U,U, I)]

+ (1 − l1 (U,U)χλI1 (π1, l1))βV2 (U,U,U) ,

subject to

u (c0 (I)) − κ+
∑
t

βt
∑
ht

πt (ht | I)

π0 (I)
[u (ct (ht | I)) − 1ηt=Iκ] > V

ce (I) ,

u (c0 (R)) +
∑
t

βt
∑
ht

πt (ht | R)

π0 (R)
u (ct (ht | R)) > V

ce (R) ,

∑
ht

πt (ht) ct (ht) 6
∑
ht

π (ht) lt (ht)A, ∀t,

52



πt
(
ht−2,U,U

)
6 πt−1

(
ht−2,U

) (
1 − lt−1

(
ht−2,U

)
χλIt−1 (πt−1, lt−1)

)
, (47)

πt
(
ht−2,U, I

)
> πt−1

(
ht−2,U

)
lt−1

(
ht−2,U

)
χλIt−1 (πt−1, lt−1) , (48)

πt
(
ht−2, I, I

)
> (1 − α)πt−1

(
ht−2, I

)
,

πt
(
ht−2, I,R

)
6 απt−1

(
ht−2, I

)
,

πt
(
ht−2,R,R

)
6 πt−2

(
ht−2,R

)
.

Note that in this formulation of the problem, we have included πt (ht) as a choice

variable and the definition as a constraint. The inequalities in these constraints are

written so that the associated multiplier is positive. For example if the inequality

in (47) is reversed, then clearly the planner will always choose πt (h
t−2,U,U) =

1, which violates feasibility. Similarly, if the inequality in (48) is reversed, the

planner would always choose πt (h
t−2,U, I) = 0, again violating feasibility. These

constraints will always bind.

Let ιt be the multiplier on the feasibility constraints. Taking the first order

conditions with respect to c0 (U) , c1 (U, I) , and c1 (U,U) yields

u ′ (c0 (U)) = π0 (U) ι0,

l0 (U)χ

(
π0 (I) l0 (I)∑
η π0 (η) l0 (η)

)
βu ′ (c1 (U, I)) = ι1π1 (U, I) ,

and (
1 − l0 (U)χ

(
π0 (I) l0 (I)∑
η π0 (η) l0 (η)

))
βu ′ (c1 (U,U)) = ι1π1 (U,U) .

Using the definitions of π1 (U,η1) implies that c1 (U,U) = c1 (U, I), and combining

these equations yields

βu ′ (c1 (U,η1))

u ′ (c0 (U))
=
ι1

ι0
, η1 ∈ {U, I} .
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A similar argument implies that

βu ′ (c1 (R,R))

u ′ (c0 (R))
=
ι1

ι0
.

Therefore, if π0 (I) = 0, it must be that c0 (U) = c0 (R) = A.

Let ν1 (η0,η1) be the multiplier on the constraint for π1 (η0,η1). The derivative

of the planning problem with respect to l0 (I) is

− l0 (U)χ
π0 (I) (π0 (U) l0 (U) + π0 (R) l0 (R))(∑

η π0 (η) l0 (η)
)2 κ

+ l0 (U)χ
π0 (I) (π0 (U) l0 (U) + π0 (R) l0 (R))(∑

η π0 (η) l0 (η)
)2 β [V1 (U, I) − V1 (U,U)]

+ ι0π0 (I)A− [ν1 (U,U) + ν1 (U, I)]π0 (U) l0 (U)χ
π0 (I) (π0 (U) l0 (U) + π0 (R) l0 (R))(∑

η π0 (η) l0 (η)
)2 .

(49)

Wecan factor outπ0 (I) from this expressionandwrite the residual after substituting

the earlier first order conditions as

u ′ (c0 (U))

π0 (U)
A− l0 (U)χ

(π0 (U) l0 (U) + π0 (R) l0 (R))(∑
η π0 (η) l0 (η)

)2 κ

l0 (U)χ
(π0 (U) l0 (U) + π0 (R) l0 (R))(∑

η π0 (η) l0 (η)
)2 β [V1 (U, I) − V1 (U,U)]

− [ν (U,U) + ν (U, I)]π0 (U) l0 (U)χ
(π0 (U) l0 (U) + π0 (R) l0 (R))(∑

η π0 (η) l0 (η)
)2 .

Notice that since c1 (U, I) = c1 (U,U), V1 (U, I) 6 V1 (U,U). Evaluating this expres-

sion at π0 (I) = 0, we obtain an expression that is bounded from above by

u ′ (c0 (U))

π0 (U)
A− l0 (U)χ

(π0 (U) l0 (U) + π0 (R) l0 (R))(∑
η π0 (η) l0 (η)

)2 κ. (50)

Clearly, in this case l0 (U) = l0 (R) = 1, and so the above expression is (since

π0 (U) = µU0)

u ′ (A)
A

µU0

− χκ < 0
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owing to the assumption. Because of the Maximum theorem the policy functions

are continuous in µI0 = π0 (I). Therefore, there exists some µ∗I0 > 0 such that for

µI0 < µ
∗
I0, the derivative (49) is strictly negative for any l0 (I) > 0. Thus, it must be

that forµI0 < µ
∗
I0, l0 (I) = 0. Since the infectionprobability is zero, l0 (U) = 1. Given

that l0 (I) = 0, we have that the total mass of infected in period 1 is π1 (I, I) < π0 (I).

Moreover, π1 (U, I) = 0, and π1 (U,U) = π0 (U).

Next, we take the derivative with respect to l1 (I, I). This derivative is

π1 (I, I) (1 − l0 (U)χλI0)β

times

u ′ (c1 (U,U))

π0 (U)
A− l1 (U,U)χ

[∑
(η0,η1) 6=(I,I) π (η0,η1) l1 (η0,η1)

]
(∑

η0,η1
π (η0,η1) l1 (η0,η1)

)2 κ

l1 (U,U)χ

[∑
(η0,η1) 6=(I,I) π (η0,η1) l1 (η0,η1)

]
(∑

η0,η1
π (η0,η1) l1 (η0,η1)

)2 β [V2 (U,U, I) − V1 (U,U,U)]

− [ν2 (U,U,U) + ν2 (U,U, I)]π1 (U,U) l1 (U,U)χ

[∑
(η0,η1) 6=(I,I) π (η0,η1) l1 (η0,η1)

]
(∑

η0,η1
π (η0,η1) l1 (η0,η1)

)2 .

(51)

An identical argument for period 1 implies that V2 (U,U, I) − V1 (U,U,U) 6 0.

Therefore, if π1 (I, I) = 0, the expression above is bounded above by

u ′ (A)

π0 (U)
A− χκ < 0.

Hence, there exists some µ∗I1 such that if π1 (I, I) < µ∗I1, then l1 (I, I) = 0. We

can repeat this argument for all periods t = {0, 1, ..., T } and generate a sequence

{µ∗It}t>0. Define µ∗I = min {µ∗It}. So, for µI0 < µ
∗
I , we have that lt (η

t−1, I) = 0 and

lt (η
t−1,U) = 1 for all t, and there are no new infections in any period.

Now suppose that µUI0 > 0 and φ < 1 so that there are asymptomatic infected

agents. Then, one can show that the equivalent expression to (50) is

u ′ (c0(U))

π0(U)
A−

µUS0

µU0

l(U)χ
{π(U)l(U)[1 − µUI0] + π(R)l(R)}(∑

η0
π(η0)l(η0)

)2 κ.
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Since π0 (U) = µU0, taking the limit as µUI0 → 0 yields

u ′ (A)

µU0

A− χκ <
u ′ (A)

µU0

A−
µUS0

µU0

χκ < 0,

since l0 (U) → 1. The second inequality follows directly from the assumption.

Therefore, there exists some µ∗I0,µ
∗
UI0

> 0 such that for µI0 < µ
∗
I0 and µU0 < µ

∗
UI0

,

the derivative with respect to l0 (I) is strictly negative for any l0 (I) > 0. Thus in this

case, it must be that l0 (I) = 0. A similar argument to that above implies that there

is a sequence

{
µ∗It,µ

∗
UIt

}
such that if µIt < µ

∗
It,µUIt < µ

∗
UIt

, then lt (h
t−1, I) = 0.

Next, recall that (if lt (h
t−1, I) = 0),

µUIt = πt
(
ht−1,UI

)
= (1 − α) (1 − φ)πt−1

(
ht−2,UI

)
+ (1 − φ)πt−1

(
ht−2,US

)
lt−1

(
ht−2,U

)
×

× χ
∑
ht−2 [πt−1 (h

t−2,UI) lt−1 (h
t−2,U)]∑

ht−2 [πt−1 (ht−2,U) lt−1 (ht−2,U) + πt−1 (ht−2,R)]

< πt−1

(
ht−2,UI

)
= µUIt−1

for φ sufficiently close to one. Similarly, µIt < µIt−1 if φ sufficiently close to one.

Define µ∗I = min {µ∗It} and µ
∗
UI

= min
{
µ∗UIt
}
. Then for µI0 < µ

∗
I , µUI0 < µ

∗
UI
, and φ

sufficiently close to one, we have that lt (η
t−1, I) = 0 for all t.

Lemma 2. Suppose that u(c) = log(c). Then, for sufficiently small µUI0, l
opt(U) >

l∗(U; 0). Thus, the optimal Pigouvian policy is a subsidy on labor.

Proof. Suppose that u (c) = log (c). Then, using (29) in equilibrium, we have that

1

l∗0 (U; 0)
= ξ0χ

(
µI0 + µUI0l

∗
0 (U; 0)

µU0l
∗
0 (U; 0) + µI0 + µR0

)
κ.

As µUI0 → 0, we have

l∗0 (U; 0)→ min

{
max

{
µI0 + µR0
χµI0κ− µU0

, 0

}
, 1

}
.
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The optimal untargeted Pigouvian taxes implement the solution to the following

problem:

max
l

log (lA) − ξ0lχ

(
µI0 + µUI0l

µU0l+ µI0 + µR0

)
κ− (1 − ξ0) κ.

The first order condition with respect to l is

1

l
− ξ0χ

(
µI0 + µUI0l

µU0l+ µI0 + µR0

)
κ+ lξ0χ

(µI0 + µR0)µUI0 − µU0µI0

(µU0l+ µI0 + µR0)
2 κ = 0.

In the limit as µUI → 0, l solves

µ2
U0l

2 + [2µU0 − χµI0κ] (µI0 + µR0) l+ (µI0 + µR0)
2
= 0.

This is a quadratic equation whose roots are given by

l = (µI0 + µR0)
[χµI0κ− 2µU0]±

√
[2µU0 − χµI0κ]

2
− 4µ2

U0

2µ2
U0

.

Given these results, we know that the planner’s welfare is strictly increasing at

l = 0 and has two critical points given by the above equation. Thus, the solution,

lopt (U), must be either the smallest root or one. If lopt (U) = 1, then clearly

lopt (U) > l∗ (U; 0) when µUI0 = 0. Suppose that lopt (U) is given by the smallest

root. Then, the difference lopt (U) − l∗ (U; 0) has the same sign as

[χµI0κ− 2µU0] −
√
[2µU0 − χµI0κ]

2
− 4µ2

U0

2µ2
U0

−
1

χµI0κ− µU0

=

[
χµI0κ [χµI0κ− 3µU0] − (χµI0κ− µU0)

√
χµI0κ (χµI0κ− 4µU0)

2µ2
U0 (χµI0κ− µU0)

]
.

Let us consider the numerator of the above expression. We want to prove that it is

positive; i.e.,

χµI0κ [χµI0κ− 3µU0] − (χµI0κ− µU0)
√
χµI0κ (χµI0κ− 4µU0) > 0,

which equivalent to showing that

(χµI0κ) [χµI0κ− 3µU0]
2
− (χµI0κ− µU0)

2 (χµI0κ− 4µU0) > 0
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or

µ2
U0 > 0,

which proves the result. Thus, at µUI0 = 0 we have that lopt (U) > l∗(U; 0). By

continuity, the result continues to hold for sufficiently small µUI0.

Lemma 3. The effect onwelfare of a small increase in labor supply of unknown-type

agents from the competitive equilibrium can be decomposed into an externality

from current infection and an externality from future infection. If α is sufficiently

small or T = 2, welfare rises because of the externality from current infection and

falls because of the externality from future infection. The overall effect on welfare

is ambiguous.

Proof. Differentating the planner’s problem with respect to lU and evaluating at

l∗t (U; 0) yields

−µUtl
∗
t (U; 0)ψ ′ (λ∗t)

∂λ∗t
∂lU

κ+β

(
∂Vt+1

∂µIt+1

∂µIt+1

∂λ∗
+
∂Vt+1

∂µUt+1

∂µUt+1

∂λ∗t

)
∂λ∗t
∂lU

+β
∂Vt+1

∂λ∗t+1

∂λ∗t+1

∂lU
.

(52)

We know from the analysis of the static model that for sufficiently small µI,

∂λ∗t/∂lU < 0. We now analyze the second term. Consider the continuation value

Vt+1

(
µt+1, λ

∗
t+1

)
, which equals

max
cηt+1,lηt+1

∑
µηt+1

[
u (cηt+1) − lUt+1ψ

(
λ∗t+1

)
κ1η=U − κ1η=I

]
+βVt+2

(
µt+2, λ

∗
t+2

)
,

subject to ∑
µηt+1cηt+1 =

∑
µηt+1lηt+1A,

µUt+2 = µUt+1

(
1 − lUt+1ψ

(
λ∗t+1

))
,

µIt+2 = (1 − α)µIt+1 + µUt+1lUt+1ψ
(
λ∗t+1

)
,

µRt+2 = µRt+1 + αµIt+1.
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Let φt+1,βνUt+1,βνIt+1,βνRt+1 be the respective multipliers on the above con-

straints. Differentiating the value with respect to µUt+1 and µIt+1 yields

∂Vt+1

(
µt+1, λ

∗
t+1

)
∂µUt+1

=
[
u (cUt+1) − lUt+1ψ

(
λ∗t+1

)
κ
]
− φt+1 [cUt+1 − lUt+1A]

+ βνUt+1

(
1 − lUt+1ψ

(
λ∗t+1

))
+ βνIt+1lUt+1ψ

(
λ∗t+1

)
and

∂Vt+1

(
µt+1, λ

∗
t+1

)
∂µIt+1

= [u (cIt+1) − κ] − φt+1 [cIt+1 − lIt+1A]

+ βνIt+1 (1 − α) + βνRt+1α.

It is also useful to compute

∂Vt+1

(
µt+1, λ

∗
t+1

)
∂µRt+1

= u (cIt+1) − φt+1 [cRt+1 − lRt+1A] + βνRt+1.

The first order conditions of the problem are

u ′ (cηt+1) = φt+1,

−µUt+1ψ
(
λ∗t+1

)
κ+φt+1µUt+1A−βνUt+1µUt+1ψ

(
λ∗t+1

)
+βνIt+1µUt+1ψ

(
λ∗t+1

)
= 0.

(53)

and

νηt+1 =
∂Vt+2

(
µt+2, λ

∗
t+2

)
∂µηt+2

,∀η.

Equation (53) can be written as

ψ
(
λ∗t+1

)
κ− φt+1A+ βνUt+1ψ

(
λ∗t+1

)
− βνIt+1ψ

(
λ∗t+1

)
= 0.

Next, we have

νIt − νSt =
∂Vt+1

(
µt+1, λ

∗
t+1

)
∂µIt+1

−
∂Vt+1

(
µt+1, λ

∗
t+1

)
∂µUt+1

=− κ+ φt+1A+ βνIt+1 (1 − α) + βνRt+1α

+ lUt+1 [ψ (λ∗t) κ− φt+1A+ βνUt+1ψ (λ∗t) − βνIt+1ψ (λ∗t)] − βνSt+1.
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Substituting (53) into the above equation yields

−
[
1 −ψ

(
λ∗t+1

)]
κ− βνUt+1

[
1 −ψ

(
λ∗t+1

)]
+ βνIt+1

[
1 − α−ψ

(
λ∗t+1

)]
+ βνRt+1α

or

νIt−νSt = −
[
1 −ψ

(
λ∗t+1

)]
κ+βα [νRt+1 − νIt+1]+β

[
1 −ψ

(
λ∗t+1

)]
[νIt+1 − νUt+1] .

(54)

We will show that νIt − νUt 6 0 using an induction argument. Clearly, for t = T

this holds, since νηT+1 = 0. Suppose that

νIt+1 − νUt+1 6 0

and

−
[
1 −ψ

(
λ∗t+1

)]
κ+ βα [νRt+1 − νIt+1] 6 0.

Then,

νIt − νUt 6 0,

and

− [1 −ψ (λ∗t)] κ+ βα [νRt − νIt]

= − [1 −ψ (λ∗t)] κ+ βα [κ+ (1 − α)β [νRt+1 − νIt+1]] ,

which is less than zero for sufficiently small α.

Finally, recall that

µUt+1 = µUt (1 − lUtψ (λ∗t))

and

µIt+1 = (1 − α)µIt + µUtlUtψ (λ∗t) .

Therefore,

∂µUt+1

∂λ∗t
= −µUtlUtψ

′ (λ∗t)

∂µIt+1

∂λ∗t
= µUtlUtψ

′ (λ∗t) .
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Thus,

β
∂Vt+1

(
µt+1, λ

∗
t+1

)
∂µIt+1

∂µIt+1

∂λ∗
∂λ∗t
∂l∗U

+
∂Vt+1

(
µt+1, λ

∗
t+1

)
∂µUt+1

∂µUt+1

∂λ∗
∂λ∗t
∂l∗U

= −β [νIt − νUt]µUtlUtψ
′ (λ∗t)

∂λ∗t
∂l∗U

which is strictly positive if α is sufficiently small. Note also that in a two period

model, this expression is unambiguously negative, since νUt+1,νIt+1,νRt+1 = 0.

Finally, consider the last term in (52). We have

∂Vt+1

(
µt+1, λ

∗
t+1

)
∂λ∗t+1

= −µUt+1lUt+1ψ
′ (λ∗t+1

)
κ− νUt+1µUt+1lUt+1ψ

′ (λ∗t+1

)
+ νIt+1µUt+1lUt+1ψ

′ (λ∗t+1

)
= −µUt+1lUt+1ψ

′ (λ∗t+1

)
κ+ µUt+1lUt+1ψ

′ (λ∗t+1

)
[νIt+1 − νUt+1] 6 0

and

λ∗t+1 =
µIt+1

µUt+1l
∗
Ut+1 + µIt+1 + µRt+1

=
1

µUt+1

µIt+1
l∗Ut+1 + 1 + µRt+1

µIt+1

.

Since µUt+1 is decreasing in l∗U and µIt+1 is increasing in l∗U, ∂λ
∗
t+1/∂l

∗
U > 0. Thus,

the last term in (52) is negative.

Proposition 9. With limited commitment, the competitive equilibrium is inefficient.

Proof. Our first result is that period-0 firms make zero profits in each period. This

results follows immediately from the firm’s zero-profit condition, along with the

resource constraints. We use this result to argue that the limited commitment

constraints with respect to period 1 for the period zero firm given in (37) must

be binding. Suppose that this is not the case and that the limited commitment

constraint was slack for some type—say, type h1. Now consider the poaching

firm’s problem. If this firm were to offer the same period-1 allocation as the period

firm, it would make zero profits by our first result. But the participation constraint

for this poaching firm for type h1 is slack. Thus, the poaching firm can reduce the

consumption in period 1 of type h1 and strictly increase its profits while continuing

to respect the participation constraints. Thus, the limited commitment constraints

must be binding. These results imply that the allocations in period 1 coincide with
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the static competitive equilibrium in that period. In particular, these allocations

depend only on the distribution of types at the beginning of the period and not on

what an individual’s type may have been in the preceeding period. The two results

also imply that we can write the period-0 firm’s problem as one of maximizing

period-0 profits, subject to a period-0 participation constraint in which the firm

takes as given that the continuation utilities of workers will coincide with the static

competitive equilibrium in period 1 given by

max
z,π̃0(h0)

(∑
h0

π̃ (h0)

[ˆ
j6=0

mw (θjt)Alj0 (h0) − c0 (h0)

])
, (55)

subject to

π̃0 (h0)
[
v0 (h0) + β

∑
π̃1 (h1 | h0) V̄1 (h1)

]
> π̃0 (h0) V̄0 (h0) , ∀h0. (56)

Note that an individual insurance firm does not internalize that the continuation

utilities for any type depend on the distribution of types in the population. Next,

we can use the zero profit condition to write the period 0 firm’s problem 55 in its

dual form:

max
z,π̃(h0)

u (c0 (R)) + βV̄1 (R) ,

subject to ∑
ht

π̃t (ht)

[ˆ
j6=0

Aljt (ht) dj− ct (ht)

]
= 0,∀t ∈ {0, 1}

and (56). Now consider a social planner who seeks to maximize utility of the

initial recovered agents subject to the resource constraints and the constraints that

all other agents be made at least as well off as in the competitive equilibrium and

the requirement that continuation utilities coincide with those in a static competi-

tive equilibrium. This planner, unlike individual insurance firms, recognizes that

continuation utilities depend on the population masses in period 1. Clearly, the

solutions to the planning problem and the problem of an individual insurance firm

are different, so any competitive equilibrium is inefficient.
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B AModel with Vacancy Costs

We now consider an extension of our framework in which firms have to pay a

vacancy cost κv in order to attract workers. The definition of an allocation is

unchanged. The resource constraint is given by

∑
η

µηtcηt + κv

ˆ
γjtdj 6

ˆ
j6=0

∑
η

(µηtmw (θjt)Aljηt) dj.

Define (w∗, θ∗) as the solution to the following problem:

max
θ,w

mw (θ)w, (57)

subject to

mf (θ) (A−w) = κv.

We will show that the equilibrium wage and tightness will be given by (w∗, θ∗).

We now define an equilibrium for this environment.

Definition. An equilibrium is an allocation (µ,Θ, l,λ, c), values {Vt (η,µt)}η,t, and

ameasureof active islands Γt (µt) = {j ∈ J : ljηt (µt) > 0 for some η ∈ {S, I,R}} such

that

1. lηt (µt) solves each agent’s recursive problem;

2. mf (θjt)
∑
η λjηt [A−wjηt] 6 κv for all j, with equality if j ∈ Γt;

3. for any j ∈ Γt, λjηt satisfies (6);

4. the law of motion µt+1 = G (µt) for the state is given by (3);

5. for any j ∈ Γct , ifwjηt = w 6= w∗ for all η, then θjt solvesmf (θ) (A−w) = κv;

6. for j ∈ Γct such that V̂t

(
j,η,µt; λ̂t

)
< Vt (η,µt) for all λ̂t then λjηt = 0.

The only condition that changes from the baseline is the refinement in condition

5. The condition says that for an inactive island that has constant wages for each

type not equal to w∗, the agent’s beliefs about the market tightness on that island

are such that at that wage firms make zero profits. As we mentioned above, we

will show that w∗ is indeed the equilibrium wage, and so this condition says that
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agents’ beliefs about market tightness in off-equilibrium-path islands is such that

firms always make zero profits.

We now characterize the competitive equilibrium.

Proposition 11 (Characterization). Any competitive equilibrium is separating, has no
cross-subsidization, and the equilibrium wage rate and market tightness are given by
(w∗, θ∗).

Proof. Consider the last period T . Notice that for any island j ∈ ΓT , it must be that

ljIT > 0 and wjIT > w∗. Suppose that this is not the case and that wjIT < w
∗
. In

equilibrium, firms must make zero profits on this island. Consider some j ′ ∈ ΓcT
such thatwj ′ηT = w∗ for all η. From equilibrium condition 5, we have that θj ′T = θ∗.

Given the definition of (w∗, θ∗), the infected agent is strictly better off by choosing

island j ′; this is a contradiction. A similar argument establishes thatwjRT > w∗ for

j ∈ ΓT such that ljRT > 0.

We use this result to show that there is no cross-subsidization in period T . To

see this result, suppose there exists some island j ∈ ΓT such that wjST < w
∗
. Then,

consider some island j ′ ∈ ΓcT withwjST < wj ′ηT = w∗−ε for all η and small ε. From

equilibrium condition 5, θ is such that firm’s make zero profits. From equilibrium

condition 6, we have that neither infected nor recovered agents will choose island

j ′. Thus, the probability of infection in island j ′ is zero. Therefore, for small enough

ε, the susceptible agent is strictly better off by choosing island j ′; this result is a

contradiction.

We complete the argument for period T by showing that the equilibrium is

separating. To do so, suppose that the equilibrium has mixing so that there is some

j ∈ Γt such that ljST , ljIT > 0. Consider some island j ′ ∈ Γct such thatwj ′ηT = w∗−ε

for all η. As was the case before, the market tightness on this island is given by

condition 5. Condition 6 guarantees that λj ′IT = 0. Thus, for sufficiently small

ε, the susceptible agent is made strictly better off by switching, and we have a

contradiction.

These arguments imply that VT (S,µT ) > VT (I,µT ) for all µT . Next, consider

period T − 1. Using the monotonicity result, we can repeat all the arguments

above to show that there is no cross-subsidization, or mixing in period T − 1. The

argument for the other periods follows by induction.

We now show that the equilibrium allocation is efficient.
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Proposition 12. The competitive equilibrium is Pareto optimal.

Proof. In equilibrium there are no new infections. In the absence of infections,

the Pareto optimal allocation maximizes the agent’s utility subject to the resource

constraint

max
γ,cw,cu

mw

(γ
L

)
u (cw) +

(
1 −mw

(γ
L

))
u (cu) ,

subject to

Lmw

(γ
L

)
cw + L

(
1 −mw

(γ
L

))
cu + γκv 6M (γ,L)A,

where L is the mass of agents. It is easy to see that this problem is equivalent to

maxu (c) ,

subject to

c+ θκv 6 mw (θ)A,

which can be written as

max
θ

[mw (θ)A− θκv] .

Sincemf (θ) = mw (θ) /θ, this maximization problem is identical to (57). Thus, the

equilibrium is optimal.
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C Additional Figures

Figure 3: Employment in the last period in the UIR model.
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Figure 4: Individual employment in the first period in the UIR model.
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Figure 5: Individual employment in the last period in the UIR model.
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