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ABSTRACT

This paper illustrates the application of observable index models to the
problem of mecroeconomic forecasting. In this context, a Bayesian prior is
used to describe a class of models which impose the index structure with more
or less weight. An out-of-sample forecasting experiment is used to measure
the possible benefits of this approach. In addition, impulse response func-
tions and the decomposition of forecast variance are analyzed to suggest a
possible separation of real and nominal shocks into separate channels.
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helpful comments on an earlier version by participants in the NBER summer
institute. Able computational assistance was provided by Paul O'Brien.
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This paper illustrates the application of a Bayesian
procedure to the estimation of a small system of macroeconomic
time series subject to nonlinear restrictions on the parameters.
The system is an observable index model of the type described by
Sargent and Sims (1977). The ability of Bayesian estimators to
incorporate nonsample information in a flexible manner is shown in
this context to have a potential use in time series forecasting.

The methodology of this paper is very similar to that of
Litterman 1980. That paper shows that the incorporation of prior
information in the estimation of vector autoregressions can
greatly improve the out-of-sample forecasting performance of such
nmodels. Here the focus is on the forecasting potential of an
index model and the usefulness of prior information on the size of
the effects of the index.

The idea of explaining the cross-correlations of a set
of variables as the effects of one or more indexes has a long
history in psychology and other social sciences. In recent years,
& number of papers have applied index or factor models to economic
time seriesvl/ Most of these papers have used an index model to
test economic theory which suggests that such a model should fit
well. Unfortunately, more than one interpretation of such an
index structure is often possible.

The purpose of this paper is simply to test the fore-

cagting potential of one type of index model. The imposition of

-l/Geweke (1977) describes a type of frequency domain
factor analysis which has been investigated by Sargent and Sims
(1977) and Singleton (1981), among others. Sims (forthcoming)

also uses the obgervable index model.
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the index structure can be viewed as a set of nonlinear cross—
equation constraints on a vector autoregressive representation of
the time series. If these restrictions are ﬁrue, or nearly so,
then their imposition during the estimation of a model may be
expected to improve its out-of-sample forecasting performance. By
examining the out-of-sample forecasting performance of an auto-
regressive model with various priors, I hope to measure the po-
tential of this type of index model for forecasting economic time

series.
Setting Up the System

The Observable Index Model

The observable index model considered here has the form
Ld L

(1) Y(t) ={ } D, ¥(t~1) |+ y
i=1 J=1

a
Ajz(t-J) + C + U(t)

for t = 1,...,T, where Y(t) is an nxl vector of endogenous vari-
ables, the D; are nxn diagonal matrices of own lag coefficients,
the AJ are nxq matrices of loadings on the indexes, C is an nxl
vector of constants, and the U(t) are nxl vectors independently
and identically distributed as N(0,L), where I is a positive-
definite symmetric matrix.

The gx1 index series, Z{t), is defined by

Ly

(2) z(t) = Y(t-k+1)
oLy Pt
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for t = ~Lg+l,...,T-1, where the B, are qxn matrices of coeffi-
clents.
Conditional on the initial observations, Y(t) for t < 0,

the likelihood function is given by

1

- 2T
(3) L(e, T | ¥Y) <« lzl 2" exp _%
t

ult) 'z tu(e)
1

I ~113

where a vector 6 includes all of the free parameters in the D's,
A's, and B's and in C.
Assuming little is known, a priori, about the elements

of L, I use Jeffrey's diffuse prior for I

(%) P(Z) < Iz'-(n+l)/2

and an independent informative prior, p(6), for 6. The marginal

posterior density for 8 is then given by
1

-2t
(5) p'(6]Y) = |s] p(8)
where

1T ..
s =5 1 Ult) u(s)
!

and the U(t) are the residuals derived from substituting the

values of 8 into (1) and (2) above.

Tdentification

In order to identify the coefficients in the A and B
matrices, some normalization is required. Since miltiplication of
all the elements of the A's and division of all the elements of

the B's by the same constant would not affect the fit, the scale
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of Z is fixed by setting the elements of the first row of Al equal
to 1. In a one-index model with finite lag lengths--that is,
given L, and Ly-~-the above normalization is sufficient to identify
the A's and B's. However, if lag lengths increase as the number
of observations increases or if the model has more than one index,
then a further normalization is required. This is because in the
limit the fit would not be affected by multiplication of the lag
polynomials defined by the Ay, A(L), by some qxq lag polynomial,
g(L), and multiplication of the lag polynomials defined by the By
B(L), by g(L)"l. For a one-index model, Sargent and Sims (197T)
suggest setting the elements of the first row of each of the Aj
equal to zero for J = 2,...,La.

With a two-index model, the natural extension of this
normalization is to set some 2x2 submatrix of Ay equal to the

identity and set the same submatrix of Aj for J = 2,¢es,L, equal

a
to zero. Since the lag lengths estimated here are actually quite
short, such restrictions may not be innocuous. For the purpose of
this paper, the indexes do not have to be interpreted directly.
Thus, the reliance on lag lengths to achieve identification 1is
less of a concern than the overidentification imposed by such zero
restrictions.

The basic condition required for identification of the
structural coefficients, 8, is that the transformation from 6 to
the implied reduced-form autoregressive representation be of full

rank. That will be true when the A's or B's are restricted so

that there is no g(L) with

A*(L) B*(L) = [A(L)g(L)] [g(r)~1B(L)] = a(L)B(L)
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such that A* and B* also satisfy the restrictions. When A(L) and
B(L) are both known to be one-sided and to have known orders—-~that
is, when ALa and BLb have full rank--then such a g(L) must have g3
= 0 for all J # 0. Thus, identification may be achieved by re-
stricting A; so as to insure that the only such g(L) is the iden-
tity. One sufficient condition, the one I adopt here, is to set a
axq submatrix of Ay equal to the identity. This restriction does
not impose any overidentification, and any other index representa-

tion with the same orders can be transformed to its forme.

A Bayesian Approach

Time series modeling of macroeconomic phenomena presents
a difficult task. Economic theory suggests that many complex
interactions among variables are likely to occur. Data, however,
are too limited to allow estimation of more than a few relation-
ships. Regardless of its complexity, the linear structure of a
vector of covariance stationary economic time series can be ap-
proximated arbitrarily well in a mean square sense by a vector
autoregressive model if the lag length is made large enough.
However, the number of parameters in such a system grows with the
square of th; length of the vector and quickly exceeds the number
for which the data are able to give accurate estimates. Moreover,
the paucity of data, which prevents more accurate identification
of macroeconomic relationships, is not likely to ease signifi-
cantly over time. Because economic systems grow and structures
change, the relevant sample size is limited. Thus, mltivariate
modeling of economic time series mst confront this small sample

problem. The essential question is how to use prior information

to reduce the dimensionality of the estimation.
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The type of prior information which is available is
problem specific, and no one estimation strategy can be expected
to dominate in every probleme The index model has been suggested
by Sargent and Sims (1977) as a useful approach toward the es-
timation of businesé cycle dynamics. The fact that many aggregate
macroeconomic variables seem to show high coherence at period-
icities around a few years suggests that there may be one under-
lying factor which drives the cycle. Current business cycle
theories suggest that a number of phenomena may be involved.
Shocks mey come from such diverse things as the financial sector,
international events, relative prices, and labor markets. Inde-
pendent shocks may be propagated through inventory, capital stock,
and labor adjustment costs; information lags; long-term contracts;
or other institutional features of the economy. Interest rates
play a key role in intertemporal allocation of consumption and
production, and certain sectors such as housing may be especially
sensitive. Mbnetany‘and fiscal policy reactions also contribute
to the dynamics of the cycle.

Given all of the possible complexity of business cycles
which theory -suggests, it is no small task to condense the impor-
tant features into a2 system of wvariables to which time series
methods can be applieds For this reason, I choose to focus here
on the manufacturing sector. While this focus means that impor-
tant aspects of the economy will clearly be ignored, it also means
that, to the extent that the business cycle is generated primarily
in the manufacturing sector, I should be able to capture the

cycle's most salient features. To this end, I consider the manu-



-7 =

facturing component ‘of industrial production and the producer
price index, the corresponding inventory-to-sales ratio, and the
three-month Treasury bill rate.

Having identified a set of wvariables which measure
important aspects of the business cycle, I face a number of alter-
native modeling strategies. Multivariate ARMA models have re-
ceived a great deal of attention in recent years. Reviews of
these methods have appeared in Granger and Newbold 1977 and
Nerlove, Grether, and Carvalho 1979. DBoth of these texts empha-
size the difficulty of specifying the form of mltivariate time
series models, with the latter text concluding (p. 260) that "the
cagse for mltiple time-serles modeling 1s far from good, espe-
cially in view of the substantially greater effort and cost in-
volved in formulating and estimating such models."

Jenkins and Alavi (1981) have presented a more opti-
mistic case for miltivariate ARMA modeling with a bivariate mink
and mskrat example and a four-variable example with quantities
and prices of butter and mergarine. An important aspect of such
models, however, is that much is known about their structure, a
priorie. -

When very 1little is known about the structure of the
interaction among variables, a difficult specification search is
necessary. As Leamer (1978) emphasizes, that search is essen-
tially a Bayesian process of combining prior information with the
data. Litterman (1980) demonstrates a procedure for incorporating

into the estimation of vector autoregressions the informetion that

each of a set of economic variables (after suitable transforma-
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tion) is likely to follow a random walk. That approach is poten-
tially applicable to the set of variables‘studied here, but it
ignores the index structure which 1s assumed to exist in the
generation of business cycles. A combination of the above type of
prior information with that incorporated here is one possible
extension which has not yet been attempted.

An index structure generates an autoregressive represen-
tation of less than full rank. A number of methods may be used to
estimate such a structure. Brillinger (1975) suggests a frequency
domain canonical analysis, and Joreskog and Goldberger (1975)
suggest a model with multiple indicators and multiple causes. I
apply the observable index model described above because it allows
a generel form of dynamic response of the indexes to the observ-
ables and of the observables to the indexes. In addition, it
allows the imposition of prior information in a convenient form.

All causal influences among variables in the index model
mst occur through their impact on the indexes. The prior infor-
mation which is used concerns how important the impact of the
indexes is thought to be. The purpose of imposing a prior density
in this context is to bridge the gap between a set of univariate
equations and the index model. A prior on 6 allows one to specify
in a probabilistic sense how important the impact of the index is
thought to be.

Substituting (2) into (1) and collecting terms, the

effect of the indexes on the k°H component of Y can be represented
by
n

' L
(6) 85 Y, (t-3)
121 le i



where L = La + Lb - 1 and

(1) -1 al, %,
r=l 8 +,=j+1
where aiz is the (k,r) element of AE and b is the (r,1i)

2

element of B, .
22

Given the difficulty of identifying the indexes indi-
vidually, it is natural to formulate the prior information on the
importance of the index effects directly in terms of the §'s.
Thus, the information that the effects of the index are small is
conveyed by a prior which puts small weight on large squéred
values of §'s. A prior density which incorporates this idea is

@ s sen {4 ] o)
1,3,k

where A is the stacked vector of §'s.

This prior is a normal density over the n2L dimensional
space spanned by the components of A. When the conditions for
econometric identification of 6 are met, this prior induces a
prior on 6 given by p(8) = p[A(8)], where A is explicitly written
as a function of 6.

Equation (8) is actually a slight simplification of the
prior used here, since it does not take account of the scale of
the variables. If the units of a particular component of Y were
to be changed by a factor of 10, for example, the prior should
also be adjusted, since the §'s on that component in the equations
of other components would also change by a factor of 10. In order
to account for this effect, the prior includes scale factors, oy,

assoclated with each component of Y. Each 0; is the standard
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error of the residuals in a univariate autoregression of the ith
component on three lags and a constant. The adjusted prior is

then given by

G e = e {47 ) QNI
1,J.k

Varying the tightness parameter, A, will generate dif-
ferent priors representing, with more or less certainty, that the
index effects are small. In the limit, as A approaches zero, the
index representation approaches that of a set of univariate equa-
tions. As A gets larger, the prior becomes flat relative to the
likelihood function.

The combination of index models and priors of the type
described in this section does not lead to posterior densities of
a computationally tractable form. For this reason, the estimation
strategy described here is rather ad hoc. My intent is to de-~
scribe in a meaningful sense a mapping from priors into a relevant
measure of forecasting performance--in this case, a function of
out-of-sample forecast errors.

In -any given forecasting problem, it is desirable in s
Bayesian analysis to find the predictive density of the future
observation. With e squared error loss function, the posterior
mean of this density is the optimal point forecast. If only one
forecast were desired, it might be practical to perform the requi-
site numerical integration. The approach of Kloek and van Dijk
(1978) might be useful in such a case. In this study, however,

the desire is to look at several priors and many forecasts, so

that such an approach is impractical.
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Instead, I follow a procedure of maximizing the poste-
rior density and using the estimate, 8, so derived to generate a
set of forecasts. This procedure can be considered full infor-
mation maximum likelihood if the information contained in the
prior is viewed as a set of independent observations added to the

likelihood functione.

Examining the System's Performance

A Forecasting Experiment

My test of the usefulness of the observable index model
is applied to the four macroeconomic variables mentioned above as
those generally viewed as playing important roles in the business
cycle. Again, the four variables are industrial production in
manufacturing, the producer price index for manufacturing, the
three-month Treasury bill rate, and the inventory-to-sales ratio
for manufacturing and trade. (A fuller description of the data is
given in Appendix l.)' Natural logarithms of industrial production
and the producer price index are taken.

The one- and two-index models are specified with Ld = La
=1y = 3, which leads to a total of 39 free parameters in the one-
index model and 60 in the two-index model. The experiment con-
sists of choosing, for each model, a set of priors as described
above with the parameter A ranging from very loose to very
tight. In each case, the model is first estimated over the
monthly data from June 1948 to January 1970 (from 48:6 to TO:1).
These initial estimates are used to generate out-of-sample fore-

casts for each month from T70:1 to TO0:6. The forecasts are made
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for harizons ranging from 1 month to 36 months, with miltistep
forecasts based on the chain rule of forecasting. The model is
then reestimated with data through T70:7, and another set of 6§
forecasts is made. The sequence of adding observations, re-
estimating, and making forecasts is continued throughout the data
period, which ends in 80:9. Thus, there are 128 one-step fore-
casts, 127 two-step forecasts, and so on. The procedure of re-
estimating every 6 months, rather than every month, is followed
simply to reduce the computational expense.

For comparison, I also follow this forecasting procedure
for a set of univariate equations (with three lags and a constant)
estimated by the method of seemingly unrelated regressions, a set
of univariate ARIMA models (see Appendix 2), index models with no

prior, and an unrestricted vector autoregression (VAR).

Results of the Experiment

Results of this forecasting experiment are presented in
two different ways in Tables 1 and 2. [Tables and figures follow
page 22 of this paper.] In both tables, the results are displayed
in terms of_ a standard forecast measure, Theil's U-statistice.
This sta.tist:i:c is defined as the root mean square error of the
forecast divided bty the root mean square error of a no-change
f‘orecast.—g—/ The purpose in presenting these averages of Theil

statistics is simply to summarize the data. Tables 1 and 2 are

3/ Under some strong distributional assumptions, one
could use measures similar to these to test for significant im-
provements in forecasting. Rothemberg 1981 gives an example.
Here, however, I am interested in the pattern of the results, not
the significance of a particular statistic.
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designed to make patterns in the forecast results easier to per-
ceive than they would be in tables of simple mean square errors.

Overall, the results suggest at least a potential use-
fulness of index models for business cycle forecasting. Improve-
ment in forecasting performance is not uniform, however, and the
mixed nature of the results suggests that, at least for out-of-
sample forecasting, it 1is dimportant to damp the estimates in
otherwlse loosely parameterized models.

The main result of interest is that in both index speci-
fications there 1is consistent improvement at the margin as the
index effect is allowed to enter. As seen in Tables 1 and 2, this
improvement at the margin occurs for all horizons and all vari-
ables and in both the one- and two-index models. In all cases,
however, the results eventually deteriorate as the prior is
loosened and the effect of the index is allowed to increase.
While the extent of the improvement and the prior tightness at
which the bvest results occur vary considerably across the dif-
ferent variables, the consistency of the general pattern suggests
that further consideration of this type of estimator may be de-
sirable.

Table 1 shows the average forecast performance across
variables at different horizons. At the one-month forecast hori-
zon, the results improve as the prior is loosened, up to the point
where A = .5 in the one-index model and A = .05 in the two-~index
models In both models, the performance then worsens and later

improves as the prior is locsened further.
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Similar patterns are evident at longer horizons, al-
though the better A's tend to be smaller for longer horizons. It
is not obvious why priors Which give more weight to the index
should perform better at shorter horizons. One possibility is
that the looser priors allow the models to better fit structural
changes which persist only for a limited time. TIf this is true,
then a time-varying coefficient specification in which parameters
tend toward a time-invariant mean might prove beneficiale. Another
improvement would be to use the posterior mean for mltistep
forecasts rather than the chain rule, which I used to minimize
computational expense.

Results for each variable averaged across horizons,
shown in Table 2, follow essentially the same pattern as the
averages across variables, but the point at which forecasts begin
to deteriorate varies. The forecasts of the price index gain the
least and quickly worsen as the index effect continues to enter.
In the two-index model, industrial production also shows little
improvement before worsening. Industrial production in the one-
index model and the other wvariables in both models show substan-
tial gains as the index effects are allowed to enter. The overall
average of the Theil statistics improves from .875 in the uni-
variate system to .818 in the one~index model with A = .2 and to
829 in the two-index model with A = .05. While there are no
known distributions for these statistics by which to judge their
gignificance, they do show considerably more improvement than

those for the best ARIMA models.
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Still, there is an obvious limitation to the practical
application of this type of procedure. 1In formilating a prior,
there is no way fo know ahead of time what the appropriate tight-
ness should be. If the forecasts were not too sensitive to this
choice, 1t would not matter mich how the tightness was chosen. 1In
fact, however, the results demonstrate an unfortunate degree of
sensitivity to this choice. For example, in the two-index model,
the overall average of the Theil statistics Jumps from .829 to
.896 as A moves from .05 to .l. In the one-index model, the
three-year horizon average jumps from 1.020 to 1.735 to 1.035 as A
moves from 1 to 2 to 5. Thus, this class of models has the po-
tential for generating bad, as well as good, forecasts.

One possible explanation for the mixed nature of these
results is that it is an example of the well-known phenomenon that
with limited observations highly parameterized models, even when
corregtly specified, generate out-of-sample estimates with large
mean square errorse This interpretation suggests that the two-
index restrictions on the vector autoregressive representation are
not strong enough for forecasting purposes. If this is true, it
is interesting to note that with less than 16 parameters per
equation and the number of observations ranging from 265 to 391,
the two-index model is not outside the normal range in terms of
parameter-to-observation ratios for econometric models. This
result would seem to suggest that there may be many contexts
similar to this one in which Bayesian priors have a potential
value for damping estimates in order to improve forecast per-

formance.
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Examining the Influences Among Variables

Testing the Index Fit

The observable index specification imposes cross-equa-
tion restrictions on the vector autoregressive representation
which can be tested using the classical likelihood ratio test.
The restrictions which the one-index structure imposes on the
vector autoregressive model are rejected. The two-index model's
restrictions on the vector autoregression, however, cannot be
rejected at conventional significance levelsrgj Detailed results

of these likelihood ratio tests are presented in Table 3.

Decomposition of Variance

A useful way to summarize the channels of influence
among variables in an econometric model is through a decomposition
of forecast variance. This technique is described in Appendix 3,
and the results of applying it here are shown in Table 4. The
decomposition highlights two aspects of the index models. First,
it reveals that there 1is a natural separation of effects into one
real index and one nominal index. Second, it demonstrates the
extent to which the two indexes are able to capture the full
extent of dynamic interaction which 1is obtained in the unre-
stricted vector autoregression.

Given the ordering chosen here, in the univariate system

the decomposition of industrial production mst attribute 100

§/A direct test of the one-index model against the two-
index model does not satisfy the conditions for the likelihood
ratio test. Under the null hypothesis that the one-index model is
correct, the parameters of the two-index model are not identified.
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percent of the forecast variance at all horizons to own innova-
tions. This result does not follow for the one-index model,
wvherein cross-effects are to be expected. However, in my one-
index model, industrial production does in fact turn out to be
almost completely exogenous. (Actually, at the four-year horizon,
other innovations account for .18 of 1 percent of production's
forecast variance.)

As seen in Table 5 (which shows the improvements in fit
of individual equations), the inventory-sales ratio is the vari-
able for which the fit 1is most improved by the addition of an
index. The index allows the impact of industrial production on
the forecast variance of this ratio to increase from slightly less
than 30 percent, the amount due to contemporaneocus correlation, to
62 percent at a one-year horizon (sée Table 4d). The index also
picks up substantial effects of both of these real varisbles on
the nominal variables, prices and interest rates. Notice, how-
ever, that the index does not pick up any appreciable influence of
the nominal variables on either of the real variables, nor does it
capture any interaction between prices and interest rates.

The one-index model is & representation in which real
variables are block exogenous and alone determine a real indexe.
Innovations in industrial production and, to a lesser extent, in
the inventory-sales ratio drive the index, and it in turn helps to
predict the inventory-sales ratio, producer prices, and nominal
interest rates. Agalin, industrial production itself 1s completely

€Xogenouse.
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We have seen from Table 3, however, that the one-index
model is strongly rejected by the dats. This lack of fit is
reflected in the decomposition of variance by the absence of
channels of influencé in the one-index model which do appear in
the two-index model and the vector autoregression. The data do
not reject the two-index model, and its decomposition of variance
is very similar to that of the vector autoregression.

Figures 1 and 2 illustrate the main differences between
the one-~ and two-index models. Arrows show the significant causal
channels, and the width of the arrows and the numbers indicate the
impacts measured by the percentage of forecast variance at a four-
year horizon attributable to innovations in each of the variables.

Changes resulting from the addition of the second index
are consistent with the interpretation that one index represents
real effects and the other nominal effects. The addition of the
second index primarily improves the fit of the nominal variables,
but it also seems to open a channel of influence from nominal
variables to real variables. In the two-index model, instead of
being completely exogenous, industrial production obtains 28.56
percent of its variance at the four-year horizon from nominal
interest rates. Prices and the inventory-sales ratio, however,
still have very little influence on the variance of production.
With the addition of the second index, nominal variables explain a
substantial portion of the inventory-sales variance. At the four-
year horizon, prices explain T percent and nominal interest rates

21 percente.
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The addition of the second index causes a minor increése
in the interest rate effect in the decomposition of prices, and it
provides a channel for some additional impact of prices and indus-
trial production on interest rates. Aside from this last impact
of industrial production, which occurs only at horizons greater
than one year, all effects of innovations in real variables which
appear in the +two-index model also appear in the one-index
model. Yet most of the influences of nominal variable innovations
show up only in thé two-index model. Thus, although two indexes
with real and nominal components are necessary to fit the data,
when only one index is allowed, the fit is maximized by defining

an index of the real components alone.

Impulse Response Functions

Some additional insight into the interpretatién of these
index effects can be obtained from the moving average representa-
tions of the index models. These response functions are plotted
in Figures 3 through 6 aléng with the response function of an
unrestricted vector autoregressive representation.

As is to be expected, the sizes of the responses, scaled
in terms of éwn innovation standard deviations, correspond roughly
to the relative importance in the decomposition of variance. 1In
addition, the response functions reproduce the exogeneity of
industrial production in the one-index model, the introduction of
nominal cross-equation effects in the two-index model, and the

close correspondence between the two-index model and the vector

autoregression. -

+
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The main new information contained in these response
functions concerns the direction and timing of different cross-
equation effects. A positive innovation in industrial production
generates the same basic pattern of responses in each model. This
set of responses can be Iinterpreted as an anticipated increase in
demand, in the standard sense that price and quantity move up
together. The industrial production innovation is met immediately
by a persistent increase in inflation. Nominal interest rates
build up over a period of four months, and the inventory-sales
ratio falls immediately, then is slowly built back up to normal.

The response to the orthogonalized innovation in the
inventory-sales ratio--that is, that part of the innovation uncor-
related with innovations t§ the other variables--also leads to the
same responses in all three models. This set of responses can be
interpreted as an unanticipated decrease in demand. The increase
in the inventory-sales ratio is gradually reduced as industrial
production dips and then returns to normal. There is an immediate
deflationary impact which persists, and interest rates drop and
remain lower than otherwise for approximately two years. Between
the first and second year, industrial production increases to a
point above where it would have been without the shock.

Price level innovations are persistent, but have small
cross-equation effects in all the models. In each case, indus-
trial production rises for about six months and then falls below
normal, inventory-sales dip and then rise above normal, and inter-
est rates rise and then slowly return to normal. The responses

are basically the same in all three models, but are somewhat
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larger in the two-index than in the one-index model and are larger
still (but still smaell) in the vector autoregression.

The only noticeable difference in the response patterns
across the three models appears in the set of responses to an
interest rate innovation, between the one~index and the two-index
model. The one-index model does not appear to provide a channel
for this innovation to have an effect, whereas the two-index model
does. There the interest rate innovation causes an immediate rise
in the ‘inventory—sales ratio, which is followed shortly by a
prolonged decline in industrial production. Prices respond with a
small decline within a few months, followed by a sustained drop
after about a year. The fact that the inventory-sales ratio
responds positively and somewhat before industrial production
while prices respond negatively suggests that these reactions
reflect a reduction in demand in response to tighter credit rather
than a correct anticipation by borrowers and lenders of future
negative supply effects. One possible interpretation is that
these innovations largely represent actions of the monetary au-
thority.

TaKen together, the decompositions of variance and the
impulse response functions suggest an Iinteresting separation of
the causes of menufacturing cycles into real shocks, which are
primarily shifts in demand, and financial shocks, which may be

policy induced.
Conclusion

The use of Bayesian procedures allows the estimation of

models with varying degrees of influence from observable in-
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dexes. Relative to a system of univariate equations, the intro-
duction of the index effect at the margin improves out-of-sample
forecasting performance for a set of economic time series related
to the business cycle. There appears to be a general pattern of
improvement and then deterioration in forecasts as the index
effect is increasingly allowed to enter. Inspection of the unre-
stricted one- and two-index models and their associated decomposi-
tiong of forecast variance suggests that there may be a separation
of real and nominal influences into different indexes. Such a
gseparation might provide a useful distinction between real shocks
to tastes and technology and shocks generated in financial markets
or by monetary policye. Such an identification of the observable
indexes might be achieved by testing exclusionary restrictions in
the context of a larger set of variables. That will be the sub-

Jjeet of future research.
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Table 1

Average Forecasting Performance
of All Variables Over Each Horizon

(Averages of Theil U-Statistics)

Model Forecast Horizon in Months
1 2 3 6 12 24 36

Univariate

ARIMA* .851 .843 857 .880 .887 .891 870

SUR##* .869 869 .882 +903 .886 .840 8L
One-Index

A= .001 .869 .868 .881 .901 .883 837 843

.010 .867 .866 .878 897 .880 .832 .839

.100 .855 843 849 .850 .816 «T36 .698

+200 8LT .832 834 834 .806 «T55 «T52

0500 08)4-)"' 0829 0836 08)48 0819 '775 -779

1.000 .850 843 .858 .893 .938 «952 1.020

2.000 .862 .863 .892 971 1.097 1.302 1.735

5.000 .855 847 .86 .901 9kl .9ko 1.035

No Prior -8L4T .833 .848 .886 922  .938 1.039
Two=-Index

A= .001 .869 c867 0880 0900 0882 -835 08)41

.010 .859 .851 .858 .863 837 «TTh .TL40

.050 .855 .843 .8h7 847 .821 «TT0 «Thl

.100 .864 .863 877 «907 «928 .918 978

«200 847 .840 .851 .878 .91k .96k 1.130

+500 .835 .828 .837 .856 .859 .882 1.032

1.000 .830 .825 .83k 8Lk .821 .825 <957

2.000 .830 .825 .833 845 .823 .834 «965

No Prior :854 .861 879 927 «978 +993 1.120

VAR .849 .843 .856 .880 .888 <91k 1.098

¥The selection of ARIMA models is described in Appendix 2.

#*The SUR line reports results for a set of univariate autoregressions with three
lags and a constant, estimated by the seemingly unrelated regression method. This

model is the limiting' case for either index model as A approaches zero.



Table 2

Average Forecasting Performance
of Fach Varisble Over All Horizons

(Averages* of Theil U-Statistics)

Industrial Producer Treasury Inventory- All Four
Model Production Price Index Bill Rate Sales Ratio Variables
Univariate
ARIMA .860 .60k «997 1.014 .869
SUR .900 _ .602 1.020 «975 875
One-Index
A= «001 «900 .601 1.018 972 873
«010 .898 .610 1.005 «965 870
+100 .899 642 .893 857 .823
.200 .898 6h1 .888 .845 .818
+500 842 664 .93L .862 .826
1.000 .928 .681 1.079 .885 .893
2.000 1.350 .669 1.085 962 1.017
5.000 1.029 .675 1.004 .885 .898
No Prior 1.009 .636 1.007 .886 .885
Two-Index
A= .001 «900 .602 1.018 969 872
.010 .896 610 «96L4 .885 .839
.050 .897 607 .949 .865 .829
.100 1.033 .655 .950 .9L5 .896
«200 .982 .68h4 .938 «955 .890
+500 .8388 .702 «935 .896 .855
1.000 .840 .691 «933 8Tk .835
2,000 848 OTT «930 .893 .837
No Prior - 1.075 667 926 1.017 «G21
VAR «993 +T05 928 .888 .878

#FBach average is weighted across different horizons with weight proportional
to k=t at the k-step horizon for k = 1,...,36.



Table 3

Results of the Likelihood Ratio Tests*

Marginal
Log Significance
Hypothesis Determinants x2 Level
I: One-Index -29.9171
vs. x2(45) = 100.54 < 1072
VAR ' -30.1910
II: Two-Index -30.1280
vs. x2(24) = 23.1k4 0.51
VAR -30.1910

#The likelihood ratio tests follow Sims' (1980) suggestion of
correcting for degrees of freedom. The tests are performed on the
entire sample, 388 observations. The degrees of freedom correc-
tion is 21 for both potheses. Thus, the statistic reported is
(7-k)(log lzu] - log]?gcl), where T-k = 367 and % and I® are the
covariance matrices of the unrestricted (VAR) and constrained
(indgx) models, respectively. The marginal significance level is
Prix=(s) > ¢], where ¢ is the value of the test statistic.



The Decomposition of Forecast Variance

Table b

Table 4a  Industrial Production
% of Variance in Production Due to Innovations in
Standard Industrial Producer Treasury Inventory-
MODEL/Horizon Error Production Price Index Bill Rate Sales Ratio
UNIVARIATE
1 0122 100.00 .00 .00 .00
2 .0200 100.00 .00 .00 .00
3 .0267 100.00 .00 .00 .00
6 .0k20 100.00 .00 .00 .00
12 .0629 100.00 .00 .00 .00
2L .091k4 100.00 .00 .00 .00
36 .1132 100.00 .00 .00 .00
48 .1315 100.00 .00 .00 .00
ONE-INDEX
1 .0120 100.00 .00 .00 .00
2 .0205 99.89 .00 .00 .10
3 .0286 99.70 01 .00 .29
6 .0L8L 99.61 .00 .00 .38
12 .0TU48 99.65 .03 .01 .31
24 .1075 99.73 .06 .01 .20
36 «1303 99.79 .06 .00 .15
48 .1485 99.82 .06 .00 12
TWO-INDEX
1 0117 100.00 .00 .00 .00
2 .0196 99.84 .09 .00 .06
3 0267 99.52 AT .08 2k
6 0443 97.92 .1k 1.28 67
12 <0673 92.01 .3k T.27 .38
24 .0961 78.22 .89 20.10 .79
36 «11hh 70.95 87 26.29 1.89
48 .1276 67.89 .80 28.56 2.Th
VAR
1 .0116 100.00 .00 .00 .00
2 0194 99.73 23 .00 04
3 0263 99.29 49 .08 .13
6 0431 9T7.12 .35 1.3% 1.18
12 L0641 90.4k 2.2h 6.23 1.09
2k .0895 Th.62 5.98 18.47 .93
36 .1053 66.35 6.08 25.50 2.07
48 .1168 63.16 5.64 28.15 3.05



Table 4b The Producer Price Index

% of Variance in Price Index Due to Innovations in

Standard Industrial Producer Treasury Inventory-
MODEL /Horizon Error Production Price Index Bill Rate Sales Ratio
UNIVARIATE ‘
1 00434 .40 99.60 .00 .00
2 +00708 T 99.60 .00 .00
3 .01042 .40 99.60 .00 .00
6 .01991 40 © 99.60 .00 .00
12 .03641 40 99.60 .00 .00
24 .03641 40 99.60 .00 .00
36 .08304 40 99.60 .00 .00
48 .10299 40 99.60 .00 .00
ONE-INDEX
1 .00Lk22 .18 99.82 .00 .00
2 .00688 1.05 98.10 .00 .84
3 .00999 1.47 97.65 .00 .88
6 .01861 3.87 94.36 .01 1.75
12 .03330 10.26 85.88 .06 3.79
2l .05737 22.46 70.19 .16 T.18
36 .07880 30.01 60.73 .25 9.02
48 .09919 3k.45 5527 31 9.96
"TWO-INDEX
1 .00407 .80 99.20 .00 .00
2 00644 2.54 95.53 W17 1.76
3 .00911 4,05 93.4T «35 2.13
6 .01769 6.92 89.79 .50 2.78
12 .03460 12.36 82.37 «39 4.88
oy .06341 21.47 69.73 .73 8.07
36 .08665 26.96 61.T0 2.06 9.32
48 .10673 29.91 56.94 3.71 9.hh
VAR -
1 .00k402 .91 99.09 .00 .00
2 00642 3.4k 9k.90 .56 1.10
3 .00912 550 92.55 .79 1.17
6 01768 9.68 87.70 1.29 1.33
12 .03409 17.14 T8.67 <73 3.45
2k .06013 27.81 63.77 .78 T.63
36 .08020 33.27 55.03 1.96 9.Th

48 .09781 35.66 50.56 3.48 10.29



Table 4¢ The Three-Month Treasury Bill Rate

% of Variance in Bill Rate Due to Innovations in

Standard Industrial Producer Treasury Inventory-
MODEL/Horizon Error Production Price Index Bill Rate Sales Ratio
UNIVARIATE
1 .382 3.37 2.98 93.65 .00
2 669 3.37 2.98 93.65 .00
3 .837 3.37 2.98 93.65 .00
6 1.107 3.37 2.98 93.65 .00
12 1.509 3.37 2.98 93.65 .00
2L 2.033 3.37 2.98 93.65 .00
36 2.391 3.37 2.98 93.65 .00
48 2.658 3.37 2.98 93.65 .00
ONE-INDEX
1 .370 2.82 2.05 95.13 .00
2 643 4.09 2.23 93.34 .34
3 .811 6.77 2.42 88.84 1.97
6 1.11h4 " 13.76 2.10 80.77 3.37
12 1.590 18.96 1.19 T6.21 3.64
2k 2.307 22.49 .58 T3.07 3.86
36 2.893 23.62 .38 72.16 3.84
L8 3.416 23.94 .31 7T2.01 3.7k
TWO-INDEX
1 <354 1.99 2.22 95.79 .00
2 604 2.90 3.83 93.02 .25
3 .Th2 4.86 5.05 88.41 1.69
6 .938 9.38 T.30 80.Th 2.59
12 1.105 16.70 6.24 73.03 4.03
2k 1.218 2T.92 5.19 61.61 5.28
36 1.281 31l.4b L.78 58.85 .93
L8 1.327 32.91 %.87 57.62 L.60
VAR -
1 .352 2.07 2.09 95.84 .00
2 «600 3.Th 4,16 91.94 .15
3 .T38 5.52 5.87 86.98 1.63
6 926 10.26 8.43 78.76 2.54
12 1.113 17.36 6.50 T1.38 h.76
24 1.235 26.92 5.70 60.15 T.22
36 2.285 29.57 5.49 5T.91 T.03
L8 1.320 30.66 5.34 57.33 6.67



Table 4d The Inventory-Sales Ratio

% of Variance in I-S Ratio Due to Innovationg in

Standard Industrial Producer Treasury Inventory-
MODEL/Horizon Error Production Price Index Bill Rate Sales Ratio
UNIVARIATE
1 .0225 28.76 1.61 .00 69.63
2 .0303 28.76 1.61 .00 69.63
3 .0362 28.76 1.61 .00 69.63
6 0470 28.76 1.61 .00 69.63
12 .0565 28.76 1.61 .00 69.63
2k .0617 28.76 1.61 .00 69.63
36 0627 28.76 1.61 .00 69.63
48 .0629 28.76 1.61 .00 69.63
ONE-INDEX
1 .0210 29.18 1.68 .01 69.13
2 .0288 38.47 1.38 .12 60.02
3 «0357 L8.65 1.00 .32 50.0L
6 0476 58.63 1.39 43 39.54
12 .0583 61.98 3.34 46 34.22
2l .0623 61.65 4,91 47 32.97
36 .0626 61.31 5.27 A7 32.96
48 .0627 61.35 5.36 AT 32.83
TWO-INDEX
1 .0207 28.19 1.55 .00 T0.26
2 .0282 35.93 2.09 L2 61.57
3 <0344 44,22 1.66 87 53.25
6 .0hl3 49.90 1.26 2.51 46.33
12 .0529 46.89 3.40 9.84% 39.86
2k .0587 39.30 6.75 20.80 33.14
36 .0602 39.35 T.10 21.62 31.93
L8 .0609 40.16 T.11 21.30 31.43
VAR -
1 .0207 27.76 1.58 .00 T0.67
2 .0280 35.43 2.28 42 61.87
3 .0340 44,01 1.92 .98 53.09
6 -0LLo - 48.36 1.88 2.68 47,08
12 .0536 k2.34 8.16 8.25 41,26
2L 0605 3%.26 - 14.58 17.80 33.36
36 .0623 34.81 14.15 18.80 32.25

48 .0629 35.48 13.91 18.61 32.00



Table 5

How Much Adding an Index
Improves the Fit of Individual Equations
(% Reductions in Standard Errors)

Industrial Producer Treasury Inventory-
Production Price Index Bill Rate Sales Ratio

From Univariate
to One-Index 1.35 2.87 3.10 6.148

From One-Index
to Two-Index 2.26 3.52 4,35 1.07

From Two-Index
to VAR 1.12 1.29 0.46 0.52
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Figure 3
Response to an Innovation
in Industrial Production

Key: Responseof industrial Production
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Figure 4
Response to an Innovation
in the Price Index

Key: Response of Industrial Production
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Figure 5
Response to an Innovation
in Nominal Interest Rates
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Figure 6
Response to an Innovation
in the Inventory-Sales Ratio
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Appendix 1

The Data

The series used in this study are taken from the
Citibank data base available from the TROLL computer system at
MIT. The data are monthly from January 1948 through September

1980. The series are as follows:

IPMFG: Industrial Production: Manufacturing (1967 = 100) sea-
 sonally adjusted
PWMSA: Producer Price Index: Manufactured Goods (1967 = 100)
segsgonally adjusted
FYGM3: U.S. Government Security Yield Three-Month Bill, Market
Yield (percent per annum)
IVTT2: Manufacturing and Trade, constant 'T2 dollar inventory

to sales ratio seasonally adjusted.



Appendix 2

The ARIMA Models

The benchmark ARIMA models are estimated by standard
techniques.* I choose a number of alternative specifications on
the Dbasis of the autocorrelation and partial autocorrelation
functions. TFor each series, the choice 1s the speciflication which
produces the best out-of-sample forecasts. The resulting equa-

tions are as follows:

Industrial Production (2, 1, 0)
Producer Price Index (3, 1, 0)
Treasury Bill Rate (2, 1, 0)
Inventory-Sales Ratio (o, 1, 0)

where (i, J, k) gives the order of the autoregression, differenc-
ing, and moving average, respectively. Notice that this procedure
essentially provides a lower bound on the size of errors for ARIMA
models. It may give a distorted picture of the performance one

would get if models were chosen by conventional methods.

#Alternative specifications are selected essentially as suggested
in Chapters T and 10 of Nerlove, Grether, and Carvalho 1979.



Appendix 3

The Decomposition of Variance

The decomposition of variance is derived from the moving
average representation associated with a time series model. The
moving average representation gives the response functions of each
variable to innovations in each of the endogenous variables in the
systems An innovation 1s defined as the difference between the
projection of a variable on information available one period
earlier and the variable's actual value. (Sargent 1978, 1979 give
a more detailed discussion.) The moving average representation
for an index model can be easily generated by forming the
autoregressive representation associated with an index model and
inverting ite.

Here, let the moving average representation be given by

»

Y, = JEO My o€y s
where M, is normalized to be the identity matrix and € is the
vector of innovations at time t. The variance matrix of a k-step-

ahead predicfion is then given by

kil
Q = M, Z M
LI B

where £ is the variance matrix of the innovation vector. If the
components of the innovation vector were orthogonal (that is, if E

were diagonal), then the forecast variance could be decomposed as
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Q = M, I, M!
R

where Zi is the matrix with the ith diagonal element equal to the
variance of the innovation in the 1R variable and with zeros
elsewhere.

Since the innovations are not, in general, orthogonal, a
decomposition of forecast variance relies on some orthogonaliza-
tion procedure. One way to accomplish this orthogonalization is
to choose an ordering and define the th orthogonalized innovation
to be that part of the ith innovation which is orthogonal to all
previous innovations.

The ordering I use is industrial production, producer
price index, Treasury bill rate, inventory-sales ratio. In any of
the models I test, the only correlation between innovations which
is greater than .20 is that between industrial production and the
inventory-sales ratio. Thus, the major impact of this ordering is
that the forecast variance of the inventory-sales ratio which is
correlated with industrial production is attributed to the latter
in the decomﬁosition- This attribution is apparent in the de-

composition at a one-step horizon in which all cross-variable

effects are due to contemporaneous correlations of innovations.
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