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ABSTRACT

This paper proposes a method for estimating the parameters of continuous time,
stochastic rational expectations models from discrete time observations. The
method is important since various heuristic procedures for deducing the
implications for discrete time data of continuous time models, such as
replacing derivatives with first differences, can sometimes give rise to very
misleading conclusions about parameters.” Our proposal is to express the
restrictions imposed by the rational expectations model on the continuous time
process generating the observable variables. Then the likelihood function of
a discrete time sample of observations from this process is obtained.
Parameter estimates are computed by maximizing the likelihood function with
respect to the free parameters of the continuous time model.
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necessarily represent the views of the Federal Reserve Bank of Minneapolis or
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1.INTRODUCTION

This paper describes how to estimate a class of continuous
time sStochastic rational expectations models from discrete time
data. A continuous time model within this class consists of a
collection of stochastic differential eguations that are linear in
the variables but nonlinear in the deep parameters that are to be
estimated. These nonlinearities arise from the extenéive and
complicated cross-esquation restrictions that are the hallmark of
rational expectations models.

The basic idea behind our estimation method is simply to
maximize the Gaussian likelihood function of a sample of discrete
time observations with respesct ¢to tﬁe free parameters of the
continuous time model. However, to make this idea operational and
practical, two problems have to be overcome. The first problem,
which is solved in section two, is to obtain analytically
tractable formulas for the equilibrium of the model which impose
the cross-equation restrictions in a practical way. Researchers
who have worked with discrete time rational expectations models
are aware of a variety of more or less complicated procedures for
characterizing thes cross-equation restrictions. (See Muth [29],
Lucas [24], Saracogzlu and Sargent [36], Hansen and Sargent [11],
Futia [5] and Whiteman [47] for a menu of such procedures.) The
method used here is in effect a nontrivial adaptation and
extension to continuous time systems of the method us=sd by Futia

[6] and Hansen and Sargent [11] in discrete time systems. The
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method reported in section two comes as close as is logiecally
possible to giving the solution of the model as an analytic
expression of the deep parameters of the model. This 1is an
important virtue since it makes the method computationally much
quicker than are alternative methods of computing the solution,
which are iterative. Speed in calculating the solution of the
model is an essential ingredient in making practical the nonlinear
maximum 1likelihood estimation strategy. Furthermore, the
prediction formulas that we present are interesting in themselves
because they can be used to support continuous time versions of
theoretical work like Futia's [5].

The second problem is to find a reliabls and computationally
practical way of deducing the restrictions that the continuous
time model places on the thesoretical vélues of the discrete time
second moments. This problem is solved in section three, where we
supply analytic formulas for computing the matrix covariogram and
spectral density of the discrete time data as a function of the
parameters of the continuous time model. Using these formulas, it
is straightforward to form the normal likelihood function of the
discrete time data, and various alternative approximations to it.

With these basic problems solved, the next three sections
indicate procedures for handling several practical problems that
arise in applying the method. Section four describes how to
handle the situation in which some of the discrete time data are
point-in-time observations, while the remaining discrete time
observations are unit averages of thes continuous observations.

Section five describes two alternative models of nonstationarity
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for which it is easily possible to transform nonstationary raw
data series into the stationary stochastic processes bsing modeled
here. Section six briefly indicates how, say, weekly and
quarterly data can be "pooled" in estimation. Section seven
presents a numerical example that illustrates the computational
costs involved in using our method.

This paper has a variety of antecedents. The basic
philosophy behind estimating stochastic rational expectations
models of the general class that we consider is explained by Lucas
and Sargent [27], Hansen and Sargent [11], and Sargent [38]. A
case for formulating and estimating models in continuous time is
made in the work of Sims [39], Geweke [7]1, and P.C.B. Phillips
[32, 33, 3u4]. Identification of particular versions of the
present model is discussed by Hansen anﬁ Sargent [14, 15]. Hansen
and Sargent [14] describe the rols of the cross-eguation rational
expectations restrictions in solving the "aliasing" identification
problem involved in moving from the second moments of the discrete
times sampled data to the second moments of the continuous time
process. (Sse Sims [39], Geweke [7], and P.C.B. Phillips [33] for
alternative manifestations of the aliasing problem).

Because derivations of Qarious of the results are tschnically
involved, we have relegated the details of several of them to a
technical working paper [17], which is available from the authors

upon reguest.,
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2. COMPUTING THE SOLUTION

a. The Model
A representative member of the class of models that we study
is given by the covariance stationary solution of the following

systen of stochastic differential equations:

(1) H(D)y(t) = ELI(-D) ~1Lxy(t) + x,(E)T}

xl(t) (D)
) 9(D )
(2) x(t) = | xy(0) § = [wﬂ]w(w - o(DYw(t)
xg(t)

wheare Et is the linear least squares forecast operator conditioned
on {x(v) : v < t}, and D is the time derivative operator. Here
y(t) is an (n x 1) vector of endogenous variables; xl(t) is an
(n x 1) vector of variables observed by agents but not by the
econometrician; x2(t) is an (n x 1) vector of forcing variables
observed by both agents and the econometrician; x3(t) is a
(p-2n x 1) vector of variables observed both by agents and the
econometrician and which help predict xg(t).2 Throughout this
paper, primes denote transposition but not complex conjugation.
The vector w(t) in (2) is a (p x 1) vector white noise with a

generalized covariogram
E w(t)w(t-u) = 8(t-u)V

where V is a positive definits matrix and & is the Dirac delta

generalized function.3 The matrix polynomials in the time
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derivative operator D are given by

J(=D) = Iy + J1(=D) + ... + I (-D)*
H(D) - = Hy + HD % ... + HyD'
¥(D) = by + ¥D 4 ...+ b D"
8(D) = 0, + 6,D + ... F emDm

where the Jj's and Hj's are (n x n) matrices, the wj's are (p x p)
matrices, and the ej's are scalars. Let detA denote the
determinant of the matrix A. We assume that the zsroes of detH(s)
have real parts that are less than zero and that the zeroes of
detJd(~-s) have resal parts that are greater than zero.t Also, we
assune that the zeroes of ©e(s) have real parts that are less than
zero and that the zeroces of detv(s) have real parts that are less
than or equal to zero. An implication 6f this last assumption is
that the error in forscasting x(t+u) from a linear function of
{x(v) : v < t} can be expressed as an integral of {w(t+v) ¢ 0 LV
< u}. We also note that while w is not a physically realizable

process, the restrictions placed on ¥ and ® imply that X is

physically realizable as long as em £ 0.

b. Some Economic Examples

We mention several examples of models from the class formed

by (1) - (2).

(i) Interelated factor demand problems.

These are linear quadratic stochastic versions of the models

of Mortensen [28] and Treadway [H44]. Assume that a competitive
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firm maximizes over 1linear contingency plans for Dzy(t) the
expected undiscounted present value criterion:
. ) T 1 1
(3) lim Ey ST {Ix () + x,(8)1 y() - y(&) Fyy(®)
T+ o)

~IG(D)y(£) 1 F,La(D)y(t) I1dt

subject to x(t) = ¢(D)w(t), and ziven y(0), Dy(0®), ..., Dl'lY(O).

Here y(t) is an (n x 1) vector of stocks of factors of production;
x;(t) is an (n x 1) vector of productivity shocks; x,(t) 1is an
(n ¥ 1) vector of real factor rentals; G(D) = GO + GlD + e GQDQ
is a generalized "cost of adjustment" wmatrix polynomial; and Fl
and F2 are positive definite matrices. To match this setup with
(1) and (2), we first note that the characteristic polynomial of
the Euler equation5 for the certainty> equivalent problem asso-
ciated with (3) is [F, + G(-s) F,G(s)]. It is known that there
exists a factorization of the polynomial [Fl + G(-s)'FZG(s)] =z
C(-s)'C(s) where the zeroes of detC(s) are less than zero in real

6

part. The féctorization is unigque up to premultiplication of

C(s) by an orthogonal matrix. Then the solution of the firm's
maximum problem is given by (1) with H(D) = C(D) and J-0)"' =

c(-D) .

(ii) Continuous time versions of Lucas-Prescott equilibrium models

of investment under uncertainty.

By combining the observations of the previous example with
example (ii) in Hansen and Sargent [12], one obtains a multiple

factor, continuous time stochastic version of Lucas and Prescott's

(251 model.
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(iii) Cagan's model of hyperinflation.

In (1) set n=1 and let y(t) be the logarithm of the price
level, xlCt) be a disturbance to portfolio balanecz, and xg(t) be
the logarithm of the money supply. Then take H(D) = 1, and J(-D)
= (1 + @D) where @ < 0 is the slope of the portfolio balance
schedule with respect to expected inflation. Then (1) and (2)
form a continuous time, rational expectations version of Cagan's
[2] modal. For further discussion of this example, see Hansen and

Sargent [131].

(iv) Stochastic versions of Dornbusch's model of exchange rate

"overshooting".

By referring to Wilson [48] and Dornbusch [4] and using

example (iii), the reader can readily construct this example.

(v) Continuous time versions of Taylor's "staggered contract"

models.

Models that come from stochastic linear-quadratic optimum
problems have J(D) = H(D) in (1), as in example (i). However, in
a discrete time framework, Taylor [42, 43] has described a class
of models that represent tining features of wage contracting
processes in which there is no such symmnetry between the analogues
of the feedback function H(D) and the feedforward function J(-D).
In continuous time, these functions of D will not be simple
polynomials, Nonetheless, our methods can be wmodified in a
straizhtforward manner to accommodate continuous time versions of

Taylor's models.
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Many other examples could be formed by appropriately
modifying various of the discrete time 1linear rational
expectations models described by Hansen and 3argent {131 and

Sargent [37, 381].

c. The Solution
The solution to the forecasting problem on the
right-hand-side of (1) is a complicated function of the parametars
of J(-D), ©(D), and ¥(D). To deduce from (1) the implied second
order properties of the y process, it 1is necessary to solve

explicitly for an expression of the form

Et J(-D)'—l[xl(t) + Xz(t)] = émL(T?W(t-T)dT

where L(T) is a funection of the parameters of J(D), ¢(D), and
8(D), and thereby embodies the rational expectations cross-
equation restrictions. In effect, we now describe how to
calculate L(t), procesding in two steps.

First, we obtain a matrix partial fractions representation of
J(-S)"l. We assume that the zeroes of detJ(s) are distinect, so

that detJ(s) = po(S—pl)(S—pz) oo (S—pk) where k = an. Then we

have
B B
(1) 3(s) Th = salo e s .-
where
aij [J(e.)1
Bj = ————E————g —————
oy T (pJ - oh)
h=1
h j
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and where adj(A) denotes the adjoint of the matrix A.7

Sinqe ths zeroes of detdJ(-s)' have been assumed to have
positive real parts, the pj's, which are zeross of detJ(s),

therefore have negative real parts. Thus, from (4) we have

(5) J(-s)'— = ~mem- T vee + —om=== ,

where
Re(pj) < 0 for 3 =1, ..., k

and where Re(s) denotes the real part of the complex number s.

Now substitute (5) into (1) to obtain

B.
(5) HDY(E) = By I =p2s= [x(B) + x,() T .
J J -

(LI I

Recall that the Laplace transform of :é:; for Re(p) < 0 is given

by the function f where

-pUu u <0
f(u) =

Therefore (5) is equivalent with

k

(7) HMy(t) = jlejEtg epju[xl(t+u) + x2(t+u)]du.

Thus, the first step of using the partial fraction representation

of J(=~D) leads to (7).
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The second step in obtaining an operational solution for y(t)

is to determine expressions for the forecasts

o P '
Egloe ju[xl(t+u) + x5(t+u)ldu.

Hansen and Sargent [17] give the formula:8

£o D + 0.

-d)(D) + (b(-p.)
(8) E Imepjux(t+u)du = [j J i]w(t) .
. J

-6(s8) + ¢(-Dj)

S + p.
J

It is easily verified that the rational function

has a removable singularity at -oj and has lowest common

denominator e(s).

Now let M be an (n x p) matrix such that Mx(t) = xl(t) +

X5(t). Then substituting (8) into (7) gives the r'epr'esentation9
K -¢(D) + ¢(=-p.)

(9) HODIy(E) = I ByM " w(t) .
j=1 J

With (9), we have completed our first task, that of solving the
system of differential equation (1) and (2). Equations (9) and
(2) completely characterize the cross-equation restrictions
implied by rational expectations. Further, (10) is as close to
being an analytical, closed form for the solution as 1t 1is
possible to obtain. The only step that is not analytic, that of
calculating the zeroes of detJ(s) in forming the partial fractions

representation (4), simply cannot be avoided.
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The formula (8) is a’ clossd form representation of the
cross-equation restrictions. It extends the results of Futia [51
and Hansen and Sargent [11, 12] to continuous time systems. It is
straightforward to evaluate, and is useful not only for estimation
purposes but also for theoretical investigations such as Futia's

[61.

d. A Model of the Error Term
As often happens in rational expectations models, the

solution (9) expresses y(t) as an exact function of current and

past x's. This implies that the spectral density matrix of the
continuous time (y, %) process is singular. In order to induce a
nonsingular spectral density matrix for the resulting discrete
time process, it is necessary to reéort to some deviee that
restricts the information set of the econometrician relative to
the information possessed by the agent who is being modeled.

At this point, in the interests of constructing a tractable
model of the distrubance term, we further restrict the

specification of the stochastic process governing x. We define
xz(tY] xl(tfl
2(8) =4 and o Xe = () :
3 . | ~t

We partition ©(D), ¥(D), and w(t) conformably with the partioning

of x(t), and assume that
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(6 l:wl(t)]
W = i
wz(t)
(10)
: 1 1
v
5Dy = _Iggg 0 i s1(D) 0
° D) 92 (D) 0 $2(D)
0 $ D)
o<(p) _|

where wl(D) is an (n x n) operator, wZ(D) is a [(p-n) x (p-m)]

operator, and el(D) and 62(D) are 8Scalar operators. e assume

DR order matrix polynomial, ol(s) is an

h

that wl(s) is an (ml

mlth order scalar polynomial, ¢2(s) is an (mQ-l)t

th

order matrix
polynomial, and 92(5) is an my order scalar polynomial where my
+m, = m, and o(s) = el(s)e2(s). Equation (19) together with the
conditions on the location of the poles and zeroes of dets(s)
imply that wy(t) is contained in the space spanned by {xy(u) v ¢
t}, and that wz(t) is contained in the space spanned by {z(u) : u
< t}. Therefors, wy is fundamental for x; and w, is fundamental
for z. It then follows from (10) that for all t and v, with v >

g,

(1D) E[xl(t+v)}xl(u), z(u) for v < t] = ELxl(t+v){xl(u) for v < tl

(12) Efz(t+v)ixy(w), z(w) for u < tl = E[z(t+v)iz(u) for v < tl.

Equation (1l1) asserts that z fails for to Granger-cause Xy, while

(12) asserts that Xy fails to Granger-cause z. Recall, however,
1

that, Ew(t)w(t-u) = 8(t-u)V where V is permitted to have non-zero

of f-diagonal elements, so that xl(t) and z(t) can be correlated.
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We now display the form of the solution (9) that incorporates
the special assumptions (10) about (D) and V¥(D). Let M be an

[n x (p=-n)] matrix such that ﬁz(t) = xz(t). Then the solution for

y(t) can be written

k| <07+ $%(eny)
(13) H(MD)Yy(t) = jfl BjM s*°j wz(t)
k T -61(D) ¢1(-p.)
+ % B, J w,(t) .

The stochastic differential equation (13) and the equation

for the observable forcing variables
2(t) = $2(D) w,(t)

form a system of 1linear stochastic differential equations 1in
(y, 2z) that is driven by the vector white noise (wys wz). The

system can be written compactly as
(1) [Kl(D) ] ] [Y(t)] . Ell(D) ng(D)] [Wl(t)]
or
y(t) Wl(t)
X(D) = (D)
x(t) w2(t)

where
K, (D)
K2(D)

H(D)

]
—
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K o 1 1 7
Qll(D) = Z Bj -6"(D) + ¢ (p)
j=1 -—-—B—-----__g_
+ p.
_ J _
K 2 2 7]
(15) 2,,(D) = z B u| ~¢ (D) + ¢ (e,
12 . 3
j=1 _ D+ o .
J
2
2 v=(D)
A,,(D) = 67(D) = Zx=22
22 eZ(D)
1
o1 (D) = YTSQZ
8-(D)
adjfd(e )]
Bj = i J
p_ T (p =~ p.)
Oh_1 h J
h#j

detd(D) = po(s-pl) cee (s-oK) .

Note that Kl(s) is a finite order matrix polynomial in 8 whereas
Qll(s), le(s) and Q22(s) are rational matrix functions of s. The
matrix function Qll(s) has poles at the zeroes of el(s) and the

matrix functions Q,,(s) and Q22(s) have poles at the zsroes of

02(s) .

The restrictions (15) on the equation system (1l4) are
acros8s equations as manifested by the 1link between le ani Q22-
The free parametsrs of the model are the free parameters of the
polynomials H(s), J(s), el(s), 92(5), wl(s), ¥2(s) as well as the
free parameters of the intensity matrix V. The model is linear in
the variables [y(t)', =z(t)'] ¢that are observable to the
econometrician, but is highly nonlinear in the free parameters of
4(D), J(D), o(D), and ¥(D). For reasons indicated by Lucas ani

Sargent [27] and Hansen and Sargent [11], it is necessary to
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estimate these deep parametsrs in order to overcome Lucas's [24]

eritique of procedures for econometric policy evaluation.

3. DEDUCING IMPLICATIONS FOR DISCRETE TIME DATA

We assume that the econometrician has observations on (y, 2)
sampled at the integers, but does not possess obssrvations on
(pdy, pJz) for any positive j at any point in time. Since the
continuous time model for (y, z) characterized by (14) and (15)
involves derivatives and convolution intergrals of (y, 2z), the
econometrician faces a massive problem of systematically missing
data. The estimation procedure that we propose simply involves
maximizing the 1likelihood function of a record of point-in-time
sampled discrete data (y, zt) for ¢t = 1, ..., T, where the
maximization is carried out with respeci to the free parametzsrs of
the continuous time model in H(D), J(D), o> (D), o>(D), (D),
wZ(D) and V. From the examples zanalyzed by Hansen and Sargent
[14], there are reasons to hope that the continuous time
parameters are identified from the 1likelihood function of the
discrete time data.10

Define thes covariogram of the (y, 2z) process to be the

(p ¥ p) matrix function
y(t) y(t-1) '
R(t) = E ,
z(t) z(t-1)

where t is a real number. The spectral density of the (y, 2z)

process is defined as the Fourier transform of R, namely,
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S(w) = 5o e™*T R(m)dr.

To solve for the spectral density matrix function, ws first
obtain a moving average representation for the (y, z) process by

applying K(D)~! to both sides of (14). More specifically, write

Then
y(t) wl(t)
(16) (t) = P W, (1)
where
P(D) = Pll(D) P12(D)
0 P22(D)
_ adjH(D) Q,.(D)
P11¢P) = F3tarpy 11
_ adjH(Dd) 2,,(D)
P12(P) = 33tatsy 12
P22(D) = QZZ(D)'

Note that Pll(s) has poles at the zeroes of detH(s) and at the
zeroes of el(s); P1o has poles at the zeroes of detH(s) and at the
zeroes of 92(5); and P,,(s) has poles at the zsroes of 02(s). We

assume that the product 61(5)92(s)detH(s) can be factored

01(3) 0% () detH(5) = Ag(s-a7) (5=2)) ... (s-1.)
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where the lJ-'s are distinet for j = 1, ..., r. We note that for
many problems, such as those in which (1) is an Euler equation,
the zeroes of detH(s) have to be calculated in evaluating Qll and
le. So sometimes calculating the zeroes of detH(s) is not auch
of an additional computational burden, over and above that
involved in computing the solution (15).

The moving average representation (15) can be used to‘obtain
a formula of the spectral density matrix of the observables, it
can be shown (see Phillips [30] or Kwakernaak and Sivan [21]) that

S is given by
(17) S{w) = P(iw)VP(-iw) .

Equation (16) provides a convenient expression for calculating the
spectral density of the continuous time.process (y, z). To obtain
the likelihood functioﬁ of the discrete sampled data, in effect we
require an expression for the spectral density of the discrete

time data. The discrete time, point-in-time sampled data has

spectral density Sd, which 1is related to S by the "folding

formula":

(18) Sd(m) = 2 S(w+273), =7 { w W

jz-e

(For example, see Koopmans [20]). For the econometric

applications that we have in mind, creating Sd

numnerically by
using (18) is perhaps feasible, but is more expensive and less
reliable than the following procedure, which builds on the results

of A. W. Phillips [31].
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Define the matrices:

(19) W, = 1im P(S)VP(-8)'(s=%.)
3T . J
J

for 3 =1, 2, ..., r. A partial fractions representation of § in

(17) is then

= b
(20) S(w) j=1 [j(im_xj) * (-iw-lj)i] .

Since the real part of Aj is negative, the inverse Fourier trans-

form of W§/(iw-lj) is given by the function

W.erjT for © > 0

0 for ¢t < 0 .

Therefore, taking the inverse Fourisr transform of esach side of

(22) gives

(21) R(T) =

By sampling (21) at integer t, we obtain the covariogram of the
discrete time process {(y., ze) + 0t = 0, £ 1, £ 2, ...} The
essential element in writing down the likelihood function of the

discrete time data as a function of the model's free parameters is
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the ability to represent R sampled at the integers as a funection
of those free parameters. Expression (21) and the steps leading
up to it accomplish that task.
Tt will also prove useful to have another expression for the

spectrum of the sampled (yt, Zt) process. To derive it, 1let “j =

A
¢ j and write (21) sampled at the integers as

r
T W.(a,)" for T > 0
j=r 3 -

(22) R(T) =
r
I Wi(a. )™ for <t < 0.
j=1 J J
Define the covariance generating function
+w

£ R(t)E" .

T=~w

(23) g(z)

Using (23), we readily obtain

-1
r r [ [+ 303
1 ! J
(24) g(z) = T W, wome= + z W, ======
j=1 4 I=ejt je1 0 J 1-a g7l
Evaluating (24) at ¢ = e~ 1% gives the spectral density of the

integer sampled process (y., z.), sd(w) = g(e 1Yy,

With these results in hand, we can now 1indicate how ¢to
construct the 1likelihood function for a set of observations on
(yt, Zt)’ t =1, ..., T, assuming that w is a Gaussian process.
Define the stacked vector of observations on (y., z.), ¢t = 1,

T as



y 2y

Vé Zo
(25) §T =-1 . and ET = .

YT T

- !

!
Define the covariance matrix of [yT, zT].

1

¥l [Fn Zo]
(26) rT=E[_T] rT
271

The (pT x pT) covariance matrix FT can be computed as a function

of the free parameters of the continuous time model H(D), J(D),

Gl(D), 62(D), wl(D), wZ(D) and V by using (25) and (26) and the

results leading up to (22). The normal log likelihood for [?%, zT]

is given by

(27) Ly = -3 Tp log 27 - 3 log detfp- 5 [ ¥} 3} 1 (rTrl[zT]

Zp 1.
The log likelihood function (27) is to be maximized with respect
to the free parameters of H(D), J(D), ¢1(D), ¢2(D), and V of the
continuous time model. Thesg parameters make their appearance in
(27) through the covariance matrixg Ip.

The maximization of (27) must be achieved by the application
of numerical procedures, such as the "acceptable gradient” methods
described by Bard [1]. From the standpoint of these iterative
hill-climbing procedures, (27) is a formidable function because
the (pT x pT) matrix PT must be inverted each time (27) is

evaluated for different points in the parameter Space. Since the
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matrix PT is liable to be very large, this difficulty has lead
researchers such as Hannan [10] and Phadke and Kadem ([30] to
propose freguency domain approximations to the normal likelihood
function that economize on computations, Let the periodogram of
the (y., z,) process at frequeney . = 2vj/T, j=1, ..., T be the

J
(p x p) matrix I(wj). The approximations used are then

y T
=1 =1 - T ~ -
(¥ zp 1 (Tq) l[jET:] z jfl trace [Sd(wj) ll(wj)]
T
log detr, = £ 1log detsd(uy) .
i=1 J

Substituting theses approximations into (27) gives the approximate

log likelihood function

o~

(28) L* = - lTp log 271 - 1 log detSd(w )
T -~ 2 2 j

j=1

trace [Sd(mj)-ll(mj)] .

LU

j=1

Equation (24) evaluated at g = e'iwj and the results leading up to
it express sd(wj) as a function of the free parameters of H(D),
J(D), e(D), w(D), and V of the continuous time model. By maxi-
mizing (28) instead of (27) the analyst avoids the need to invert
the (pT x pT) wmatrix T at each function evaluation, and instead
has to invert the (p x p) matrix Sd(wj). Expression (28) is a
good approximation to (27) in the sense that maximizing it
delivers estimators that are asymptotically equivalent to those

obtained by maximizing (27).
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We now very briefly describe an alternative time domain
approximation of the 1likelihood function. By pursuing the
calculatioens described by A. W. Phillips [31], it is possible
analytically to deduce from representation (1l4) the vector wmixed
autoregressive, moving average process that governs the discrete

time sampled process (y, z), say

K(L) [yt] = ALdey
g

where ¢, 1s a discrete time vector white noise, and i(L) and a(L)
are each finite order matrix polynomials that are one-sided
nonnegative powers of L. From X(D) and Q(D) and (1%) it is
possible analytically to calculate i(L)‘and S(L), by following the
suggestions of Phillips [311]. In most circumstances, &(L) and
5(L) can be chosen so that they are invertible in which case the
suggestions in Hansen and Sargent [11, pp 28-30] can be used
to approximate the 1likelihood function (27) by a 1likelihood
function conditional on the Same numbers of initial values of y
and z and of € as there are powers of L in K(L) and 5(L),
respectively. Given R(L) and 5(L), it is straightforward to
evaluate this approximate likelihood function. Once again, the
approximate likelihood function is to be maximized with respect to
the free parameters of H(D), J(-D), e(D), (D) and V of the
continuous time model.

The approximations described above are known to deteriorate
when either detK(z) or detQ(z) have zeroes that are close to the

unit circle. Hillwmer and Tiao [19]1 have deduced a representation
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of the exact likelihood function (27) in which inversion of the
(pT x pT) wmatrix rT is circumvented. Associated with their
representation 1s a time domain approximation that permits the

deta(c) to have zeroes that are on the unit circle.

4, TIME AVERAGED DATA

The procedures of the preceding sections assume that the
discrete time data are point-in-time observations on the
underlying continuous time data. Often, however, one or more of
the available series consist of unit averaged data, which
correspond to integrals of continuous flows over a month or a
quarter, for example. Observations on GNP, sales, and manhours
are usually recorded in this way. In this section, we tell how
the preceding method can be modified ta accommodate the situation
in which some or all of the data are unit averages.

We can completely indicate the modifications required by
supposing that y and z are both scalar processes, so0 that R is a

(2 x 2) matrix function of t with
R(ry = § T11(0) r(o ) _ ¢ y(t) y(t=-1) )"
[;FZI(T) r22(r)t} [:z(t)_] [;z(t—r):} .
Recall representation (21) for R,
r
(21) R(7) = I Wseld o, T2 2

where the Wj's are functions of the deep parameters of the model.
Suppose that the discrete data on z arz point-in-time while those

on y are unit averaged, namely,
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1

F(t) = fy(t-s)ds .
o

Define the cross-covariogram of the joint (¥, z) process as

R(t)

- y(t) y(t=1) 1 .
B 2t ] ['z(t—f) for integer =

-_Fll(T) FlZ(T)—T

?21(1) 'l"‘22(‘r)_l

Evaluation of the terms in R will indicate how to compute the
discrete time autocovariogram and spectral density of a general
(n x 1) vector process, some of whose members correspond to point-
in-time observations, while others are unit averaged.

Hansen and Sargent [17] derive the following formulast!

a.-1

r
F11(0) =z Ig [ JA - 11 W§1
J=1 %3 J
(29)
r
- 11 T
rll(T) = jfl Vj (GJ) » T >0
where
Vll _ ﬂll[ c;.—l:l [( a.) +1]
J J Aj AJ
ay = ekj
wil Wi2
W= | 30 35
J 2 2
Wj Wj .
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The z transform of the seguence {Fll(r)}::-m is given by

11 11 -1
r Vj ajz r Vj ajz
(30) g2..(z) = =z + I =Sy
11 j=1 ‘1-%32 =1 (1-027)
r a. -1
.z T? [ 3 _1] w? .
j=1 "3 J
-iw

Substituting e for z in (30) gives the discrete time spectral
density for the unit averaged process v

Hansen and Sargent [17] also show that

r 21 (a.=-1)
I Wet(a.)" —md—— T >0
j=1 3 3 A -
(31)  Fpy(®) =
T2 -t (q.-1)
t Wi (e % <0 .
j=1 3 X

-4

The z transform of {F, (1)} - is
21 (e} o

r WL 4.z (a.=-1) r w2 a.z-l(a.-l)

(32) gy(2) = 8 L T RS |
= j=1 (l-a.z) A j=1 (l-a.z "),
J J

r 21 (aj-l)

Wy ST

j=1 J
Substituting e=1® for 2z in (32) gives the discrete time

cross-spectral density between the point-in-time data z and the

unit averaged data ¥.
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Equations (29) and (30) are readily generalized to calculate
the cross-covariogram and cross-spectral density between two
variables; each of which is a unit average. Equations (31) and
(32) give the typical form for the discrete time cross-covariogranm
and cross-spectrum between two saries, the first of which is unit
averaged white the second is point-in-time.

With foramulas (29) - (32) in hand, the estimation strategy
advocated in section three can be egxecuted for a discrete time
data set which is any arbitrary mixture of series, some of which

are unit averages while others are point-irn-time observations.

5. MODELS OF NONSTATIONARITY
We briefly describe two alternative interprestations of the
model formed by (1) and (2) or (14) in which the [y(t), x(t)]
variables are interpreted as transformations of the underlying
variables of interest, which are themselves nonstationary.
Turning to the first model of nonstationarity, we reproduce (1),

(2), and (14) for convenience:

(1) HDy(E) = EJ-D) "Hx (1) + x,(8)]

xl(t)
(2) e(D) = $(DIw(t)
z(t)

- oy(t)
(14) X(D) = I(DY)w(t)
L z(t)

where z(t)' = [X2(t)', x3(t)'].
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Our first wmodel of nonstationarity assumes that y(t), x(t)
and w(t) are themselves the following transformations of the
continuous time records of the underlying raw data series §(t),

g(t), and the white noise @(t):

v
e'2t§(t)

Y(t) =
TN
(33) x(t) = e 27%(t) ,
“Tea
w(t) = e 2 w(t) , Yy > 0.

From (33) it follows that W is a vector white noise with

generalized covariogram

Eﬁ(t)ﬁ(t-s)' = VeYtG(t-S)

The continuous time model in terms of the original variables can

be represented either as 12

(1") 400 - DI = £.3-D - DH17HR (B + 7(8)]

(2'y o(D - $Ig(e) = v(d - HHaCe)

or as

(14') XD - [ﬁy(t) = 2(D - Pace).
= 2(t) =

With this model of nonstationarity, the idea is simply to

transform the raw data [¥(t), X(t)]l according to (33) at the

integer points in time, and then to proceed with estimation as

desceribed in section three.



28
The second model of nonstationarity assumes, for example,
that the stationary model (1) - (2) or (1%) applies to the jth
time derivatives of the raw series in continuous time. Thus, let

the raw series in continuous time be [Y(t), Z(t)] so that

y(t) = pIy(t)

z(t) = DIZ(L).

We suppose that we have integer-sampled, point-in-time data on the
raw series {(Y, Zt):t=1’ eeey, T, The continuous time
autocovariogram of the jth derivative series {y(t), z(t)} is given

be representation (21).

AT
W.e j , T > 0.

(21) R(T) = i
1

W wm 3

J
From (21) and the sort of calculations in the previous
section, we can deduce how the continuous time model places

restrictions on the discrete time covariance stationary process

defined by the jth differenced series (AjY, 2J7) where A is the

unit finite difference operator defined by aY(t) = Y(t) - Y(t-1).
The main idea can be illustrated for the case in which j=1, so
that (y, z) correspond to first derivatives of the original data.
OQur assumptions imply that (y, 2z) is a covariance stationary
process, and that (DY, DZ) = (y, z).

It follows, for example, that

Y(t) = fgy(s)ds +Y(0),
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for any real t. For positive integers t, the above eguality can

be expressed

- 3
Y(t) = = S y(s)ds + Y(o) .
j=1 j-1
Subtracting the analogous equation for Y(t-1) from the above

equality gives

¥(e) - ¥(t-1) = fl y(t-s)ds.
o
Thus, the first differénces of the original data Y are unit
averages of the first derivative series.y. Since the unit average
of a covariance stationary series 1is covariance stationary, it
follows that AY is covariance stationary.

Formulas (29) and (30) can be used to deduce the spectral
density matrix and cross-covariogram for the first-differenced raw
Sseries (AY, AZ). Estimation can then proceed along the 1lines
indicated in the preceding section.

This idea generalizes to the case in which (y, z) = (DjY,
DjZ) for j > 1. For example, where j=2, the second difference of

the raw data Y are covariance stationary and obey

2

sdv(e) = £ b(s)y(t-s)ds
6]

where
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: 2-8, 1
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Using calculations along the lines of those summarized in section
four and reported by Hansen and Sargent [171, the discrete cross-
covariogram and spectral density of the jth-differenced series can

be deduced from (21).

5. POOLING DATA SAMPLED AT DIFFERENT INTERVALS

Suppose that we have available discrete point-in-time
obsarvations of the following kind: There are T1 monthly
observations on v(t) = [y(t)', z(t)']' followed by T, weekly
observations on v(t). For convenience, assume that there are 13/3
weeks per month. We briefly describé how to construct and to
approximate the likelihood of the pooled sample of monthly and
weekly data as a function of the parameters of the continuous time
model. One of the advantages of formulating and estimating models
in continuous time is the availability of these natural
procedures for pooling observations at different samnpling
intervals.

Define the stacked vector of the Tl monthly obssrvations
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The stacked vector of weekly observations is defined by

) V(g— Tl + l)—-

+ 2)

The stackad vector of pooled monthly and weekly obssrvations is

then
\
m

7 = .
v
W
- 3 - - -—' » >
Define the covariance matrix of v as ' = Evv . The matrix T 1is

dimensioned [(Tl + Tz)p] x [(Ty =+ Tz)p]. Its elements are
functions of the deep parameters of the model, and can be filled
in by wusing representation (21). The normal 1log 1likelihood
function for vector of pooled wmonthly and weekly observations is
given by the obvious counterpart to (27).

Various approximations to the log likelihood function can be
constructed along the lines described in section three. For
example, from (24) the theoretical spectral density of the weekly

data is
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r 1
(34) S, () = 3 Wy —--toogs

j=1 3 1-4.e7t0
J
+iw
r . aje
+ I N =Femm—eea .
j=1 J 1-(1 e+1w

Using a similar logic to that which led to (34), it is straigzht-

forward to show that the spectral density of the monthly data is

then
. r L
(35) S () = I W —o-teces
o j=1 J1-5.e7*"
" 'GJ +iw
+ I Wied¥eeea -
. J +1w
= 1-5.¢e
j=1 GJ
13x. 13
37 37
where §4% € = aj . Now let Im(mj) be the psriodogram of the

monthly data for wyj = 203/Ty, § = 1, ..., T,, and let Iw(mj) be

the periodogram of the weekly date for wy = 213/ Ty, J=1, ...,
T2. Then an approximation to the log likelihood function is
** T,) log 2n - L 3! log det S (u.)
(36) L = -p(Tl + Ty og 27 - 3 jfl og de LR
T T
1 2 1 1 -1
-3 'fl log det Sw(mj) -3 'fl trace [Sm(wj) Im(mj)]
J= Jj=
T
1 2 -1
-3 j:l trace [Sw(wj) Iw(wj)] .
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An advantage of (36) is that it can be evaluated rapidly. A
disadvantage is that it ignores information contained in the
sample in the form of covariance between some of the weekly and
monthly data. Presumabley, an approximate likelihood function in
the time domain, along the lines suggested in section three, could

be constructed that utilizes that information.

7. AN ILLUSTRATION
To illustrate the computational feasibility and cost of the
method of sections two and three, we report here the results of
estimating a synthetic example along the lines of example (i) of
section two. The example is a model of a firm or industry that
maximizes (3). We set n=1, p=2, so tha£ y(t), xl(t) and x2(t) are

each univariate. We set G(D) = YI/3 + D, with F, and F, as

1
positive scalars, and

- 1 —
¥yD 0
¢(D) =
2
0 Yo
2
L 90+D..J
where we set eg = 2, w% = 2.83, and ¢§ = 2. For this optimization

problem, the characteristic polynomial of the Euler equation is

bk
1 1 1 1 1
Fos% (F) + 3F,) = Fale-(pl + O el 5.
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Therefore, the solution of this optimization problem is (1) with

1 1
F F
H(D) = D + (p* + é)z and J(-D) = - 3-(-D +(z* + %)2), which can be
1 2 2
written as
F 1 F =
[D + (Fi + %)2]y(t) = - %é z exp[-u(Fg +%)2]Et[xl(t+u)+x2(t+u)]du.

The econometrician observes y(t) and Xz(t)’ but not xl(t)' For
this particular model, the section three calculations imply that
the joint (y, X) process in continuous time has a representation

of the particular first-order vector autoregressive form,

D+ Xy, Ki2 y(t) le 0 wy ()

2
0 62+D x2(t) 0 ¢O w2(t)
1% —

The parameters K;,, K;,, and 9Q;; are functions of the deep
parameters Fl, FZ’ ei, w%, wg. The model is just identified.
Table 1 reports estimates that were obtained by using the
frequency domain estimator of section three, as well as the cost
of obtaining the estimates on the Cyber computer at the University
of Minnesota. We report the parameter estimates together with 95%
confidence bands calculated using the normal distribution together
with the asymptotic covariance wmwatrix calculated from the

approximate information matrix. The first three experiements

explore the effects and costs of inecreasing the sample size T.
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Relative to experiment 1, experiments U4 and 5 study the effect of

inereasing the weight of the "feedforward" part of the

decision rule Fl’ while leaving fixed the integrating factor
2

F 1
1 1,2 . . .
exp [-u( go o+ é) 1. Experiment 5 studies the effect of
2
driving the root of the ez(s) polynomial toward zero. A1l

experiments, with the exception of the one cited in footnote 2 of
table 1, used the true parameters as the initial values for the
nonlinear optimizatioﬁ. The nonlinear optimization procedure
first used DFP of Goldfeld and Quandt [8] until convergence, and
then switched to GRADX to assure convergence.

We have also estimated higher order systems. An example is
the overidentified system in which the &true parameters are Fl =
5, Fyo= 1, o5(D) = 1, v1(D) = 2.83, 2(D) = 2, 02(D) = 3 +3.5D +
D2. For T = 120, we obtained the following estimates: F1 = 41 +
(49, Fp = .41 £.49, $7(D) = 1.30 + 1.47, v2(D) = 1.23 + .42, 02(D)

= [2.32 .731 + [2.12 + 1.011 D + D2. This required 44.6 c.p.u.

I+

Seconds and cost $3.02.
These computations indicate that the estimation procedures
that we have suggested are economical, at least for systems with

few parameters.
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8. CONCLUSIONS

This paper describes formulas that explicitly characterize
the <cross-equation rational expectations restrictions 1in
continuoﬁs time linear models, Like the corresponding formulas
for discrete time systems developed by Futia [6] and Hansen and
Sargent [11], these formulas are interesting in their own right
for theoretical work, such as Futia's [6]. The formulas become
all the more valuable when the goal is empirical estimation, since
they are quick to evaluate and therefore potentially compatible
with maximum likelihood and other iterative nonlinear estimation
Strategies.

The paper also describes an exact and computationally
feasible procedure for deducing the discrete time covariogram and
spectral density as a function of the cbntinuous time parameters.
This is an essential tool in acquiring the ability to employ both
exact and various approximate maximum likelihood procedures.

The theoretical and estimation framework described in this
paper has implications in a number of directions, only some of
which we have explored above. Theorizing and estimating in terms
of a continuous time model has a number of advantages. As we have
Seen, such a model provides a relatively automatic answer to the
question of how to utilize discrete data, some of which are
point-in-time, while others are unit averages. It also provides
relatively automatic answers to the problem of optimally pooling
observations at systematically different time intervals, as
analyzed in section six. Similarly, although we did not draw them

out here, our model naturally implies a set of distinct procedures
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for dealing with the problem of "optimal interpolation by related
series".13 For the purpose of estimating models like ours, with
their extensive cross-equation restrictions, it would not
generally be an optimal procedure to create a synthetic series by
interpolating from related series. Instead, the appropriate
procedure would be to choose free parameters to maximize the exact
or approximate likelihood of the available sample, including in
the sample whatever data are available on the missing variables.
Such procedures could be described, using methods similar to those
of section six.

However, perhaps the biggest advantage of theorizing and
estimating in continuous time is its potential for protecting us
against the kinds of errors of aggregation over time studied by
Sims [38, 39, 401 and Geweke [7]. .While the nature of such
approximation errors has yet to be studied in the specific context
of rational expectations models, the results of Sims [39, 401
provide clear enough indication that fér certain specifications of
e, v, H, and J of (1) and (2), estimating the parameters of an
"analogous" discrete time system could lead to serious errors in

interpretation and policy advice.
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FOOTNOTES

Helpful comments on an earlier draft were made by Christopher
A. Sims. The example in section seven was calculated by
Lawrence Christiano. This research was supported in part Dby
NSF Grant SES-8007016.

Thus, %,(t) is an "information variable" that will appear in
the soldtion to (1) and (2) only because it "Granger-causes"
xa(t) in continuous time. The device of withholding data on
xS(t) from the econometrician in order to rationalize an
efror term in the econometric model was extensively studied
by Hansen and Sargent [11] in a discrete time setting.

See Kwakernaak and Sivan [21] for a definition of a
continuous time vector white noise, and for a description of
the operational . properties of the Dirac delta generalized
function.

With some straightforward modification of interpretations,
the results obtained by Whiteman [47, ch. 41 for discrete
time systems could be used to characterize the existence and
uniqueness of covariance stationary solutions to models of
the form (1) and (2).

See Hansen and Sargent [17] for a proof and a thorough
discussion of this example.

Hansen and Sargent [17] describe in detail an algorithm for
factoring [F, + G(—D)'F2G(D)] in the desired way. An
algorithm or factoring more general non-symmetric

polynomials could be constructed by pursuing the results of
Whiteman [47, ch. 4].

Hansen and Sargent [17] describe a recursive algorithm for
calculating the Bj's of (4).

Equation (8) is a solution to the prediction problem in terms
of current and past values of the white noise w. Hansen and
Sargent [17]1 display alternative representations of this
solution. For instance, if x has a continuous time
autoregressive representation, then the solution can be
represented in terms of current and past values of x and/or
derivatives of X. Hansen and Sargent [17] also show that
certain representations of this prediction formula remain
valid when the x process has explosive autoregressive roots.

For models in which J(-D) = H(-D) and which come from linear
quadratic optimal control problems, equations of the form (1)
are the Euler first-order necessary conditions for the
certainty equivalent problem. Solutions of the form (9) for
such problems are typically calculated by solving the
algebraic matrix Ricatti equation for an associated optimal
linear regulator problem. The algebraic Ricatti equation is
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11.

12.

13.
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necessarily solved by iterative methods, e.g. by Vaughan's
[45] eigenvalue method, which are typically much more
expensive than using (9). For some 1illustrative cost
calculations for a related discrete time problem, see Hansen
and Sargent [12].

Hansen and Sargent theoretically establish identification
only for two special cases of the model (1) - (2). However,
in any actual applied context, identification can easily be
checked numerically in the course of maximizing the
approximate 1likelihood function. In particular, to check
that identification is secure against the aliasing problem,
the procedures of Hansen and Sargent [17, appendix C] can be
used to construct on "aliased" version of the driving process
z at a tentative set of parameter estimates. The likelihood
can be evaluated with the driving process parameters at these
"aliased" values, and compared with the likelihood at the
original tentative estimates.

The formula for §11(T)a T > 0 is,calculated by observipg thay
Fip(t) = E § xq(t-8)ds X, (t-1-w)du = i
11 1 1 0 o
ry(t+u-s)dsdu.

11
Substituting for ry;(t+u-s) from (21), and evaluating the
resulting integral "~"gives the second 1line of (29). The
remaining of formulas (20) and (31) are derived in a similar
way.

Notice that since the zeroes of detH(s) have been assumed
less than zero in real part, it follows that the zeroes of
detH(s-v/2) are less than v/2 in real part. Similarly, the
zeroes of det®(s-v/2) are less than Y/2 in real part, while
the =zeroes of detd(-s-v/2) are greater than =-v/2 in real
part. From these last observations, it follows that the
convolution integrals

E J(~D=v/2) ~ [xl(t) + xz(t)] converge.

See Milton Friedman [5] and Gregory Chow and An-loh Lin [3].
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