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ABSTRACT

This paper shows how the cross-equation restrictions implied by
dynamic rational expectations models can be used to resolve the
aliasing identification problem. Using a continuous time, linear-
quadratic optimization environment, this paper describes how the
resulting restrictions are sufficient to identify the parameters
of the underlying continuous time process when it is known that
the true continuous time process has & rational spectral density
matrix.

The views expressed herein are those of the authors and not neces-
sarily those of the Federal Reserve Bank of Minneapolis or the
Federal Reserve System.
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INTRODUCTION

This paper proves two propositions about identification
in a continuous time version of a linear stochastic rational
expectations model. The model is a continuous time version of
Lucas and Prescott (1971), in which the equilibrium can be inter-
preted as the solution of a stochastic control problem, either of
a collection of private agents or of a fictitious "social plan-
ner." Estimation is directed toward isolating the parameters of
the "agent's" objective function and of the stochastic processes
of the forcing functions that the agent faces. This approach has
been advocated by Lucas (1967, 1976), Lucas and Prescott (1971),
and Iucas and Sargent (1981) as offering the potential to analyze
an interesting class of policy interventions promised by "struc-
tural” models, while meeting the criticisms of most econometric
policy evaluation methods that were made by Lucas (1976). At the
same time, inspired by the work of Sims (1971), Geweke (1978), and
P. C. B. Phillips (1972, 1973, 19Tk), we want to estimate models
in which optimizing economic agents make decisions at finer time
intervals than the interval of time between the observations used
by the econometrician. We adopt a continuous +time +‘heoretical
framework both because it is an interesting limiting case, and
because it has received extensive attention in the theoretical and
the econometric literatures.

Identification of the parameters of a continuous time
model from discrete time data must confront the aliasing problem
(see, e.gs, Phillips 1973). In general, there is an uncountable

infinity of continuous time models that are consistent with a
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collection of discrete time observations. However, with finite
parameter continuous time models, the aliasing problem, while
still present, is less severe. The dimensions of the aliasing
identification problem for the particular class of finite param-
eter models treated in this paper have been studied in earlier
papers by P. C. Be Phillips (1973) and Hansen and Sargent (forth-
coming). In these finite parameter models, there is a finite
number of observationally equivalent continuous time models that
are consistent with the discrete time observations. To achieve
identification of the continuous time model, an additional source
of prior restrictions is needed. This paper shows how the non-
linear cross-equation restrictions implied by rational expecta-
tions achieve identification of the continuous time model.

We consider a linear rational expectations model that
gives rise to systems of stochastic differential and difference
equations that resemble the forms of Phillips's (1973) systems.
However, we analyze identifying restrictions of a different vari-
ety than those studied by Phillips. As Lucas (1976), ILucas and
Sargent (1981), and Hansen and Sargent (1980a, 1980b, 1981) have
pointed out in several related contexts, even rational expecta-
tions models that are linear in the variables typically are char-
acterized by sets of highly nonlinear cross-equation restrictions,
which to a large extent replace the linear (usually exclusion,
usually within—equatiox;) restrictions used to identify many exist-
ing time series models.

The intuition underlying our results is as follows. In

dynamic rational expectations models, agents' decisions partly
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depend on their expectations of all future values of other vari-
ables in the model. When agents are acting in continuous time, a
discrete time record of agents' decisions contains information
about their forecasts of other variables in the model for all
instants in the future. Under rational expectations, the hints
about agents' views of the future contained in their decisions at
discrete points in time restrict the actual behavior of these
other variables as stochastic processes in continuous time. These
hints are the source of identification that we propose to utilize.

We prove identification propositions under two alterna-
tive sets of conditionse. The first set of conditions severely
restricts the serial correlations of the unobservable disturbance
term, although it does not require that the right-hand-gide ob-
servables be strictly exogenous. The second set of conditions
leaves the serial correlations of the disturbance unrestricted but
imposes that the right-hand-side variables mst be strictly exoge-
nous in continuous time and that they have a rational spectral
density matrix. TIdentification is then achieved from the restric-
tions that the theory imposes between the projection of the en-
dogenous on the exogenous variables, on the one hand, and the
spectral density matrix of the exogenous variables, on the other
hand. This second set of conditions thus uses an approach to
identification in the spirit used by Hatanaka (1975) in the con-
text of discrete time models. Our results exhibit a tradeoff
between the strength of strict exogeneity and serial correlation
assumptions that are sufficient for identification. A similar

tradeoff occurs in discrete time series models.



THE CONTINUOUS TIME MODEL

The model studied is a continuous time, linear-quadratic
version of a Lucas~Prescott model of investment under uncer-
tainty. This model has a variety of possible interpretations,
applications, and extensions (for example, see Hansen and Sargent
1981, Eckstein 1981, and Eichenbaum 1981). For the identification
propositions proved here, a single factor model involving a single
dynamic decision variable is used. In the appendix, we briefly
indicate how the results might be extended to prove identification
of continuous time, interrelated factor models from discrete time
dataug/

Congider a firm or fictitious social planner that maxi-

mizes over strategies for K(t) the criterion

(1) E, f J[K(t),DK(t),t,zl(t),y(t)]dt
0

where
J[k(t),DK(t),t,2q (t) ,¥(t)]
= {y(£)K(t) - BK()2 - 2 (t)DK(t) - a[DK(t)]2}e T,

where D is the time derivative operator, and where Etlis expecta-
tions operator conditioned on information available at time period
t. Here K(t) is the capital stock, z,(t) is the relative price of
investment goods, y(t) is a random shock to productivity, all at
time period t, o and B are positive constants, and r is a fixed
discount rate. The variables zl(t) and y(t) are elements in a

vector stochastic process of forcing variables. Using results
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from Hansen and Sargent 1980b, the Euler equation for the cer-

tainty equivalent version of the firm's maximization problem is
(2) -aD?K(t) + roDK(t) + BK(t)
= —(1/2) [rz(¢) - y(t) - Dz (¢)].

For simplicity, we assume that the discount rate is zerovél The
characteristic polynomial for the Euler equation (2) can be fac-

tored
—as2 + B = (p-s) (p+s)a

where
- .JB
P =qlg e
The solution to the Fuler equation (2) that maximizes (1) is

(3) DK(t) = -pK(t) - (1/2a) E, f°° e_pT[Dzl(t+T) + y(t+t)]ar.
0

We seek to identify p, a, and the parameters of the stochastic
processes of the forcing variables from discrete time datar&/ To
provide an interpretation of the error term in equations fit by an
econometrician, we assume that y(t) is observed by private agents
but not by the econometrician. Let z(t)' = [z;(t),2,5(t)'], where
zz(t) is a list of additional variables which are seen by both
private agents and the econometrician and which help predict
future zl's. The econometrician knows the discrete time covario-
gram and cross-covariogram of the (K,z) process and from these
moments seeks to identify the parameters p and a that characterize

the continuous time objective funetion (1) and the parameters of
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the continous time stochastic process governing (z,y). We study
this identification problem using two alternative specifications

of the continuous time stochastic process (z,y).
IDENTIFICATION WHERE (K,Z) IS A FIRST-ORDER MARKOV PROCESS

In this section we make a special assumption about the
forcing variables that is sufficient to imply +that (K,z) is a

covariance stationary, first-order Markov process. Specifically,

Assumption 1: The forcing variables y(t) and z;(t) are

governed by2/
y(t) = De#(t)
and
(&) Dz(t) = A,,z(t) + eX(t)

where zl(t) is the first element in the n-1 dimensional vector
z(t), the elgenvalues of Asp, have negative real parts, and e* =
[e*,eg] is an n dimensional vector white noise with intensity

matrix Vg. —6-/

Note thg.t Assumption 1 allows e‘i"_ and eg to be correlated contempo-

raneously.

Using (k) and the results from Hansen and Sargent 1980b
to solve the prediction problem on the right side of (3), we

obtain

(5) DK(t) = —pK(t) - (1/20)us [, 117" =(t) - (1/2a)e# (%)
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where u is the n-1 dimensional unit row vector given hy u =
[1,0]. We let &' = [(—l/2a)e*,eg], and we stack equations (L) and

(5) into the vector first order differential equation system:

DK(t) A A, K(t) el(t)

Dz(t) Ay Ay, z(t) sz(t)

or
Dx(t) = on(t) + e(t).

The partitions of the Ag matrix satisfy the restrictions

Ajp = -9
Ay =0
(6) App = (-1/2a)ubps Ay, - pI]7L.

While the restriction on A21 is a zero restriction, the restric-
tions linking A1, A12, and A22 are highly nonlinear. Phillips
(1973) has considered the impact on identification of the zero
restriction on A21'1/ It happens that this exclusion restriction
by itself is not sufficient to identify the parameters of A22 and
A12. However, we shall show that once we add the nonlinear cross-—
equation restrictions implied by rational expectations, it is
possible to identify p, a, Asp, and, consequently, Ao and All'

It was shown by Phillips (1973) that the discrete time
process X obtained by sampling x at the integers has a Ffirst order

autoregressive representation,§/

X(%) = ByX(t-1) + n(t)
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where

By virtue of the fact that € is a continuous time white noise, it
follows that n is a discrete time white noise. The parameters of
BO are identified from knowledge of the discrete time matrix
covariogram of the X = (K,z) process.

We pose the following identification question: given
the matrix BO, is it possible uniquely to determine the free

parameters of the matrix AO?2/ That is, does the matrix equation

(7) expA* = B; = exph,

imply that A¥ = AO? We shall prove that the answer is yes. To

proceed, we make the additional assumption:

Assumption 2: The eigenvalues of Ay are distinct.

Write the spectral decomposition of Ay as
Ay = TALT™E

where AO is a diagonal matrix of eigenvalues of Aj and T is the
matrix whose columns are eigenvectors of AO. Partition the ma-
trices T and Ao in the eigenvalue decormposition of AO conformably

with AO so that
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_ _ -1
It is readily verified that —p = Al and Ao = T22A2T22, so that A2
is the disgonal matrix of the eigenvalues of Aspe  Now let the

first n-1-2m eigenvalues of Ass, be real and the remainder occur in

complex conjugate pairs as Ap op, sees A 7 _pos Apem = An—2m’

ces, An—l = An-l-m' For analytical convenience, we require

Assumption 3: The eigenvalues of Ay do not differ by

integer miltiples of 2wi.

Then if a matrix A* is to satisfy (7), it mist be related to Ay

by_l_g./
0O 0 0 1
(8) A% = Ay + 2riT |0 P o| T
0O 0 P

where P is any m dimensional diasgonal matrix whose diagonal ele-
ments are arbitrary integers. In effect, (8) displays the class
of perturbations of the complex eigenvalues of AO which leave the
relation B, = expA¥* satisfied.

To show that the restrictions imposed on the model by
rational expectations can be used to identify Aq from By, we shall
use the special nature of the perturbations of Ag which are admis-
sible under (8). Notice that all A*'s that satisfy (8) mst have
identical matrices of eigenvectors-~that is, T matrices--and can
differ only in the imaginary parts of their complex eigenvalues.
So the T matrix is identified, as are the real parts of the eigen-
values. Since p is a real eigenvalue, it is automatically identi-
fied. We shall indicate how the cross—equation restrictions

imposed by rational expectations, in effect, link T, p, and the
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eigenvalues A2. This will serve to establish the existence of a

unique inverse of B = expA¥*.

Using the partitioned inverse formls

-1 - -1
1 11 ‘Tlll.T 12702
T = -1 s
0 Top

we obtain the version of the eigenvalue decomposition appropriate

for our problem

-1 ~1 -1 ~1
T304 1| |TaohoTon = Tp989T37 10 00
A = ']
0 -1
0 TohoTos
It follows that
_ -1 -1
(9) App = [Ty T55 + Ty 5T55]

We use (6) and (9) to express the cross-equation restrictions

implied by the model in the form
-1 _ 1
(‘1/2(1)UA22[A22 - pI] = [T12A2 + pTl2]T§2
or
Solving for T;5, we obtain
-1 -1 _
(~1/20)uTpoohy[Ay = pI] 7 [Ay + pI]7" = Ty,

or

~uT A
(10) T = u 22 diag [—L].
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Since T;, and Ty, are identified because the eigen-
vectors of Ao are identified, equation (10) implies that the
quantities

A
) dJ i (A 2. 92)a
J
can be inferred from the discrete time statistics. The question
which remains is whether, given knowledge of dj’ p, and the real
part of AJ, we can infer a and the imaginary part of AJ. To find
the answer, first suppose Al is real. Then it follows that o can
be inferred from (11) for jJ = 1l. Let J be some other index such
that AJ is complex and suppose that A¥ = AJ + Z2wip for some inte-

J
ger p that satisfies (11). Then we know that

2 2 2 2
L - = \%* - .
(12) AJ(AJ ) AJ(AJ p°)
The value of Ag distinct from.AJ that satisfies (12) is
p2
* 4 —Z
(13) AJ *3'

Write AJ = 61 + 621 where 61 and 62 are real with el less than

zero. Equation (13) implies that

2
0. + (8, + 2wp)i = P __
1 2 61 + 921
or
9192 + npel =0
(1h) 612 - 622 - 2mph, = —p2.

However, there are no values of {61,92,P} with 01 < 0 that satisfy

both equations in (14). It follows that all of the parameters of
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the model are identifiable from discrete time data whenever there
is at least one real eigenvalue of A22.

Thus we have the following:

Proposition 1: Suppose Assumptions 1-3 are satisfied.

I Ao, has at least one real eigenvalue, then the parameters a and
B (or, equivalently, o and p) and the parameters of Ay, are iden-

tifiable from discrete time observations.

If there are only complex eigenvalues of A22, then it can be
proved, except for singular cases, that the free parameters of the

continuous time model are identifiable.l—l/

IDENTTFICATION WITH =z STRICTLY EXOGENOUS WITH RESPECT TO K IN
CONTINUOUS TIME

In the preceding section, the unobservable forcing
variable y(t) was allowed to be correlated contemporaneously with
the observable forcing variables in z(t). However, identification
of the feedback parameter p used the fact that the disturbance
term to the decision rule was known to be a white noise. We now
wish to relax this assumption together with the assumption that
the observable forcing variables can be represented as a first-
order Markov process. We relax these assumptions at the cost of

imposing a stronger condition about the covariance of y and z.lg/
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Assumption L: The Joint process (y,z) is covariance

stationary, linearly regular and satisfies the extensive orthog-

onality conditions Ey(t)z(t-t) = 0 for all .13/

A fundamental moving average representation for (y,z)
can be written in partitioned form

y(t) ¢, (p) 0 e, (t)

(15) = .

z(t) 0 C,(D) e, (t)
where Cj(s) is the Laplace transform of a square lntegrable matrix
function that 18 concentrated on the nonnegative numbers, and
where [81,82] is a vector white noise with intensity matrix I.
For the representation to be fundamental, we mst require that
[el(t),ee(t)] lie in the space spanned by linear combinations of
{y(t),z(t) jret} 22/

In order to use convenient results from linear predic-
tion theory for continuous time processes, we assume that best
linear predictions and conditional expectations coincide. The
forecasting problem on the right side of equation (3) can be
solved using techniques developed in Hansen and Sargent 1980a,

1980b to obtain,

pC,(D)-pC,(p) ¢, (D)~c,(p)
DK(t) = -pK(t) -%& 2 o 2 el(t) ‘%‘E“LD-_;— 52(1:).

Next we solve for K{t) and determine that

-u[DCE-pCQ(p)I 1 Cl(D)—Cl(p)
(16) k() = ey 108 - 2 {5y |58 2
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Since €7(t) is orthogonal to e5(s) for all t and s, equations (15)
and (16) can readily be used to calculate the projection of K(t)

onto current, past, and future z's. This projection is given by

-u[pC, (D) - pC,(p)]
2a(D+p ) (D-p)

K(t) = C,y (D)7 e (t) + £(t)

-u[DI - pCz(p)C2(D)_l]

N 5a(D*p ) (Dop) z(t) + £(t)

where
Ez(t)E(t-t) = 0 for all T-E/

It is instructive to calculate the discrete time projection of
K(t) onto current, past, and future z's. In particular, the

Fourier transform of the coefficients of this projection is

+o0 iw + 2r3)C,(dw + 2rij) ~ pCy(p)
(17) Blw) = § -u =%
J=—e 2a[-(w + 2rJ)“+p 7]
400 -1
Cz(iw + 2nij)-1 ) 02(1m + 2nij)02(—iw - owig)! . A1/

From discrete time data we can identify the function B together

with the discrete spectral density of z which is given by

-}oo
(18) F(w) = } cC,(iw + 2rij)c, (~iw - 2wij)'.
2 2 2
J:.m
The cross—equation rational expectations restrictions are apparent
in that the parameterization 02 occurs in both the spectral den-
sity matrix F, and in the discrete projection coefficient Fourier

transform matrix B. The identification question is whether the

function Co and the parameters p and a can be inferred from B and
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F, using relations (17) and (18). Without imposing additional
regtrictions on Cos the answer to this question would appear to be
no. However, once we restrict the admissible parameterizations of
Co to be rational in the way described by Hansen and Sargent
‘(forthcoming), we can achieve identification.

To achieve identification, we impose +the following

additional assumption.

Assumption 5: Cy(s) is of the form

g-1
C (S) _ GO + G‘ls + eas Gq_—ls
2 (s-Al)(s—Ae) ces (s-Aq)

where Gy, .<e, Gy_; are (n-1) x (n-1) real matrices and the zeros
of det G(s) have negative real parts»l§/ Furthermore, for each j,
XJ =‘Xk for some index k, and any two A's with the same real part
do not have imaginary parts that differ by integer mltiples of

2ni.
The A's are called the poles of Cy(s).

With this specification for C,(s), the spectral density
of z is known to have the form
q Q

(19) £ (w) = ) |- ,
2 PN ECIEE VT

where

Q = iiT (S—XJ)CQ(S)CZ(—S)',
J



‘e

-~ 16 -

f, is the spectral density matrix of z, and the prime denotes
transposition but not conjugation. See Hansen and Sargent,
forthcoming, or Phillips 1959 for the details of this construc-~
tion. From (16) we can deduce that the cross spectral density
matrix is rationalrlgj In particular, let

-u[sC,(s) - pCy(p)lc,(-8)"

) = .
i 2a(82- p2)

h, (

Then the cross spectral density of z and K is given ly £1(w) =

hl(iw). We form a partial fractions representation of b to

obtain
Q 3
h,(s) = % d_ 4 J
1 = 's - XJ -8 - AJ
where
) ? (53 )b () = —nd
(20 Q, = 1lim (s-A_ )h, (s) =
I g 47 20 (A2- p?)
J J
and
J sr=A hl J

J
To identify o, p, and the imaginary parts of the poles

of Cy(s), we make use of the fact that Qy, éj’ and the real parts
of the poles of Ce(s) are identifiable from discrete time data and
that (20) holds. The matrices Q; and éj can be inferred from the
discrete time spectral density of z and the cross~spectral density
of D and z, respectively. The real parts of the poles of Co(s)

can be inferred from the discrete time spectral density of z (see

Phillips 1973 and Hansen and Sargent, forthcoming). Equation (20)
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is a restriction across the spectral density of z and the cross
spectral density of K and z. Using (19) and (20) we see that the

quantities

A
(21) q, = —sd—r

d a(lz - 92)
J

are identified from discrete time statistics. Equation (21) is
identical with equation (11) derived for the first-order Markov
case. However, now we have to use relation (21) to identify the
parameter p also. So the question is whether we can infer «, p,
and the imaginary parts of AJ from dJ for J =1, 2, cse, Qe

First, suppose that A, and Ao are real. Then Al and A2
are automatically identified. If a* and p* are two observa-

tionally equivalent values of o and p, respectively, it follows

that
(22) a(22 = p2) = a*(22 - p*2)
1 1
and
2 2y _ w12 42
a(xz—p ) =« (xz-p ).

Since Al and 12 are distinct and p¥* is a priori restricted to be
positive, the only values of a* and p* that satisfy (22) are a* =
o and p*¥ =p. Given a and p, the identification of the imaginary
parts of AJ when AJ is complex follows, using the same logic as

was employed in the first-order Markov case. We summarize these

results in
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Proposition 2: Suppose Assumptions 4 and 5 are satis-

fied. If there are at least two real poles, then the parameters o
and B (or, equivalently, o and p) and the continuous time spectral

density matrix of z are identifiable from discrete time observa-

tions.

If there fail to be any real poles of Cyr, then all of
the parameters can be identified if there are at least two complex
conjugate pairs of poles Co (except possibly for some singular
cases). If there is only one real pole, then there mst be at
least one other complex conjugate pair of poles in order to iden-
tify the parameters of the model. The details of the demonstra-
tion of these assertions rely on arguments similar to the one just
given and are left to the reader. In a sense, the higher the
order of the z process, both in terms of the number of variables
(n-1) and the order of the polynomial q, the more likely is iden-
tification to be achieved. Interestingly enough, a similar condi-
tion has been suggested by Lucas (1975) and Sims (1980) in de-

scribing identification in rational expectations models.
CONCLUSIONS

The two propositions proved in this paper indicate how
the cross-equation restrictions of rational expectations models
can serve to identify the parameters of a continuous time model
from discrete time observations. The basic idea 1is that where
decisions reflect forecasting in continuous time, the discrete
time data on the decision variable and the foreing variables
contain adequate clues to permit us to infer the parameters of the

Joint continuous time process of decision and forcing variables.
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This basic identification mechanism promises to carry
over to more complicated specifications than the two that are
formally analyzed in this paper. Extensions to our two specifica-

tions can be imggined in a variety of directions. These include

. Higher order Markov schemes for the forcing process z(t)
in our first setup.

. Higher order processes for the unobservable y(t) in our
first setup.

. Multiple interrelated decision variables.

. Higher order adjustment costs.

A formula expressing the cross-equation restrictions for a milti-
ple decision wvariable problem that is highly suggestive of identi-~
fication, though falling short of providing a formal proof, is
reported in the appendix.

This paper is intended as a prologue to our paper 1980b
that describes methods for estimating continuous time linear
rational expectations models that generalize the models analyzed
in this present paper. While formal identification theorems are
not yet available for those more general models, a method of
checking for the presence of an aliasing identification problem is

readily available in any particular applicationrggj
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APPENDIX

In this appendix we consider a multiple decision vari-
able version of the quadratic optimization problem considered in
Section 2. We let K(t) be a p dimensional decision vector, z, (t)
be a p dimensiodnal vector of forcing variables that are observed
by the econometrician, and y(t) be a p dimensional vector of
forcing variables that are not observed by the econometrician. We
consider a firm that maximizes over strategies for K(t) the crite-

rion

0

Ey [ JIK(t),DK(t),t,2, (£),5(t)]ds
0
where

J[K(t),DK(t),t,21 (£),¥(t)]
= {y(t)'K(t) - K(t)'8K(t) - 2 (t) 'DK(t)

- [DK(t)]'alDK(t)]}e Tt.

Here o and B and p x p are positive definite matrices. We assume

that
y(t) = De¥(t)

and

(23) Dz(t) = A, z(t) + eX(t)

where zl(t) is a p dimensional subvector of the n-p dimensional
vector z(t), the eigenvalues of Asp, have negative real parts, and

e* = [€f,€5] is an n dimensional vector white noise with intensity
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matrix Vs. We factor the characteristic polynomial of the Euler

equation
—as® + (r?/h) a + B = [a - bs]'[a + bs]

where a and b are each p x p matrices such that the zeros of
det(a - bs) 1lie in +the right-half plane while the zeros of
det(a - bs) lie in the left-half plane. This factorization is
unique up to a premultiplication of a and b by a common orthogonal

matrix.

Using results in Hansen and Sargent 1980b, we find that

the solution to the maximization problem of the firm is
(24) DK(t) = -[b‘la - Irlk(e) + = f {N_ul - rI]
2 2 b Tyt e2
Iyl 1 f *
(A, - (sJ+ 5 I 2(8)} - 3 stl(t)
J=1
where
det[a'd - b'b] = s5(s - Sl) eee (8 - sm),
adjla'b ~ b'bs,]
N, = J

J s, I (s, - 8,)°
Oy + 4

and u is a p x (n-p) matrix of the form u = [I,0]. We can write

(23) and (24) as the joint first-order differential equation
Dx(t) = Ayx(t) + e(t)

where

A1 A

A?l A22
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A, = ~b~la - 1]
1 -1
(25) A12 = E'ng Nju[Agg - rI][Cc ~ (sj +-§)I]
Ay =0
1 *

K(t) 2 fl Tyeg(e)
x(t) = e(t) = J= .

z(t) c3(t)

As in the +third section, we ‘ask whether the matrix

equation

expA* = By = exphq,

implies that A¥* = Age Assume that the eigenvalues of Ay are
distinct and that they do not differ by integer multiples of
2ri. Write the spectral decomposition ofiAo as TAOT'l where A, is
the diagonal matrix of eigenvalues and T is a matrix whose columns
are eigenvectors of Age Partition the matrices T and A conform-

ably with Ay so that

It follows that

_ -1 -1
Ao = TyphoTps = ATy To5e

Restriction (25) implies that

D
26 _1 _ _ AT
(26) Tih ATin =3 le NJu[Aez rIl[a,, (SJ + 2)I] Too
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Let vec(e) represent the vector formed by taking the direct sums
of the rows of a matrix, and let ® denote the Kronecker product.

We solve (26) for T;o to obtain
(27) vee Typ = [(-A11@1) + (I®A,)] Lvec ¢
where
c =i f N.ula,, - rIl{a,. -(s, + Z)1] 17
2 j=1 j o tee 20 J 2 22°

From our discussion in the third section, we know that
the eigenvector matrix T and the real parts of the eigenvalues in
AO can be inferred from discrete time data. The imaginary parts
of the complex eigenvalues can be perturbed by adding Integer
multiples of 2ri such that the complex conjugate pairs remain

intact to generate alternative choices of A¥* that satisfy
exXpA¥* = By

However, (27) restricts the class of "admissible perturbations” of
the eigenvalues further so that it appears that in most circum-

stances Ao is identifiable from discrete time data as are a and Be.
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NOTES

l/P. C. B. Phillips and John Taylor provided some very
useful comments on an earlier draft. This research was supported
in part by NSF Grant SES~8007016.

g/This class of models includes continuous time, linear
stochastic versions of the models discussed by Gould (1968), Lucas
(1967), Mortensen (1973), and Treadway (1969). Geweke (1977) uses
a model of this kind to motivate interpretations of some discrete
time regressions.

§!Our discussion could be modified in a straightforward
way to accommodate situations in which r is specified a priori but
is different from zero. When r is set to zero, we have to inter-
pret the objective function as a limit of averages over increas-
ingly longer time horizonse.

-EjGiven that p and o are identified, B can be inferred
from the relation 8 = p2/a.

Q/The agssumption that y is the derivative of the white
noise eI is contrived to imply that the decision rule has a white
nolse disturbance. In our discussion, the means of all of the
random variables have been implicitly set to zero.

éjFor an introduction to continuous time, linear sto-
chastic processes, see Kwakernask and Sivan 1972. A continuous
time vector white noise e(t) is said to have intensity matrix V if
Ee(t)e(t-t) = 8(1)V where § is the Dirac delta generalized func-
tion.

ZjPhillips (1959) has also studied cross-equation linear

regtrictions.



bt ]

- 25 -

-§/See Kwekernaak and Sivan 1972, Coddington and Levinson
1955, and Gantmacher 1959 for the definition and properties of the
matrix exponential function expA.

ngansen and Sargent (forthcoming) have shown that there
is extra identifying information about Ay contained in the expres-
sion linking the covariance matrix of n to the intensity matrix of
€+ In our discussion below, we supply sufficient conditions for
identification that do not exploit this extra information.

-lg/See Coddington and Levinson 1955 or Gantmacher 1959.

lijFor example, if there is only one complex conjugate
pair of eigenvalues of App and no real eigenvalues, then it can be
shown that the imaginary part of one of these eigenvalues has to
satisfy a cubic equation. Unless the cubic equation has solutions
that differ by an integer miltiple of 2r, identification of the
continuous time parameters is achieved. Thus, identification will
only be a problem in singular cases. The existence of mltiple
pairs of complex conjugate eigenvalues of A22 will meke identifi-
cation even less likely to be a problem.

ég/Fbr discrete time models, Hatanaka (1975) has treated
the identification of structural parameters from the projections
of the endogenous on the exoéenous variables without using prior
information about the orders of serial correlation of disturbance

process.

lé/See Rozanov 1967 for a definition of the term lin-

early regular.

igi/See Hansen and Sargent, forthcoming, for a fuller

technical description of the setup being used here.
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—1-2/ Here we have implicitly assumed that the decision
rule of the firm has been employed forever.

léfHere we have implicitly assumed that z has a contin-
uous time autoregressive representation. We do not need to make
this assumption in what follows.

1T/sims (1971) and Geweke (1978) study the relationship
between continuous time and discrete time projections of the type
considered here. They do not, however, consider the role of
cross-equation rational expectations restrictions.

—:@-/ This is one of the setups used by Hansen and Sargent
(forthcoming). They provide more technical details.

—1—2/ Although the spectral density of z and the cross
spectral density of y and z are rational, the spectral density of
K 1is not necessarily rational and is not necessarily identifiable
from discrete time data.

EQ/ The method involves calculating the poles of the
egstimated stochastic process of the forcing variables and con-
structing an observationally equivalent continuous time model by
perturbing the complex eigenvalues by integer multiples of 2ri.
It can then be checked whether the implied continuous time model
for the joint process of decision variables and forcing variables
is observationally equivalent with the estimated model. The

method utilizes results in Hansen and Sargent 1980b, Appendix C.
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