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Introduction
In a variety of linear rational expectations models, agents'
decisions are supposed to depend on geometrically declining
weighted sums of expected future "forcing variables". These
forcing variables are typically described by stochastic processes
that the agents view as being beyond their control. The

following are examples of such models.

(i) Cagan's model of portfolio balance. Letting p, be the

logarithm of the price level, Ve be the logarithm of the money

supply, and ay be a stationary disturbance to portfolio balance,

Cagan's model can be represented as

P, = E[L ¢
t 1 - & i=0

j
—a - !
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where E is the expectations operator, g, is agents' information

t
set at time t, and o« < 0 is the slope of the portfolio balance

schedule.1

(ii) A dynamic model of demand for factors of production.

Let n, be the sStock of a factor of production, Ve be the real
wage rate of the factor, and a, be a random shock to technology.
Then a linear-quadratic version of a costly adjustment model

predicts that n, will obey

- - A > J - 1
ne = ang_, EE[jfo(xs) (yt+j at+j)'9t]



where 0 < A < 1, 0 < 8 < 1, § > 0, and o, is the firm's

information set at time t. Here g is the firm's discount factor,

and § is a parameter measuring the costs of adjustment.2

(iii) The permanent income model of consumption. Let Ci be

consumption, At nonhuman assets, Ve labor income, and a,
"transitory consumption". Then the permanent income model of |

consumption can be written

e, = T—ﬁ——{pAt + pE['z (1 + p)-j 1y + a

i
t + o 20 Vesrj! O £

where , is the interest rate and g is the marginal propensity to
consume.3
More examples of such models in which the geometric sums

E( ; Ajyt+jint) appear can be found in Sargent (1979) and Hansen
angﬂ%argent (1981). As Hansen and Sargent (1981) show, such
geometric sums are important terms in a wide class of models that
come from »nfinite horizon, linear-quadratic stochastic optimum
problems. In such models, it is common to suppose that the
values of the forcing variable yt are observable both to the
econometrician and the agent, but that only the agent observes
the forcing variable ay . The "hidden ‘variable" a, thus becomes
one source of the error in the equations fit by the
econometrician (see Hansen and Sargent (1980)). Both the y and
the a processes usually are modeled as being beyond the control

of the private agent. The private agent is assumed to face these

processes as a "price taker" or "income taker". However, for



standard simultaneous equations reasons, this assumption does not
imply that the y process will be strictly econometrically
exogenous with respect to the decision variable. Indeed, the
assumption that y is uncontrolled by the agent does not even
imply that y fails to be Granget caused by the private agents?
decision variable. quever, in most of the technical literature
published to date,Ll estimation of linear rational expectations
models has been treated either under the assumption that y 1is
strictly exogenous, or under the weaker assumption that y is not
Granger-caused by the private agents' decision variable.5

The purpose of the present paper is to describe optimal
estimation procedures in the case in which y is not strictly
exogenous, in which the agents' decision variable in general
Granger-causes the forcing variable y and in which full-blown
maximum likelihoood procedures are thought to be undesirable or
inapplicable. For applications, this is. an important extension
to existing estimation procedures. Thus the theoretical
presumption for each of the examples given above is probably in
favor of dynamic feedback from market-wide measures of the
decision variable on the left-hand side of the equation to the y
process on the right-hand side.6

This paper proposes estimators that can be interpreted as
instrumental variables estimators. The basic idea of this paper
Is to carry out identification and estimation of the model's free
parameters from the projections of the decision variables and the

forcing variables on instruments, and the projections of the

instruments on their own lagged values. These projections are



characterized by a set of cross-equation restrictions involving
the free parameters of the model, restrictions that are often
stringent enough to permit identification of the model's free
parameters. It is significant that the instruments need not be
strictly econometrically exogenous with respect to the left-hand
side or decision variables. It is even permitted that the
decision variables Granger-cause the instruments. Further, the
disturbances in the equation are permitted to be serially
correlated, though the procedures do not require the analyst
explicitly fo parameterize the stochastic process for the
disturbances. Among other things, this paper helps clarify the
relationship between Granger causality and the criterion for
appropriateness of an instrument.

There are two principal virtues of the instrumental-
variables-type estimators of the present paper vis-a-vis the
maximum likelihood estimator proposed, e.g., by Hansen and
Sargent (1980). Eirst, fewer parameters need to be estimated
simultaneously than are réﬁuired with the maximum 1likelihood
estimator. Second, precise parameterizations of the disturbances
need not be specified with the present estimators, while they
must be with maximum likelihood.

While the estimators described are applicable to a variety
of linear rational expectations models, we have chosen to
describe them by referring to our third example, that of the
permanent income consumption function. This example is one in

which the failure of y to be exogenous is well known and widely



described in econometrics textbooks. It will be evident how our
methods apply to other examples, including those given above.

We go on to compare our methods to some related methods
proposed by Kennan (1979) and Hayashi (1980) that directly
estimate Euler equations, and thereby avoid dealing explicitly
with geometrically declining sums of expected future forcing
variables. While many of the comments we make about estimation
carry over to these related methods, it turns out that‘these
other methods ignore theoretical restrictions and therefore

sacrifice statistical efficiency relative to the methods that we
propose. It 1is convenient to make this latter point in the
context of the second example, a dynamic model of demand for
factors of production.

This paper 1is organized as follows. In section one we
specify precisely a version of the permanent income model of
consumption and discuss the econometric restrictions implied by
the model. We characterize the model by projections in various
directions that can be utilized econometrically. In section two
we propose some instrumental variables estimators of the
parameters of the model and discuss their large sample
properties. IWe also indicate how the estimator of Hayashi and
Sims (1980) compares with the optimal instrunental variables
estimator. Section three contrasts our methods with Euler
equation methods proposed by Kennan (1979) and Hayashi (1980)
that do not work directly with geometrically declining sums of
expected future forcing variables. Qur conclusions are in

section four.



1. The Statistical Model
In this section we examine the restrictions which emerge
from a permanent income model of consumption. We consider a

linear model for consumption of the form
(1.1) ¢, = BY

where ¢, is consumption at time t, a_ is "transitory consumption®

t t
at t and ypt is permanent income at t©. The econometrician is

assumed not to have observations on transitory consumption or on
permanent income. We postpone spelling out what properties we
assume for transitory consumption and temporarily focus on our

working definition of permanent income. We assume that

-]

s (1 + p)-‘-JE

(1.2) v . = —=P[A, 4
pt oot j=0

+ £ 5]

where p is the real interest rate assumed constant over time, At
is nonhuman assets at time t, yt is after tax labor income at t,7
and Et[-] = E['}nt] is the mathematical expectation operator

conditioned on a set of information 2 available to private
8

agents at time ¢t. Substituting (1.2) into (1.1) and making
explicit the information set Qt available to the consumer at t,

gives

(1.3) e, = (1 = s)[At +

J '
t 8 Eyt+j'9t] * 8

it 8

j=0



where § = (1 + p)—1. We assume that o o e _, o @ and

tep -
that {yt, yt_1,...} cC nt.
To motivate definition (1.2) of permanent income, consider a

setup in which infinite lived consumers face the sequence of

budget constraints

(1.4) At+1 = (1 + )AL + (1 + p)(yt - ct), b=ty toqoe-s

. 9

A given.
o

It is assumed that y is a stochastic process which is beyond the

control of the consumer. Solving the stochastic difference

equation (1.4) forward and imposing the terminal condition

. -(t+J) _
(1.5) éiﬂ (1 + p) EtAt+j = 0,

gives the "realizable" solution

w 1 J

1 J

z ( ) Eoye, s = W
320 T+ 5 tit+ ] t

wherg Wt .is the consumer's total wealth, human and nonhuman.
Equation (1.6) states that the expected present discounted value
of consumption equals the present value of nonhuman assets At
plus the expected present discounted value of labor income. For

convenience, write (1.6) as



- - - J
(1-7) z § Etct-l'j - Wt - At + ‘2 6 Eth+J'

J=0

Notice that the constant level ct+j = Et of planned consumption

at t that satisfies (1.5) is found from

or

(1.8) c
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According to.one widely accepted definition, Et defined by (1.7)
is the level of permanent income: it is the rate at which the
consumer expects to be able to consume indefinitely given his
current total wealth.' Specification (1.2) embodies this notion
of permanent income.10

We proceed to specify properties that we assume about
‘transitory consumption. The random process a is assumed to have
mean zero, but it can be serially correlated. Further, it can be
correlated with the y process. Thus, we do not assume that y is

econometrically exogenous in (1.3). Obviously, however, to give

content to (1.3) and to proceed with estimation, some



orthogonality conditions must be imposéd on a,. We assume that

there is a (p x 1) vector xt that is included in ¢ satisf‘ying11

t

(1.9) Eatxt-j =0

j > o. It is important to note that a_. 1is allowed to be
correlated with future x's and therefore the x's do not have td
be econometrically exogenous with respéct to c. We define a
The idea underlying

reduced information set o = (X X

g1 Xgoqreccte
our estimation strategy is to exploit the orthogonality
conditions (1.9) and, in a sense, to employ the x process as an
instrument for y.

Now rewrite (1.3) as

- Bp —Bo__ iy -J 1
(1.10) e, = E At * T pj30(1 + p) Eyt+j'?t +a,+ s,
. . 12
where the "error" S, 1s given by
= Bo__ o -] Lo - .

0350

By construction the error Se is orthogonal"to oy since oy is
ineluded in 2 - That is, by the law of iterated projections, we

have13

] 1 t - 1 i -
E(EVy, 518 = Evp giegdiog = Eyg sley - Eyy sle = 0.
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In order to calculate the projection of permanent income
onto the reduced information set @t, we need to make some precise
assumptions about the forecing variables. We calculate this
projection to obtain a set of cross-equation restrictions that
can be exploited in estimation. We make the convenient
aésumbtion that (y, A, x', a, s)' is a vector, covariance
stationary, linearly indeterministié stochastie process.14 In
what follows we assume that conditional expectations and best
linear predictors coincide. Al ternatively, we could abstain from
this coincidence assumption and instead assume that E[-{ét]
denotes the 1linear least squares projection operator onto the
information set o -

Since x is a covariance stationary, linearly indeterministic

stochastic process, it has a Wold vector moving average

representation

(1.12) Xeoq = a(L)et+1

where (L) = I + a1L + ... and where
- - ' -

(1.13) €ri1 T Xiyq E[xt+1.¢t]

We add the additional restrictions that

(1.14) : [trace aj'a.]1/2

 +o
=0 J i
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and that the function F is bounded away from zero where
(1.15)  F(4u) = det[ o(el®) 4(elvyry,

The symbol "™ ' " denotes both transposition and conjugation.
Among other things these assumptions are sufficient to imply that
there exists a one-sided operator y = a—1 or equivalently that x

has an autoregressive representation

(1.16) y(l..)xt_*_1 = €r.q

where y(L) = I - viL - ... . The dimension of e is (p x 1) while
e« and y are both (p x p).15

We write the projection of yt on ¢, as
(1.17) Eytwt = e(L)xt

where (L) = 8g * 91L + ... . That is, we have the orthogonal

decomposition
(1.18) Vi = e(L)xt + Uy

where Eutx = 0 for j > 0. Substituting (1.12) into (1.18), we

t-J
obtain

(1.19) Yy = G(L)a(L)et +u,.
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Now 1let +the after tax 1labor income variable whose forecast

appears in (1.8) be denoted

* -. 3

]
~
—_
+
he)
~

recalling that s -1. Substituting (1.19) into (1.20)

gives

e(L)a(L) 1
<

(1-21) - <
LI BN L D TS

ut.

Note that ut+j for j > 0 is orthogonal to the information set .

= (X, Xp_qree2} by virtue of the orthogonality conditions

E = 0 for j > 0. We use the Wiener-Kolmogorov prediction

utxt-j
formula to compute .

(L) a(L)

#
(1.22) Ey.le, = e
g1 % E o] t?

where []+ is the "annihilation operator" that instructs us to

ignore negative powers of L.16 That is,
4+ o .
+ .
J==—o J:O

Using the lemma in Appendix A of Hansen and Sargent (1980) to

evaluate the above term in []+, we obtain



, 13

=1
(1.23) Ey:;¢t ool all) - 8L 8(s)als)

Je, .
1 - sL-1 t
Since a(L)et = Xy and a'1 = y, equation (1.23) can be written in
the equivalent form
# (L) = L7 'oCs) v(&) ' y(L)
(1.24) Eyt{Qt = [= AN A8 X ]Xt.

1 - GL_1

Substituting (1.20) and (1.24) into (1.10) gives the equation

1

(1.25) o, = -Bo__p , _Bo ro(L) - 5L-1e(s)y(s)-
fo]

Y(L)]X

Repeating (1.18) and (1.16), we also have the projection

equations
(1.26) Ve = e(L)xt + ug
1
(1.27) Xppr = ¥ (L)xt + €4 g

where YT(L) Sl ST PV TR

As is the hallmark of dynamic rational expectations models,
equations (1.25), (1.26), and (1.27) possess a set of
cross-equation restrictions, indicated by the presence of the
parameters of the lag operators 4 and g in (1.25). Thé presence

of these parameters reflects that consumers are making use of the
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properties of the y process in forming estimates of their
permanent income. The existence of these cross-equation
restrictions can be used to identify and estimate the parameters
of the operators y and ¢ and the parameters g and p. Key

elements in the model are the following three sets of

orthogonality conditions:

(1.28) Ext_j(at + St) =0
(1.29) Ext-jut = 0
(1.30) Ext—jet+1 =

for j > 0. Recall that Xy is a (p x 1) random vector, so that

1
Ex, .(a, + ;t) and Ext-jut are (p x 1) vectors, while Ext-jet+1

t-j 7t
is a (p x p) matrix.

The orthogonality conditions (1.29) and (1.30) stem directly
from the construction of (1.26) and (1.27) as projection
equations. IA other words, (1.26) was constructed by projecting
Ve onto °t and (1.27) by projecting Xt+1 onto ¢t. These
orthogonality conditions emerge from the "orthogonality
principle" which states that forecast errors associated with best
linear predictors must be orthogonal to all random variables in
the information set used in constructing the forecast. The

orthogonality condition (1.28) stems jointly from the definition
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(1.11) of s, together with the assumption that Ex 0 for j

t-3%
> 0. Orthogonality condition (1.28) states that the projection

of Cy - BpAt/(1 + p) onto @t is

-1 -1
_1_3‘::-) - [_G_(L) - _§L _9,(_5)Y(5) Y(L)]Xt - 'n’(L)Xt

(1.31) 7
1 - sL™

and thus we can view (1.28) as a projection equation also.

The econometric model to be estimated consists of the three
sets of equations (1.25), (1.26) and (1.27). One may be tempted
to think of these as reduced form equations since they define the

projection of Cy = BpAt/(1 + 0), Vi and Xt onto oy * However,

this interpretation 1is not quite correct. The random variable
Cy - BpAt/(1 + p) is not observable to the econometrician since
it involves the unknown parameters 8 and op. In the absence of

knowledge of 8, p and the cross-equation restrictions, equation
(1.25) 1is not well defined as a reduced form equation. More
plausible candidates for the reduced form equations for our
g0 Ao Ve and xt+1 onto Qt’ Since
all of these variables are assumed to be observable, the

model, are the projections of c A

coefficients of their projections onto the observable information
set can be automatically identified. In fact equations (1.26)

and (1.27) are such projections. Therefore, the parameters Y1,

17

Yos +++3 05, 89, ..., are identified. Identification of the

remaining structural parameters, g and ,, could be cast in the

conventional terms of whether they can be inferred from the

reduced form coefficients of the projections of c A

£ £ yt and

X onto ¢t. It turns out that we do not have to estimate all

Tl
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of the restricted reduced form projection equations

simultaneously to achieve identification of the structural
parameters. For this reason we will address the issue of
identification of g8 and p in terms of the orthogonality condition
(1.28) wusing the fact that the pafameters of y and ¢ are
identified. '
Suppose ﬁhat B* and p* allow orthogonality condition (1.28)

and the cross-equation restrictions to be satisfied. Let

1

(1.32) §* = T—-i-—p_r
_ 8o B¥o¥*
(1.33) n¥ - o 1+p+1 F o¥
Bo%  o(L) = s L oCs ) (s )™ (L)
1.34 *(L) = B-p e =8 6t¢8 Jy X .
We can write
B¥p¥* - Bo *

(1.35) C, - T p*At = Cy - T3 At - n At

- _ Bo ¥

= e, T t " )At'

Suppose the projection of At onto @t is given by

(1.36) A = E(L)Xt + vV

t t

where
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(1.37) Exy_jvy = O

18

for j >0 and g(L) = &y + &L + ... where 5y is (1 x p) for
i>o.
Substituting (1.25), (1.31) and (1.36) 1into (1.35), we

obtain
(1.38) e, - =BTRX 4 - [(L) - Fr(L)Ix. - o*v. + s s+ a
t 1 + p* ot i n"g t - g t t

- * * *
= (L)xt + s + a}

* *
where S¢ + ay satisfies orthogonality condition (1.28) .

Projecting (1.38) onto & we obtain

t’
(1.39)  «*¥(L)x, = [n(L) - n*g(L)1xy

or
(1.40) n*E(L)Xt = [n(L) - w*(L)]Xt

for n* and #* given by (1.33) and (1.34), respectively. In order
for our model to be identified, we assume that & is not of the
form (1.40) for any admissible choice of g* and p¥*. This
assumption seems innocuous since it is ruling out only singular
or very special structures in & and . We conclude that all of
the parameters of our model are identified via the cross-equation

restrictions and the orthogonality conditions (1.28), (1.29) and

(1.30).
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We now proceed to discuss issues that emerge in estimating
the model parameters. We begin by indicating that estimators
such as generalized least squares and versions of maximum
likelihood are not easily applicable to estimating (1.25), (1.26)
and (1.27). Maximum 1likelihood estimation requires that more
auxiliary assumptions be made about the temporal covariances of
(s + a), u, A, y, and x than have been made above: Notice that
the preceding construction in general produces (s + a) and u
processes that are serially correlated. Furthermore, the nature
of the s process in general depends on the time series properties
of elements in the broad information set Qt which private agents
are permitted to see but which the econometrician has not
necessarily been assumed to see. In addition, in neither (1.25)
nor (1.26) are x's strictly econometrically exogenous. That is,
in general the disturbances are correlated with future values of
the x's. This implies tﬁat attempts to "correct" for serial -
correlation in the disturbances via the implicit use of filters
as occurs in time series versions of generalized least squares
will result in estimators that are statistically inconsistent.
The reason for this is that simply filtering (1.25) and (1.26)
will distort the orthogonality conditions required for
consistency, since the x's are not strictly exogenous.

It is of some interest to note that not only do the x's fail
to be strictly econometrically exogenous in (1.25), but also in
general ¢ will Granger-cause X. That is, given lagged x's,
lagged c¢'s will help to predict x,. This 1s so in spite of the

t
orthogonality conditions (1.28), (1.29) and (1.30). 1In general,
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both s; and a; are both correlated with future x's so that Cy
contains information that marginally helps to predict future x's.
The upshot of these remarks is that in the present context,
failing a Granger-Sims test for the null hypothesis Qhat ¢ fails
to Granger —cause x does not necessarily signal model
misspecification; in particular, it has no bearing on whether or
not the orthogonality éondition (1.28) is appropriate.

It is also worth mentioning that from the point of view of

extracting good estimates of the "structural" parameters g and o,
it is not appropriate to search for a specification of Xy (or @t)
*
that predicts Vi @as well as possible. Given two specifications
* *
for o, = {Xy, X _4,...}, the one that minimizes E(yt - Eytiwt)2 =
03* is not necessarily to be preferred. The reason is that for

extracting consistent estimates of the structural parameters, the

orthogonality conditions Ext_j(at + st) = 0, jJ > 0, are relied
upon. The value of the prediction error variance 05* has no

bearing on which of the two competing specifications for Qt more

nearly satisfies the orthogonality conditions (1.28). Indeed,

the motivation of the procedures in this paper is the presumption

that current and lagged values of y itself perhaps should be

excluded from @t because such a specification would violate

(1.28). This is true in spite of the presumption that including

lagged y's in ¢, would usually decrease the prediction error

t
variance.

In conclusion, in this section we have derived a statistical

model of the consuﬁption function and have shown how

orthogonality conditions (1.28), (1.29) and (1.30) can be used to
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identify the free parameters of (1.25), (1.26) and (1.27). We

have yet to suggest estimation procedures other thaﬂ to indicate
‘that asymptotically efficient estimation requires something
different from the serial correlation corrections implicit in
time series versions of generalized least squares. In the next
section we discuss some correct procedures for estimating the
parameters of the model. The first procedure we discuss involves
estimating the parameters by using method of moments estimators
and choosing admissible parameter values that minimize a weighted
average of a specified number of the sample counterparts of the
population orthogonality conditions (1.28), (1.29) and (1.30).
The weighting scheme 1is chosen with a view to achieving the
minimum asymptotic covariance matrix for estimators that exploit
the same fixed set orthogonality conditions. We describe the
details involved in executing this estimation strategy. It turns
out that these "generalized method of moments" (GMM) estimators
are not asymptotically as efficient as maximum likelihood,
although they are computationally more convenient and, in a
sense, more robust. The GMM estimators described above use only
a fixed finite number of orthogonality conditions independent of
sample size. For this reason, we also investigate the question
of how to- use all of the available orthogonality conditions,

which are infinite in number.
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2a. Estimators Using a Fixed Number
of Orthogonality Conditions

This section indicates in some detail how to construct
consistent GMM estimatofs described by Hansen (1980) and Hansen
and Sargent (1980) to estimate the parameters of the model
specified in (1.25)-(1.30). We begin by imposing finite
parameterizations for the operators y and oe. In particular, we
assume that (L) =1 - 4L - ... - quq and o(L) = o5 + o,L + ...
+ erLr. By virtue of the covariance stationarity assumption, the
zeroes of det y(z) lie outside the cirecle. For the purpose of
this exposition, we shall set r = q - 1, although it will be
evident how the estimation procedure is to be modified if q - 1 #
r. Performing a series of calcuations similar to those applied
by Hansen and Sargent (1980) in a different context, it is

possible to derive explicitly the coefficients of the polynomial

in L that appears in (1.24). For convenience, let us define that

r . :
polynomial as y(L) = g3 ijJ, so that
j=0
o(L) - sL™'o(&)v(&) ™ Ty()
(2-1) IlJ(L) = [ _Y Y ]-
1 - &L

It can.be shown that
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1

(2.2) vy = 0(8)y(8)
- -1 r-j
wj = 80(8)vy(s) (Yj+1 + 67j+2 + ee. + 8 Yr+1)
+ (ej + sej+1 + ce. + 8 er)

The expressions in (2.2) provide us with a convenient explicit

representation for the restrictions across the parameters of

(1.25), (1.26), and (1.27).
Solving (1.25), (1.26), and (1.27) for (at + St)’ u,, and

et+1 and substituting into the population orthogonality

conditions (1.28), (1.29), and (1.30), respectively, gives

r

_ _Bp - _B»p =
(2.3) Exy _ (ep = o= S Bl s ojfowjxt-j) 0
r
(2.4) Ext-r(yt - .f ejxt-j) =0
j=0
r
- ' =
(2.5) Ext_T(xé+1 -E Xé-j7j+1 ) 0
J=0
for v = 0,1,...,P where P is the number of lagged x's used in the

orthogonality conditions. Denote by zt the vector of observables
(Ct’ At’ Vo x£+1)'. Let the free parameters of the model B, o,
Y1 s Y, q0 eo, “eey er be denoted by the Q dimensional vector

Lo - Let
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[ -
(2.6) dt = S, + a = A(L;co)zt
Yy
et+1
- -

where A(L;;O) = xo(;o) + 11(;0)L + ee. + Ar+1(co)Lr+1,

-Bp
(2.7 Ao(co) = 1 e 0 0
0 0 1 0
0 0 0 1
= -
- -8o f o
Aj(z;o) = 0 0 0 T p\pj_1(z;o) J=1, ...,r+1

and the y's are defined in (2.2). The parameters of a(Lj;.)
depend on the parameters ;0 via the cross-equation restrictioﬁs
exhibited in (1.25), (1.26), (1.27), (2.1) and (2.2). It is
convenient to have notation for the functions of the data and Lhe
parameters whose mathematical expectations are zero according to
the orthogonality conditions (1.28), (1.29), and (1.30). So we

define the vector function
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(2.8) ft(c) = A(L;;)zt ® Xy

where "®" denotes the Kronecker product and where 7 is an element
in the admissible parameter space containing the true parameter
vector 2q - Expression (2.8) defines ft(co) as a p(P + 1)(p + 2)
= R vector of random variables whose expected values are
restricted to be zero by (2.3), (2.4) and (2.5). The content of
the theory in (1.28), (1.29) and (1.30) can now be succinctly
stated as E[ft(co)] = 0,

Suppose the investigator has a sample of observations on zt
for ¢t = ~-P + 1, ..., T. Then for each parameter ¢ in the

admissible parameter space, one can view

(2.9)

-

as an estimator Eft(;). Since Eft(co) = 0, we can think of

estimating tg by finding the element in the parameter space

‘r
that makes gT(c) small in some sense. To be more precise, choose
a "distance" or weighting matrix S that is R by R and positive

definite, and let i be a minimizer of
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(2.10) J(S,7) = gT(;)'S-1gT(;).

We will describe appropriate procedures for selecting the
distance matrix shortly,.

For a given value of the matrix S, minimizing (2.10) 1is a
standard nonlinear minimization probleﬁ. in practice, an
."acceptable gradient" method could be used to minimize (2.10)
with respect to ;.19 From the viewpoint of this minimization,
formula (2.2) is a great help, since it explicitly characterizes
the complicated cross-equation restrictions that are embedded in
A(L;*). This means that hill-climbing methods using analytical

gradients of (2.10) are feasible. Also gT(c) can be expressed in

terms of

T T
1
(2.11) T[ko(c)t:1zt ® Xt-j + .. + lr+1(C)tj1zt-r-1 ® Xt-j]

for j=0, ..., P. Thus, the vectors of sample moments

1

(2.12) T Z

T
z
=1

® X .
oy bk t=j

for j=0, ..., P and k=0, ..., r need only be computed once and
stored in the numerical minimization of (2.10).

The estimator described above is of the same form as the
nonlinear instrumental variables estimators considered by Amemiya
(1974, 1977) and Jorgenson and Laffont (1974). However, the

results from those papers do not apply to the estimation
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environment considered in this paper because in our model
disturbance terms are possibly serially correlated and
instruments are not necessarily strictly exogenous. Hansen
(1980) provides a treatment of the large sample properties of GMM
estimators under regularity conditions that allow for serially
correlated disturbances and instruments that are not strictly
exogenous. He establishes the consistency and asymptotic
normality of estimators in a class that includes the estimators
considered in this paper. It turns out that the asymptotic
covariance matrix is dependent on the choice of distance matrix
3. However, it is possible to determine an optimal choice of S
that will yield an estimator with the smallest asymptotic
covariance matrix among the class of estimators that use the same
set of orthogonality conditions. Hansen demonstrates that the

optimal choice of S is given by
(2.13) Sf‘ = ji:_me.(j)

where
Rp(3) = ELE (e)fy_ (ep) '],

Note that Sf is the spectral density matrix of the random vector
f(;o) at frequency zero. Under the more special assumptions that
the z process is Gaussian or is a stationary process whose fourth

order cumulants are zero, Sf has an alternative representation



(2.14)

where

(2.15)

If we let

(2.16)

Sf =

P, .
Rx(J)

Si(m)
Rd(j)

Sd(m)

R ()

Sy (w)

4

27

£ BRI ® RE(H)
J:—co
s
1 P
27 | Sd(—m) ¥ Sx(w)dm
J
k1§
X
] ? 1
= E Xe 1 [xt_j, Xt-j-1""’xt-j—P]
Xeop
+o L,
= elmJRi(j)
Jz—w
= Eldgdr_,]
4+ i .
= 1 e u’JRd(j).
j=-o
t
= E[tht—j]
+ .
=z elWIR ()
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then it follows that

B i i p ]
5 (w) el‘“sxw) ce. eF “s (w)
e 1% (w) s (w) . et(P=Dag
X X X
(2.17) 55(‘”’ = i X
-1Pug () e~ (P=Mug (,y . 5 ()
- —

There are some cases in which a researcher may wish to avoid
making assumptions that Jjustify using the representation of Sf
given in (2.14). For instance, consider situations in which
conditional expectations and best linear predictors do not
coincide., A researcher may wish to assume that the projection
equations (1.26) and (1.27) define the linear least squares
projections of Ve and x onto ¢

t+1 £’
that these equations define the conditional expectations of Ve

but avoid making the claim

and xt+1 given current and past x's. In such situations the

representation of Sf given in (2.14) is inappropriate and
representation (2.13) should be used.

Obviously, Sf is- not a matrix that .phe .researcher can
specify correctly a priori. 1In order to obtain an estimator that
is optimal in the sense described above, it is only required that
Sf be estimated consistently. This can be accomplished by using
an initial consistent estimator CT,1’ forming the sample values
ft(cT,1) or x(L;;T,1)zt, and then estimating S, using a procedure

appropriate for estimating spectral density matrices consistently
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employing either formula (2.13) or formula (2.14). With this

E, for the distance matrix, we

g,c) by

estimator of S which we denote S

f’
can obtain an optimal estimator of tg by minimizing J(3

choice of . We denote this minimizer by i o A consistent
?

estimator of the asymptotic covariance matrix for Er 5 is
’
v raTy=1 -1
(2.18) [DT(Sf) DT]
where
T af (¢ )
21 t °T,2

The initial consistent estimator CT,1 can be obtained by
minimizing J(S,+) wusing a nonoptimal choice for S, e.g., the
identity matrix.

This estimation procedure uses R orthogonality conditions to
estimate Q parameters. For most applications R is greater than
Q. Estimation of the Q parameters in essence sets Q linear
combinations of the sample orthogonality conditions to zero, via
the first order conditions for (2.10). This leaves R=Q

independent linear combinations of the orthpgonality conditions
fhat are not set to zero in estimation but that should be "close
to zero" if the restrictions implied by the model are true. This
provides us with a scheme for testing these restrictions. Hansen
(1980) shows that TJ(SE,;T,Z) is asymptotically distributed as a
chi square with R-Q degrees of freedom under the null hypothesis

that the restrictions are true. Since J(SE,CT 2) is the
?
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minimized value of the criterion function J(Sg,’) for the second
step optimal estimator, this test statistic can be computed
easily.

The estimation scheme described above does exploit the
serial correlation properties of the disturbances to construct an
optimal estimator; however, a researcher 1is free to adopt a
relatively general speéification of the temporal covariances of
these disturbances. This is an 1important advantage of this
proéedure over maximum likelihood procedures. Maximum likelihood
requires a more precise specification of the temporal covarilance
structure of the instrumental variables and disturbances. There
is an additional computational advantage in that one can estimate
the parameters g, p, 6, and y by numerically searching over a

smaller parameter space using this instrumental variables

procedure than is required by maximum likelihood procedures.

2b. Estimators Using All Available Orthogonality Conditions

In constructing the GMM estimators described above, a-.fixed
number R of orthogonality conditions was employed independent of
sample size. On the other hand, there is an infinite number of
orthogonality conditions available to use in estimation, as is
indicated by (1.28), (1.29) and (1.30). While the GMM estimators
described above use the R orthogonality conditions optimally, the
only Jjustification for restricting attention to these
orthogonality conditions is computational simplicity. Typically
by adding additional orthogonality conditions to the list used in

estimation, it 1s possible to construct an estimator with a
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smaller asymptotic covariance matrix. For this reason we now
discuss how to use all available orthogonality conditions
"optimally". This discussion takes place under the special
assumptions that were used to Jjustify representation (2.14) of
Sf.

Let Wj be an (n x p) matrix lag operator for j =1, 2, ...,Q
" where n = p + 2. w¢ impose the restriction that wj be one-sided
for each j, that is, -

0 1
(2.21) Wj(L) = Wj + ij + ee.

Furthermore, assume that the elements of {W?};_O are square

summable for each J. We can think of estimating %0 from the Q

orthogonality conditions

(2.22) E dé[wj(L)Xt] = 0

for j =1, 2, ..., Q. These orthogonality conditions are implied

by the orthogonality conditions (1.28), (1.29) and (1.30). We

can write

(2.23) dé[wj(L)xt] = d1t[wj1(L)xtj + dzt[wjz(L)xt] ...+
dnt[wjn(L)xt]

th row of W..

J
Let us stack the "weighting" lag operators wjk into a matrix W as

. th .
where dkt is the k~ element of dt and wjk is the k

follows:
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(2.24) W(L) = [ij(L)],

i.e., W(L) is a partitioned matrix polynomial in the lag operator
with ij(L) in the jth row and kth column partition. Note that
W(L) is (Q x N) where N = pn. '

In order to estimate % using W, we can think of finding S

in some admissible parameter space that satisfies the nonlinear

equations
7 T
. ! -
for j = 1, 2, ..., Q. Recall that d_ = Ax(Ljg )z, so that (2.25)

is just a sample version of (2.22). Practically speaking, there
are difficulties in implementing this strategy. The 1lag
polynomial W is allowed to be an infinite order polynomial and
thus (2.25) may involve obseévations that are not available.
Criterion function (2.25) can be approximated by letting x be
equal to zero for all time periods in which observations are not
available. It turns out that this has a negligible impact on the
asymptotic distribution of the estimator. Hansen (1981)
establishes consistency and asymptotic normality of estimators of
the form specified in (2.25) wifh relatively arbitrary choicés
for W. As is true for the finite orthogonality condition case,
the asymptotic covariance matrix of the estimator is dependent on
the choice of the weighting operator W. Our purpose here is to
describe the optimal choice of W and suggest ways to construct

optimal estimators in practice.



33

Before representing an optimal estimator, we provide an
expression for the asymptotic covariance matrix of an estimator
that uses a relatively arbitrary choice of W. Let D[W] be the

(Q x Q) matrix given by

— —
) aA(L;;O)
[w.] (L) Xt] -———a—C—-——zt
_y : ax(L;;O)
Wa(L)x,]' ————2z
(2.26) DIW] = E 2"t AL
. ax(L;;o)
L[WQ(L) Xt] ——-'—a—;—-'——zt

We restrict our attention to choices of W for which DIW]l is

20

nonsingular. Assume that Sd can be represented as

(2.27) 54(-w) = c(e®yc(et?)r
where
(2.28) K(ei“) = 3 g.etwd
j=0 °
1 [trace (ege 172 < o

j=0

det ¢(z) # 0

N

I
—_
.

We let
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(2.29) S(W) = 5= § Wel™ S (~0) ® s, (D u(e™ rdu.

Hansen demonstrates that the asymptotic covariance matrix of an

estimator using weighting scheme W is given by
(2.30) DWW~ 's(wDW .

In order to obtain an optimal choice of W, we can minimize (2.30)
by choice of a one-sided matrix lag operator W. Hansen solves
this optimization problem and obtains an explicit character-
ization of the solution. The one-sided constraint on W 1is
imposed because we do not assume that the instruments are
strictly exogenous. This constraint is, in general, binding.

To obtain an explicit solution to this optimization problem,

let

ax(L;cO)

(2.31 EL Y zt{Qt] = [B1(L)xt B2(L)xt e BQ(L)xt].

The optimal weighting lag operator W¥ is given by
-1 -1,-1 -1
(2.32) Wg(L) = «(L) [e(L ) Bj(L)Y(L) ]+Y(L)
for j =1, ..., Q. The optimal weighting scheme is dependent on

the serial correlation properties of the disturbance via «, the

serial correlation properties of the instruments via y, and the
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projection given in (2.31) via Bj' The asymptotiec covariance

matrix of this optimal estimator is provided below. Let

- -
Hj1(L)
H (L)
(2.33)  Hyw) = Le@w™H7TB @ v DI = |

Hjn(L)

for j=1, 2, ..., Q where ij(L) is (1 x p). Let
(2.34) H(L) = [ij(L)].

The asymptotic covariance matrix of an optimal estimator is given

by

(2.35) ;Tt H(el%[I ® VIH(e ¥ 1dy = DCW*) ™! = s(w*)" !

q em———

- \
.where V = E[etet]. |
In order to construct an optimal estimator, it is necessary
to have consistent estimators of w*, or equivalently consistent

estimators of K; vy and Bj for j =1, 2, ..., Q.21

To accomplish
this, the fixed, finite orthogonality condition GMM procedure
discussed earlier can be used to obtain a consistent estimator

Using this estimator, estimated disturbances

1, T
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(2.36) dt,T = A(L;cT’1)zt
can be formed for t = 1, 2, ... T. These disturbances can in
turn be used to estimate the parameters of «,. One practical
strategy 1is to estimate «x by running a finite order forward
vector autoregression. A key point is that these estimators are
constructed so that misspecification of the serial correlation
properties of d does not damage consistency but only the
optimality of the resulting estimator. To achieve optimélity,
the choice of order of this vector autoregression should be an
explicit_function of sample size in cases in which d is allowed
to have an infinite order vector autoregression representation.

Hansen (1981) discusses this issue.

A consistent estimator of y 1is embedded in since a

"1,T

subset of the parameters of ty are the parameters of .

Estimates of Bj for j = 1, ..., Q can be obtained from Tq T and
?

estimates of ¢ where

(2.37) E[At!¢t] = (L)%, .

One possibility is to estimate ¢ with a finite lag approximation
‘using ordinary least squares. The lag length could be treated as
fixed a priori or as an explicit function of sample size. A

second strategy is to estimate

(2.38) A = E(L)Xt + Vv

t t
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2

Jointly with (1.25), (1.26), and (1.27).2 Equation (2.38) has

the associated orthogonality condition
(2.39) E[Vtxt-j] =0

J 2 0. It turns out that if this joint GMM estimation is done
using an optimal weighting scheme, the résulting parameter
estimator is asymptotically equivalent to maximum likelihood.
The computational advantage of using the procedures we propose
over maximum' likelihood 1is that the parameters of « are not
estimated simultaneously with the rest of the parameters of the
model.23 Our procedures can avoid estimating « altogether or in
cases in which asymptotic efficiency 1is desired, initial
consistent estimates of the parmeters.of k are employed.

Before concluding this section, it is useful to compare the
estimators we a}e proposing with estimators suggested by Hayashi
and Sims (1980). It turns out that this comparison will provide
us with a useful interpretation of (2.32). Hayashi and Sims
suggest that instrumental variables estimators be constructed by
first filtering the disturbance term forward to remove serial

-1

correlation. In other words, apply K(L—1) to d to obtain

(2.40) w, = (L™ T4

t t

where wt is a white noise and is orthogonal to all future d's.

Now we can think of estimating o using orthogonality conditions

of the form
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.] =0

(2.41) E[wt®xt-3

for j > 0. Since w is obtained from d using a forward filter,
orthogonality condition (2.41) 1is implied by orthogonality
conditions (1.28), (1.29) and (1.30). Hayashi and Sims discuss
estimation of models that are linear in parameters anﬁ variables
using'a finite number the orthogonality conditions like those in
(2.41). They compare tﬁese forward filtered estimators to ones
which employ a fixed finite number of orthogonality conditions
without forward filtering and illustrate some advantages of
forward filtering. They also investigate the limiting behavior
of the asymptotic covariance of both estimators as the number of
orthogonality conditions employed gets 1arge.24

Let us now consider this form of the optimal forward
filtered estimator using all of the orthogonality conditions. 1In
particular, we consider estimators that use orthogonality

conditions of the form

(2.42) E[wé[cj(L)xt]l =0

C C

17 2’ * ey Q
optimally. Since the w's are linear combinations of the current

for j = 1, 2, ..., Q and wish to choose C

and future d's, the optimal forward filtered estimator has
asymptotic covariance matrix (2.35). In fact from (2.31), it is

evident that an dptimal choice of C's is

(2.43) CY(L) = [K<L‘1>‘1Bj(L)y(L)‘1]+y(L).
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Using this optimal choice of C's will result in an estimator that
is asymptotically equivalent to an estimator constructed using
the W§'s given in (2.32). Equation (2.43) turns out to provide

the solution to an optimal prediction problem. Using the

Wiener-Kolmogorov prediction formula we can verify that

1ax(L;z;O)ztl
IQt

(2.44) El (L")~ 1= Cy(Lx,.

BCJ‘
Thus, if we first filter the equations (1.28), (1.29) and (1.30)
forward to remove serial correlation and then project the partial

derivatives onto the set of instrumental variables we can

2
obtain an optimal set of instruments to use in estimation. This
is consistent with more conventional instrumental variables
25 -1)—1’

however, requires the solution of a nontrivial prediction problem

estimators. The application of the forward filter «(L
(2.44) to obtain an optimal estimator which is essentially the

same computation as is used in calculating W¥.
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3. A Comparison to Estimators Constructed from Euler Equations

In this section we examine three alternative instrumental
variables methods for estimating the parameters of dynamic
quadratic objective functions of economic agents. The first
method is one proposed by Kennan (1979) and Hayashi (1980) that
estimates the parameters directly from the Euler equations
implied by the optimization problems- of economic agents. The
second method is one proposed by Hansen and Sargent (1980) that
solves the Euler equations, exploits the symmetry between the
feedforward and feedback portions of this solution, and imposes
restrictions across the feedforward portion of the solutiqn and
the stochastic specification of the observable forcing variables.
It turns out that this second method ignores some restrictions
across the feedback part of the solution and the stochastice
specification of the observable forcing variables. For this
reason we consider a third method that 1imposes all of these

restrictions. While the first method is computationally simple
and requires that less be said about the economic environment a
priori, it also ignores restrictions and consequently results in
parameter estimators that are asymptotically less efficient than
the estimétors that emerge from the second and third methods.

The 'propbsals' made in section two about estimating the
parameters of the consumption model can be modified 1in a
straightforward way to accommodate any of the three methods. For
this reason, we will not say very much about estimation here, but
instead we will describe the restrictions used by each of the

methods. To accomplish this, it is convenient to shift from the
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consumption function example used in sections one and two to the
the factor demand example mentioned in the introduction.
Following Hansen and Sargent (1980) we assume that a
competitive firm employing a single factor of production chooses
a contingency plan for the factor to maximize 1its expected

present value

(3.1 EC 1 p3Cay - ypmg - (e/2)nf - (4/2)(ny - ny PFNiag)

0
subject to n_, given, where n_ is employment of the factor at

time t, Vi is the real factor rental at t, and a is the time ¢t

technology shock observed by the firm but not by the econo-
26

metrician. Here ¢ and s are positive parameters. As in
section one, assume that there is a (p x 1) vector Xy that 1is
included in agents' time period t information set gt and that
satisfies

(3.2) E[atxt_j] =0

J > 0. Again, a has mean zero but can be serially correlated.
The random variabl§ at can be correlated with yt and future x's
and still satisfy (3.2). | '

The stochastic Euler equation for optimization problem (3.1)

is

(3.3) Ent+1=nt + oqny + TN g = 03V - Ogdy
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where
G = -[(e/8) + 1 + 8]
1 B
=1
(3.4) o, = 3
__1 et
0'3 -63 .

Following a suggestion of McCallum (1976), we can add Nyq =

En 19, to both sides of (3.3) to obtain
t+1 t

(3.5) Be1 * 9qPg + Opfpoq T 03V T o33p * Ny g - BN qigg.
Associated with (3.5) is the orthogonality condition

(3.6) ‘E[(-o3at 0 .- Ent+1=gt)xt-j] = 0
j > o. Orthogonality condition (3.6) 1is implied by condition
(3.2) and the assumption that x, 1s an element of .

The Euler equation approach suggested by Kennan (1979) and
Hayashi (1980) applied to this example entails constructing
and

estimators of S 47 from fthe orthogonality conditiop

_ , 72 3
(3.6). Estimators of s, ¢, and B can then be obtained from the
estimators of T1s Oy and o3 by using the three equations 1in
(3.4). An advantage of this procedure is that closed form
expressions can be obtained for the estimators of ¢§, ¢, and 8,

and that numerical search procedures are not required ¢to

calculate the parameter estimates. Although this method does not
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require that the projections of Ne 19 Dy e g5 and Ve onto the

reduced information set Qt = {Xt’ Xt-1’ ...} be parameterized, it
does implicitly assume that such projections are time
invariant.28 The alternative two methods parameterize these

projections and obtain further restrictions across them. Notice
that the Kennan-Hayashi estimator based on (3.6) ignores the
transversality condition, which 1is among the first order
necessary conditions for the optimum problem. The alternative
two methods incorporate the restrictions implied by the
transversality condition.

We proceed to characterize these alternative methods of

estimationT As in section one, we assume that
(3.7) Ve = 0(LIx, + ug

(3.8) Xpq = 1 (LIxg + e,

where

(3.9) Eutxt—j =0

(3.10) Eet+1xt-j =0

for j > 0. Following Hansen and Sargent (1980), we solve the
Euler equation, subject to the transversality condition, to

obtain



(3.11)

where

(3.12)

uy

- - : J _ .
Ny = an_, (§/s)jfo(xe) E(yt+j at+j).nt
-0y - /012 - 402

Notice that A is 1less thén one and that decision rule (3.11)

possesses a symmetry property since i is the feedback coefficient

and enters into the feedforward geometric sum.

Using a strategy

analogous to that employed in section one, we rewrite (3.11) as

(3.13)

where

(3.14)

Solving

(3.15)

where

- - > J ' *
n, = Ant-1 (l/s)jﬁo(xs) Eyt+j'¢t 8+ ak
- J 1 _ !
st = (A/‘s)jfo(ls) (Eyt+J|¢t Eyt+J|9t)
_ N 3
at = (A/G)jfo(ls) Eat+j::zt

the prediction problem in (3.13) we see that

n =

¢ Ant_1 + vr(_L)Xt + 8

*
t+at
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(L) - 8L To(a8) y(A8) ™' y(L)
(A8 — ]
1 - ABL

(3.16) n(L)

9

G(L) =T = Ly(ny.2

Equation (3.16) summarizes the restrictions across the feed-
forward part of the decision rule and the law of motion for x.

Using the definitions of s_ and a* in (3.14) and an iterated

t t
projection argument we obtain the orthogonality condition

(3.17) E[(St + a%)x ] =0

t=J
for j > 0. Thus n(L)xt is the projection of n, - An._, onto the
reduced information set o, _. Modifying a strategy proposed in

t
Hansen and Sargent (1980), one can construct estimators of the

underlying parameters §, ¢, and B together with the parameters of

§: and y1

from the orthogonality conditions (3.9), (3.10), and
(3.11).30 These estimators do not have closed form representa-
tions, and numerical search procedures are needed to compute
them.

Since the second method is computationally more difficult
than the first wmethod, it 1is important to ascertain' whether
additional restrictions are exploited by the second method. To

answer this question, observe from (3.5), (3.6), and (3.7) that

the first method exploits the restrictions implied by

(3.18)  EL(L™' + oy + aplingieg] = og0(L)x,.
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The operator . o, + o,L) can be factored to obtain

(3.19) L s o, + ool = LTV - (1728))(1 = AL)
1 2

where A < 1. Thus, relation (3.18) can be written
1 ! -
(3.20) ELCT - AL)nt+1n¢t] - (1/x8)E[L(1 = AL)nt.¢t] = 039(L)xt'

In other words, one can interpret (3.18) as a set of restrictions

across the projections of (1 =- xL)nt+ and (1 - AL)nt onto o -

1
That is, if we let

(3.21) ECCT - Aldngie 1 = w(L)x,

(3.22) ELCT = aldng qie.] = w(L)x,,

then (3.18) implies that

(3.23) T(L) - (1/aB)w(L) = 039(1..).

Now it turns out that given the projections of (1 - AL)nt

and X1 onto Qt it is possible to compute the projection of (1 - '

AL)n onto 9,. To see this note that
t+1 t

(3.24) E[(1 - Al)n w(L) x

t+1

1
= ﬂOXt+1 + 7 (L)Xt-

1
t+1'¢t+1]
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Projecting onto Qt we see that

(3.25) EL(1

ALYy el = [ngy (L) + w0 (L) Ix,,

and hence

(3.26)  T(L) = myy (L) + (L),

While the first method exploits only restrictions (3.18), it can
be verified that the specification of #(L) in (3.16) satisfies
both (3.18) and (3.26). Thus the second method does indeed
impose more restrictions than the first method.

This raises the question of whether there are any additional
restrictions that can be exploited in estimation. It turns out
that there are. To see this notice that the second method works
with the projection of the quasi-differenced form (1 - xL)nt
onto ¢ but does not exploit the link between the projections of

t

n, and LI onto o - In particular, let

(3.27)

En fe, = n(L)x,.
The second strategy uses the fact that

(3.28) a(L) = an(L) = (L)
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where (L) satisfies (3.16). Following the same logic as above,

there exist additional restrictions that link 7(L) to n(L) and

71(L). More precisely, note that

(3.29) 'ﬁ(L)xt E[Ent:¢ te, ]

t+1 t

1

1
E[n(L)xt+1|¢t

1 '
E[noxt+1 + 1 (L)xt:¢t]

[nov1(L) + n1(L)]xt.

Thus,

(3.30)  R(L) = ngy (L) + n'(L).

Combining (3.28) and (3.30), we see that

(331 agy (L) + n'(L) - ang - ALn' (L) = w(L)

where 7w(L) is given in (3.16). SolVing for the operator n1(L),

it follows that

:
7 (L) Ang ngy (L)

- AL) T 7 AL T 71 - aL”

1
(3.32) n (L) = (7

Therefore
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(3.33) (L) + Ln (L)

0

. _La(L) ng v(L)
R SR G A

An estimation method that imposes more restrictions
than either of the two procedures mentioned previously is to

estimate the projection équations

(3.34) n,_q = n(L)xt + vy

where

Evtxt—j = 0

for § > 0, (3.7), and (3.8) Jjointly subject to restrictions

(3.16) and (3.33). ‘The parameters to be estimated under this

31

strategy are B, §, €, and the parameters of o(L) and 71(L).

T'I07
Projection (3.34) accommodates the possibility that the

projection of n, onto current, past and future x's is two-sided.

t
If "o is not zero, it follows from a theorem in Sims (1972) that

the observable forecing variables x, are not strictly exogenous in

t
é regression of n, onto currenﬁ and past x's. éonsiétent with
our previous proposals, this procedure uses the x's as
instruments but does not assume that the x's are exogenous.

In comparing the three methods, we conclude that the Euler

equation approach to estimating dynamic 1linear rational

expectations models is computationally simpler and requires that
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less be specified a priori. On the other hand, it ignores
restrictions and yields estimators that are asymptotically 1less
efficignt than estimators that exploit restrictions across the
decision rule parameters and the parameters of the stochastic
process assumed to generate the observable forecing variables. It
is important to realize that even though the Euler equation
approach does not require an explicit stochastic specification of
the observable forecing variables, this does not mean the
resulting instrumental variables estimators will be more robust
against alterations in policy regimes that occur during the
sample period. As noted previously, the Euler equation approach
implicitly assumes that the projections of the variables onto the

32

instruments have time invariant representations.
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Conclusion

In building rational expectations econometric models, a
researcher is often confronted with an estimation environment in
which disturbance terms are serially correlated and instruments
are not strictly exogenous. This paper proposes a class of
estimation procedures that are appropriate in this environment.
In this paper we have shown how to construct estimators from an
underlying set of orthogonality conditions implied by the econo-
metric model. A whole class of consistent and asymptotically
normal estimators has been described. A researcher can take into
account the tradeoff between computational simplicity and the
size of the asymptotic covariance matrix of the resulting
estimators in deciding which of these procedures to employ. We
have also shown how to construct tests of the restrictions
implied by the econometric model using these instrumental
variables procedures. Al though our econometric discussion took
place mainly in the context of a rational expectations, permanent
income consumption function model, the estimators we propose are

applicable to many other examples of linear rational expectations

models.
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NOTES

For further exposition of this example, see Sargent (1977,
1979) .

This and related examples are described in Sargent (1979).

For a description of this example, see Hall (1978) and
Sargent (1978). ’

A few simple examples exist that use maximum likelihood
estimators that explicitly take account of feedback from the
left-hand side variable to Vi * For example, see Sargent
(1977) .

For example, see Hansen and Sargent (1980).

See Kydland and Prescott (1977) and Sargent (1980) for
discussions of how linear dynamiec competitive equilibria can
be calculated when there is feedback from market-wide values
of agents' decision variables to prices or incomes that
individual agents view as uncontrollable.

There are some important empirical issues outstanding in the
literature on consumption that relate to the definitions of
A, and vy, . These issues include whether government bonds
and social insurance obligations should be included in
nonhuman wealth, and how future tax liabilities required to
service these claims should be treated.

It is the presence of the transitory consumption term that
differentiates the consumption model here from the one
considered by Hall (1978). Hall's short-cut econometric
procedure relies critically on the absence of this
transitory consumption term [see Flavin (1980)]. Our
definition of permanent income differs from that used by

Sargent (1978) because of our inclusion of nonhuman assets

in our measure of permanent income.

If we take (1.4) 1literally, it implies that a stochastic
Singularity exists in the joint (e, y, A)' process. We
assume that this singularity does not exist. Instead we
implicitly assume that there are shocks to this budget
contraint which might take the form of unobservable (to the

econometrician) components of income.

An alternative way to derive the model given in (1.1) and
(1.2) is to follow Hall (1978) and assume that a
representation agent solves a time-separable, quadratic
optimization problem subject to a 1lifetime budget
constraint. The 1imposition of the 1lifetime budget
constraint in effect imposes (1.5). Under the assumption
that the subjective rate of time preference is less than o,

the parameter B8 is greater than one. The transitory
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consumption terms could be interpreted as combinations of
shocks to preferences and shocks to the budget constraint
(1.4). With these assumptions, a model of the form given in
(1.1) and (1.2) can be obtained in which all of the
observable (to the econometrician) variables are measured as
deviations from their unconditional means.

In general, even under (1.9), ¢ will Gr anger-cause x. In
fact, c¢ would in general Granger-cause x even if (1.9) were
extended to hold for all Jj, and not just j > 0.

The idea of replacing the information set @ with a subset
¢., thereby adding an error term like Sy, Was suggested by
Sﬁiller (1972) in his study of the “term structure of
interest rates, and was exploited in a related context by
Hansen and Sargent (1980).

The 1law of interated projections states that E(yix) =
E(E(ylx,z)x) where y, x, z are random variables and E is
either the mathematical expectation or the 1linear least
Squares projection operator.

See Rozanov (1967) for a definition of covariance sta-
tionary, 1linearly indeterministic. In formally verifying
the large sample properties of the estimators we propose in
the next section, Hansen (1980) strengthens this assumption
to require strict stationarity. In order for these
stationarity assumptions to be consistent with the budget
constraint (1.4), it 1is necessary to restrict g to be
greater than one. In the discussion which follows, all
variables will be viewed as deviations from their
unconditional means.

We are also assuming that the covariance matrix of e has
full rank. In order for these stationarity assumptions to

be consistent with the budget constraint (1.4), it 1is

necessary to restrict g to be greater than one. In the
discussion which follows, all variables will be viewed as

deviations from their unconditional means.

See Whittle (1963) for derivation of the formula and
examples showing its usefulness.

It is a well-known result from linear prediction theory that
the orthogonality conditions (1.29) and (1.30) uniquely
define elements Vg e o, and w, e ¢ such that

Vg = Vg = Ug

Xgr1 = Wy = € g

The parameters of y1 and ¢ given in (1.26) and (1.27) are

identified as 1long as the lag operators are not over
parameterized in the sense that If y'#* and o* correspond to
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a vector in the admissible parameter space other than the
true parameter vector, then

a(L)*x, # e(L)xt = ¥,

t

y1(L)*X £ Y1(L)Xt = W

t £
The identification and estimation strategy being discussed
is a limited information one since it does not take into
account the restrictions implied by the budget constraint
(1.4). If we introduce a shock to this constraint that is
orthogonal to Qt and project both sides of (1.4) onto @t we
obtain :

/s

1 - 1
E[At+1.¢t] = (1+p)E[At|¢t] + (1+p)E[yt L
This equation 1imposes constraints on §g(L). Using the
procedures described in section three, it can Dbe verified
that

1 - (1+p)E[ct!¢t].

E(L) - foYE)L(1e0)[6(L) - w(L)]
- (1-aL) (7T = D)
where » = 1 + (1-8)p and EO is a (1 x p) vector of
parameters. Imposing these restrictions 1implies the

projection equation:

[y + 0(8)y(8)™ ']

- _Bo
Elegiog] = 77 T =L {Loxy
Estimating the projections of c_, At and x . onto oy

subject to the restrictions given a%ove imposes more
information than the strategy illustrated in the paper. The
estimators which we propose in section two can be modified
in a straightforward way to accommodate these extra
restrictions.

See Bard (1974) for a description of such methods.

Alternatively, we could avoid imposing this restriection, and
whenever DI[W] 1is singular, interpret the asymptotic
covariance matrix of the estimator as infinite. ' '

In general, « and B, for j =1, 2, ..., Q are infinite
order lag polynomials.” The sense in which the coefficients
of these lag polynomials have to be consistently estimated
is discussed in Hansen (1981).

If &g(L) = + 5y, L + ... + 3 LY if equations (2.38),
(1.25), (1. 269 and (1.27) are estlmated Jgﬁntly, and if the
disturbances are specified as an order vector

autoregressive process, the optimal flnlte orthogonality
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condition GMM estimator described in section 2a is optimal
in the broader infinite orthogonality sense when P is chosen
to equal r + m. When a version of budget constraint (1.4)
is added to the equations used to derive the restrictions,
it is no longer appropriate to assume that &(L) is a finite
order polynomial (see footnote 18). In such circumstances,
presample x's can be set zero and estimation can proceed
even though g(L) is infinite order [see Hansen [1981)].

The fact that e is a white noise imposes restrictions on the
spectral density of d. For computational purposes, it is
convenient to ignore these restrictions in estimating «.

Hayashi and Sims (1980) provide the interpretation given
below of the optimal weighting scheme, but they do not
explicitly characterize it. Rather than discussing how to
construct optimal estimators, Hayashi and Sims illustrate
that by driving the number of orthogonality conditions to
infinity, the asymptotic covariance matrices of the
estimators approach a limiting covariance matrix like
(2.35).

See Amemiya (1977). This link is pointed out by Hayashi and
Sims (1980) in the context of models that are linear in
parameters and variables.

We suppressed the linear term in the objective function
Since we are assuming that the random variables all have
mean zero.

See Sargent (1979) and Hansen and Sargent (1980).

In light of White's (1980) work on instrumental variables
estimators in cross-sectional analysis, this is a bit of an
overstatement.

This can be established using the lemma in Appendix A of
Hansen and Sargent (1980).

Hansen and Sargent (1980) assume that Ve is in Qt’

The projection of n, onto ¢ is constrained to have a
derfominator term (1 --1LY. Thus” hypothetical disturbances
depend on infinitely many past x's. As noted in footnote
22, an argument in Hansen (1981) shows that pre-sample
period x's can be set to =zero.

As pointed out in footnote 28, this is a bit of an over-

statement. However, it is not clear that what people have
in mind when considering alterations in policy regimes 1is
accommodated by the types of deviations from stationarity
that White allows in his framework.
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