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Introduction

A planning problem consists of the following elements:

l. A designated agent, termed the primordial planner,

who chooses a (possibly infinite) planning horizon, the initial

time of which is chosen, without losses of generality, to be &t =
O. The final time of the horizon 1s denoted T, with T = = for an
infinite horizon.

2. A set of present and future sequences (or continua)
of decisions, termed plans. A subset of these plans is determined
by the primordiel planner to be feasible, given his perceptions of
the problem's constraints.

3. A system linking the feasible plans to outcomes they
cause.

k. Performance criteria used by the primordial planner
to rank the desirability of feasible plan outcomes. The plan that

is ranked highest (if one exists) is termed an optimal or, equiva-

lently, a primordial plan.

As the optimal plan is implemented, other planners may
want to change it. They may have fundamental differences with the
primordial planner about one or more of the planning elements.
For example, new instruments may become available that change the
constraints determining the feasible plans. Unforeseeable new
informtion may become known about the system. Or, soclety may
demand that +the planner fundamentally change +the performance
criteria initially adopted. In any of these events, it seems

appropriate that the "optimal" plan be changed to reflect the new

elements.
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It is possible, though, that future planners will be in
agreement with the primordial planner about the last three plan-
ning elements. Because they evaluate the plans at later starting
dates, however, their planning horizons are not the same as those
of the primordial planner. Future planners will only concern
themselves with the impacts of their proposed plans on their own
present and future, ignoring their own pasts. This myopic (from
the viewpoint of the primordial planner) behavior may lead future
planners to deviate from the primordial plan, even if they all
agree with the primordial planner on planning elements 2-h. From
a normative point of view, if one views the primordial planner's
choice of horizon as tﬁe appropriate choice, then this myopic be-
havior is undesirable. Can it somehow be avoided?

If the primordial planner cannot force future planners
to implement the optimal plan, he can only hope that they will, of
their own free will, choose to implement it. A planning problem
having the property that its optimal plan will be implemented by
all future planners, each of whom is free to change it but will

not do so, is termed a planning problem with a consistent optimal

Dblan. Even if a planning problem does not have consistent optimal
plans, some future planner at time T < T may freely choose to
implement that part of the optimal plan under his control. A
Planning problem whose optimal plan has this property is termed a

problem with a t-consistent optimal plan.

As we will see, only certain problems with very special
structures have consistent or t-consistent optimal plans. Strotz

(1956) and Burness (1976) have shown that these structures also
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require that, in any problem that involves discounting the future,
the discount function must be of a very special form. In economic
planning problems, Kydland and Prescott (1980), Calvo (1978), and
Fischer (1980) have shown that these special structures require
expectations to be adaptive rather than rational or, in some other
sense, determined by future policy decisions. Finally, we will
also see that problems with what are usually termed nonseparsble
performance criteria do not possess consistent optimal plans.

I will present these results in a unified way through
the use of a discrete-time optimal control model. The model is
broad enough to encompass all of the special structures above, yet
simple enough to be understood by people unfamiliar with dynamic
optimization techniques. 1In the process, though, the reader will
become acquainted with the so-called Bellman Principle of Opti-
mlity, which is a necessary condition characterizing optiml
plans in planning problems with certain special structures. We
will see that, when discounting is not used, the problems whose
optimal plans are characterized by Bellman's principle are pre-
cisely those problems whose optimal plans are consistent. When
discounting is used, however, this is no longer the case, and a
different test for consistency is required.

In problems whose optimal plans are not consistent, the
primordial planner mst either find some way to force future
planners to implement her plan, or adopt some other strategy. If
the former course of action is impossible, the primordisl planner
may choose to propose some other plan that will be freely im-

Plemented by future planners. Such a plan is termed consistent,
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and in general there may be many consistent, albelt suboptimal,
plans. In problems not involving discounting, plans that are
consistent are precisely those derived via the use of Bellman's
principle, regardless of whether or not it characterizes the
optiml plan. As mentioned above, these consistent plans are
suboptimal unless the problem has a structure in which Bellman's

principle does characterize the optimal plan.

The Optimal Planning Problem

The most general optimel planning problem consgidered

here can always be placed in the form:

(1) Dg» 27,0, U(Xg5Dg s = = » s¥p Dy Xy 5t)
sete X . = ft(Xt,DO,...,Dt,...,DT);

X, given, t = 0,04+, T D ¢ ct(xt).

For each t, the primordial planner chooses a vector Dt from a

choice set Cy(X.) to solve (1), producing an optimal or primordial

Igég_(Dg,...,D$). The vector-valued state equations fi determine
the evolution of the state vector Xi. Note that we permit the
possibility that future decisions may affect current states. This
simple setup is broad enough to exhibit all known causes of incon-
gistency while avoiding complications concerning the existence and
computation of optimal plans inherent in both infinite horizon and

stochastic planning problems. An illustrative example follows.



Example: Capital Budgeting

Consider the following problem faced by a firm's primor-
dial planner, who chooses a plan to allocate a fixed capital
budget K among T competing projects. Project t starts in period t
and, for simplicity, 1s assumed to last one period. A dollar
invested in the project starting (and ending) in period t earns a
dividend of Bi. An investment of Dy dollars in period t is then
agsumed to yield dividends of BiDie In addition, retained earn-
ings in period t, denoted Xt’ are taxed in that period at the rate
Pt'

The undiscounted return to the firm in period t is then:
(2) Ug(Xg,Dg) = DBy = PiXy, t = 0,..0,Te

At time t = 0, the firm's primordial planner correctly perceives a
future interest rate series (ij,.e.,ip)e In deriving her plan,
she discounts the return in period t by the factor 1/(1+i;) -

(1+15) « eee ¢ (1+iy). Defining the discount function

/(141 40) (T+i,5) oon (141y),

(3) r(t,T)

]

r(0,0) =1,

the primordial planner's maximand is then:

T
(k) ) r(t,0)U, (X, ,D, ).
t=0
To complete the specification of the primordial plan-
ner's problem, we derive the state equation for retained earnings

Xt‘ Starting at t = 0, the planner invests Dy from the total
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capital fund K, leaving before-tax retained earnings of K - Dqge
After-tax retained earnings of X; = (1-P,) (K-D,) are then left
for future investment purposes. In period t+ = 1, investment of Dq
leaves before-tax retained earnings of Xl - Dl, and after-tax
earnings of X, = (1-P;) (X;-D;) are available for future invest-

ment purposes. Continuing in this manner, we see that:

- A - . _
(5) Xepy = (l—Pt) (Xt—Dt) = f£(Xt,Dt), t = 0,.00,T; Xy = Ko

The primordial planner's problem is then:

T
A
(6) DO’?%¥’DT tZO r(t,O)Ut(Xt,Dt) = U(XO,DO,...,XT,DT,XT+l,t)
Sete X 0 = ft(Xt,Dt), t = 0y,000,T;

Xg = K3 Dy £ Cu(xy) = [0,x.],
where fy is given by (5).
Classification of Optimal Planning Problems

There are several subclasses of problem (1) that prove

useful in the following. One subclass, termed nonanticipatory,

constitutes those problems in which the current state vector

depends only on current and past decision vectors, i.e.,
(7) X4l = Te(XgsDgaeessDe)s t = 04000, Te

By redefining the current state Xt to include the past decision
vectors DO,...,Dt_l, the state equations of a nonanticipatory

problem can always be written in the form:
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(8) Xepp = F(XgsDg)s t = 05000, Te

The most general nonanticipatory problem is illustrated in Figure
1.
Another important subclass of problems are the monotoni-

cally separable problems, in which the objective function U is

separable and monotone in the following sense:
(9) U(XO,DO,...,XT,DT,XT+1) =
g [UO (XO 9D0 ) 9U1 (Xl 9D1 ) 90 ’UT (XT ’DT) ’UT+1 (XT+1 ) ]
31 [UO (XO ’DO ) 382 (Ul (Xl 3D1 ) LA aUT (XT ’DT) ,UT"'l (XT+1 ) ) ]
and

for any fixed value of U,, g is a2 monotonically non-

decreasing function of gs.

A common type of monotonically separable problem is the additive

separable problem:
T
(9a) U(xO,DO,...,XT,DT,XT41) = téo Ut(Xt,Dt) + UT+1(XT+1),

as diagrammed in Figure 2; and the discounted additive separable

problem:

T

(9b) U= ) r(t,0)u(x_,D

o2 Xy D) + r(T+1,0)U(Xp,; ),

where r(t,0) is a real valued discount function, giving the pri-
mordial planner's discount factor for decisions implemented at

time t.
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Definition of Consistent Plans

Roughly speaking, a consistent plan is s sequence of

decisions (DO""’DT) having the property that, for each time T,
DT is the first decision in a plan that mximizes the "objective

- -~

remaining" after DO""’DT-l have been determined. At each T, the
above maximization treats the state evolution )%1,...,}2_[ para-—
metrically; and it calculates the impacts of JST on the future
states §T+l"..’§T and utilities Urseee sUpe More precisely, we
adopt two formal definitions within our planning framework--one
for undiscounted problems and the other for discounted ones.

For undiscounted problems, a plan (]30,.--,6.1.) is con-
gistent if and only if for each 0 < T < T, IST is the first com-
ronent in a solution of the following problem:

(10) D ,?%?,DT U(Xo’ﬁo’il’ﬁl”"’Qr-l’Sr-l’ir-l’ir'Dr’xr+1’

DT+1,...,XT,DT,XT+1)

Sete Xt"'l = f_t(xt,DO,.oc ,Dt_l,Dt,-oo,DT); t = T’...,T

with XO given and (}El""’)ET) as the state evolution resulting
from (60,.-.,5,1,) and the state equations ft' This property can be
weakened by requiring only that ]3,[ be the first component of sg
solution vector to (10) for some particular T > 0. This weaker

property is termed t-consistency. The plan is consistent if and

only if it is tT-consistent for all 7 = 1,...,T.
For discounted problems with the performance index (9b),
the formulation (10) will not do because (10) assumes that the

maximend of a planner at time t is



(11) %1 r(t,O)Ut()zt,Dt) + r(T+1,O)UT+1(XT+1),
t=t

which implies that the planner at t discounts his own current and
future utilities as heavily as did the primordial planner t per-
iods earlier. A more realistic assumption treats any future
planners and the primordial planner symmetrically by assuming that
the planner at t discounts future utilities U£+1,...;ur in the
same way that the primordial planner discounts her own future
utilities Ui"'°’UT-t‘ For example, if it is assumed +that the
primordial planner does not discount her current utility Uy, then
we also must assume that the planner at t does not discount his
own current utility Ut. Denoting the discount factor for Uf of a
planner at time Tt by r(t,t), we say a plan (60""’6T) is dis-

counted consistent if and only if for each 7, 0 < T < T, D_r is the

first component in a solution vector to the following problem:

T
(12) p_ T _); r(t,'r)Ut(Xt,Dt) + r(T+1,T)UT+1(XT+1)
T T t=1
Sete Xt"'l = ft(xt,DO,-oo,Dt—l,Dt,co.,DT), t = T,ooo,Tc

If, for some particular T > 0, DT is the first component

in a solution vector to (9b), we say that the plan is T-discounted

congistent.

Of course, the optimal plan (DS,...,D%) in either an
undiscounted or & discounted problem may or may not be consistent
or discounted consistent. In the following sections, I explore

the relationship between consistency and optimality.
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The Relationship between Consistency and
Optimality for Undiscounted Problems

Bellmn's Principle of Optimality

Richard Bellman formulated his optimizstion technique in

a 1957 work entitled Dynamic Programming. The basis for the

technique, called the Principle of Optimality, is a necessary
condition characterizing optimal plans for certain types of plan-
ning problems. According to Bellman's description:

An optimal policy has the property that

whatever the initial state and initial de-

cision are, the remmining decisions mst

constitute an optimal policy with regard to
the state resulting from the first decision.

(p. 83)
In our Jargon, the applicability of Bellman's principle implies
that the optimal plan (D*o‘,...,D,*I*,) in an undiscounted problem is
l-consistent because (DT,...,D’%) solves (10) for T = 1; its first
component, D¥, is thus the first decision in the optimal plan. If
Bellman's principle applies at each T > 0, considering the initial
state to be X¥ and ’the initial decision to be Di;_l, then the
optiml plan is consistent.

As shown by Mitten (196L), and restated in Nemhauser
(1966), Bellman's principle applies at each T for nonanticipatory,
monotonically separable problems, which proves that they have
consistent optimsl plans. The application of Bellman's principle
in the important special case of nonanticipatory, additive separ-

ability is demonstrated below:
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(13) DO’?%¥’DT U= Ub(XO,DO) + ees + Ut(xt,nt) + eee + UT(XT,DT)

* Upyg (Rpyy)

Sete Xppq = f%(Xt,Dt), Xy given, t = 0,...,T, D, € ct(xt)

and is diagrammed in Figure 2.

To apply Bellman's principle, we first note that the
nonanticipatory nature of the state equation allows us to compute

Xt+1 recursively as follows:

(1k) Xy

£9(Xg5Dg)

X5 = £(Xy,Dq)

X3 = f2(X2,D2) = f2(f1(f0(XOsD0):D1)sD2)

Xpe1 = F4(XgsDy)

1]

ft(ft_l(ft_z(...(fo(XO,DO),Dl),Dz),...),Dt).

Thus, any future state depends solely on decisions made prior to
that time and to the initial state X5, which dis clear from a
glance at Figure 2. By substituting the above relations into the

additively separable objective function U, we see that the problem

becomes:
(15) DO’?%f’DT Ug(XgsDg) + Uy (£,(Xy,Dy),D;) +

Ug(fl(fo(Xo,Do),Dl),DQ) + oo +

UT(XT,DT) + Upyy (XT+1)’
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with X5 given and D chosen from the set Ct(xt)’ t = Oy00e,Te
It is the special structure of (13) that permits the
application of Bellmen's principle. Noting that D; does not occur

in Uy, we can solve (13) by:

*
(16) max[UO(XO,DO) + 5 JIBX Ul(Xl,Dl) + eee + UT(XT,DT) +

D 1 T
0

Upag (Kpep )15
set. Dy € ColX,p) Dis & CplXy)e.

* =
Xq given X# = £,(Xy5Dp)

Xt+1 = ft(Xt,Dt) t = l,ocp,To

This 1is precisely what Bellman's principle says-~that the remain-
ing decisions (Df,...,D,’I",) mist constitute an optimsl plan with
regard to the state [X"l‘ = fO(XO,Dg)] resulting from the first
decision Dg. Also, this ability to decompose the optimization
problem shows that the optimal plan solving (10) is l-consis-
tent. A planner at time 1 who reconsiders the optiml plan
D¥,++.,D¥ computed by the primordial planner would solve (10) for
T = 1, taking X} = fo(XO’DS) as given. Pictorially, the planner
at time 1 ignores the part of Figure 2 to the left of Xl in cal-
culating his plan. This is the same problem (and thus produces
the same solution) as the inner maximization in (16) computed by
the primordial planner. In fact, at each T > 0, Bellman's prin-
ciple still applies to (10), whose solution is thus t~consistent
for all T, i.e., consistent. To see this, note from (16) that its

inner maximization can be similarly decomposed into two parts:
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(17) D, 7%, [Ui(xl’D1)+t§2Ut(Xt’Dt) + Upyg (X )]
= max[Ul(Xl,Dl) *p X [U2(X3,D2) + % (Ut(Xt,Dt)+
Dy 2 T t=3
UT+1(XT+1))”’ D, € C (X.)
set. Dy & Cy(Xy) Dy & CilXy)
Xy given X3 = fl(Xl ,Dl)

Xpg1 = Fp(Xe,Dy) t=2,000,T

because U; does not depend on the future decisions DoyeeeyDye
Thus, Bellman's principle applies again, and the optimal plan is
also 2-consistent. Continuing in this manner, we see that the
original T + 1 variable optimization problem (13) can be de-
composed into T + 1 single~varigble optimization problems, yield-

ing the dynamic programming decomposition

(18) p ,T8X p U= max[UO(XO,DO) + max[Ul(Xl,Dl) + eee +
0 T D, Dy

max[UT(XT,DT) + UT+1(XT+1)] leol,
D

T
where Xy41 = fu(XsDg)s t = 0see.,T and Dy € Cy(Xy). Therefore,
Bellman's principle applies at each T > 03 and the optiml plan in
the undiscounted, additive separable, nonanticipatory problem is
consistente A planner at any time T > 0 thus ignores the part of
Figure 2 to the left of X, in computing his plan. As was men-
tioned earlier, Bellman's principle will also apply at each T in
the more general class of undiscounted, monotonically separable,

nonanticipatory problems maximizing (9) subject to (8). Optimal

plans for these problems are then also consistent. To summarize,

Bellmen's prineiple applies to undiscounted, monotonically sep-
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arable, nonanticipatory problems. In any undiscounted problem,
the applicability of Bellman's principle at each T implies that

the optiml plan is consistent.
Discounted Consistency for Discounted Problems

The discounted, additive separable, nonanticipatory
problem of maximizing (9b) subject to (8) can also be solved by
applying Bellman's principle at each 7. This is easily done by
redefining U, to be r(t,0)U (X ,Dy), which brings (9b) into the
form of (13). One then applies the proof just given.

This fact, though, has no bearing on whether or not the
optimal plan is discountéd consistent. Although the primordial
plan satisfies (10) for each T, discounted consistency requires
the satisfaction of (12) for each t. In a continuous time set-
ting, Burness, generalizing a result of Strotz, found necessary
and sufficient conditions that mst be satisfied by r(t,T) to
ensure discounted consistency of the optimsl plan. His proof
involves the use of the calculus of variations. Our discrete~tinme
formulation allows us to derive the discrete-time analog of his

result using simple calculuse.

Theorem: A necessary and sufficient condition for the discounted
consistency of an optimal plan maximizing (9b) subject to (8) is

that

r(t,t) _ r(t,t')
r(s,t) ris,t')?

for all s, t, T, T'.

(19)

As a simple corollary, if the discount function is given by (3),

then the optimal plan is discounted consistent.
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Proof: We first prove necessity. The final decision D% of the
optimel plan is found by solving

(20) max r(T, O)U (x* Dy ) + r(T+1, o)U (fT(XT,D ))

D,

where X% is the state at time T of the primordial plan. Assuming

an interior maximum, solving (20) yields:

U U af

r(T,0) = m (xT D®) + r(T+1,0) afi BD: (x8,D%) = 0
or
3y,
il
( »D¥, )
(T+1,0) D,

r
(21) ¥ (T,0) - 3UT+1 5T .

T
—— (X% D¥*)
afT aDT XT T
A planner at time T would solve (12), with his final

decision Dy computed by solving:

(22) gax r(T,T)Un(X5,Dy) + r(T+1,7)Un , (£4(X0.Dg) )
T
where XT is the state at time T and is taken parametrically.
Solving (22) yields:
U
T ~ ~
— D
(23) I'(T"‘l T) - aDT(XT’ T)
r{T,t)  _ oU f_ . .
.___Ilﬂi__ll_'(x D_)
2
afT BDT USRI

Consistency of the optimal plan requires the sequence of

future planners at each time T to choose the same decision that

~

the primordial planner did. This means that D0 = DS’ D1 =

A~

D*, which, through the state equations, implies that

L}

D;, ...’ DT
X1 = X{, Xé = Xg, cen, XT+1 = X§+l' In particular, consistency of

the oprimordial plan requires XT = X% and DT = D%, so that the

right-hand sides of (21) and (23) are equal. Thus, we see that
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r(T+1,0) _ r(T+1,T)

(2)4) r(T,O) = r(T,T) s = l,ocn,T,

i.e., that the ratio-zé%%l%§l is independent of t.
3

Next, consider the primordial planner's choice D%_l.

This is formed by solving:

_ 3
(25) gax [r(T-1,0)U,, , (X% ,,D; ) +
-1
*
max [r(T’O),UT(fT—l(XT—l ,DT—l),DT)
D
T
+ r(T+1,0)U,, (£,(8_ (X%, ,D 0 ),Dp))]],

vhose solution satisfies the condition that the partial derivative

of (25) with respect to Dp_; equals zero, or

U, 4
- _— (X% #*
(26) r(1-1,0) 55— (X*  ,D% ) +
T-1
3U,, of,
T Tl
r(7,0) o 55— (X* _,D% _) +
3p_ g, \ T-1°"P1
3y of,, Of,

T41 T T-1
r(T+1,0) (x* _,pD* ) = 0.
8fy, 9fy y Dy 5  T-17T-1

Dividing by r(T,0) and rearranging leaves:

(o7) r(r-1,0) ¥p1 _ %Up 3fp,
r(T,0) 8Dy ; 3fy_q Dp_q
r(7+1,0) Vp41 ¥fp 3Fp g

2
r(T,0) 8fy, 3fy ; D5 ;

where all derivetives are evaluated along the optimal plan.
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The planner at any time T who reconsiders this choice of

Dp_q would solve:

D )

(28) ma.x [r(T—l,T)U (X.l{._ls Tl

71
Dy
+ max[r(T,T)Ui(fT_l
Dy

+ r(T+1, 7Y, (£, (e, o (X% Dy 10,0 )11

(x D

#*
™1° T—l)’DT)

Consistency requires its solution to be the same as that of (25),

80 a modified condition (27) results, with O replaced by T:

(29) r(r-1,7) pg _ o %Wp g
r(T,t) BDT_l afT_l aDT_l
r(T+1,7) Vpey fp 3fp 5
r(T,1)  0fy 8ty , oD,
r(T+1,1)
As we have Jjust seen, —;TE:%T— is independent of T.
r(T-1,1)
Therefore, (29) implies th&t'—;ﬁf:%y_ mist also be independent of

T, including, by (27), T = 0. But then, of course, f%%;%i%% mst
=L

also be independent of 7.
Considering the primordial and future planners' problems

for finding Dp_p, and imposing consistency, we similarly find

that §($_; :) is independent of T. This implies that the ra-
ey )
r(T,7) r(T+1,1)
tios (1-2,7) and (1=2,7) are also independent of 1. Continuing

the process for E@_3,...,DO, it is tedious, but simple, to find
that it is necessary that a discounted consistent, optimal plan in
a nonanticipatory, additive separable problem satisfy (19).

The proof of the sufficiency of (19) for the discounted

consistency of the optimal plan is straightforward and will be

omitted here.
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The Relevance of Strotz-Burness

The problem both Strotz and Burness use to discuss this
result is one where the primordial planner, who also plays the
role of all future planners, is planning her own future consump-
tion stream. If the planner's preference ordering over future
consumption streams is not representable by a discounted separable
utility (9b) with r(t,T) of the necessary form (19), then the
primordial plan is not consistent. Strotz views the lack of
consistency as damaging to a normtive theory of behavior, which
prescribes that the plan that should be implemented is the pri-
mordial plan. From this viewpoint, the consumer who does not

implement her primordial plan is myopic:
An individual, who because he does not dis-
count all future pleasures at a constant rate
of interest finds himself continuously repud-
iating his past plans, my learn to distrust
his future behavior, and may do something
about it. (Strotz 1956, 1T3).

Strotz proposes that such an individual may choose
either of two courses: At time zero, the individual chooses to
precommit her future decisions irrevocably; or the individual
decides to successively recalculate the optimal plan. The latter
course would produce a plan in which, for each T, the chosen D'r is
found by solving (12) for . By definition, this procedure always
generates a discounted consistent plan, which is not the primor-
dial plan unless r(t,T) is of the necessary form (20).

Strotz's alarm is unjustified in the type of problem he

discussed where there is only a single decision maker, the primor-

dial planner. Unless the primordial planner has changed her mind
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about the appropriate horizon--or about the appropriate perfor-
mance criterion, state equations, and constraints operative over
that horizon--she never would reconsider the primordial plan. Its
consistency (or lack of) is then a moot point. If the primordial
planner did change her mind about one or more of these planning
elements, then she would not necessarily consider the primordial
plan to be optimal anymore. The fact that it is also inconsistent
in this event does not imply that the primordial planner 1is
myopice Rather, the economist who posits that such a decision
maker will implement the primordial plan has made an Iincorrect
assumption.

Many economic modelers of a single decision mker's
behavior have assumed that +the primordial plan will be imple-
mented. These modelers assume that the single decision meker
(eege, a firm or a consumer) maximizes some objective (e.g.,
profits or utility) over some fixed horizon, usually chosen to be
infinite. Examples include the dynamic competitive firm models
treated by Sargent (1979). Among theories of the firm, the most
widely accepted bDehavioral assumption is that firms maximize
discounted profits, using the discount function (3) of our capital
budgeting example. Among theorlies of the consumer, there is less
agreement on the admissible forms of the consumer's intertemporal
utility function. However, the assumption commonly used in the
recent rational expectations models of Sargent and others is that
a consumer's intertemporal preferences are representable by a dis-

counted, additively separable, time-invariant utility function:
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T 18t Tt
(30) tZO (355) ule,) A tzo ru(c,),

vhere r = i%?'is a "constant rate of time preference."

The corollary to the Burness theorem implies that non-
anticipatory models of the firm with a discount function (3) will
be consistent. Thus, even if the management planner changes the
firm's decision horizon and reconsiders the primordial plan, the
primordial plan will still be implemented. Nonanticipatory models
of the consumer with a discounted, additively separable utility of

the form (30) will also be consistent (as noted by Strotz) because

the constant-rate discount function used in them is:

B e - T o

1
@A) (1+H) ... [+ )y

t-T gnﬁes

and 1s thus of the same form as (3), with i, = i, for all t. Of
course, even if a consumer's utility function is additively sep-
arable, it is possible that the consumer's discount function will
not be of the form (19). 1In this event, an economist who admits
the possibility that the consumer will change his horizon and
reconsider his primordial plan mst then also admit that the
primordial plan is inconsistent and will not be implemented.

Strotz's claim that inconsistency of primordial plans
leads to undesirable myopic behavior has more validity in models
with future planners other than the primordial planner. Thelr
decision horizons differ from that of the primordial planner. In

these models, even if all future planners agree with the primor-
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dial planner's choice of performance criterion, and with her
assessment of the state equations and constraints, they still may
not implement the primordial plan unless r(t,T) satisfies (19).
If one believes that the primordial planner's choice of horizon
is, in some sense, the correct choice, then the inconsistency
certainly seems to cause undesirable myopic behavior.

Optimal growth models that maximize social welfare over
long or infinite horizons mst admit the existence of future
planners. Inconsistency of their optimal plans is likely because
they are often proposed for use in planning environments where it
is impossible to precommit the behavior of future planners and
because there is seldom any good reason to believe that discount-
ing will be of the form (19). Several theorists assume that the
social welfare function is of the form (30), in which case the op-
timl plan is consistent. But the price that these models pay is
the same paid by models of individual agents that assume this
forme These theorists mist rule out the possibility that the
planner's preference orderings may not be representable by social
welfare functions of that forme Koopmans (1960) has found axioms
characterizing preference ordering that are representable by
(30). No one has determined whether these axioms are plausible in

positive models or desirable in normative models.
Anticipatory Behavior as & Cause of Inconsistency

Anticipatory behavior as a pervasive cause of inconsis-
tency has been stressed by Kydland and Prescott (1977, 1980),

Fischer, and the introductory article in Tucas and Sargent (1981).
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The concept can be fully illustrated by the simple, additive
separable, anticipatory problem illustrated in Figure 3. The
planner's problem is to:

(32) max Uy (X,,D,) + U, (X,,D;) + U, (X,)

DO’Dl

Sete Xl = fo(Xo,Do,Dl), X2 = fl(Xl,Dl).

Bubstituting the state equations in the objective function, prob-

lem (32) is to find D¥ and D¥ solving

D_,D
0’1
The solution of (32) will, in general, be inconsistent. The

problem is undiscounted, so consistency requires that (33) be

decomposed by the Bellman principle:

* #
(34) ma.x [UO(XO,D0)+max[Ui(X1,D1) + Ué(fl(xl’Dl))]]’
D D
0 1
where (Xi,Xg) 1s the state trajectory determined by f;, f;, and

the optimal plan D¥, Di.

However, (34) does not follow from (33), so (33) is not
l-consistent. This is because a future planner's choice of Dy at
time period 1, taking the state X{ as given, will solve the inner

maximization in (34):

(35) max [Ui(x§,D1) + Ué(fl(Xf,Dl))].
D

1
The result is a decision Dl that, unlike the optimal plan's D¥,
takes no account of the indirect impact D; has on U, through Xy =
£o(XgsDgsDy)e Thus D, # D¥, so the optimal plan is inconsis-

tents This is obvious from Figure 3, where we see that a future
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planner at time 1 who accepts X?I*. as given will, of course, ignore
the effect Dl has on Xl' The future planner worries only about
the effects Dy has on U;, X,, and Dpe

Kydland and Prescott argue that the assumption of per-
fect foresight or rational expectations in macroeconomic planning
models introduces such anticipatory phenomena into them, which
cause the primordial plans to be inconsistent. In our paradigm, a
macroeconomic planning model has the government choosing policy
variables DpseessDp to maximize some performance criterion U
subject to the behavioral rules of firms and consumers, as given

in the form of state equations. These rules take the general

form:

e e
(36) Xt+1 = ft(xt,Do,.oo ,Dt,Dt_,_l,coc ,DT), t = O,oo. ,T,

wvhich means that the relevant behavior of firms and consumers in
the next period is some function of past behavior and government
decisions as well as their expectation of future government deci-

sions D° 1,...,D§. The assumption of perfect foresight in the

t+ T
deterministic model above is that:

(37) D:_'_J = Dgyys J = Loeee, Pt for each t = 0,...,7-1,

wvhich creates the most general possible planning problem (1)
considered here. Unlike the previous example, the state Xy in
each period t depends on future decisions. Then, not only is the
optiml plan inconsistent, it is not even t-consistent for any T

Furthermore, this negative result still holds when the

agsumption of perfect foresight is weakened. For example, con-—
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gider the myopic perfect foresight case illustrated in Figure L.
There, the behavioral state at time t depends not on all future

decisions, but only on that decision made in period t + 1:

— e =
(38) Xiag = ft(Xt,Dt,Dt_'_l) ft(Xt,Dt,Dt+1).

The same thing that happens in Figure 3 happens in each period, so
that an optimel plan for an economy with myopic perfect foresight
is neither consistent nor t-consistent for any T > O.

In fact, any systematic relationship between expected
and actual future decisions my cause inconsistency. In more
sophisticated stochastic models where future expectations are
random variables, the rational expectations hypothesis that D:+J
equals the mean of Dt+j will cause inconsistency for the same
reason. As long as there is some systematic connection between
current, subjective probabilities of future decisions and the
objective probabilities of +those decisions, inconsistency may
occur.

Kydland and Prescott (1977) give some microeconomic
examples of anticipatory phenomena, which fit into the simple two-
period model of Figure 3. For example, they mention the case of
optiml government patent policies. There, it is optimal to offer

a number of patents (Dg) initially to induce an optimal level of

inventive activity (Xi). But in period 1, after these inventions

are created, it seems best to remove 8ll the ratents--leaving

no (D1 = 0) patents, rather than leaving D} = D¥ patents--so that

the Inventions can be produced by competitive markets rather than

by monopolies. Inventors who expected this to happen (i.e., Di =
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]31 = 0), however, would not have undertaken the optiml level of
inventive activity (X¥). So, the optimal level of patents that
should remain is D;"; # 131 = 0, and the optimal plan is inconsis-
tent.

Kydland and Prescott (1977, 1980), as well as Fischer,
discuss the inconsistency of optimal taxation plans in worlds
vhere firms have future determined expectations. However, they
offer radically different remedies for this problem. The former
advocate BStrotz's first course, i.e., that future decisions be
precommitted by the primordial planner. They propose to do this

by having the primordiasl planner substitute simple policy rules——

wherein future planners are bound to use predetermined rules to
make decisions only nominally under their control-—for the discre—
tion that future planners would otherwise have in making deci-
sions. Although these rules are clearly suboptimal from the
primordial planner's point of view, Kydland and Prescott's simula-
tions show that these rules appear to outperform the suboptimal
solution that would otherwise be implemented at the discretion of
future planners. However, as Fischer pointed out, there will
generally still be an incentive for future planners to break these
suboptimal (from their viewpoint) rules. Of course, one might
argue that the primordial planner could adopt constitutional or
other binding constraints to force the future planners to follow
these policy rules. But if that were feasible, why couldn't the
primordial planner adopt constraints to prevent the optimal plan

itself from ever being changed?
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Rather than advocate the substitution of simple rules
for discretion, Fischer contends that the use of discretion my be
warranted on_ occasion. The patent example cited earlier can be
used to illustrate Fischer's reasoning. If the future planners
repeatedly revoke patents granted earlier to investors, then
eventually all future inventors would expect this to happen and
would cease inventing. The repeated revoking of patents in a
rational expectations environment is thus undesirable. However,
the occasional revocation of patents that would have produced vast
monopoly profits will probably not reduce total inventive activity
very much, and it will produce much social benefit through lowered
monopoly profits. Fischer raises the possibility that randomiza-
tion of decisions may be of use in devising such a strategy. In
the patent example, the government might randomly cancel patents,
using some preannounced and expected probability distribution to
do 80e. The resulting outcome of this stochastic plan my be
better than that of a simple, deterministic rule, particularly if
the inventors most willing to bear the risk are also the most
likely to produce valuable inventions. Once again, though, why
wouldn't future planners have an incentive to change a previously
adopted randomization rule?

All of the probllems created by time consistency due to
anticipatory phenomena are the result of a fundamental paradoXe
This paradox stems from the logical inconsistency of the following
three assumptions common to analysts' models of optimal planning

with anticipatory phenomens:
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(A1) Assume +that agents correctly anticipate future
planning actions (decisions, policy rules, randomi-
zation rules, etc.) that are relevant to their own
welfare.

(A2) Assume that future planners can observe the agents'
past anticipations of current and future planning
actionse.

(A3) Assume that future planners have the discretion to
implement actions that were not anticipated in the

past by agents.

Time inconsistency implies that planners endowed with the powers
of (A2) and (A3) will actually implement actions that were not
anticipated by past agents, thus violating the "rational expecta-
tions" assumption (Al). Alternatively, if an analyst insists that
(A1) and (A2) must be valid, then (A3) must be violated; i.e., the
analyst cannot admit the possibility that future planners have the
discretion to change the primordial plean. In this case, future
planners have no "free will" to act if agents can correctly antic-
ipate these actions beforehand. They are preordained to follow
prior anticipations that, because of time inconsistency, would not
be realized if planners did have "free will." Because of this, it
igs difficult to understand the logic of estimmting the effects of
"policy regime changes” in models (e.g., Iucas and Sargent 1981)
that purport to have rational expectations operating indefinitely
both before and after regime changes, but which assume that the

planners have free will to change the regime to one unanticipated

earlier.
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Nonseparability as a Cause of Inconsistency

Even in problems without anticipatory elements, a non-
separable performance criterion can lead to incongistency of the
optimal plan. To see this, consider the simple, undiscounted two-

period problem below:

(39) max U(XO,DO,Xl,Dl)

DpsDy

sete X = fo(XO,DO), Xy given Dy e Cy(X).

Consistency requires that the Bellman principle apply to
the optimal solution, f.e, that for any fixed Xp:

(40) ma.x U(xo,no,xl,Dl) = gax gax U(XO,Do,fb(Xb,DO),Dl).

Do *P1 o D1
Unfortunately, it is well known that the Joint maximization of a
function of two variables cannot always be decomposed into the two
one-variable problems that consistency requires it to be. As
mentioned earlier, Mitten (1964) found simple sufficiency condi-
tions (9) on the form of U that guarantee that Bellman's principle
appliess The additive separable case (5) satisfies these condi-

tions, as does the mltiplicative form

T

O,Xl,Dl,...,XT,DT) = tgo Ut(Xt,Dt),

(41)  U(Xy,D
when the U.'s are constructed so that Uy > 0 for all Dy € Ct(xt)'
It is not at all clear that optimal growth problems will, or
should, have additively separable utility functions. If the
utility function is not even monotonically separable, then the

primordial plan will, in general, be inconsistent, even though

discounting is not used.
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Conc lusions

We have seen that any of the following elements will

lead to inconsistency of primordial plans:

1. Discounting with a discount function not satisfying
(19).

2 Anticipatory elements, such as expectations +that
are, in some sense, determined by future policy
decisionse.

3. Nonseparable performance criteria.

I have argued that discounting may not be of the appro-
priate form in optimal growth problems. Anticipatory elements
seem likely in any economic problem where controlled agents have
both an incentive to forecast future decisions and the skills to
forecast in some way that is systemmtically related to the actual
future decisions. Nonseparable performance criteria may occur in
problems involving intertemporal preferences over future consump-
tion streams, unless one is confident that the restrictive axioms
needed to Jjustify additive separable utilities characterize actual

or desirable behaviore.
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