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ABSTRACT ————————————————————————————————————

This paper characterizes the allocations that emerge in general equilibrium economies popu-
lated by households with preferences of the additive random utility type that make discrete
consumption, employment or spatial decisions. We start with a complete markets economy
where households can trade claims contingent upon the realizations of their preference shocks.
We (i) establish a first and second welfare theorem, (ii) illustrate that in the absence of ex-ante
trade, discrete choice economies are generically inefficient, (iii) show that complete markets are
not necessary and a much smaller set of securities decentralizes the efficient allocation. We
illustrate the relevance of these results in several canonical settings and for measuring how
welfare changes in response to changes in prices.
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In this paper, we study the efficiency properties of competitive equilibria of economies popu-
lated by households with preferences of the form

ui
(
cij
)
+ ξij,

where j is a finite set of goods / locations / occupations and ξij is an idiosyncratic random
variable specific to household i. Discreteness is the restriction that households can choose only
one type of good to consume, location to live in, occupation to work in, and so on.

To say these models have proven to be useful in many applications is an understatement. They
are a foundation for modeling consumer demand see, for example, McFadden (1974), Anderson
et al. (1992) and Berry et al. (1995). In spatial settings, preferences of this form have proven
useful for studying location and migration decisions, as in Kennan and Walker (2011), Kline and
Moretti (2014), Diamond (2016), Redding and Rossi-Hansberg (2017). This setting also connects
with studies of labor supply and amenity-driven occupational choice, like Rogerson (1988),
Card et al. (2018), Berger et al. (2022). They have been used in static and dynamic contexts.

These models are often used to evaluate the welfare impacts of various counterfactual policy
scenarios. But what are properties of the allocations from which welfare is evaluated? Do wel-
fare theorems hold in these economies? If they don’t, what market instruments are necessary
to achieve Pareto efficient allocations? When prices change — say, because of technological or
policy interventions — how does efficiency (or lack thereof) affect the welfare impacts?

The first part of the paper describes a general choice framework. We consider a class of utility
functions that allows us to connect with how these models have been used in studies of con-
sumer demand, spatial economics, or labor supply. We don’t appeal to functional forms on the
distribution over the taste shocks ξij or utility function ui(·). Thus, our results are not specific to,
say, the popular type 1 extreme value distribution. In the main text, we model the supply side
of the economy as a competitive endowment economy. This choice is deliberate and designed
to abstract from inefficiencies that might arise from imperfect competition in product markets
or spatial spillovers (Fajgelbaum and Gaubert, 2020). We then proceed to characterize several
allocations.

First, we characterize the allocation that is usually solved for in random utility, discrete choice
models. We call this the standard allocation, but our characterization illustrates the following
point: that ex-ante identical households (before the taste shocks are realized) ex-post value re-
sources differently, depending upon their choice. For example, someone choosing a high priced
commodity / expensive location will have a high marginal utility of consumption, compared
with someone choosing a low priced commodity / cheap location. This observation suggests
there are ex-ante Pareto improving trades that could be made either through a market arrange-
ment or by a social planner. We emphasize that this is an incomplete markets allocation.
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Second, we characterize the complete markets allocation and Pareto efficient allocations. We
demonstrate the equivalence between the two. This provides a first and second Welfare theo-
rem for discrete choice economies. Using complete markets allows researchers to pinpoint if
and how the standard allocation departs from the efficient allocation.

Third, we show that every Pareto efficient allocation corresponds to the maxima of a problem
in which a planner maximizes a standard social welfare function under some vector of social
welfare weights. This is key, since this is the social welfare function used by economists to eval-
uate welfare gains from various counterfactuals in discrete choice economies (see: Train, 2009;
Anderson et al., 1992).1 Combined, these results allow researchers to understand any social wel-
fare improving policy under incomplete markets in terms of the degree to which it implements
a complete markets allocation. In other words, whenever a researcher computes optimal policy
in a discrete choice economy using a standard social welfare function, any conjectured policy
that goes toward “completing markets” will be welfare improving, even without externalities
such as amenity or production spillovers.

What does “completing markets” look like? The complete markets economy allows households
to trade a complete set of contingent claims on every possible realization of the taste shocks.
These asset trades essentially allow the household to face one unified budget constraint rather
than a budget constraint that applies, state by state as in the standard setting. The unification
of the household’s budget constraint allows the household to equalize the marginal value of its
resources across states and the discrete choices induced by those states. Thus, the household is
able to set consumption so that marginal rates of substitution (across the discrete commodities)
equal marginal rates of transformation or relative prices. So even though households choose
only one commodity to consume ex-post, households ex-ante choose consumption plans in the
same way as in a model where all goods are consumed simultaneously.

A first novelty of the complete markets allocation is a fundamentally different choice probabil-
ity across goods. In the standard setting, the rule describing which good to choose is max over
uj + ξj . This is not the case with complete markets, any other Pareto efficient allocation or the
social welfare maximizing allocation. The optimal rule under complete markets is max over
uj+ξj−u′jcj . The additional term u′jcj is novel. It picks up the idea that as a household contem-
plates different choices, it internalizes the private cost of the choice on the consolidated budget
constraint. A planner equates private and social costs and hence has the same expression in its
choice rule.

A second novelty of the complete markets allocation is the nature of contracts that are actually
traded. In equilibrium, only a subset of contingent claims are valued and traded, even though

1Often described in words as “the expectation of the max”; see, for example, Busso et al. (2013, p. 902, para-
phrased): “Denote the workers’ social welfare as V = Eξ

[
maxj{ui

j + ξij}
]
, where the expectation is defined over

the ξij terms.” We will build up this social welfare function from first principles.
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we started with a complete set of contingent claims on every possible taste shock realization.
This subset of claims are indexed only by the choice j, not the taste shocks ξij . We term these
contingent claims Arrow vouchers, as they pay off when a commodity choice is chosen. One
complaint behind complete markets allocations is that the asset structure is often of impracti-
cal consequence. Equivalently, the information requirements on the planner are too large (i.e.
it needs to know all the taste shocks). Our result shows that market allocations with a sim-
ple contract structure, based on observable actions, can achieve outcomes that are seemingly
insurmountable.

The second part of the paper presents a formulation of the discrete choice economy that delivers
additional insight into the departure of the standard allocation from efficiency. Our formula-
tion of the discrete choice problem to this point is cumbersome, but practical. We show that
a more elegant formulation of the problem exists, cast in terms of direct maximization with
respect to choice probabilities. Incomplete markets, complete markets and planning problems
can each be simply stated in this way and solved using standard tools from calculus. This for-
mulation provides a marginalist interpretation of how a household or planner wants to allocate
its resources across discrete choices. For example, it makes clear the additional marginal condi-
tions available to a consumer facing complete markets, relative to those available in incomplete
markets.

The third part of the paper applies our results to several canonical economies and the measure-
ment of the welfare effects of price changes.

First, we study the discrete choice economy of Anderson et al. (1987), where aggregate demand
for each good is as if it came from a representative CES consumer. We relax the distributional
assumptions on the taste shocks and show that Anderson et al. (1987) is a unique, knife-edge
case where incomplete and complete market allocations coincide. The key issue is log utility,
not the taste shock distribution. This suggests that their aggregation result is partially due to
the efficiency of the allocation, where aggregation is natural.

Second, we study an economy with constant marginal utility and unit demand. This case di-
rectly connects with the industrial organization (IO) literature and the demand for differenti-
ated goods in Berry et al. (1995) and Nevo (2000) in particular. Even with unit demand, we show
that these allocations are efficient. The key issue is the constant marginal utility assumption.

Third, we extend our approach to a spatial production economy with spillovers that builds
on the quantitative spatial literature espoused in Redding and Rossi-Hansberg (2017) and Fa-
jgelbaum and Gaubert (2020) in particular, with location-specific externalities working through
production and amenities. Optimal policies have been often discussed in terms of these two
externalities. We show that optimal spatial allocations take a form similar to the one in Fa-
jgelbaum and Gaubert (2020) but now understand these to be solving three reasons why the
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spatial competitive equilibrium is inefficient: spillovers in production, amenities, and market
incompleteness. If a researcher wants to focus on spillovers, our complete markets formulation
gives a way to neutralize welfare gains from policy proposals that operate through insurance.
This result is valuable for making sure that policies that are discussed as addressing spillovers
actually are addressing spillovers and not simply completing markets.

Our final application illustrates the implications of our results for the empirical measurement
of the welfare effects of price changes. A standard result is that equivalent variation to a first
order is determined by initial expenditure shares and price changes (Deaton, 1989), while elas-
ticities show up only to a second order. We show that in our discrete choice environment under
incomplete markets, equivalent variation to a first order depends on expenditure shares, price
changes and elasticities of demand. Heterogeneity in price sensitivity (as emphasized recently
in Auer et al. 2022) is a first-order determinant of welfare in discrete choice models. In contrast,
when markets are complete, we show that the “standard” formula is obtained. For applied re-
search, there are two perspectives on these results. First, we have generalized results like those
in Deaton (1989) to hold in discrete choice environments, without appeals to functional forms,
but under the assumption of complete markets. Second, care should be taken around the inter-
pretation of these formulas since they depend on consumption truly being either (a) “a little bit
of all varieties” or (b) discrete with complete markets.

Several related papers connect closely with the questions we address. In many ways, the ba-
sic idea behind our work dates back to Rogerson’s (1988) work on indivisible labor supply.
Rogerson (1988) studies the problem where individual households can only discretely supply
their labor; that is they can only work or not. It is often remembered that Rogerson introduces
lotteries to convexify the problem, and they lead to optimal allocations and aggregation with
aggregate labor supply elasticities differing from micro elasticities. What is not often remem-
bered is that complete markets are introduced to eliminate the risk induced by the lottery. In
the discrete choice environment we consider, randomization by the taste shock naturally con-
vexifies the problem, but the risk associated with the shock remains. In this paper, we complete
markets and illustrate the properties of allocations, demonstrate the optimality of these alloca-
tions, and derive results useful for applied welfare analysis in these settings.

Fajgelbaum and Gaubert (2020) is an important study that characterizes optimal spatial poli-
cies with heterogeneous workers and spillovers. Our environment focuses on a separate issue
where heterogeneity is induced via taste shocks, and our focus is on the role that market incom-
pleteness plays. We argue that these issues loom over all discrete choice economies, on top of
other economically interesting distortions.2 The difference in focus and our characterization of

2As emphasized above, additive taste shocks have provided a foundation for introducing heterogeneity into
spatial models like the one in Diamond (2016), and this case connects with the dynamic discrete choice frameworks
in Kennan and Walker (2011), Artuç et al. (2010), Caliendo et al. (2019).
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first-best allocations contributes to the discussion of optimal spatial policies by providing an al-
ternative motive for market interventions like place-based transfers. We illustrate this last point
in Section 6.3 by considering an economy with externalities working through production and
amenities as in Fajgelbaum and Gaubert (2020) and then using our complete markets results to
distinguish between these different motives.

Ales and Sleet (2022) study questions closely related to the ones in this paper. In a similarly
general choice framework, they study the problem of a government that must raise revenue by
taxing income associated with each discrete choice and they characterise the optimal tax struc-
ture. Our problem is different; in particular, our planner controls everything and we provide
decentralization results through ex-ante trades that can be simply conditioned on ones choice
/ action. With that said, the issues we highlight are motives a government in their setting must
confront, i.e., absent complete markets, optimal tax policy is providing some insurance against
taste shocks which may attract households to an expensive commodity / location.

In contemporaneous work, Donald et al. (2023a,b) characterize optimal policies in a dynamic
spatial environment and how the welfare effects of spatial shocks are shaped by the dispersion
in marginal utility under standard assumptions on utility functions and distributions of shocks.
The unique contribution of our paper is the decentralization results around complete markets.
We can determine precisely the efficient choice rule, contracts traded and do so without as-
sumptions on utility functions or distributional assumptions on shocks. Moreover, our results
in Section 5 complement the planning problem they study by providing a foundation for the
social welfare function that they use, which we also used in earlier work of our own (Lagakos
et al. 2023; Waugh 2023). Our second welfare theorem then provides an equivalence between
the planner’s allocation characterized in these previous problems and how that allocation can
be supported as a competitive equilibrium. Hence, we provide a bottom-up foundation for
discussing welfare in these economies.

1. Economic Environment

This section describes the economic environment.

Households. There are a finite set of N types of households, indexed by θ. Within each type,
there is a continuum of ex-ante identical households with mass µ(θ). Within each type, house-
holds’ names are indexed by i ∈ [0, µ(θ)]. Households consume in the economy.

Goods. There are two types of goods. First, there is a single homogeneous, “outside” consump-
tion good c. The price of this outside good is our numeraire and normalized to one. Second,
there are finite “differentiated” goods with names j = {1, 2 . . . , J}; we denote quantities qj . We
restrict each household to choose only one type of the differentiated good to consume; this is
the discrete choice aspect of the model.
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Preferences. There are several components to preferences. First, households receive a taste
shock for each differentiated good j ∈ J . Per the restriction that households must make a
discrete choice across differentiated goods, only the shock corresponding to the good consumed
actually enters utility.

Following the literature, we model the taste shocks as random variables that are independent
and identically distributed across agents i in the population of θ-type households. Importantly,
this means our results naturally cover the use of discrete choice models in dynamic settings,
in which preference shocks are realized each period and expected utility is naturally evaluated
before their realization.

Define a realization of taste shocks for household i as ξi = (ξi1, ..., ξ
i
j, ...ξ

i
J). Associated with

these J random variables are a cumulative density function G(ξi; θ) and a probability density
function g(ξi; θ). At this point, we do not make any functional form assumptions on G. With
that said, below we will use the canonical type 1 extreme value distribution as an example for
illustrative purposes.

Household i of type θ derives the following utility, conditional on choosing good j:

u
(
c, qj; j, θ

)
+ ξij. (1)

Utility depends on quantities of consumption of the homogeneous good c and the differentiated
good qj . We assume that assume the utility function is well behaved in these arguments.

Our specification of utility also allows for properties of differentiated good j to matter through
channels other than the direct consumption of the differentiated good. The obvious one is the
additive taste shock that is specific to household i, discussed above. The second feature is that
the utility function is separately indexed by j, representing the idea that the attributes of j may
be more or less valuable relative to other j′ products. In the case of products, different goods
may have different quality or attributes. In the case of location choice, different locations may
have different amenities.

Finally, we index utility by the type of the household θ. Different θ types could have different
preferences over consumption of the commodities and value attributes of differentiated goods
differently. For example, in the case of location, with θ representing family size, single house-
holds could have different valuations for, say, cities, than those of nuclear households.

This generality nests representations of canonical functional forms in discrete choice models.
One example is the demand for differentiated goods as in Berry et al. (1995) or Nevo (2000). In
these applications the outside good is separable, with unit demand for the differentiated good:

u
(
c, qj; j, θ

)
= αθc+ β(θ)Xj.
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Thus, our specification in (1) can entertain ideas emphasized in the demand estimation liter-
ature: heterogeneity in own-price elasticities of demand (αθ) and heterogeneity in consumers’
value of product js attributes or quality, Xj , via the vector of parameters β(θ).3

A simpler example we use below is the following: no outside good, continuous choice in qj , no
quality differences, and common preferences across θ types:

u
(
c, qj; j, θ

)
= u

(
qj

)
.

When u is log and ξi is distributed according to a type 1 extreme value distribution, we ob-
tain the case of Anderson et al. (1987), who establish equivalence discrete choice demand and
demand from a representative CES consumer.

Another useful example is

u
(
c, qj; j, θ

)
= u

(
c
)
.

This is the natural case when j is a location, and thus j effects show up entirely via the budget
constraint. This case corresponds to versions of Rosen-Roback models (Rosen, 1979; Roback,
1982) and more recently in Kline and Moretti (2014) or the quantitative spatial literature (Red-
ding and Rossi-Hansberg 2017; Fajgelbaum and Gaubert 2020). Diamond (2016) is an example
that merges an IO-like formulation (discussed above) in a spatial setting.

Endowments. Households of type θ are endowed with the commodities discussed above. All
households of type θ have the same endowment. In a decentralized economy, where each
differentiated good has price pj , the value of this endowment is

W (θ) = yo(θ) +
∑
j

pjyj(θ), (2)

yj(θ) is type-θ endowment of good j and yo(θ) is the endowment of the outside good.

2. The Standard (Incomplete Markets) Equilibrium

In this section, we describe the problems of the actors in the economy, the resource constraints,
and then define an equilibrium. We call this equilibrium the “Standard (Incomplete Markets)
Equilibrium.” It is standard in the sense that this is what virtually everyone computes. How-
ever, we add the incomplete markets part as a point of contrast to the complete markets equi-
librium that we consider in Section 3.

When characterizing the standard equilibrium, we pose the individual household’s problem in

3Nakamura and Zerom (2010) uses a similar specification in a macro-price setting application.
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an ex-ante sense. That is, before taste shocks are realized, the household formulates a plan that
maps realizations of ξ into a commodity choice and quantities. And these plans are chosen to
maximize ex-ante expected utility.

Our approach differs from the typical one. The typical approach formulates the problem in an
ex-post sense. It starts with a realization of shocks and asks what households do. Then, given
the ex-post decision rules, the researcher measures welfare by reconstructing average utility in
the population. Within θ types, all households are ex-ante identical, so average utility in the
population is the same as expected utility of individuals, given some decision rules.

With incomplete markets, these two approaches (ex-post and our ex-ante approach) are equiv-
alent. The decision rules are the same, and maximized ex-ante utility corresponds to utility
in the population when utility is maximized ex-post. The reason why we do everything from
an ex-ante perspective is that it motivates the existence of ex-ante trades that can be made to
increase utility among individuals and in the population.

Another important implication of our approach is that it maps into the wide application of
dynamic discrete choice models. In these settings, the shocks are realized each period, and
hence ex-ante expected utility is the obvious criteria for individual maximization.

The Household’s Problem. Household i of type θ has expected utility V i(θ), given by

V i(θ) =

∫
ξ

∑
j

xij
(
ξ, θ
){
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g
(
ξ; θ
)
dξ. (3)

We introduce the following notation: xij(ξ, θ) is an indicator function that maps ξ into a one
if j is chosen and zero otherwise, and ci(ξ, θ) and qij(ξ, θ) are functions that map ξ into the
quantities consumed.

The inside summation in (3) says that for a given vector of taste shocks ξ, utility is whatever
good is consumed, how much of it is consumed, plus the shock associated with the good cho-
sen. The outside integral integrates over all possible realizations of ξ with density g(ξ, θ). This
defines expected utility for household i of type θ.

The household chooses quantities and indicator functions for all possible realizations of the
taste shocks to maximize (3), subject to the household’s budget constraint:

max
cij(ξ,θ), q

i
j(ξ,θ), x

i
j(ξ,θ)

∫
ξ

∑
j

xij
(
ξ, θ
){
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g
(
ξ; θ
)
dξ , (4)

subject to
[
λi(ξ, θ)

]
:

∑
j

xij(ξ, θ)
[
ci(ξ, θ) + pjq

i
j(ξ, θ)

]
≤ W (θ), for all ξ. (5)
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In (5), λi(ξ, θ) are multipliers on household budget constraints, with one budget constraint
for every realization of the vector of shocks. As we discuss more below, the key issue in this
problem is the budget constraints. The constraint (5) must hold shock by shock, and thus a
household’s valuation of its resources will vary across shocks, with the relative scarcity of re-
sources reflected in the multipliers λi(ξ, θ). Not stated in this problem is the implicit constraint
that xij(ξ, θ) can equal one for only one j.

Resource Constraints. Finally there are the following resource constraints. Product demand
can’t exceed product supply, requiring for all j = 1, . . . , J that

∑
θ

∫ µ(θ)

0

yj(θ) di ≥
∑
θ

∫ µ(θ)

0

〈∫
ξ

xij(ξ, θ)q
i
j(ξ, θ)g(ξ; θ) dξ

〉
di . (6)

The right-hand side is aggregate demand, which integrates over household types θ, then house-
holds within each type i. By the law of large numbers, ⟨·⟩ is total demand for good j by house-
holds of type θ. The left-hand side is aggregate supply, which is the endowments each i, θ

household is endowed with. For the outside good, a similar condition must hold:

∑
θ

∫ µ(θ)

0

yo(θ) di ≥
∑
θ

∫ µ(θ)

0

〈∫
ξ

ci(ξ, θ)g(ξ, θ) dξ

〉
di. (7)

We now formally define the standard (incomplete markets) equilibrium.

Definition 1 (The Standard (Incomplete Markets) Equilibrium.) An equilibrium consists
of allocation for each i and θ type ci(ξ, θ), qij(ξ, θ), xij(ξ, θ) and prices pj , such that

i. allocations (ci(ξ, θ) , qij(ξ, θ), and xij(ξ, θ) ) satisfy the household’s problem in (4);

ii. resource constraints (6), (7) are satisfied.

2.1. Properties of the Household’s Problem

In this section, we characterize properties of the allocations that satisfy the household problem.
Yes, this problem has been solved many times. But we do so in a rather different way that
facilitates the rest of the analysis. Appendix A details our approach; below, we state the main
results.

First, consumption allocations must satisfy the properties

uc
[
c(j, θ), qj(θ); j, θ

]
= λj(θ) and uq

[
c(j, θ), qj(θ); j, θ

]
= λj(θ) pj, (8)

where uc is the marginal utility of outside good consumption and uq is the marginal utility of
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the differentiated good. Households equate marginal utility of consumption to marginal costs,
measured by the multiplier on the budget constraint times the price.

Notice that we purposely dropped the indexing by the taste shock in several ways. This is a
result, not a typo or an attempt to save on notation. First, c(j, θ) no longer depends upon the
taste shock but now inherits dependence upon the choice of the differentiated good j. Similarly,
qj(θ) does not vary with the taste shock. The multipliers that were indexed by events ξ are now
re-indexed by the choice, not the shock. All of these arguments follow from the observation
that the taste shock does not affect marginal conditions and the taste shock affects the multiplier
only through the choice j, not the shock per se. Finally, these same arguments — along with
identical resources and preferences for all i ∈ θ — imply the household’s identity also does not
matter.

The second aspect of the solution is the discrete choice. Optimal xij(ξ, θ) takes the form

xij(ξ, θ) =

1, if u
[
c(j, θ), qj(θ); j, θ

]
+ ξij ≥ max

j′

{
u
[
c(j′, θ), qj′(θ); j

′, θ
]
+ ξij′

}
0, otherwise.

(9)

This is essentially the starting point from the literature. But we did not start here. As we discuss
in Appendix A, we first form the Lagrangian from (4), then make a formal variational argument
to obtain (9). Thus, our ex-ante approach delivers the same choice rule that would come from
an approach that starts with realized shocks.

We can integrate the function in (9) across the taste shocks and arrive at standard discrete
choice results. If the shocks are distributed type 1 extreme value with shape parameter ηθ, the
probability a household of type θ chooses choice j is

ρj(θ) = exp

(
u
[
c(j, θ), qj(θ); j, θ

]
ηθ

)/∑
j′

exp

(
u
[
c(j′, θ), qj′(θ); j

′, θ
]

ηθ

)
. (10)

This is exactly what one would expect if, for example, one were flipping through Train’s (2009)
textbook presentation. With a continuum of i ∈ θ, the law of large numbers applies, and ρj(θ)

is also the measure of type-θ households consuming j. Then type θ demand in (6) becomes
µ(θ)ρj(θ)qj(θ).

All of this is natural. The conditions in (8) equate ratios of marginal utility between the outside
and differentiated good with relative prices. Condition (9) says that given these optimal con-
sumption plans, do the best possible given the shocks that were realized. Risk associated with
the event ξ does not appear to directly affect consumption. These are the arguments one might
put forward to argue that nothing is wrong with this economy.
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Except for one thing. The conditions in (8) do not deliver a “risk sharing”-like condition where
the shadow value of resources (the multipliers) is equated across events. In allocations where
risk is shared (see, e.g., Townsend 1994 or Backus and Smith 1993), there would be a condition
like

uq
[
c(j, θ), qj(θ); j, θ

]
/pj = λ(θ) ∀ j. (11)

Here, the j index is absent from the multiplier: across all states of nature (the taste shocks
directly and the choices they induce) consumption is such that resources are valued equally.
This is not occurring in the standard allocation when one inspects (8).

The problem in (8) is that the events ξ indirectly show up in the choice through the budget con-
straint. Resources are more valuable when ξ leads to a choice of a high price good (expensive
city, or low paying job). In these states, the multiplier λj(θ) will be high. In contrast, in the event
that ξ leads to the choice of a low price good (cheap city, or high paying job), the multiplier λj(θ)
is low, resources are abundant, and marginal utility is low. A better arrangement would have a
bit more resources available to the household that likes the high price commodity and a bit less
available to the household that likes the low price commodity, up to the point that marginal
utility across choices is equated. However, to paraphrase Rogerson (1988, p. 11), making choices
discrete creates a barrier to trade.

What trading opportunities and market arrangements can achieve a condition like (11)? How
is commodity choice affected? How do these market arrangements line up with Pareto efficient
allocations? Do Pareto efficient allocations line up with social welfare maximizing allocations?
These are the questions that we answer next.

3. Complete Markets Equilibrium and First Welfare Theorem

In this section we allow agents to trade contingent claims that pay out given the realizations of
the taste shocks. This is our complete markets equilibrium. We argue this equilibrium is Pareto
efficient and then show how it differs from the standard equilibrium. Put simply, if you assess
welfare in a discrete choice model, this is the benchmark allocation that maximizes it.

3.1. Insurance Contracts

Households purchase ai(ξ, θ) many claims at the state price φ(ξ, θ). These claims pay out
ai(ξ, θ) upon the realization of the taste shock vector ξ and zero otherwise. There are no re-
strictions on short-selling: ai(ξ, θ) ∈ (−∞,∞).

Competitive firms provide these insurance contracts to households. Insurance firms determine
the state prices; otherwise, they are simply veils. These firms operate by selling insurance con-
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tracts ai(ξ, θ) minus the cost. The cost is the probability that event ξ occurs times the quantity
of insurance provided. The PDF g(ξ; θ) determines the probability of the event ξ occurring.
Competitive pricing in the market for each contract yields zero profits and implies that the
household faces actuarially fair prices:

φ(ξ, θ) = g(ξ; θ). (12)

At this point, we emphasize how rich this contract structure is. Ex-ante, households buy and
sell claims against every possible realization. Ex-post, paying claims requires identifying house-
holds ξ-by-ξ. This seems implausibly rich and of no practical purpose, so much so that you
might stop reading. Don’t. As we show below, the complete markets equilibrium can be sup-
posed by a much simpler, more practical market structure.

3.2. The Household Problem with Complete Markets

The household’s problem with complete markets is

max
ai(ξ,θ), ci(ξ,θ), qij(ξ,θ), x

i
j(ξ,θ)

∫
ξ

∑
j

xij(ξ, θ)

{
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g
(
ξ; θ
)
dξ, (13)

subject to
∑
j

xij(ξ, θ)
[
ci(ξ, θ) + pjq

i
j(ξ, θ)

]
≤ W (θ) + ai(ξ, θ) ∀ ξ, (14)

∫
ξ

φ(ξ, θ)ai(ξ, θ)dξ = 0. (15)

A household chooses contingent claims, consumption quantities, and commodity choices for
every possible state, subject to two constraints. The first constraint is that consumption equals
labor income and amount of insurance purchased, state by state. The second constraint says
the household’s net asset position must be zero.

To illustrate the key property of this problem, substitute all budget constraints (14) into the
constraint for assets (15). The resulting problem is

max
ai(ξ,θ), ci(ξ,θ), qij(ξ,θ), x

i
j(ξ,θ)

∫
ξ

∑
j

xij(ξ, θ)

{
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g
(
ξ; θ
)
dξ, (16)

subject to [ λi(θ) ] :

∫
ξ

φ(ξ, θ)

{
W (θ)−

∑
j

xij(ξ, θ)
[
ci(ξ, θ) + pjq

i
j(ξ, θ)

]}
dξ = 0. (17)
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The constraint (17) is the distinguishing feature between the complete markets problem and the
problem in (4). Here (17), allows the household to consolidate all possible outcomes of ξ before
their realization.4 In contrast, in the standard equilibrium, households face different constraints
for each outcome ξ and are unable to ex-ante trade across these different outcomes.

Definition 2 defines the complete markets equilibrium.

Definition 2 (The Complete Markets Equilibrium.) A complete markets equilibrium are al-
locations ci(ξ, θ), qij(ξ, θ), ai(ξ, θ), xij(ξ, θ) for each i and type θ; goods prices pj and state prices
φ(ξ, θ) such that

i he consumption allocations (ci(ξ, θ) , qij(ξ, θ), and xij(ξ, θ) ) and asset positions ai(ξ, θ)
satisfy the household’s problem in (16);

ii state prices satisfy (12);

iii goods and asset markets clear.

3.3. The Complete Markets Equilibrium Is Pareto Efficient

In this section, we establish the first fundamental theorem of welfare economics in this environ-
ment, which is that the complete markets equilibrium is a Pareto efficient allocation. Appendix
B details the entire argument; below, we sketch out our argument.

To establish this argument, first note that any alternative allocation { c̃i(ξ, θ), q̃ij(ξ, θ), ãi(ξ, θ),
x̃ij(ξ, θ)} that is preferred by agent i (in the sense that it provides higher utility than (16)) must
imply that ∫

ξ

φ(ξ, θ)

{
W (θ)−

∑
j

x̃ij(ξ, θ)
[
c̃i(ξ, θ) + pj q̃

i
j(ξ, θ)

]}
dξ < 0. (18)

In words, this alternative and preferred allocation is not budget feasible.

Armed with this observation, we argue that the complete markets allocation is a Pareto efficient
allocation. Consider an alternative allocation c̃i(ξ, θ), q̃ij(ξ, θ), ãi(ξ, θ), x̃ji(ξ, θ) for all i and θ

types that is (i) feasible and (ii) preferred by all i and θ types, and strictly preferred by at least
one i. Feasibility implies market clearing conditions hold for each good. Multiplying each

4As an analog to dynamic models, (17) can be interpreted as a household’s “lifetime” budget constraint, and
thus the ability to trade insurance allows all these different outcomes to be combined in a “date 0” way.
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through by prices and summing across goods, we get

∑
θ

∫ µ(θ)

0

yo(θ)di+
∑
j

∑
θ

∫ µ(θ)

0

pjyj(θ)di = (19)

∑
θ

∫
ξ

∫ µ(θ)

0

c̃i(ξ, θ)g(ξ, θ) di dξ +
∑
j

∑
θ

∫
ξ

∫ µ(θ)

0

x̃ij(ξ, θ)pj q̃
i
j(ξ, θ)g(ξ; θ) di dξ. (20)

On the left-hand side, i-by-i, these are the households’ endowments. On the right-hand side,
we can use the equilibrium condition that assets trade at actuarially fair prices (thus swapping
out the g density for the φ state price), which gives

∑
θ

∫ µ(θ)

0

W (θ)di =
∑
θ

∫ µ(θ)

0

∫
ξ

φ(ξ, θ)

[∑
j

x̃ij(ξ, θ)
[
c̃i(ξ, θ) + pj q̃

i
j(ξ, θ)

]
dξ di. (21)

The right-hand side is now the sum of households’ budget constraints. The fact that the tilde
allocation is preferred implies that one of these constraints does not hold, and hence

∑
θ

∫ µ(θ)

0

W (θ)di =
∑
θ

∫ µ(θ)

0

∫
ξ

φ(ξ, θ)

[∑
j

x
′i
j (ξ, θ)

[
c̃i(ξ, θ) + pjq

′i
j (ξ, θ)

]
dξdi (22)

>
∑
θ

∫ µ(θ)

0

W (θ)di, (23)

where the final inequality follows from (18). This is a contradiction. Thus, an allocation that
satisfies the definition of a complete markets equilibrium is a Pareto efficient allocation. Propo-
sition 1 states the result.

Proposition 1 (The First Welfare Theorem.) The complete markets equilibrium is a Pareto ef-
ficient allocation.

The argument we applied was standard, relying on the idea that there can’t be a feasible alloca-
tion that is preferred. There was no appeal to first order conditions and the like. The next step
is to characterize the optimality conditions associated with complete markets. This provides a
clear statement regarding the specific failures of the standard equilibrium and a way to estab-
lish a connection between all Pareto efficient allocations and the complete markets equilibrium.
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3.4. Properties of the Household’s Problem with Complete Markets

In this section, we characterize properties of the allocations that satisfy the household problem
with complete markets. Appendix B details our approach; below, we state the main results.

Consumption of the outside and differentiated good must satisfy these first order conditions:

uc
[
c(j, θ), qj(θ); j, θ

]
= λ(θ) and uq

[
c(j, θ), qj(θ); j, θ

]
= λ(θ)pj. (24)

Again, re-indexing is a result, not a shortcut. Consumption ci(ξ, θ), qij(ξ, θ) depends on θ-
dependent preferences and endowments (we can drop i) and the good chosen under ξi, but
not the taste shock itself.

The most important thing to notice that the multiplier λ(θ) does not depend upon the real-
ization of the taste shock nor the choice. With complete markets there is one constraint (not
shock-specific constraints as in the standard setting), as the household is now able to shift re-
sources across states of nature.

Because these first order conditions are equated with the same multiplier, we now have a stan-
dard risk sharing-type result. Compare a θ-type household consuming j with one consuming
alternative good j′:

uc
[
c(j, θ), qj(θ); j, θ

]
uc
[
c(j′, θ), qj′(θ); j′, θ

] = 1 and
uq
[
c(j, θ), qj(θ); j, θ

]
uq
[
c(j′, θ), qj′(θ); j′, θ

] = pj
pj′
. (25)

The ratios of marginal utility across goods should equal their relative price. For the homoge-
neous outside good, marginal utility is the same independent of the identity and price of the j
good chosen. For the differentiated good, marginal utility differs only to the extent that relative
prices are different.

The conditions in (25) also imply that households consume as if the consumption choice of the
differentiated good were continuous. That is, marginal rates of substitution across the discrete
commodities equal relative prices. Efficiency will imply that these are equated to marginal
rates of transformation. Even though households choose only one commodity to consume,
households, ex-ante choose consumption plans in the same way that would arise in a model
where all goods are consumed simultaneously.

When households can trade all these contingent claims, which good do they actually consume?
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Interestingly, the commodity choice rule takes a unique form with

xij(ξ, θ) =



1, if u
[
c(j, θ), qj(θ); j, θ

]
+ ξij−λ(θ)

[
c(j, θ) + pjqj(θ)

]
≥

max
j′

{
u
[
c(j′, θ), qj′(θ); j

′, θ
]
+ ξij′−λ(θ)

[
c(j′, θ) + pj′qj′(θ)

] }

0, otherwise.

(26)

The key novelty is the λ(θ)
[
·] term, which is not in the rule characterizing the incomplete mar-

kets allocation (equation 9). With incomplete markets, the effects of choosing j are siloed into
the good-j budget constraint. With complete markets, choosing j imposes a cost across all other
states of nature, by removing resources from the aggregated budget constraint (17). This cost is
the shadow value of resources λ(θ), times the additional burden c(j, θ)+pjqj(θ). Efficient choice
probabilities now account for this cost.

What are the claims that are actually traded? Here we find that a only a subset of contingent
claims are traded in equilibrium. Let Ξj(θ) be the set of all ξ for which a household of type θ
chooses j. If ξ ∈ Ξj(θ), then the household’s asset position is

ai(ξ, θ) = W (θ)−
[
ci(ξ, θ) + pjq

i
j(ξ, θ)

]
= W (θ)−

[
c(j, θ) + pjqj(θ)

]
. (27)

Since the right-hand side is independent of ξ directly, then so is ai(ξ, θ), which we denote a(j, θ).

This tells us that the only claims that are actually traded are those that depend upon the choice
j, not the taste shocks per se. In other words, the same allocation would have been obtained
with a set of securities that paid off conditional on choices. We term these contingent claims
“Arrow vouchers,” as they pay off in states of nature that coincide with the choice of a com-
modity — hence our voucher terminology.

We find this result striking. An often-heard criticism of the market structures that we con-
sidered is that they are complex and unrealistic, and thus of impractical consequence. These
claims may be true. But now, ex-ante, households of a type θ trade only claims to J securities
among themselves. Ex-post, payment of claims requires only knowing the good chosen, which
is observable. This seems less implausibly rich and of practical purpose. Take, for example, a
simple policy of a subsidy to individuals who choose to live in San Francisco. The complete
markets allocation says that a component of this is welfare improving, as it provides insurance
against waking up with a high preference for living in an expensive city.

A second important observation is that these trades really are about insurance, not redistri-
bution. Observe that trade could restricted to be within household types (or just assume that
there was only one θ-type in the economy). In this case, identical households will want to trade

16



against the potential ex-post different choices that the taste shocks induce.

Circling back to the choice rule in (26), we can connect the Arrow vouchers with the choices in
the following way:

xij(ξ, θ) =



1, if u
[
c(j, θ), qj(θ); j, θ

]
+ ξij − λ(θ)a(j, θ) ≥

max
j′

{
u
[
c(j′, θ), qj′(θ); j

′, θ
]
+ ξij′ − λ(θ)a(j′, θ)

}

0, otherwise.

(28)

The extra term is the asset position required to optimally smooth consumption across choices,
evaluated at its opportunity cost, which is the λ(θ) term or the marginal utility of consumption
from (25).

If we impose the type 1 extreme value distributional assumption and integrate (28), we obtain
the efficient choice probabilities:

exp

(
u
[
c(j, θ), qj(θ), j, θ

]
− λ(θ)a(j, θ)

ηθ

)/∑
j′

exp

(
u
[
c(j′, θ), qj′(θ), j

′, θ
]
− λ(θ)a(j′, θ)

ηθ

)
. (29)

Equation (29) has two meanings. One is the probability that a θ type agent chooses j. With
complete markets, the choice probabilities are also the state price for the Arrow voucher asso-
ciated with choice j. In other words, the choice probabilities are also the price of purchasing
insurance against events that lead to j being chosen.

At this point we have demonstrated several things. First, the complete markets allocation leads
to a consolidated budget constraint across states of nature, and thus optimal allocations have a
risk sharing condition with marginal utility across goods equaling their relative price. Second,
complete markets influence choice probabilities with the household now internalizing the cost
of one choice versus others across states of nature. Finally, the set of contingent claims needed
to implement complete markets needs to span only the choices, not all taste shocks. Proposition
2 summarizes these results.

Proposition 2 (Complete Markets Allocations) The following conditions characterize the
complete markets allocations:

1. Consumption allocations must satisfy

uc
[
c(θ, j), qj(θ); j, θ

]
= λ(θ) and uqj

[
c(θ, j), qj(θ); j, θ

]
= λ(θ)pj.
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2. The commodity choice rule is

xij(ξ, θ) =



1, if u
[
c(j, θ), qj(θ); j, θ

]
+ ξij − λ(θ)a(j, θ) ≥

max
j′

{
u
[
c(j′, θ), qj′(θ); j

′, θ
]
+ ξij′ − λ(θ)a(j′, θ)

}

0, otherwise.

3. “Arrow Vouchers.” Asset positions are given by

a(j, θ) = W (θ)−
[
c(j, θ) + pjqj(θ)

]
,

which are contingent only on the choice j, not the taste shock ξ. The state prices for the Arrow
Vouchers are the choice probabilities, which with the type 1 extreme value assumption are

exp

(
u
[
c(j, θ), qj(θ), j, θ

]
− λ(θ)a(j, θ)

ηθ

)/∑
j′

exp

(
u
[
c(j′, θ), qj′(θ), j

′, θ
]
− λ(θ)a(j′, θ)

ηθ

)
.

4. Pareto Efficient Allocations and Second Welfare Theorem

We have shown that the complete markets equilibrium is a Pareto efficient allocation. We now
characterize all Pareto efficient allocations. This provides the foundation for the second welfare
theorem: any Pareto efficient allocation can be decentralized as a complete markets equilibrium
allocation with the appropriate ex-ante transfers. Appendix C provides all derivations and
details.

We set up the Pareto problem as follows. Fix one household with name (i, θ). The planner
chooses allocations of consumption and commodity choice rules to maximize (i, θ) utility sub-
ject to (i) resource constraints, and (ii) making all other (k, θ′) households no worse than some
given level. Below are the details.

The objective function of the planner is to maximize expected utility for (i, θ) household:

maxV i(θ) =

∫
ξ

∑
j

xij(ξ, θ)

{
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g(ξ; θ)dξ, (30)

where the choice variables are the household’s consumption and commodity choices and con-
sumption and commodity choices for all other agents in the economy which are indexed by
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(k, θ′). The first constraints are the resource constraints:

[ Λo ] :
∑
θ′

∫ µ(θ′)

0

yko (θ
′)dk ≥

∑
θ′

∫
ξ

∫
k

xkj (ξ, θ
′)ckj (ξ, θ

′) dk g(ξ, θ′)dξ, (31)

[ Λj ] :
∑
θ′

∫ µ(θ′)

0

ykj (θ
′)dk ≥

∑
θ′

∫
ξ

∫
k

xkj (ξ, θ
′)qkj (ξ, θ

′) dk g(ξ, θ′)dξ ∀j, (32)

where the new multipliers Λj and Λo capture the shadow value of each good. The next con-
straint is the Pareto constraint:

[ Υk(θ′) ] : V k(θ′) ≤
∫
ξ

∑
j

xkj (ξ, θ
′)

{
u
[
ck(ξ, θ′), qkj (ξ, θ

′); j, θ′
]
+ ξkj

}
g(ξ, θ′)dξ ∀k, θ′ ̸= i, θ.

(33)

Any allocation must deliver utility level V k(θ′) or better for every (k, θ′) household. Associated
with this constraint is the Lagrange multiplier Υk(θ′). Any Pareto efficient allocation satisfies
this problem.

4.1. Properties of Pareto Efficient Allocations

The characterization of the Pareto problem takes the following form. For household (i, θ), the
marginal conditions are as follows (where, again, the notation is a result):

uc
[
ci(j, θ), qij(θ); j, θ

]
= Λo and uqj

[
ci(j, θ), qij(θ); j, θ

]
= Λj. (34)

Then for all other (k, θ′) households, they are

Υk(θ′) uc
[
ck(j, θ′), qkj (θ

′); j, θ′
]
= Λo and Υk(θ′) uqj

[
ck(j, θ′), qkj (θ

′); j, θ
]
= Λj. (35)

These conditions mimic what is occurring in the complete markets equilibrium. Adjusted,
marginal utility equals the shadow cost of the commodity, which is the multipliers on the re-
source constraint.

The multipliers Υk(θ′) on the Pareto constraints reflect the social value of each individual to
the planner. A high social value individual with a large V k(θ′) will have a large multiplier
Υk(θ′). Why? The multiplier measures ∂V i(θ)/∂V k(θ′). Consider a low value and high value
(k, θ′). With concave utility, reducing the low value individual’s value is achieved by a small de-
crease in consumption, which slightly increases the goods and utility available to (i, θ); hence,
∂V i(θ)/∂V k(θ′) is small. Reducing the high value individual’s value by the same amount re-
quires a large reduction in consumption, which substantially increases the goods and hence
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utility available to (i, θ).

The next step is the optimal choice rule describing which commodity is be consumed. The
choice rule is given by

xkj (ξ, θ
′) =



1, if u
[
ck(j, θ′), qkj (θ

′); j, θ′
]
+ ξkj− 1

Υk(θ′)

[
Λoc

k(j, θ′) + Λjq
k
j (θ

′)

]
≥

max
j′

{
u
[
ck(j′, θ′), qkj′(θ

′); j′, θ′
]
+ ξkj′− 1

Υk(θ′)

[
Λoc

k(j′, θ′) + Λj′q
k
j′(θ

′)

]}

0, otherwise.

(36)

This holds for all (k, θ′) households and for (i, θ) by setting the Υ term to one.

Again, this expression looks similar to the complete markets equilibrium. Consider the last
additional term 1

Υk(θ′)
[·]. Rather than the private cost of insurance into choice j, it is the social

cost of providing utility to the (k, θ′) household. This is the shadow value of outside and differ-
entiated good consumption, evaluated at the shadow value of those resources, Λo and Λj . This
is adjusted by how socially valuable household (k, θ′) is.

Proposition 3 summarizes.

Proposition 3 (Pareto Efficient Allocations) Given utility levels V k(θ′) for all k, θ′ ̸= i, θ,
a Pareto efficient allocation is consumption allocations and commodity choice rules cij(ξ, θ),
qij(ξ, θ), xij(ξ, θ) for household (i, θ) and all other (k, θ′) households, that solve the problem (30)
subject to resource constraints (31, 32) and the Pareto constraint in (33).

The following conditions characterize Pareto efficient allocations:

1. For agent (i, θ), consumption allocations must satisfy

uc
[
ci(j, θ), qij(θ); j, θ

]
= Λo and uqj

[
ci(j, θ), qij(θ); j, θ

]
= Λj.

2. For agent (k′, θ′), consumption allocations must satisfy

Υk(θ′) uc
[
ck(j, θ′), qkj (θ

′); j, θ′
]
= Λo and Υk(θ′) uqj

[
ck(j, θ′), qkj (θ

′); j, θ′
]
= Λj.
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3. The commodity choice rule is

xkj (ξ, θ
′) =



1, if u
[
ck(j, θ′), qkj (θ

′); j, θ′
]
+ ξkj − 1

Υk(θ′)

[
Λoc

k(j, θ′) + Λjq
k
j (θ

′)

]
≥

max
j′

{
u
[
ck(j′, θ′), qkj′(θ

′); j′, θ′
]
+ ξkj′ − 1

Υk(θ′)

[
Λoc

k(j′, θ′) + Λj′q
k
j′(θ

′)

]}

0, otherwise,

which holds for all (k, θ′) households. For the (i, θ) household, set the Υ term to one.

4.2. Second Welfare Theorem

We now have a basis for the Second Welfare Theorem.

Proposition 4 (The Second Welfare Theorem.) Any Pareto efficient allocations can be decen-
tralized as a complete markets equilibrium.

This is immediate from comparing the content of Proposition 2 with complete markets to
Proposition 3. Consumption allocations and choice rules are identical if Λ0/Υ

k(θ′) = λ(θ′) and
Λj/Υ

k(θ′) = λ(θ′)pj . To align the complete markets allocation to the Pareto efficient allocation,
then one simply needs to find the appropriate ex-ante reallocation of resources to attain the
correct multipliers on complete markets budget constraints, λ(θ′).

4.3. Social Welfare Maximization

We have worked exclusively with the Pareto problem, but it should not be surprising that
a planner maximizing a straightforward social welfare function attains the same allocation.
Proposition 5 summarizes this finding. Appendix D provides all derivations and details.

Proposition 5 (Social Welfare Maximizing Allocations) Let ψi(θ) be a vector of social wel-
fare weights. Define the Social Welfare Function as

Wψ =
∑
θ

∫
i

ψi(θ)

∫
ξ

∑
j

xij(ξ, θ)

{
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g(ξ, θ)dξ di. (37)

Then a social welfare maximizing allocation is consumption allocations and commodity choice
rules and cij(ξ, θ), qij(ξ, θ), xij(ξ, θ) for all i, θ to maximize Wψ subject to resource constraints. The
following conditions characterize the allocation:
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1. For all i, θ, consumption allocations must satisfy:

ψi(θ) uc
[
ci(θ), qij(θ); j, θ

]
= Λo and ψi(θ) uqj

[
ci(θ), qij(θ); j, θ

]
= Λj. (38)

2. For all i, θ the commodity choice rule is

xij(ξ, θ) =



1, if u
[
ci(j, θ), qij(θ); j, θ

]
+ ξij − 1

ψi(θ)

[
Λoc

i(j, θ) + Λjq
i
j(θ)

]
≥

max
j′

{
u
[
ci(j′, θ), qij′(θ); j

′, θ
]
+ ξij′ − 1

ψi(θ)

[
Λoc

i(j′, θ) + Λj′q
i
j′(θ)

]}

0, otherwise.

(39)

This allocation is a Pareto efficient allocation and coincides with a complete markets allocation
under some ex-ante transfers.

The last statement in Proposition 5 follows from a comparison with the results in Proposition
3. There is a clear mapping from ψi(θ) to the multipliers on the utility constraints in the Pareto
problem. And a similar comparison between the results in Proposition 2 and the conditions
from the results above lead to the conclusion that one needs only to find the correct transfers
to align the complete markets allocation and the one that solves the social planning problem
above.

Taking stock, we have shown that the objective function that researchers typically use to evalu-
ate welfare across counterfactual policy experiments in discrete choice economies, is maximized
in a decentralized competitive equilibrium with complete markets, and that the associated al-
locations are Pareto efficient. This establishes that in an incomplete markets economy, policies
that act in the direction toward completing markets will tend to be welfare improving.

5. An Alternative Formulation of the Individuals Objective Function

This section provides a representation of the objective function in (37) under the type 1 extreme
value assumption that (i) is easy to solve using standard calculus and (ii) provides a marginalist
interpretation as to how a household or planner wants to allocate its resources across discrete
choices. Under this distributional assumption, we can cast the objective function and budget
/ resource constraints directly in terms of choice probabilities, which are then directly chosen,
rather than locating the discrete choice rules that we have previously looked for, followed by
tedious integration against G(ξ).
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Appendix E details the entire argument and works through a more general example; below, we
sketch out our argument.

We build on three observations. First, in each problem, we started with the household i of type
θ having expected utility given by

V i(θ) =

∫
ξ

∑
j

xij
(
ξ, θ
){
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g
(
ξ; θ
)
dξ.

This is the objective function that shows up in the household’s incomplete markets problem (4);
the complete markets problem (13); the Pareto problem (33); and social welfare maximization
problem (37).

Second, in each problem, the optimal choice rule xij(ξ, θ) is always of the form:

xij(ξ, θ) =

1, if Ṽj(θ) + ξij ≥ max
j′

{
Ṽj′(θ) + ξj′

}
0, otherwise.

(40)

Across problems, Ṽj(θ) varies. For example, in the incomplete markets problem, it would just
be the deterministic part of the households utility function; in the complete markets setting, it
includes the multipliers on the households budget constraint.

Third, in each problem, consumption quantities are independent of the taste shock ξj , as ξj
never appears in the first order condition for qj(ξ, θ). This is a direct consequence of the addi-
tivity of the shocks.

Combined, these observations allow us to re-express the objective function in (37) in the fol-
lowing way:

Proposition 6 (An Equivalent Objective Function) Assuming the taste shocks are type 1 ex-
treme value distributed, an individual’s objective function can be recast as

V i(θ) =
∑
j

ρij(θ)

[
u
[
ci(θ), qij(θ); j, θ

]
− ηθ log ρ

i
j(θ)

]
, (41)

where—in addition to consumption quantities—choice probabilities are control variables of the
household or planner.

The first term in (41) is just expected utility over the deterministic part of utility. However, here
the household or planner has control over expected utility and must trade off putting more
weight on high u choices versus selection induced by the taste shock. This is where the second
term in (41) enters—which is positive and decreasing in ρj—like a selection correction term:
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choosing a higher probability on choice j means incurring taste shocks that are progressively
worse, and hence overall utility is penalized.5

Given (41), it is straightforward to maximize utility in the incomplete markets problem in (4),
the complete markets problem in (13), the Pareto problem in (33), and the social welfare maxi-
mization problem (37). In each case we can easily write down the associated budget constraints
and resource constraints with an additional constraint that restricts the choice probabilities to be
probabilities; that is they must sum to one. For example, with the incomplete markets problem,
the shock-by-shock constraints are

c(j, θ) + pjqj(θ) ≤ W (θ),︸ ︷︷ ︸
Incomplete markets: Type-θ, Good-j

for each j ∈ {1, . . . , J}.

With complete markets, the budget constraint is now

∑
j

ρj(θ)
[
c(j, θ) + pjqj(θ)

]
≤ W (θ).︸ ︷︷ ︸

Complete markets: Type-θ, Consolidated

Note that we have used the fact that in the competitive equilibrium with complete markets,
Arrow securities are competitively priced, and hence the state price of the securities is simply
the choice probability ρj . This illustrates a feature of the problem that the state prices are en-
dogenous objects, not given by nature. As a household contemplates a higher ρj , the price of
the Arrow securities that pay off conditional on purchasing j increases one for one.6 The de-
centralization via Arrow vouchers is even clearer here, where ρj(θ) is the price of a j voucher.

Example: Complete Markets. To further illustrate how this works, consider an example with
complete markets. To simplify the presentation, we drop the outside good and the θ types,
and the utility function now depends only upon consumption of the good chosen qj . Our new

5The type 1 extreme value assumption is not necessary, per se, for a representation like (41). Alternative dis-
tributional assumptions would give rise to different selection correction terms. The special property of the type
1 extreme value distribution is that the selection correction depends only on ρij , and is constant elasticity with
parameter ηθ: E[ξij |Choose j] = −ηθ log ρ

i
j , depends only on ρij . It is also worth noting how the selection correction

with type 1 extreme value distribution takes the form of entropy and in turn connects with the rational inattention
foundation for the logit demands in Matějka and McKay (2015).

6An analogy to a different literature may help. In problems of consumer borrowing with endogenous default,
individuals understand the price schedule φ(b) associated with increasing b by borrowing more. In our case this
schedule is simply φ(ρj) = ρj . Prices depend on observable actions.
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formulation allows one to take first order conditions in qj and ρj :

qj : u′(qj) = λpj (42)

ρj : u(qj)− η log ρj = λpjqj + χ+ η, (43)

where χ is the multiplier on the choice probability constraint,
∑
j

ρj = 1.

The second condition presents a marginalist interpretation of optimal choice probabilities, and
equates the marginal benefit of a change in ρj to its marginal cost. The marginal benefit of a
higher ρj is the increased likelihood of receiving the utility from consuming j and the associated
taste shock, holding consumption and selection fixed. The marginal cost of a higher ρj includes
(i) tightening the consolidated budget constraint by expenditure pjqj , (ii) reducing probabilities
available for other goods, and (iii) a worsening of the expected taste shock, with elasticity η.
Combining these, the choice probability is

ρj = exp

([
u(qj)− u′(qj)qj

]
η

)/∑
j′

exp

([
u(qj′)− u′(qj′)qj′

]
η

)
.

We think this approach is useful and informative. First, the type 1 extreme value assumption
is pervasive. Second, the objective function in Proposition 6 has been used in previous work
(Lagakos et al., 2023; Waugh, 2023; Donald et al., 2023a), and these arguments provide a founda-
tion for it. Third, this formulation can be used to easily state and solve competitive and planner
allocations in complex discrete choice economies, as we demonstrate in Section 6.3.

6. Examples of Specific Economies

In this section, we focus on several important examples of discrete choice economies. Specifi-
cally, we study the (i) Anderson et al. (1987) economy giving CES demands, (ii) the linear utility
implementation of Berry et al. (1995) popularized by Nevo (2000), and (iii) a general equilib-
rium spatial economy building on Fajgelbaum and Gaubert (2020). In the first two, we show
how functional form assumptions imply knife-edge cases where the incomplete markets alloca-
tion is efficient. In the third, we show the spatial model (even without spillovers) is generically
inefficient without complete markets.

6.1. Anderson et al. (1987) Economy

One example of interest is the Anderson et al. (1987, henceforth, ADT) economy. In their econ-
omy aggregated demands for each commodity are as if they came from a representative con-
sumer with a CES utility function over the commodities. Given what we have learned, one may
make the connection that aggregation is usually possible when complete markets are available.
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We show that this is indeed the case and that the ADT economy has the unique feature that
the incomplete markets allocation aligns with the complete markets allocation, and hence is
efficient. This result does not depend on the taste shock distribution.

As a special case of our general discrete choice economy, the ADT economy has the following
features: (i) no outside good, (ii) continuous choice in qj , (iii) no quality differences, (iv) com-
mon preferences across θ types, and (iv) different endowments across θ types. Finally, and most
importantly, preferences in the ADT economy are log over the differentiated good, u(qj) = log qj .
Given these assumptions, we have the following objective function and budget constraints:

∫ ∑
j

xij(ξ, θ)
[
u(qj(ξ, θ)) + ξij

]
dG(ξ) , pjqj(θ) = W (θ)︸ ︷︷ ︸

Incomplete markets, for each j

∫
ξ

φ(ξ)xij(ξ, θ)pjqj(θ) dξ = W (θ)︸ ︷︷ ︸
Complete markets

.

In this economy, the allocations under incomplete markets and complete markets satisfy the
same conditions. Consider the first order condition for qj(ξ) with incomplete markets:

λj(θ) =
u′(qj(θ))

pj
=

1

pjqj(θ)
=

1

W (θ)
=

1

pj′qj′(θ)
=
u′(qj(θ))

pj
= λj′(θ). (44)

Simply consuming qj(θ) = W (θ)/pj , as dictated by the budget constraint, also equalizes the
marginal value of wealth across goods (as in (25)). With log preferences, when a household con-
sumes a good that is 1 percent more expensive, marginal utility increases by exactly 1 percent.
This implies that the multiplier is constant, regardless of the good that is chosen, delivering the
key condition of the complete markets allocation.

The next step is the commodity choice. Starting from the complete markets choice rule (26), we
substitute in the first order condition for qj(θ): λ(θ)pj = u′(qj(θ)). This gives the first expression
here:

xj(ξ, θ) =


1, if u(qj(θ)) + ξij − u′(qj(θ))qj(θ) ≥

maxk
[
u(qk(θ)) + ξk − u′(qk(θ))qk(θ)

]
0, otherwise.

=


1, if u(qj(θ)) + ξij ≥

maxk
[
u(qk(θ)) + ξk

]
0, otherwise.

(45)

The second equality is because u′(q)q = 1 under log preferences, which gives the incomplete
markets choice rule. Thus, we have established that the ADT economy has the unique feature
that the incomplete markets allocation aligns with the complete markets allocation and hence
is efficient.

A feature of our argument is that we did not invoke a distributional assumption on the taste
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shocks. The alignment between complete and incomplete markets in this setting is only about
the shape of the utility function. This has implications regarding the aggregation result of An-
derson et al. (1992). Clearly, type 1 extreme value assumption is important in delivering CES
demand functions. However, the fact that their economy is efficient suggests alternative aggre-
gation results are possible with alternative distributions on the taste shocks.

6.2. Constant Marginal Utility, Unit Demand

The next example is settings with constant marginal utility and unit demand on the differenti-
ated good. This case directly connects with the IO literature and the demand for differentiated
goods, as in Berry et al. (1995) and Nevo (2000) in particular. The allocations that obtain turn
out to be efficient.

We build on the survey of Nevo (2000), who specifies the u function in (1) as

u
(
c, 1; j, θ

)
= αθc+ β(θ)Xj.

Here, αθ is the marginal utility of outside good consumption, and the second term models
interactions between household type and product characteristics. An important feature of this
economy is that even though there is unit demand, the cost of buying one good or another
affects consumption of the outside good through the budget constraint: c(θ) + pj = W (θ). This
observation implies that the household’s first-order condition on the outside good generically
depends upon the commodity choice:

uc

(
W (θ)− pj, 1; j, θ

)
= λj(θ) ⇒ αθ = λj(θ) ⇒ λj(θ) = λj′(θ) ∀j, j′. (46)

By definition, linear utility implies that the marginal utility of consumption is equalized across
choices, which is exactly the condition that arises with complete markets in (25).

The more interesting question is which commodity should be chosen. The complete markets
choice rule is

xij(ξ, θ) =


1, if − αθpj + β(θ)Xj + ξij ≥

max
j′

[
− αθpj′ + β(θ)Xj′ + ξij′

]
0, otherwise,

(47)

which is the same choice rule that obtains under incomplete markets. Thus, the allocations in
this common setting turn out to be efficient.

Note that this equivalence between complete and incomplete markets allocations when de-
mand is discrete does not obtain under log utility, which is the case studied by Berry et al.
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(1995). The use of a linear objective is sometimes discussed as a first order approximation to more
general utility function as in Berry et al. (1995). Linearizing utility removes issues associated
with risk, which restores efficiency, since the gap between incomplete and complete markets
allocation is due to the inability to insure across choices.7 Avoiding risk and insurance issues
might be reasonable in applications typically studied by the IO literature. However, the con-
stant marginal utility assumption in some settings, like the purchase of an car as in Berry et al.
(1995), might not be reasonable, in which case the issues that we raise regarding market in-
completeness and the inefficiency of the ‘standard’ allocation become salient. Furthermore, as
we discuss in Section 7, the welfare impacts of changes in prices (say via changes in market
structure) are sensitive to whether the underlying allocation is efficient or not.

6.3. A Spatial Economy

The final economy we consider is a spatial setting that is in the spirit of Rosen (1979), Roback
(1982) and the quantitative spatial literature (Redding and Rossi-Hansberg, 2017). In particular,
we consider a discrete choice version of the setting with productivity spillovers and amenity
spillovers studied in Fajgelbaum and Gaubert (2020).

The setting we describe below is interesting because the spatial economics literature uses dis-
crete location choice models to measure the effects of, and propose policies to address, various
externalities and spillovers. But what we have learned so far is that there is an additional mar-
ket failure, which is market incompleteness. Hence, welfare gains from a particular policy may
be due to resolving market incompleteness when a researcher thinks they stem from address-
ing a spillover. As we show below, our complete markets formulation of the problem provides
researchers an apparatus useful for distinguishing how a particular policy improves welfare.

Our spatial environment is the following: each choice j is a location in space. We remove the
differentiated good, and we assume the homogeneous good is produced by competitive firms,
in all locations, and it is freely traded. The mass of each θ type of household is normalized to
one. Households begin “locationless,” and the discrete choice nature of the problem is where
they should live and work.8

Production in each location is

Yj = Fj(ρj), (48)

where Yj is output of the homogeneous good in location j, Fj is the production function that
may depend upon characteristics of location j, and ρj = (ρj(θ), ρj(θ

′) . . .) is the entire vector of
7An obvious parallel is that issues of risk and insurance cannot be studied in first order approximations of

macroeconomics models.
8An alternative interpretation is to treat our θ types as a household’s initial starting point, and thus the choice

probability ρj(θ) characterizes the mass of migrants from location θ to location j.
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all different type θ households working in location j. This last point means that output in loca-
tion j may depend on the mix of type θ households working in that location. This production
function could also exhibit an external productivity spillover.

Utility is

u
[
ci(ξ, θ)] + Aj(ρj; θ) + ξij, (49)

where Aj(ρj; θ) is a j- and θ-specific amenity value. As with production, the dependence of Aj
upon ρj means that the amenities in j valued by type θ households depend upon the entire mix
of households residing in that location. This function is treated as a spillover in the sense that
individuals take this function as given and they do not internalize how their choices influence
it.

Throughout this discussion, we employ a the type 1 extreme value distribution with shape
parameter ηθ for each type. Given this assumption, we build on our streamlined presentation
of the discrete choice problem in Section 5 and solve these problems by directly choosing choice
probabilities.

The Incomplete Markets Allocation. The choice probability in the incomplete markets alloca-
tion, ρIMj (θ), is

ρIMj (θ) ∝ exp

{
η−1
θ

(
u
[
wj(θ)

]
+ Aj(ρj; θ)

)}
. (50)

The constant of proportionality is the term in the denominator, which is just the sum across all
the j terms. In the incomplete markets allocation, the choice probability is just about utility and
the amenity value in that location. Spillovers (production and amenity) are not internalized.
And because of incomplete markets, consumption equals the prevailing wage rate wj(θ) in
location j for type θ households.

The Social Welfare Maximizing Allocation. Using our results from Section 5, we get the fol-
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lowing social welfare maximizing planning problem:

max
c(j,θ),ρj(θ)

∑
θ

∑
j

ρj(θ)

{
u
[
c(j, θ)

]
+ Aj(ρj; θ)− ηθ log ρj(θ)

}
, (51)

subject to [ Λ ]
∑
j

Fj(ρj) ≥
∑
θ

∑
j

ρj(θ)c(j, θ) (52)

[ Λθ ] 1 =
∑
j

ρj(θ) ∀θ, (53)

where we simplified the problem with common Pareto weights across individuals and types.
The solution to this problem is characterized by two first order conditions. First, there is the
standard first order condition for consumption:

uc
[
c(j, θ)

]
= Λ. (54)

This equates marginal utility across locations. An important observation is that this condition
implies that consumption is equalized across space, and hence u

[
c(j, θ)

]
is equalized across

space.

Second, the first order condition for the choice probability is

Vj(θ)− ηθ + Λ
∂Fj
∂ρj(θ)

+
∑
θ′

∂Aj(θ
′)

∂ρj(θ)/ρj(θ)
= Λc(j, θ) + Λθ, (55)

where the Vj(θ) term is just the total expected utility level associated with choice j (the term in-
side the curly brackets of 51). This equation is essentially the same as Fajgelbaum and Gaubert’s
(2020) equation (22).9 It equates the social marginal gain of a household in location j to its social
marginal cost. The marginal gain reflects (i) the level of utility (net of the change in the marginal
taste shock, −ηθ), (ii) how much extra output is delivered, and (iii) the marginal improvement
in amenities for everybody. The marginal cost is just the value of consumption in that location
and the reduction in type θ’s capacity to be allocated to other locations, which is valued at Λθ.

From (55) we can solve for the social planner’s choice probability, ρSPj (θ), which is:

ρSPj (θ) ∝ exp

{
η−1
θ

(
Aj(ρj; θ) + uc

∂Fj
∂ρj(θ)

+
∑
θ′

∂Aj(θ
′)

∂ρj(θ)/ρj(θ)

)}
. (56)

9The main difference is the first two terms. This shows up only because, with the taste shocks, utility is not
necessarily equated across locations, and thus a marginal change in the choice probability shifts the level of the
taste shock, which influences the selection on the taste shock. This is summarized by the ηθ term.
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Interestingly, because the planner is equalizing marginal utility, the consumption and utility
terms don’t show up, because they don’t vary with location. In the efficient allocation, location
choice depends only on location-varying amenities, and the terms that capture the marginal ef-
fect of location choice on production and amenities. The interpretation is then that the planner
is essentially making amenity-adjusted output as large as possible, then redistributing appro-
priately.

The Complete Markets Allocation. There are several market failures when considering how
the incomplete markets choice probabilities stack up relative to those chosen by the planner.
An advantage of the complete markets allocation is that we can isolate any issues regarding
incomplete insurance against the taste shocks. In the complete markets allocation, the first
order condition for consumption is

uc
[
c(j, θ)

]
= λ(θ), (57)

where λ(θ) is the multiplier on type θ households unified budget constraint. Similar to the
planner’s problem, this condition implies that (i) consumption is equalized across space and
(ii) that u

[
c(j, θ)

]
is equalized across space. With that said, consumption is not necessarily

equalized across θ types, because expected wages may differ by type and location, and hence
total resources differ by type.

The first order condition for the choice probability becomes

Vj(θ)− ηθ + λ(θ)wj(θ) = λ(θ)c(j, θ), (58)

where wj(θ) is the prevailing wage in location j for type θ households. Here, the first order
condition requires a balance between the private gain from being in a location and the private
cost, but neglects the social gains that a planner internalizes. The private gain is the level
of utility net of the change in selection on the taste shock (the first two terms) and the extra
earnings gained in location j as reflected by the wage rate. The private cost is the value of
consumption in that location.

From (58) we can solve for complete markets choice probability, ρCMj (θ), which is

ρCMj (θ) ∝ exp

{
η−1
θ

(
Aj(ρj; θ) + uc(θ)wj(θ)

)}
. (59)

Equation (59) has the same flavor as (56), but there are several key distinctions. First, the effect
of internalizing the amenity spillovers is not present. And with productivity spillovers, the
wage rate does not align with the social marginal product of labor. With that said, it still has
an interpretation similar to that of the planner’s solution. An individual household should

31



make private income, adjusted for amenity differences, as large as possible and then use Arrow
securities to transfer the income across different location choices. Thus, with complete markets
there are motives for spatial transfers independent of externalities in production or amenities,
and the planner’s solution corrects all three.

No Spillovers, Constant Marginal Product of Labor. Another way to distinguish between
market incompleteness and externalities in a welfare maximizing allocation is to turn off the
spillovers (both productivity and amenity). Here, we do so by considering linear production
technologies with TFP levels Zj , and hence the marginal product of labor is constant. In this
case the optimal choice probability of a social planner facing no spillovers collapses to

ρSP−NS
j (θ) ∝ exp

{
η−1
θ

(
uc Zj

)}
. (60)

This says that the planner locates households according to each location’s productivity, weighted
by the (common) marginal utility of consumption. Then, with the absence of amenity differ-
ences, the wage rate is Zj . Hence, it’s easy to see that the complete markets choice probability
in (59) aligns with the planner’s choice probability. Finally, the comparison between (50) and
(60) illustrates that the spatial model (even absent spillovers) is generically inefficient without
complete markets.

The complete markets / optimal allocation is intuitive: the efficient allocation makes produc-
tion, net of tastes, as large as possible and then redistributes output ex-post. Moreover, the
direction of the transfers is clear. Transfers go from productive / high-wage locations (San
Francisco) to unproductive / low-wage locations (Appalachia). Spatial policy would imple-
ment this with place-based transfers, which look very much like Arrow vouchers.

7. The Welfare Effects of Changes in Prices

In this final section, we connect our results regarding complete and incomplete markets alloca-
tions with what they imply for measuring the welfare impacts of changes in prices.

We start from standard results in consumer theory regarding the measurement of the welfare
effects of change in prices. Deaton (1989) is the seminal reference, with the insight that initial
budget shares are the sufficient statistics needed to compute the welfare effects of price changes
to a first order. This approach has gained increasing popularity because of both the recent
availability of itemized household consumption data and the seemingly assumption-free nature
of the exercise. Del Canto et al. (2023), Fagereng et al. (2022), and Borusyak and Jaravel (2021)
are recent, important applications of this approach. We extend this approach to our discrete
choice economy and show that the Deaton (1989)-like results hold in complete markets but fail
with incomplete markets.
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To simplify the presentation, we strip back our notation and focus on a simplified economy:
there is a single household type, only J goods with prices p = (p1, . . . , pJ), and no outside
good. Income y is denominated in some numeraire.

Following the literature, we focus on the equivalent variation welfare metric (EV). To define EV,
let V (p, y) be the indirect utility function from the household’s choice problem. Then consider
some alternative vector of prices p′ = p + dp. Equivalent variation is the percent change in
income ϕ at the old prices that satisfies

V
(

p + dp, y
)
= V

(
p, y + dy

)
, ϕ =

dy

y
. (61)

So, in percent terms, how much extra income must be provided at the old prices to make the
household indifferent? As an intermediate step, we arrive at a the following expression by
taking a first order approximation of both sides of the first equality around the point where
dp = 0 and dy = 0. This approximation yields

ϕ ≈
J∑
j=1

Vpj

(
p, y
)

Vy

(
p, y
) pj
y
∆ log pj. (62)

Right now, this expression does not look very standard. However, the power of this is that
we can compute Vpj

(
p, y
)

and Vy

(
p, y
)

under different assumptions about the choice problem
(discrete or continuous choice) and market structure (complete or incomplete markets). Thus,
this general approach illustrates how these different problems and settings relate to each other.

7.1. The Continuous Choice Model

First, we consider the continuous choice model. This problem provides an overview of the
standard results like those in Deaton (1989).

Let u(q1, . . . , qJ) be the utility function from consuming all the J goods in continuous quan-
tities that satisfies standard assumptions. Then, working with the connection between the
Lagrangian and the indirect utility function, we can apply the envelope theorem to compute
Vpj

(
p, y
)

and Vy

(
p, y
)

:

Vpj

(
p, y
)
= −λqj , Vy

(
p, y
)
= −λ, (63)

where λ is the multiplier on the household’s budget constraint. Using (62), EV is

ϕ = −
J∑
j=1

pjqj
y

∆ log pj. (64)

33



That is, equivalent variation is how much prices change weighted by initial budget shares. This
is the standard result that many papers have implemented empirically.

7.2. Discrete Choice, Complete Markets

Now, consider the discrete choice model under complete markets as described in Section 3.
Here, we show the that with complete markets, we obtain a version of (64).

As we did above, we can compute Vpj
(

p, y
)

and Vy

(
p, y
)

:

Vpj

(
p, y
)
= −λ

∫ ∑
j

φ(ξ)xj(ξ)qj(ξ) dξ = −λρjqj, Vy

(
p, y
)
= λ

∫
φ(ξ), dξ = λ, (65)

where λ is the multiplier on the unified budget constraint across all possible realizations of the
taste shock. The final equalities result from arguments similar to those Section 3 — that the state
prices are actuarially fair and that we know qj(ξ) is independent of the taste shock ξ. Inserting
these into (62), we have

ϕ = −
J∑
j=1

ρjpjqj
y

∆ log pj. (66)

Equivalent variation in the discrete choice model is essentially the same as (64). The insight as
well as what makes this work, is complete markets. Complete markets allow households to face
a unified budget constraint and thus allow the household to effectively behave and experience
welfare gains as if it were consuming all goods at once.

The only difference between (64) and (66) is that the choice probability now enters into the share
calculation. One interpretation is that from perspective of an individual making a decision, the
expected budget share ρjpjqj

y
is the welfare-relevant share. The second interpretation behind

(66) is that this is the aggregated budget share across all households in the economy. Some in-
dividuals purchase bananas, some purchase apples, but when aggregating budget shares across
these discrete choices, they are ρjpjqj

y
.

This last observation connects with empirical measurements of equivalent variation and how
they are put to practice. Suppose a researcher had scanner or survey data on a group of indi-
viduals of this type. For example, Del Canto et al. (2023) group together high-school-educated
households aged 35-40 and use the CEX to compute the budget shares of that group on a collec-
tion of goods. One interpretation behind this measurement is that each individual consumes
a little of every single good. An alternative interpretation is that individuals are making dis-
crete choices across the different goods and there are complete markets. From this perspective,
we have further generalized the interpretation and foundation behind results like the ones in
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Deaton (1989). The key restriction, however, is complete markets, and we illustrate this next.

7.3. Discrete Choice, Incomplete Markets

Now, consider the discrete choice model with incomplete markets. Here, we obtain a substan-
tively different formula relative to (66).

Computing Vpj
(

p, y
)

and Vy

(
p, y
)

with incomplete markets gives

Vpj

(
p, y
)
= −

∫
xj(ξ)λj(ξ)qj(ξ)dξ = −ρj

u′(qj)qj
pj

, Vy

(
p, y
)
=

∫ ∑
j

xj(ξ)λj(ξ)dξ =
∑
j

ρj
u′(qj)

pj
.

Here, the consequence of incomplete markets is twofold. The cost of a price change is siloed
only into states where j is consumed, rather than equalized as in the complete markets case. In
other words, the value of a price reduction is not the same across goods. Similarly, the value
of income y varies across states, and hence Vy(p, y) is the expected marginal value of income.
Combining these terms, we obtain our third expression for equivalent variation:

ϕ = −
J∑
j=1

(
ρju

′(qj)/pj∑
k ρku

′(qk)/pk

)
pjqj
y

∆ log pj. (67)

With incomplete markets, the formula looks familiar, but with a factor that twists the weighting
on budget shares toward states in which the individual has a high marginal value of income.10

Intuitively, if the individual cannot move resources into states where they like expensive choices
(a high λj(ξ)), then further increases in prices in these states will be more costly.

An interesting feature of equivalent variation with incomplete markets is that we can connect it
with price elasticities of demand. To see this, define εj as what one would measure as the price
elasticity of demand:

εj = −∂ log [ρjqj]
∂ log pj

=

[
− ∂ log ρj
∂ log pj

]
︸ ︷︷ ︸
Extensive margin

+

[
− ∂ log qj
∂ log pj

]
︸ ︷︷ ︸
Intensive margin

. (68)

Then assuming that the taste shocks are type 1 extreme value distributed, the price elasticity of
demand is

εj = η (1− ρj)u
′ (qj) qj − 1. (69)

10Inspecting (67) also connects back with our Anderson et al. (1987) example, where the incomplete markets
allocation aligned with the complete markets allocation. As one would suspect, the welfare consequences are the
same under this preference specification. Specifically, with log preferences u′(qj)/pj = 1/y for all j goods and (67)
collapses back to the complete markets expression.
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Using this in the incomplete markets expression for equivalent variation in (67), we arrive at

ϕ = −
∑
j


(

ρj
1−ρj

)(
1 + εj

)
∑

k

(
ρk

1−ρk

)(
1 + εj

)
∆ log pj. (70)

This expression is important for the following reason: to a first order, elasticities of demand
appear in the computation of equivalent variation under incomplete markets. The idea behind this
relates back to our discussion of the incomplete markets allocation. In that allocation, marginal
utility is not equated across goods choices, and thus changes in prices and the substitution that
they induce have first-order welfare impacts. In contrast, with complete markets, these margins
are equated and equivalent variation aligns with the conventional wisdom that budget shares
are the sufficient to characterize the welfare effects of price changes.

This result is worth contrasting with Auer et al.’s (2022) very nice presentation regarding the
welfare effects of price changes. Starting from a standard continuous choice problem like in
Section 7.1, their first order components are like the ones in (62), and elasticities of demand
show up only in second order components in equivalent variation. Their contribution is to show
that these second order components are large and systematically vary across rich and poor
households. Our contribution is to show that with discrete choice with incomplete markets,
elasticities of demand show up to the first order and that the role that elasticities of demand
play (or not) depends on assumptions about market incompleteness.

8. Conclusion

We started from two observations. First, discrete choice models are a powerful and simple
framework for thinking about choice problems. Second, in seminars or papers about the wel-
fare impacts from various shocks in this class of models, there was a nagging question: what are
properties of the allocations from which welfare is evaluated? Given the additivity of the shock,
the answers seemed not interesting. This was not the case. These economies are generically in-
efficient. However, we then showed how the complete markets and Pareto efficient allocations
take simple intuitive forms and how they can be put to use in a broad array of settings.

The purpose of this paper is not to take a stand, per se, on the extent of market incomplete-
ness—on the contrary. Discrete choice models are often used to (i) account for heterogeneity in
behavior in a parsimonious and flexible way and (ii) evaluate a specific policy— for example,
a place-based policy or merger. But how does one evaluate the welfare gains from the policy
versus the welfare effects that arise because of how heterogeneity is introduced? This is what
our complete markets formulation achieved. And we hope that by providing an appropriate
benchmark to isolate and evaluate the effects of the specific policy, it is useful.
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There are several areas for future research. One is the extension to dynamic frameworks. In the
background, and as alluded to at various points in the text, we very much thought of the static
problem as being a representation of dynamic environments. That’s not quite the case, though,
because the choice today often influences values in the future, and thus efficient and complete
markets allocations may be different than what we characterized. The characterization of so-
cially optimal rural-urban migration flows in Lagakos et al. (2023) is one example; Donald et al.
(2023a) is another example, studying optimal policy in dynamic spatial models.

The second question regards the role of partial / self-insurance and discrete choices. The stan-
dard incomplete markets model, where households can imperfectly insure against labor income
risk, has proven to be a very useful laboratory for thinking about household heterogeneity and
consumption dynamics. Given our results, we think that there are many interesting questions
for research regarding how partial insurance influences discrete choices such as where one lives,
which good you buy or employer you work for.
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Appendix

A. Appendix: Incomplete Markets

Here walk through the arguments regarding how we solve the agents problem in incomplete
markets. Let us state the problem:

max
cij(ξ,θ), q

i
j(ξ,θ), x

i
j(ξ,θ)

∫
ξ

∑
j

xij
(
ξ, θ
){
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g
(
ξ; θ
)
dξ , (71)

subject to:
[
λi(ξ, θ)

]
:

∑
j

xij(ξ, θ)
[
ci(ξ, θ) + pjq

i
j(ξ, θ)

]
≤ W (θ), for all ξ. (72)

A household chooses consumption quantities, and commodity choices for every possible state
subject to the constraint is that consumption equals the households endowment — state by
state. The Lagrangian associated with this problem is

L = max
cj(ξ), qj(ξ), xj(ξ)

∫
ξ

∑
j

xij(ξ, θ)

{
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g(ξ; θ)dξ, (73)

+

∫
ξ

λi(ξ, θ)

{
W (θ)−

∑
j

xij(ξ, θ)
[
ci(ξ, θ) + pjq

i
j(ξ, θ)

]}
g(ξ, θ)dξ. (74)

The strategy is to characterize necessary conditions that determine consumption and then char-
acterize the rule which determines which good to chose.

The first order condition for consumption is

xij(ξ, θ)uqj
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
g(ξ, θ) = λi(ξ, θ)xij(ξ, θ)pjg(ξ, θ), (75)

Notice that we do not have to take a stand on the value of xij(ξ, θ). To see this notice that there
are two cases: (i) the first order condition is trivially satisfied as xij(ξ, θ) = 0 or (ii) xij(ξ, θ) = 1.
Furthermore, notice how the pdf for the taste shock shows up on both the left and the right
hand side, hence, we can canceling terms giving

uqj
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
= λi(ξ, θ)pj. (76)

Then similarly for the non-differentiated good

xij(ξ, θ)uc
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
g(ξ, θ) = λi(ξ, θ)xij(ξ, θ)g(ξ, θ), (77)
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and then canceling terms we have

uc
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
= λi(ξ, θ). (78)

Then inspecting these conditions we make several observations. First, all that matters for the
multiplier is the choice, not the realization ξ, since any ξ and ξ′ that lead to the same choice
have the same budget constraint. Second, and because there is no dependence on the left-
hand side or right-hand side on the shock, we can drop the dependence of consumption on the
realization ξ. However, it does depend upon the choice j. Third, we can drop the indexing of
the multiplier by i. The argument is that the only thing that might make i households different
are the realizations ξ, but now the consumption allocations for all i don’t depend upon the
realization, endowments are the same across i, so the multiplier does not depend upon i. These
arguments imply that the first order conditions characterizing consumption allocations are

uc
[
c(j, θ), qj(θ); j, θ

]
= λj(θ) and uqj

[
c(j, θ), qj(θ); j, θ

]
= λj(θ)pj. (79)

The next step is to characterize the xj(ξ, θ) that is the rule mapping the realization of the taste
shock into which good should be chosen. We do this incrementally on the Lagrangian by think-
ing through which j gives the most utility for a given ξ). So fix a realization, ξ, then compare
utility across those events in the Lagrangian. . .

[
u
[
ci(ξ, θ), qi1(ξ, θ); 1, θ

]
+ ξi1

]
g(ξ, θ) + λi(ξ, θ)g(ξ, θ)

[
W (θ)− ci(ξ, θ)− p1q

i
1(ξ, θ)

]
vs. (80)

[
u
[
ci(ξ, θ), qi2(ξ, θ); 2, θ

]
+ ξi2

]
g(ξ, θ) + λi(ξ, θ)g(ξ, θ)

[
W (θ)− ci(ξ, θ)− p2q

i
2(ξ, θ)

]
. . . . (81)

Now the budget constraint always binds for every realization ξ independent of the good cho-
sen. This implies that the second terms in the comparison are always zero. Then inserting our
arguments about how consumption, the rule describing which good to consume is

xij(ξ, θ) =



1, if u
[
c(j, θ), qj(θ); j, θ

]
+ ξij ≥

max
j′

{
u
[
c(j′, θ), qj′(θ); j

′, θ
]
+ ξij′

}

0. otherwise

(82)

As emphasized in the text, this is the same choice rule that is the starting point from the lit-
erature: see what the realized shocks are and then the utility associated with consumption
amongst the different choices and then chose the one that delivers highest utility. however, we
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did not employ an ex-post approach, but an ex-ante approach which, with incomplete markets,
delivers the same choice rule.

B. Appendix: Complete Markets

Here walk through several arguments. First, we state the households problem and then provide
an argument that the complete markets equilibrium is Pareto efficient. Then the second is a
characterization of the necessary conditions behind the households optimization problem.

2.1. The Households Problem

Here we state the households problem. It is

max
aj(ξ), c(ξ), qj(ξ), xj(ξ)

∫
ξ

∑
j

xij(ξ, θ)

{
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g(ξ; θ)dξ, subject to: (83)

∑
j

xij(ξ, θ)
[
poc

i(ξ, θ) + pjq
i
j(ξ, θ)

]
≤ W (θ) + ai(ξ, θ) ∀ξ, (84)

∫
ξ

φ(ξ, θ)ai(ξ, θ)dξ = 0, (85)

where φ(ξ, θ) are the actuarially fair state prices. A household chooses contingent claims, con-
sumption quantities, and commodity choices for every possible state subject to two constraints.
The first constraint is that consumption equals endowments and amount of insurance pur-
chased — state by state. The second constraint says that the household’s net asset position
must be zero.

Then rewrite the problem in (83) by substituting in the budget constraints from (84) into the
constraint for assets (85). The resulting problem is

max
aj(ξ), cj(ξ), qj(ξ), xj(ξ)

∫
ξ

∑
j

xij(ξ, θ)

{
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g(ξ; θ)dξ, subject to: (86)

[ λi(θ) ]

∫
ξ

φ(ξ, θ)

{
W (θ)−

∑
j

xij(ξ, θ)
[
ci(ξ, θ) + pjq

i
j(ξ, θ)

]}
dξ = 0. (87)

where the new constraint has the interpretation of the “lifetime” budget constraint and now
there is just one multiplier λi(θ) on this one constraint unlike the incomplete markets problem
where there are state by state multipliers. Then from here we can define the Complete Markets
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Equilibrium:

Definition 3 (The Complete Markets Equilibrium.) A complete markets equilibrium are al-
locations ci(ξ, θ), qij(ξ, θ), ai(ξ, θ), xij(ξ, θ) for each i and type θ; goods prices pj and state prices
φ(ξ, θ) such that

i The consumption allocations (ci(ξ, θ) , qij(ξ, θ), and xij(ξ, θ) ) and asset positions ai(ξ, θ)
satisfy the household’s problem in (86);

ii State prices satisfy (12);

iii Goods and asset markets clear.

2.2. Proof of First Welfare Theorem

Given our definition of a Complete Markets equilibrium, we argue that it is Pareto efficient.
To establish our argument, first note that any alternative allocation { c̃i(ξ, θ), q̃ij(ξ, θ), ãi(ξ, θ),
x̃ji(ξ, θ)} that is preferred by agent i (in the sense that it provides higher utility than (16)) must
imply that ∫

ξ

φ(ξ, θ)

{
W (θ)−

∑
j

x̃ij(ξ, θ)
[
c̃i(ξ, θ) + pj q̃

i
j(ξ, θ)

]}
dξ < 0. (88)

In words, this alternative and preferred allocation is not budget feasible. Now consider an
alternative allocation c̃i(ξ, θ), q̃ij(ξ, θ), ãi(ξ, θ), x̃ji(ξ, θ) for all i and θ types that is (i) feasible and
(ii) is preferred by all i and θ types. Feasibility implies that

∑
θ

∫ µ(θ)

0

yio(θ)di =
∑
θ

∫
ξ

∫ µ(θ)

0

ci(ξ, θ)g(ξ, θ)didξ (89)

∑
θ

∫ µ(θ)

0

yij(θ)di =
∑
θ

∫
ξ

∫ µ(θ)

0

x̃ji(ξ, θ)q
i
j(ξ, θ)g(ξ; θ)didξ,∀j (90)
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then combine the outside good and differentiated good feasibility constraints evaluated at
prices

∑
θ

∫ µ(θ)

0

yio(θ)di+
∑
θ

∫ µ(θ)

0

pjy
i
j(θ)di = (91)

∑
θ

∫
ξ

∫ µ(θ)

0

ci(ξ, θ)g(ξ, θ)didξ +
∑
j

∑
θ

∫
ξ

∫ µ(θ)

0

x̃ji(ξ, θ)pjq
i
j(ξ, θ)g(ξ; θ)didξ (92)

and then rearrange everything so one can see it i by i so we have

∑
θ

∫ µ(θ)

0

W (θ)di =
∑
θ

∫
ξ

∫ µ(θ)

0

[∑
j

x
′i
j (ξ, θ)

[
c̃i(ξ, θ) + pjq

′i
j (ξ, θ)

]
g(ξ; θ)didξ (93)

then make the observation that asset trades occur at actuarially fair prices and then change the
order of integration giving

∑
θ

∫ µ(θ)

0

W (θ)di =
∑
θ

∫ µ(θ)

0

∫
ξ

φ(ξ, θ)

[∑
j

x
′i
j (ξ, θ)

[
c̃i(ξ, θ) + pjq

′i
j (ξ, θ)

]
dξdi. (94)

so feasibility then implies that each households budget constraint is satisfied. But if the alloca-
tion is preferred than

∑
θ

∫ µ(θ)

0

W (θ)di =
∑
θ

∫ µ(θ)

0

∫
ξ

φ(ξ, θ)

[∑
j

x
′i
j (ξ, θ)

[
c̃i(ξ, θ) + pjq

′i
j (ξ, θ)

]
dξdi >

∑
θ

∫ µ(θ)

0

W (θ)di

(95)

where the right-hand side inequality follows from (88) and we have our contradiction. Thus,
an allocation that satisfies the definition of a complete markets equilibrium is a Pareto efficient
allocation.
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2.3. Solving the Households Problem

Here walk through the arguments regarding how we characterize the agents problem in com-
plete markets. The households Lagrangian associated with the complete markets problem is

L = max
cj(ξ), qj(ξ), xj(ξ)

∫
ξ

∑
j

xij(ξ, θ)

{
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g(ξ; θ)dξ, (96)

+ λi(θ)

∫
ξ

φ(ξ, θ)

{
W (θ)−

∑
j

xij(ξ, θ)
[
ci(ξ, θ) + pjq

i
j(ξ, θ)

]}
dξ. (97)

The first order condition for consumption is

xij(ξ, θ)uqj
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
g(ξ, θ) = λi(θ)φ(ξ, θ)xij(ξ, θ)pj. (98)

Now insert the fact that the state prices are actuarially fair and then canceling terms we have

uqj
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
= λi(θ)pj. (99)

Then similarly for the non-differentiated good

xij(ξ, θ)uc
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
g(ξ, θ) = λi(θ)φ(ξ, θ)xij(ξ, θ), (100)

and then with actuarially fair state prices and canceling terms we have

uc
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
= λi(θ). (101)

Then the same arguments applied in the incomplete markets problem regarding how certain
indexing can be dropped apply here as well. These arguments imply that the first order condi-
tions characterizing consumption allocations are

uc
[
c(j, θ), qj(θ); j, θ

]
= λ(θ) and uqj

[
c(j, θ), qj(θ); j, θ

]
= λ(θ)pj. (102)

Then this condition leads to a risk-sharing type result where marginal utilities are equated
across all events — both explicitly as there is no dependence upon ξ and then implicity as there
is no dependence upon the choice.

We can follow the same arguments in the incomplete markets problem to characterize xj(ξ, θ).
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So fix an event, then compare utility across those events in the Lagrangian. . .

[
u
[
ci(ξ, θ), qi1(ξ, θ); 1, θ

]
+ ξi1

]
g(ξ, θ) + λi(θ)φ(ξ, θ)

[
W (θ)− ci(ξ, θ)− p1q

i
1(ξ, θ)

]
vs. (103)

[
u
[
ci(ξ, θ), qi2(ξ, θ); 2, θ

]
+ ξi2

]
g(ξ, θ) + λi(θ)φ(ξ, θ)

[
W (θ)− ci(ξ, θ)− p2q

i
2(ξ, θ)

]
, . . . (104)

Then using the observation that state prices are actuarially fair means the comparison reduces
to:

[
u
[
ci(ξ, θ), qi1(ξ, θ); 1, θ

]
+ ξi1

]
− λi(θ)

[
ci(ξ, θ) + p1q

i
1(ξ, θ)

]
vs. (105)

[
u
[
ci(ξ, θ), qi2(ξ, θ); 2, θ

]
+ ξi2

]
− λi(θ)

[
ci(ξ, θ) + p1q

i
2(ξ, θ)

]
. . . . (106)

At this point, there are still lots of difficulties, specifically how are the quantities varying with
the realization of the shock. This problem is solved by inserting the observations about how
consumption does not depend upon ξ which gives the following choice rule

xij(ξ, θ) =



1, if u
[
c(j, θ), qj(θ); j, θ

]
+ ξij − λ(θ)

[
c(j, θ) + pjqj(θ)

]
≥

max
j′

{
u
[
c(j′, θ), qj′(θ); j

′, θ
]
+ ξij′ − λ(θ)

[
c(j′, θ) + pj′qj′(θ)

] }

0. otherwise

(107)

The key novelty are the λ(θ) term which is not in the rule for the standard allocation (equation
9). This additional term reflects the cost of choosing that commodity on the consolidated budget
constraint.

The final property we consider are the asset positions. Interestingly, a households positions are
only contingent the choice, not the particular shock realization ξ. This follows from and the
properties of consumption discussed above and the budget constraint, so

a(j, θ) = W (θ)−
[
c(j, θ) + pjqj(θ)

]
. (108)
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Finally, notice that one can insert (108) into the choice rule giving a very simple representation

xij(ξ, θ) =



1, if u
[
c(j, θ), qj(θ); j, θ

]
+ ξij − λ(θ)a(j, θ) ≥

max
j′

{
u
[
c(j′, θ), qj′(θ); j

′, θ
]
+ ξij′ − λ(θ)a(j′, θ)

}

0, otherwise

(109)

which gives interpretation on the last terms as the cost of purchasing insurance associated with
the choices j. If we impose the type 1 extreme value distributional assumption and integrate
up we obtain the efficient choice probabilities:

exp

(
u
[
c(j, θ), qj(θ), j, θ

]
− λ(θ)a(j, θ)

ηθ

)/∑
j′

exp

(
u
[
c(j′, θ), qj′(θ), j

′, θ
]
− λ(θ)a(j′, θ)

ηθ

)
. (110)

Below we summarize these results.

Proposition 7 (Complete Markets Allocations) The following conditions characterize the
complete markets allocations:

1. Consumption allocations must satisfy

uc
[
c(θ, j), qj(θ); j, θ

]
= λ(θ) and uqj

[
c(θ, j), qj(θ); j, θ

]
= λ(θ)pj,

2. The commodity choice rule is

xij(ξ, θ) =



1, if u
[
c(j, θ), qj(θ); j, θ

]
+ ξij − λ(θ)a(j, θ) ≥

max
j′

{
u
[
c(j′, θ), qj′(θ); j

′, θ
]
+ ξij′ − λ(θ)a(j′, θ)

}

0, otherwise

3. “Arrow Vouchers.” Asset positions are given by

a(j, θ) = W (θ)−
[
c(j, θ) + pjqj(θ)

]
,

which are contingent only on the choice j, not the taste shock ξ. The state prices for the

48



Arrow Vouchers are the choice probabilities which with the Type 1 EV assumption are

exp

(
u
[
c(j, θ), qj(θ), j, θ

]
− λ(θ)a(j, θ)

ηθ

)/∑
j′

exp

(
u
[
c(j′, θ), qj′(θ), j

′, θ
]
− λ(θ)a(j′, θ)

ηθ

)
.

C. Appendix: The Pareto Problem

The Pareto problem is to find allocations that maximize somebody’s utility subject to a resource
constraint and that the allocation must respect given utility levels for all other households in
the economy. The resulting allocation is then by definition of the problem a Pareto efficient
allocation.

Utility for household i of type θ is

V i(θ) =

∫
ξ

∑
j

xij(ξ, θ)

{
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g(ξ; θ)dξ, (111)

and then we will index all other households by the label k, θ′ with given utility level V k(θ′).
Then the Pareto problem is

max
cj(ξ,θ),qj(ξ,θ),xj(ξ,θ) ∀i,k,θ′

∫
ξ

∑
j

xij(ξ, θ)

{
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g(ξ; θ)dξ (112)

subject to the resource constraints:

[ Λo ]
∑
θ′

∫ µ(θ′)

0

yko (θ
′)dk ≥

∑
θ′

∫
ξ

∫
k

xkj (ξ, θ
′)ckj (ξ, θ

′) dk g(ξ, θ′)dξ, (113)

[ Λj ]
∑
θ′

∫ µ(θ′)

0

ykj (θ
′)dk ≥

∑
θ′

∫
ξ

∫
k

xkj (ξ, θ
′)qkj (ξ, θ

′) dk g(ξ, θ′)dξ ∀j. (114)

which says that goods supply must be greater than or equal to goods demand. Associated with
these constraints are the Lagrange multiplier Λo and Λj for each good j. The next constraint is
the Pareto constraint:

[ Υk(θ′) ] V k(θ′) ≤
∫
ξ

∑
j

xkj (ξ, θ
′)

{
u
[
ck(ξ, θ′), qkj (ξ, θ

′); j, θ′
]
+ ξkj

}
g(ξ, θ′)dξ ∀k, θ′ ̸= i, θ.

(115)

This says that at any allocation, it has to deliver utility level V k(θ′) (or be better) for every k, θ′

household. Associated with each of these constraints is the Lagrange multiplier Υk(θ′). Putting
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the problem all together we have

L = max
cj(ξ,θ),qj(ξ,θ),xj(ξ,θ) ∀i,k,θ′

∫
ξ

∑
j

xij(ξ, θ)

{
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g(ξ; θ)dξ (116)

+ Λo

[∑
θ′

Yo(θ
′)−

∑
θ′

∫
ξ

∫
k

xkj (ξ, θ
′)ckj (ξ, θ

′) dk g(ξ, θ′)dξ

]
(117)

+
∑
j

Λj

[∑
θ′

Yj(θ
′)−

∑
θ′

∫
ξ

∫
k

xkj (ξ, θ
′)qkj (ξ, θ

′) dk g(ξ, θ′)dξ

]
(118)

+
∑
θ′

∫
k

Υk(θ′)

[ ∫
ξ

∑
j

xkj (ξ, θ
′)

{
u
[
ck(ξ, θ′), qkj (ξ, θ

′); j, θ′
]
+ ξkj

}
g(ξ, θ′)dξ − V k(θ′)

]
dk g(ξ)dξ.

(119)

As a recap: This planner chooses allocations for everybody: i, θ and all k, θ′ to maximize welfare
for i, θ given the resource constraint and then the idea that all k, θ′ households must be delivered
at least V k(θ′) level of utility.

The next steps derive first order conditions and characterize the rule describing which goods
are chosen and under which circumstances. We do this below in steps.

Conditional on a choice, the first order condition for is consumption of variety qj is

xij(ξ, θ)uqj
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
g(ξ, θ) = Λjx

i
j(ξ, θ)g(ξ, θ) (120)

and then canceling terms we have

uqj
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
= Λj. (121)

And then a similar condition holds for the non-differentiated commodity

xij(ξ, θ)uc
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
g(ξ, θ) = Λox

i
j(ξ, θ)g(ξ, θ), (122)

and then canceling terms we have

uc
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
= Λo. (123)

Then we make the observation that the quantities don’t depend upon the particular shock real-
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ization ξ since the multipliers don’t depend on the shock giving

uc
[
ci(j, θ), qij(θ); j, θ

]
= Λo. (124)

The next question is then what about k, θ′s consumption. For variety j we have

Υk(θ′)xkj (ξ, θ
′)uqj

[
ck(ξ, θ′), qkj (ξ, θ

′); j, θ
]
g(ξ, θ′) = Λjx

k
j (ξ, θ

′)g(ξ, θ′), (125)

and then canceling terms gives

uqj
[
ck(ξ, θ), qkj (ξ, θ); j, θ

′] = Λj
Υk(θ′)

. (126)

then re-indexing with the dropping of the choice we have

uqj
[
ck(j, θ), qkj (θ); j, θ

′] = Λj
Υk(θ′)

. (127)

And then we have the similar condition for the non-differentiated commodity

uc
[
ck(j, θ′), qkj (θ

′); j, θ′
]
=

Λo
Υk(θ′)

. (128)

Similar to above, quantities for the k, θ′ guys are set so that marginal utility equals the multiplier
on the resource constraint adjusted by the multiplier on the Pareto constraint. The adjustment
for the multiplier on the Pareto constraint then has the interpretation as the weight that the
planner places on agent k, θ′.

From here we can take ratios of these conditions and arrive at results that any Pareto efficient
allocation must satisfy. Specifically

uqj
[
ck(j, θ), qkj (θ); j, θ

′]
uq′j
[
ck(j, θ), q′kj (θ); j

′, θ′
] = Λj

Λ′
j

. (129)

and this condition holds for any k, θ′ agent (including i, θ), any shock realization, and any ratio
of commodity j, j′ or o. This says that the ratio of marginal rate of substitution between these
commodities, for any person, must equal the shadow cost of those commodities.

The next step is to characterize the commodity choice rule or the xij(ξ, θ)s. Like in the cases
above, the variational approach can be applied as well. So we just inspect the Lagrangian,
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choice by choice for the i, θ guy under a particular realization of the shock

[
u
[
ci(ξ, θ), qi1(ξ, θ); 1, θ

]
+ ξi1

]
g(ξ, θ)−

[
Λoc

i(ξ, θ) + Λ1q
i
1(ξ, θ)

]
g(ξ, θ) vs. (130)

[
u
[
ci(ξ, θ), qi2(ξ, θ); 2, θ

]
+ ξi2

]
g(ξ, θ)−

[
Λoc

i(ξ, θ) + Λ2q
i
2(ξ, θ)

]
g(ξ, θ), . . . (131)

Then canceling the densities and inserting the result that the consumption does not depend
upon ξ

xij(ξ, θ) =



1, if u
[
ci(j, θ), qij(θ); j, θ

]
+ ξij −

[
Λoc

i(j, θ) + Λjq
i
j(θ)

]
≥

max
j′

{
u
[
ci(j′, θ), qij′(θ); j

′, θ
]
+ ξij′ −

[
Λoc

i(j′, θ) + Λj′q
i
j′(θ)

]}

0, otherwise

(132)

Now the interesting case is the k, θ′ guy. Again, use the same variational argument with

Υk(θ′)
[
u
[
ck(ξ, θ′), qk1(ξ, θ

′); 1, θ′
]
+ ξk1

]
g(ξ, θ′)−

[
Λoc

k(ξ, θ′) + Λ1q
k
1(ξ, θ

′)

]
g(ξ, θ′) vs. (133)

Υk(θ′)
[
u
[
ck(ξ, θ′), qk2(ξ, θ

′); 2, θ′
]
+ ξk2

]
g(ξ, θ′)−

[
Λoc

k(ξ, θ′) + Λ2q
k
2(ξ, θ

′)

]
g(ξ, θ′) . . . (134)

Then we follow the same steps as with the i case. Terms cancel, insert the result that the con-
sumption allocation does not depend upon the shock, then divide through by the multiplier
Υk(θ′). This then gives rise to the following commodity choice rule:

xkj (ξ, θ
′) =



1, if u
[
ck(j, θ′), qkj (θ

′); j, θ′
]
+ ξkj − 1

Υk(θ′)

[
Λoc

k(j, θ′) + Λjq
k
j (θ

′)

]
≥

max
j′

{
u
[
ck(j′, θ′), qkj′(θ

′); j′, θ′
]
+ ξkj′ − 1

Υk(θ′)

[
Λoc

k(j′, θ′) + Λj′q
k
j′(θ

′)

]}

0, otherwise

(135)

which holds for all k, θ′ households. And note that this rule is equivalent to the i, θ household
by setting the Υ term to one. An interesting step is to notice how the ratio of the multipliers
then connects with the marginal utility of consumption giving the same exact choice rule as
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with the i guy

xkj (ξ, θ
′) =



1, if u
[
ck(j, θ′), qkj (θ

′); j, θ′
]
+ ξkj −

[
ukc (j, θ

′)ck(j, θ′) + ukqj(θ
′)qkj (θ

′)

]
≥

max
j′

{
u
[
ck(j′, θ′), qkj′(θ

′); j′, θ′
]
+ ξkj′ −

[
ukc (j, θ

′)ck(j′, θ′) + ukqj′ (θ
′)qkj′(θ

′)

]}

0, otherwise

(136)

And this rule then looks exactly the same as for the i, θ agent. One interesting feature of this
characterization is that the welfare weights (or the Υk(θ′)) don’t directly show up. What is going
on is that welfare weights determine how much or little consumption k, θ′ person receives,
and thus their marginal utility for the commodity. Then these marginal utilities appropriately
determines the social cost of choosing a particular variety.

Proposition 8 summarizes the result below.

Proposition 8 (Pareto Efficient Allocations) Given utility levels V k(θ′) for all k, θ′ ̸= i, θ,
a Pareto efficient allocation is consumption allocations and commodity choice rules cij(ξ, θ),
qij(ξ, θ), xij(ξ, θ) and i, θ and for all other all k, θ′, that solve the problem (30) subject to resource
constraints (31, 32) and the Pareto constraint in (33).

The following conditions characterize Pareto efficient allocations:

1. For agent i, θ, consumption allocations must satisfy

uc
[
ci(j, θ), qij(θ); j, θ

]
= Λo and uqj

[
ci(j, θ), qij(θ); j, θ

]
= Λj.

2. For agent k′, θ′, consumption allocations must satisfy:

Υk(θ′) uc
[
ck(j, θ), qkj (θ); j, θ

]
= Λo and Υk(θ′) uqj

[
ck(j, θ), qkj (θ); j, θ

]
= Λj.

3. The commodity choice rule is

xkj (ξ, θ
′) =



1, if u
[
ck(j, θ′), qkj (θ

′); j, θ′
]
+ ξkj − 1

Υk(θ′)

[
Λoc

k(j, θ′) + Λjq
k
j (θ

′)

]
≥

max
j′

{
u
[
ck(j′, θ′), qkj′(θ

′); j′, θ′
]
+ ξkj′ − 1

Υk(θ′)

[
Λoc

k(j′, θ′) + Λj′q
k
j′(θ

′)

]}

0, otherwise
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which holds for all k, θ′ households, and for the i, θ household set the Υ term to one.

We now have a basis for the Second Welfare Theorem. This is immediate from comparing the
contents of Proposition 2 and from Complete Markets to Proposition 3. Consumption alloca-
tions and choice rules are identical if Λ0/Υ

k(θ) = λ(θ), and Λj/Υ
k(θ) = λ(θ)pj . To align the

complete markets allocation to the Pareto efficient allocation, then one simply needs to find
the appropriate ex-ante reallocation of resources to attain the correct multipliers on complete
markets budget constraints, λ(θ).

D. Appendix: The Social Planning Problem

In this section we solve the problem of a planner who maximizes a linear social welfare func-
tion with welfare weights ψk(θ′) for all k and θ. Inspection of the conditions of this problem
then provides an equivalence between Pareto efficient allocations and maximizing linear social
welfare functions under some welfare weights.

The planning problem is the following

max
ck(ξ,θ′),qkj (ξ,θ

′),xkj (ξ,θ
′)

∑
θ′

∫
k

ψk(θ′)

∫
ξ

∑
j

xkj (ξ, θ
′)

{
u
[
ck(ξ, θ′), qkj (ξ, θ

′); j, θ′
]
+ ξkj

}
g(ξ, θ′)dξ dk,

(137)

subject to:
∑
θ′

Yj(θ
′) ≥

∑
θ′

∫
ξ

∫
k

xkj (ξ, θ
′)qkj (ξ, θ

′) dk g(ξ, θ′)dξ ∀j (138)

∑
θ′

Yo(θ
′) ≥

∑
θ′

∫
ξ

∫
k

∑
j

xkj (ξ, θ
′)ck(ξ, θ′) dk g(ξ, θ′)dξ (139)

Where the social planner chooses consumption and commodities for every event ξ and every
k, θ′ agent in the economy. These allocations are chosen to maximize social welfare in (137)
which is a weighted average of each individual agents expected utility, with the weights being
the given social welfare weights ψk(θ′). This objective function is maximized subject to the
resource constraints.
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The Lagrangian associated with this problem is

L = max
ck(ξ,θ′),qkj (ξ,θ

′),xkj (ξ,θ
′)

∑
θ′

∫
k

ψk(θ′)

∫
ξ

∑
j

xkj (ξ, θ
′)

{
u
[
ck(ξ, θ′), qkj (ξ, θ

′); j, θ′
]
+ ξkj

}
dk g(ξ, θ′)dξ,

(140)

+
∑
j

Λj

[∑
θ′

Yj(θ
′)−

∑
θ′

∫
ξ

∫
k

xkj (ξ, θ
′)qkj (ξ, θ

′) dk g(ξ, θ′)dξ

]
(141)

+ Λo

[∑
θ′

Yo(θ
′)−

∑
θ′

∫
ξ

∫
k

∑
j

xkj (ξ, θ
′)ck(ξ, θ′) dk g(ξ, θ′)dξ

]
. (142)

The first order condition for consumption of commodity j becomes (after canceling terms using
the same arguments above)

ψk(θ′)uqj
[
ck(j, θ′), qkj (θ

′); j, θ
]
= Λj, (143)

and then for the non-differentiated commodity we have

ψk(θ′)uc
[
ck(j, θ′), qkj (θ

′); j, θ
]
= Λo. (144)

The planner sets social-welfare-weighted marginal utility equal to the shadow cost of consum-
ing that commodity. Inspecting these conditions (143, 144 ) and (121, 123) shows that for a given
Pareto efficient allocation, the multipliers on the Pareto constraint maps directly into the social
welfare weights associated with Planning problem.

Now social welfare maximizing choice rule xkj (ξ, θ′) is

ψk(θ′)
[
u
[
ck(ξ, θ′), qk1(ξ, θ

′); 1, θ′
]
+ ξk1

]
g(ξ, θ′)−

[
Λoc

k(ξ, θ′) + Λ1q
k
1(ξ, θ

′)

]
g(ξ, θ′) vs. (145)

ψk(θ′)
[
u
[
ck(ξ, θ′), qk2(ξ, θ

′); 2, θ′
]
+ ξk2

]
g(ξ, θ′)−

[
Λoc

k(ξ, θ′) + Λ2q
k
2(ξ, θ

′)

]
g(ξ, θ′) . . . (146)

Then terms cancel, insert the result that the consumption allocation does not depend upon the
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shock, then divide through by the social welfare weight ψk(θ′). The choice rule

xkj (ξ, θ
′) =



1, if u
[
ck(j, θ′), qkj (θ

′); j, θ′
]
+ ξkj − 1

ψk(θ′)

[
Λoc

k(j, θ′) + Λjq
k
j (θ

′)

]
≥

max
j′

{
u
[
ck(j′, θ′), qkj′(θ

′); j′, θ′
]
+ ξkj′ − 1

ψk(θ′)

[
Λoc

k(j′, θ′) + Λj′q
k
j′(θ

′)

]}

0, otherwise

(147)

And the key observation here is that this choice rule is exactly the same as that in the Pareto
problem, and thus the complete markets allocation. Proposition 9 summarizes the result below.

Proposition 9 (Social Welfare Maximizing Allocations) Let ψk(θ′) be a vector of Social Wel-
fare Weights. Define the Social Welfare Function as:

Wψ =
∑
θ′

∫
k

ψk(θ′)

∫
ξ

∑
j

xkj (ξ, θ
′)

{
u
[
ck(ξ, θ′), qkj (ξ, θ

′); j, θ′
]
+ ξkj

}
g(ξ, θ′)dξ di (148)

Then a Social Welfare Maximizing allocation is consumption allocations and commodity
choice rules and ckj (ξ, θ′), qkj (ξ, θ′), xkj (ξ, θ′) for all k, θ′ to maximize Wψ subject to resource con-
straints on all goods. The following conditions characterize the allocation:

1. For all k, θ′, consumption allocations must satisfy:

ψk(θ′) uc
[
ck(θ′), qkj (θ

′); j, θ′
]
= Λo and ψk(θ′) uqj

[
ck(θ′), qkj (θ

′); j, θ′
]
= Λj. (149)

2. For all k, θ′ the commodity choice rule is

xkj (ξ, θ
′) =



1, if u
[
ck(j, θ′), qkj (θ

′); j, θ′
]
+ ξkj − 1

ψk(θ′)

[
Λoc

k(j, θ′) + Λjq
k
j (θ

′)

]
≥

max
j′

{
u
[
ck(j′, θ′), qkj′(θ

′); j′, θ′
]
+ ξkj′ − 1

ψk(θ′)

[
Λoc

k(j′, θ′) + Λj′q
k
j′(θ

′)

]}

0, otherwise

(150)

This allocation is a Pareto Efficient Allocation and coincides with a Complete Markets Allocation
under some ex-ante transfers.
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E. Appendix: An Alternative Formulation of the Objective Function

This section provides a representation of the objective function in (37) under the type 1 extreme
value assumption that is (i) easy to solve using standard calculus, and (ii) provides a marginalist
interpretation as to how a household or planner wants to allocate its resources across discrete
choices.

Notation note: Without loss of generality, we simplify the presentation and do this only for one
type of household.

We proceed in several steps and deep dive into derivations of results behind type 1 extreme
value distributions. We used these results to establish the point that if the distribution G(ξ) is
of the type 1 extreme value form, and the choice rule is of the type:

xj(ξ) =

1, if Vj + ξij ≥ max
j′

[
Vj′ + ξij′

]
0.

(151)

where Vj is some object to be determined, then the choice probability ρj and expected value of
ξj conditional on choosing j are:

ρj =
exp

{Vj
η

}
∑

k exp{
Vj′

η
}

, E
[
ξj

∣∣∣Choose j
]
= −η log ρj, (152)

And then expected utility can be represented as

V i =
∑
j

ρij

[
V i
j − η log ρij

]
. (153)

This formulation of expected utility is useful, because now then the problem of the household
can be represented as chosen choice probabilities and consumption.

5.1. Choice probability

We first derive the choice probability given that the choice rule takes the form in (151). Recall
that the Gumbel distribution has the following CDF and PDF:

G (ξj) = exp
{
−e−ξj/η

}
g (ξj) =

1

η
exp

{
−
(
ξj
η
+ e−ξj/η

)}
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Given the above form of xj (ξ), then the probability of choosing j, ρj is given by

ρj = P {Vj + ξj ≥ Vj′ + ξk , ∀j} .

Then we compute this probability under the Gumbel distribution

ρj =
∏
j′ ̸=j

P {Vj + ξj ≥ Vj′ + ξj′}

=
∏
j′ ̸=j

P {ξj′ ≤ Vj − Vj′ + ξj}

=

∫ ∏
j′ ̸=j

P
{
ξj′ ≤ Vj − Vj′ + ξj

∣∣∣ξj} g (ξj) dξj
ρj =

∫ ∏
j′ ̸=j

G (Vj − Vj′ + ξj) g (ξj) dξj.

Given the distribution and density of the Gumbel distribution

ρj =

∫ ∏
j′ ̸=j

exp
{
−e−[Vj−Vj′+ξj]/η

} 1

η
exp

{
−
(
ξj
η
+ e−ξj/η

)}
dξj

Then impose a change of variables with Ṽ = V/η and ξ̃j = ξj/η, hence dξj = ηdξ̃j :

ρj =

∫ ∏
j′ ̸=j

exp
{
−e−[Ṽj−Ṽj′+ξ̃j]

}
exp

{
−
(
ξ̃j + e−ξ̃j

)}
dξ̃j

ρj =

∫ ∏
j′ ̸=j

exp

−e−ξ̃j
exp

{
Ṽj′
}

exp
{
Ṽj

}
 exp

{
−
(
ξ̃j + e−ξ̃j

)}
dξ̃j

ρj =

∫
exp

−e−ξ̃j
∑

j′ ̸=j exp
{
Ṽj′
}

exp
{
Ṽj

}
 exp

{
−
(
ξ̃j + e−ξ̃j

)}
dξ̃j.

Then let T =
∑
j′ ̸=j

exp
{
Ṽj′
}
/ exp

{
Ṽj

}
:

ρj =

∫
exp

{
−e−ξ̃jT

}
exp

{
−
(
ξ̃j + e−ξ̃j

)}
dξj

ρj =

∫
exp

{
−e−ξ̃j (T + 1)− ξ̃j

}
dξj
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One more change of variables: y = e−ξ̃j , such that dy = −e−ξ̃jdξ̃j , hence dy/y = −dξ̃j , and
ξ̃j = − log y:

ρj =

∫
exp {−y (T + 1) + log y}

(
−dy
y

)
ρj =

∫
− exp {−y (T + 1)} dy

ρj =
1

T + 1

ρj =
exp

{
Ṽj

}
∑
j′
exp

{
Ṽj′
}

ρj =
exp {Vj/η}∑

j′
exp {Vj′/η}

Note that we use the observation that since ξ̃j ∈ (−∞,∞), then y ∈ [0,∞).

5.2. Expected value of shock

We want E
[
ξj

∣∣∣Choose j
]
. The approach is to compute the CDF of the random variable “Given

that j is chosen, ξj is less than x”, and show that the distribution

F (x) = P
(
ξj ≤ x

∣∣∣Choose j
)

is Gumbel, and hence apply results above to compute this conditional expectation directly. As
a first step, by Baye’s Law, this distribution can be expressed as

F (x) =
P (ξj ≤ x and Choose j)

P (Choose j)
=
P (ξj ≤ x and Choose j)

ρj (θ)
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and then given our previous results, we just need to compute probability in the numerator. The
numerator is

P (ξj ≤ x and Choose j) = P (ξj ≤ x and Vj + ξj ≥ Vj′ + ξj∀j′ ̸= j)

=

∫ ∞

−∞
1 [ξj ≤ x]

∏
j′ ̸=j

P (ξj′ ≤ Vj − Vj′ + ξj) g (ξj) dξj

=

∫ x

−∞

∏
j′ ̸=j

P (ξj′ ≤ Vj − Vj′ + ξj) g (ξj) dξj

=

∫ x

−∞

∏
j′ ̸=j

exp
{
−e−[Vj−Vj′+ξj]/η

} 1

η
exp

{
−ξj
η
− e−

ξj
η

}
dξj

=

∫ x/η

−∞

∏
j′ ̸=j

exp
{
−e−[Ṽj−Ṽj′+ξ̃j]

}
exp

{
−ξ̃j − e−ξ̃j

}
dξ̃j

=

∫ x/η

−∞

∏
j′ ̸=j

exp

−e−ξ̃j
exp

{
Ṽj′
}

exp
{
Ṽj

}
 exp

{
−ξ̃j − e−ξ̃j

}
dξ̃j

=

∫ x/η

−∞
exp

−e−ξ̃j
∑

j′ ̸=j exp
{
Ṽj′
}

exp
{
Ṽj

}
 exp

{
−ξ̃j − e−ξ̃j

}
dξ̃j

=

∫ x/η

−∞
exp

{
−e−ξ̃jT

}
exp

{
−ξ̃j − e−ξ̃j

}
dξ̃j

P (ξj ≤ x and Choose j) =
∫ x/η

−∞
exp

{
−e−ξ̃j (T + 1)− ξ̃j

}
dξ̃j

Then using the same change of variables as above and looking after the limits of integration,
we have

P (ξj ≤ x and Choose j) =
∫ e−x/η

∞
exp {−y (T + 1) + log y}

{
−1

y
dy

}
=

∫ ∞

e−x/η

− exp {−y (T + 1) + log y}
{
−1

y
dy

}
=

∫ ∞

e−x/η

exp {−y (T + 1)} dy

=

[
− 1

T + 1
exp {−y (T + 1)}

]∞
e−x/η

=
1

T + 1
exp

{
−e−x/η (T + 1)

}
=

1

T + 1
exp

{
−e−(x−η log(T+1))/η

}
P (ξj ≤ x and Choose j) = ρj exp

{
−e−(x−η log(T+1))/η

}
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Combining this with the above,

F (x) =
P (ξj ≤ x and Choose j)

P (Choose j)
=
P (ξj ≤ x and Choose j)

ρj
= exp

{
−e−(x−η log(T+1))/η

}
Therefore the random variable x is also Gumbel distributed with mean

E [x] = η log (T + 1)

E [x] = η log

(
1

ρj

)
E [x] = −η log ρj

This is the expression given in the text.

5.3. Representation of Expected Utility

We can use the above to rewrite the expected utility of an individual conditional on the fact that
the discrete choice follows the previous type of rule.

V i(θ) =

∫
ξ

∑
j

xij
(
ξ, θ
){
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g
(
ξ; θ
)
dξ

Now here is an important issue. Note that in any problem we considered (incomplete, com-
plete, planner), the first order condition for both consumption goods is always independent of
ξ. Using this observation expected utility is then∫

ξ

∑
j

xij
(
ξ, θ
){
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g
(
ξ; θ
)
dξ

=
∑
j

ρij (θ)
[
u
(
ci(j, θ), qij (θ) , j, θ

)
+ E

[
ξj

∣∣∣Choose j; θ
]]

=
∑
j

ρij (θ)

[
u
(
ci(j, θ), qij (θ) , j, θ

)
− ηθ log ρ

i
j (θ)

]

Where the last two lines use our arguments about the nature of the choice rule and then type 1
extreme value distribution. This then establishes Proposition 6.
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5.4. Using Proposition 6 to Solve for Allocations

To further illustrate how this works, we illustrate how we can use the representation in Propo-
sition 6 and (154) and study the problems we considered (incomplete, complete, planner). Per-
haps not surprisingly, the allocations maximizing (154) lead to the same results in the body of
the text.

Notation note. To add a bit more generality, we now allow for different types and the utility
function only depends upon consumption.

Solving the incomplete markets problem. In incomplete markets, the objective function of the
individual of type-θ is:

V = max
qj(θ),ρj(θ)

∑
j

[ρj (θ)u (c (j, θ) , qj (θ))− ηρj (θ) log ρj (θ)]

There is now a budget constraint for every choice:

c (j, θ) + pjqj (θ) ≤ W (θ) [λj (θ)] for each j∑
j

ρj (θ) = 1 [χ (θ)]

and now there is a new constraint that ensures the choice probabilities are probabilities. The
first order conditions for qj (θ) and ρj (θ) are:

qj (θ) : 0 = ρj (θ)uq (c (j, θ) , qj (θ))− λj (θ) pj

ρj (θ) : 0 = u (c (j, θ) , qj (θ))− η log ρj (θ)− η − χ (θ)

With incomplete markets, the choices are not linked through the budget constraint. The choice
probability can therefore be directly solved from the first order condition for ρj (θ).

log ρj (θ) +
1

η
χ (θ) =

1

η
[u (c (θ) , qj (θ))− 1]
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We can then exponentiate and sum over ρj (θ) to solve for the multiplier χ (θ):

ρj (θ) e
1
η
χ(θ) = exp

{
1

η
[u (c (θ) , qj (θ))− 1]

}
e

1
η
χ(θ) =

∑
j

exp

{
1

η
[u (c (θ) , qj (θ))− 1]

}
1

η
χ (θ) = log

[∑
j

exp

{
1

η
[u (c (θ) , qj (θ))− 1]

}]

χ (θ) = η log

[∑
j

exp

{
1

η
[u (c (θ) , qj (θ))− 1]

}]

Substituting this back into the above

ρj (θ) =
exp

{
1
η
[u (c (θ) , qj (θ))− 1]

}
exp

{
1
η
χ (θ)

}
ρj (θ) =

exp
{

1
η
[u (c (θ) , qj (θ))− 1]

}
∑
j

exp
{

1
η
[u (c (θ) , qj (θ))− 1]

}

ρj (θ) =
exp

{
1
η
[u (c (θ) , qj (θ))]

}
∑
j

exp
{

1
η
[u (c (θ) , qj (θ))]

} .
where the last line is the standard formula for the economy with incomplete markets.

Solving the planning problem. Now the social welfare function is:

max
qj(θ),ρj(θ)

∑
θ

ψ (θ)µ (θ)
∑
j

[ρj (θ)u (c (j, θ) , qj (θ))− ηρj (θ) log ρj (θ)]

The resource constraints for each good are as follows, with an additional constraint on the
choice probabilities: ∑

θ

µ (θ) ρj (θ) qj (θ) ≤
∑
θ

µ (θ) yj (θ) [Λj] for each j∑
θ

µ (θ)
∑
j

ρj (θ) c (j, θ) ≤
∑
θ

µ (θ) yo (θ) [Λc]∑
j

ρj (θ) = 1 [µ (θ)χ (θ)] for each θ

where recall that µ (θ) is the mass of type θ agents. And note that to simplify the algebra, we
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normalize the multiplier on the final constraint by µ (θ). The first order condition for qj (θ) and
ρj (θ)

c (j, θ) : 0 = ψ (θ) ρj (θ)uc (c (j, θ) , qj (θ))− ρj (θ) ⟨Λc⟩

qj (θ) : 0 = ψ (θ) ρj (θ)uq (c (j, θ) , qj (θ))− ρj (θ) ⟨Λj⟩

ρj (θ) : 0 = ψ (θ) [u (c (j, θ) , qj (θ))− η log ρj (θ)− η]−
[
⟨Λj⟩ qj (θ) + ⟨Λc⟩ c (j, θ)

]
− χ (θ)

From the first order condition for c and qj we have

uq (c (θ) , qj (θ)) =
Λj
ψ (θ)

, uc (c (j, θ) , qj (θ)) =
Λc
ψ (θ)

which are the same first order conditions associated with Proposition 5. Then working with the
first order condition for ρj (θ) and following similar steps outlined for the incomplete markets
problem we arrive at the following choice probabilities

ρj (θ) =

exp

{
1
η

[
u (c (j, θ) , qj (θ))− 1

ψ(θ)

[
⟨Λj⟩ qj (θ) + ⟨Λc⟩ c (j, θ)

]]}
∑
j

exp

{
1
η

[
u (c (j, θ) , qj (θ))− 1

ψ(θ)

[
⟨Λj⟩ qj (θ) + ⟨Λc⟩ c (j, θ)

]]} .
which is the same choice probability that the choice rule in Proposition 5 and equation (39)
implies.

Solving the complete markets problem. To obtain the same choice probabilities under com-
plete markets is then straight-forward. The objective function of the individual of type-θ is:

max
c(θ),qj(θ),ρj(θ)

∑
j

[ρj (θ)u (c (j, θ) , qj (θ))− ηρj (θ) log ρj (θ)] .

The consolidated budget constraint and probability constraint is∑
j

ρj (θ) [c (j, θ) + pjqj (θ)] ≤ W (θ) [λ (θ)]∑
j

ρj (θ) = 1 [χ (θ)] .

And the important piece here is that the individual understands that the price of an Arrow
security associated with a choice φ (ρj (θ)) is exactly the same as the choice probability ρj (θ)

and hence we made this substitution into the consolidated budget constraint. The first order
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conditions for consumption and ρj (θ) are:

c (j, θ) : 0 = ρj (θ)uc (c (j, θ) , qj (θ))− ⟨λ (θ)⟩ ρj (θ)

qj (θ) : 0 = ρj (θ)uq (c (j, θ) , qj (θ))− ⟨λ (θ)⟩ pjρj (θ)

ρj (θ) : 0 = u (c (j, θ) , qj (θ))− η log ρj (θ)− η − ⟨λ (θ)⟩ [c (j, θ) + pjqj (θ)]− χ (θ) .

Then notice how these conditions line up with the planner’s first order conditions above. From
the first order condition for c and qj we have

uq (c (θ) , qj (θ)) = pjλ(θ), uc (c (j, θ) , qj (θ)) = λ(θ),

and then again solving out for the choice probabilities we have

ρj (θ) =

exp

{
1
η

[
u (c (j, θ) , qj (θ))− ⟨λ (θ)⟩

[
c (j, θ) + pjqj (θ)

]]}
∑
j

exp

{
1
η

[
u (c (j, θ) , qj (θ))− ⟨λ (θ)⟩

[
c (j, θ) + pjqj (θ)

]]} .
which is the same choice probability in Proposition 2.

F. Appendix: A Spatial Economy

Our spatial environment is the following: Each choice j is a location in space. We remove the
differentiated good and we assume the homogeneous good is produced by competitive firms,
in all locations, and it is freely traded. The mass of each θ-type of households is normalized to
one. Households begin “locationless” and the discrete choice nature of the problem is where
they should live and work.11

Production in each location is

Yj = Fj(ρj), (154)

where Yj is output of the homogeneous good in location j, Fj is the production function that
may depend upon characteristics of location j, and ρj = (ρj(θ), ρj(θ

′) . . .) is the entire vector of
all different type θ households working in location j. This last point means that output in loca-
tion j may depend on the mix of type θ households working in that location. This production
function could also exhibit an external productivity spillover.

11An alternative interpretation is to treat our θ-types as a households initial starting point, and thus the choice
probability ρj(θ) characterizes the mass of migrants from location θ to location j.
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Utility is

u
[
ci(ξ, θ)] + Aj(ρj; θ) + ξij, (155)

where Aj(. . . , ; θ) is a j and θ specific amenity value. Similar to production, the dependence
of Aj upon ρj means that the amenities in j, valued by type θ households depend upon the
entire mix of households residing in that location. This function is treated as a spillover in the
sense that individuals take this function as given and they do not internalize how their choices
influence it.

Throughout this discussion, we employ a the type 1 extreme value distribution with shape
parameter ηθ for each type. Given this assumption, we build on our streamlined presentation
of the discrete choice problem in Section 5 and solve these problems by directly choosing choice
probabilities.

Following our discussion above, we characterize the social planning problem using the type 1
extreme value distribution, and thus we can cast the problem in terms of choice probabilities.
The planning problem is

max
qj(θ),ρj(θ)

∑
θ

∑
j

ρj(θ)

{
u
[
c(j, θ)

]
+ Aj(ρj; θ)− ηθ log ρj(θ)

}
(156)

subject to: [ Λ ]
∑
j

Fj(ρj) ≥
∑
θ

∑
j

ρj(θ)c(j, θ) (157)

[ Λθ ] 1 =
∑
j

ρj(θ) ∀θ. (158)

where the objective function is re-written now using our arguments in Section 5. The solution to
this problem is characterized by the following first order conditions. First, there is the standard
first order condition for consumption

uc
[
c(j, θ)

]
= Λ, (159)

which as says the social welfare weighted marginal utility should be equated with the multi-
plier for location j. The first order condition for the choice probability becomes

Vj(θ)− ηθ + Λ
∂Fj
∂ρj(θ)

+ ψ(θ)
∑
θ′

∂Aj(θ
′)

∂ρj(θ)/ρj(θ)
= Λ c(j, θ) + Λθ, (160)
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From (160) we can solve for the Social Planner’s choice probability, ρSPj (θ), which is:

ρSPj (θ) ∝ exp

{
η−1
θ

(
Aj(ρj; θ) + uc

∂Fj
∂ρj(θ)

+
∑
θ′

∂Aj(θ
′)

∂ρj(θ)/ρj(θ)

)}
, (161)

And notice that the consumption and utility terms don’t show up because they don’t vary with
location since because the planner is equalizing marginal utility.

6.1. The Spatial Complete Markets Problem

The general spatial problem with complete markets is:

max
ai(ξ,θ), ci(ξ,θ), qij(ξ,θ), x

i
j(ξ,θ)

∫
ξ

∑
j

xij(ξ, θ)

{
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g
(
ξ; θ
)
dξ, (162)

subject to
∑
j

xij(ξ, θ)
[
ci(ξ, θ) + pjq

i
j(ξ, θ)− wj(θ)

]
≤ + ai(ξ, θ) ∀ ξ, (163)

∫
ξ

φ(ξ, θ)ai(ξ, θ)dξ = 0. (164)

where now for each shock, and hence choice, the household is facing a different endowment
which is given by the wage rate wj(θ). In this background, this would just reflect the private
marginal product of labor that competitive labor markets would result in. Then from here,
we can substitute all budget constraints (163) into the constraint for assets (164). The resulting
problem is

max
ai(ξ,θ), ci(ξ,θ), qij(ξ,θ), x

i
j(ξ,θ)

∫
ξ

∑
j

xij(ξ, θ)

{
u
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
+ ξij

}
g
(
ξ; θ
)
dξ, (165)

subject to [ λi(θ) ] :

∫
ξ

φ(ξ, θ)

{∑
j

xij(ξ, θ)
[
ci(ξ, θ) + pjq

i
j(ξ, θ)− wj(θ)

]}
dξ = 0. (166)

Then this problem gives rise to the two first order conditions for consumption

uqj
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
= λi(θ)pj. (167)

Then similarly for the non-differentiated good

uc
[
ci(ξ, θ), qij(ξ, θ); j, θ

]
= λi(θ) (168)
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and then the following first order condition for the choice probability

Vj(θ)− ηθ + λi(θ)wj(θ)− λ(θ)
[
c(θ) + pjqj(θ)

]
= 0, (169)

where we make the usual arguments to drop the dependence upon the shock and the identity
i.

Now from here, let’s specialize this by removing the differentiated good. The first order condi-
tion for the choice probability becomes

Vj(θ)− ηθ + λ(θ)wj(θ)− λ(θ)c(j, θ) = 0. (170)

Here one can see the key distinction between the role that incomplete insurance vs. spillovers
are playing. In the complete markets allocation, first order condition needs to balance out the
private gain from being in a location which is given by the wage rate wj(θ) versus the private
cost of being in that location in terms of expenditure. This has the same flavor as in (161), but
the key distinction is that this is private, not social. And this distinction comes about because
of spillovers either through production or amenities. From (170) we can solve for the choice
probability which is

ρCMj (θ) ∝ exp

{
η−1
θ

(
Aj(ρj; θ) + uc(θ)wj(θ)

)}
. (171)

with the last two terms reflecting the private benefit of being in j versus the private consump-
tion cost of being in j dictating the location choice.

No Spillovers; Constant Marginal Product of Labor. Here we turn off the spillovers (both
productivity and amenity). Here we do so by considering linear production technologies with
TFP levels Zj and hence the marginal product of labor is constant. In this case the optimal
choice probability of a Social Planner facing No Spillovers collapses to:

ρSP−NS
j (θ) ∝ exp

{
η−1
θ

(
uc Zj

)}
. (172)

This says that the planner locates households based on each location’s productivity, weighted
by the (common) marginal utility of consumption.
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