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ABSTRACT

This paper describes a Bayesian specification procedure used to
generate a vector autoregressive model for forecasting macro-
economic variables. The specification search igs over parameters
of a prior. This quasi-Bayesian approach is viewed as a flexible
tool for constructing a filter which optimelly extracts informa-
tion about the future from a set of macroeconomic data. The
procedure is applied to a set of data and a consistent improvement
in forecasting performence is documented.
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l. Introduction

This paper describes a Bayesian solution to the problen
of specifying a vector autoregression for forecasting macroeco-
nomic variables. Although the specification process described
here is unorthodox, it does have antecedents in two areas: the
work of Hoerl and Kennard [4], Stein [14], Shiller [10] and Leamer
[5, 6] on shrinkage estimation and its Bayesian interpretation;
and the work of Sims [11-13] and Iitterman [7, 8] on specifying
loosely parameterized vector autoregressions. The motivation for
this approach 1is described first, followed by an example that
demonstrates how it can be used to irprove macroeconomic forecast-

ing.

2. 'The Specification Problem

Although it does not usually get mch attention, the
specification process is a critical stage in empirical analysis.
In specifying a model, a researcher constructs the instrument that
will be used to filter information from the data. Bayesian sta-
tistics focuses on the process of combining information in a prior
with information from a set of data, and thus a Bayesian approach
to the specification process naturally gives an important role to
the construction of an informative priore A Bayesian specifica-
tion search is described here in which the construction of a prior
is viewed as a flexible means of generating a filter for the
optimal extraction of information from a set of data.

The particular specification described here generates a
set of loosely parameterized equations designed for forecasting

macroeconomic variables. It differs significantly from the usual
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approaches to the specification of mcroeconomic models, which
adopt a much narrower focus. A specific behavior, often the
solution to a particular optimization problem, is the guide to
finding the right specification for an equation in most macroeco-
nometric applications. This is a reasonable approach to explain
many individual economic phenomena; but it seems likely to fail to
explain aggregate economic behavior, which reflects the solutions
of many different agents to a miltitude of different problens.
With respect to the cause and propagation of business cycles, for
example, numerous explanations have been suggested, most probably
containing a degree of truth and many probably having had empir-
ical relevance at one time or another. It is doubtful, however,
that any one paradigm can explain more than a very small part of
the behavior of ;ny mcroeconomic time series.

For forecasting purposes, it seems quite reasonable to
suppose that small bits of useful information concerning the
macroeconony are scattered throughout the data, and a narrowly
focused approach is thus unlikely to find much useful information.
The problem of econometric models is to filter out as much of the
information as possible from the data and to give each little bit
an appropriate weight. The proposed solution for the problem of
filtering information useful for forecasting is motivated by two
assertions, which I take to be self-evident, concerning the loca-
tion and amount of information available for macroeconometric
forecastinge. The first assertion is that there is a wvery low
signal-to-noise ratio in macroeconomic data, by which I mean that

the predictable movement in such variables based on their own past
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is only a smll fraction of their total variation. The second
assertion is that the current state of macroeconomic theory leaves
a great deal of uncertainty concerning which economic structures
are useful for mcro-forecasting, particularly at the level of
detail that is necessary for short-run prediction.

From a Bayesian perspective, the Ilatter assertion is
that economic theory gives small positive probability to a large
number of economic structures, each of which can be represented as
an equation with a flat prior distribution over a wide range of
parameter values. If that is true, then the true nature of prior
information may be badly misrepresented by the usual approach of
focusing on a particular economic theory and (unless it is re-
Jected by the data) imposing the restrictions it suggests. None-
theless, such restrictions are used because they are considered
necessary to reduce the number of estimated parameters.

Unfortunately, testing economic hypotheses is especially
difficult given the sample sizes of macroeconomic time series and
the low signal-to-noise ratio in such data. When this is the
case, the data alone cannot reject many restrictions, nor can they
provide useful estimates, for forecasting purposes, of coeffi-
cients in an unrestricted specification. Faced with these prob-
lems, the specification process boils down to a set of decisions
concerning what functional form to adopt and which explanatory
variables to include. The choices that are mde in specifying an
equation determine, in effect, a filter that is used to extract
information from the data. When an important variable is left out

of the equation, a potential channel for extracting information in
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the data is closed. VWhen too many variables are included in the
equation, the filter is too wide and noise in the data will ob-
scure the relatively weak signal. Thus, the choice of which
variables to include involves a crucial tradeoff between over-
simplification and overparameterization.

Neither of the two strategies commonly used in specify-
ing macroeconomic forecasting equations addresses this tradeoff
adequately. The structural approach relies on the restrictions
suggested by one or more economic theories. The specification in
this case includes a few of the many possible explanatory vari-
ables suggested by different economic theories. The alternative
approach is to use a time series representation, which usually
means inclusion of a few autoregressive and moving-average paranm-
eters. When such specifications are univariate, as is almost
always the case, they cannot capture the interactions among vari-
ables. In this case, the focus on generating a parsimonious repre-~
sentation will lead to oversimplification of mltivariate pro-
cesses. In the standard approach to either structural or time
series modeling, the tradeoff is crudely struck, essentially by
restricting oneself to only a few parameters.

A Bayesian approach allows one to generate a class of
estimators that highlight the tradeoffs between oversimplification
and overparameterization. Moreover, for forecasting purposes, the
use of out-of-sample prediction errors provides a natural measure
for use in picking a specification that balances these tradeoffs.

Consider the following type of question, which typically

arises in the context of a specification search: Should past
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values of variable X be included in the eguation for another
variable, y? Such a question is asked when one or more theories
suggest that wvariations in x should contain information about
future movements in y. There are probably many such x variables,
however, only a few of which can reasonably be included in the
equation for y. FEconomic theory does not provide enough informa-
tion to make the decisione The usual approach is to choose the
variables to include on the basis of statistics generated fronm
classical tests of the hypotheses that the coefficients on vari-
ables in question are zero.

A Bayesian interpretation of the above procedure sug-
gests that it is an inadequate way to combine prior information
with evidence in the data. The procedure leads to a specification
that can be viewed as reflecting very strong priors that coeffi-
cients are zero on all the excluded variables and as reflecting
flat priors for the coefficients on the variables that are in-
cluded in the egquation. This result does not reflect the original
symmetrical nature of the prior information.

As an alternative, I suggest a procedure in which the
number of included explanatory variables is large, determined by
computational expense considerations rather than the limited
information content of the data; and in vwhich the relatively
symmetrical prior information on all of the included variables is
used to balance the tradeoff between oversimplification and over-
parameterization. The basic idea is to specify a relatively unre-
stricted vector autoregression and a prior that can be wvaried

along one or wore dimensions affecting this tradeoff. Considera-
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tion of out-of-sample forecast errors as a function of movement in
these dimensions is then used to find the optimal balance for
forecasting purposes. In effect, these parameters are used to
fine-tune the prior, which then acts as a filter to extract as
much information from the data as possible. Implementation of
this specification process 1is described in the context of the

following example.

3¢ The Model

The specification search described here is designed to
generate a model for short-run forecasting of monthly values of a
set of macroeconomic variables. Included are four variables of
primary interest: measures of output, prices, interest rates, and
money; along with three informational variables: a stock price
index, the flow of total nonfinancial debt, and the change in
business inventories. The data are described fully in the Appen-
dix. Observations begin in 1948:1 and end as of 1981:12. All
variables, except changes in business inventories and the interest
rate, are logged.

As a first step in the specification process, a set of
benchmark univariate autoregressive forecasting equations is
estimated by least squares. This benchmark, and the measures of
fit that are used throughout, are based on out-of-sample forecast
errors. Because I search over many forecasting models and choose
among them based on this measure, it is true that the ultimte
specification is, in a sense, fit "in-sample." It is important to
recognize, however, that what is being fit is a balance between
oversimplification and overparameterization based on the out-of-

sample performance of estimators derived from a particular prior.
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For each of the model specifications described in this
paper, the following procedure is used to generate the out-of-
sample forecast errors. FEstimation is carried out one observation
at a time using a Kalman filter algorithm. The posterior distri-
bution from a given set of observations is used as the prior
distribution to be combined with the next observation. An ap-
proximation to the posterior mean is then used to generate a set
of forecasts for 1 through 12 steps ahead. 1In mking forecasts at
each point in time, for computational reasons T followed the usual
procedure of treating the coefficient estimates as fixed, even
though that procedure does not generate the Bayesian posterior
mean predictions that minimize mean square error. The updating
and forecasting procedure is continued for each observation in the
sample. The computations were carried out at the University of
Minnesota using the Regression Analysis of Time Series package,
RATS, which is available from the suthor. Fach cycle through the
estimation and forecasting procedure required 20 seconds of com-
puter time on a Cray 1 and cost about $10.

The out-~of-sample forecast errors form the raw data for
the measures of fite. The overall measure of fit is the log of the
determinant of the sample covariance mtrix of the one~step-ahead
forecast errors. This criterion is suggested by Sims [13] when
the desire is to study a procedure's predictive accuracy and one
does not "believe literally in the fine detail of a model's nomi-
nal probability structure," as is the case here. In addition to
the log-det measure, I also calculate the standard errors of the

forecasts for each wvariable. Both the logdet and the standard
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errors are calculated for forecast errors 1, 3, 6, and 12 steps
ahead and for each of three subperiods as well as the full fore-
cast sample. The purpose in considering these different measures
is to be able to observe any systematic changes in the predictive
accuracy of different models over time or with respect to differ-
ent variables. The forecasts are begun in 1951:1, with the sub-

periods defined as follows:

1. 1952:1 through 1961:12

2+ 1962:1 through 1971:12

3. 19T72:1 through 1981:12
The full sample consists of the sum of the three subperiods and
thus contains 360 forecast errors for each variable and for each
horizon, a total of more than 10,000 forecast errors. The overall
pattern of results was quite stable across subperiods, variables,
and forecast horizons. To save space, few of these results are
reported in this paper; the complete set of results is available
from the author on request.

The main purpose in estimating a set of univariate
autoregressive models is to provide a benchmark against which to
compare other specifications. Another natural choice would be to
use ARIMA models as a benchmark. I rejected this approach pri-
marily because of the computational expense it would have in-
volvede. Because they are nonlinear, even parsimoniously param-
eterized ARIMA models are expensive relative to the models esti-
mted here. Moreover, the judgmental process involved in identi-
fying ARIMA models makes them less suitable as benchmarks and

raises difficult issues during implementation. For example, does
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one use the same specification of (p,d,q) throughout, or how often
does one identify the equation? Finally, as shown in Litterman
[8], low-order autoregressive models often perform better out of
sample without the addition of moving average terms.

These univariate autoregressive models also show how
important the tradeoff is between oversimplification and over-
parameterization. For these models the tradeoff arises in the
context of choosing a lag length, and the best forecasting per-
formances were generated with a surprisingly smll number of
lags. There is a large literature addressing the problem of
choosing lag length by associating penalties with longer lags and
balancing these against the improvements in fit obtained as lags
are increased. (see, for example, Geweke and Meeése [3].) The
best one-step-ahead forecasts, using the overall log-det measure,
were generated with only four lags. These results are also not
sensitive to the subperiod or forecast horizon. One might sup-
pose, for example, when starting with more than 250 monthly obser-
vations and wanting to forecast a year ahead, that it would help
to include at least a year's worth of lags; however, in general
that is not the case. For all 12 of the combinations of subperiods
and horizons, the four-lag specification by this measure performs
better than 12 lags. In fact, for 10 of these 12 measures, even

the one-lag specification performs better than 12 lags.
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TABLE 1

Univariate autoregression forecast performance
as measured by log determinants of forecast errors

Number of lags Subperiods
in model Overall 1 2 3
1-Step horizon results
1 42,312 =Lk 80k -h5.936 ~h1.481
2 =42,643 -45,077 -46.1489 ~h1.701
3 ~L2,.615 =44, 966 ~L6,.543 -41.718
L -l2,702 -45,095 -L6.TL6 -41.783
5 -42,676 ~-45,043 -46,693 -41.783
6 -42,626 ~hh,oko ~L46.673 =b1.772
9 =L2o, L8] ~4h ko5 =L6,584 ~41.738
12 -h2,190 =Lk, 017 -46.307 -h1.458
12-Step horizon results
1 -23.395 ~23.781 -28.593 -25.519
2 -24.084 -24,.878 -28.506 -25.171
3 -2h,295 -24.696 -28.433 -25.h59
b -2k ,56) -2k,730 -28.631 -25.967
5 -2h,078 -2h,016 -28.620 -25.863
6 -24.001 -23.637 -28.668 -25.756
9 ~23.994 -22.939 -28.462 -25.876
12 =22.960 -21.168 -28.0k2 -25.809
1-Step standard error results
(A1l units are percentages except change in business inventories (Inven),
which is expressed in billions of 'T72 dollars.)
Number of lags
in model GNP M1 Stocks Tbills Debt Prices Inven
1 8673 .3817 3.330 «5367 14,46 «2073 5.582
2 «8550 3808 3275 «5237 1k.39 .1862 5.493
3 8552 .3823 3.290 .5239 14.37 .1856 5,488
L 8450 .3818 3.291 «527h 13.67 .1855 5,199
5 .8h35 .3800 3.295 .5313 13.69 .1862 5.516
6 .8h457 .3812 3.306 .5381 13.73 .1866 5.506
9 8549 3847 3.300 .5261 13.99 .1893 5.617
12 3687 .3891 3.322 5432 1k.07 1940 5.715
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Given a set of univariate benchmark models, it is na-
tural to seek improvement in forecast performance by allowing
multivariate interaction. This is the motivation for the second
step in the specification process, which is to define a class of
estimators that are derived as approximations to the posterior
means associated with prior distributions. The priors are allowed
to vary along a dimension that determines how likely coefficients
on lags of other wvariables are to deviate from a prior mean of
ZEero. Movement along this dimension includes the univariate
specification at one end and an unrestricted vector autoregression
at the other.

The representation to which this prior applies is a
sixth-order autoregression of the vector of current observations,
Xy, glven by

6

X, = szl AX o+ C+ey, (1)

where the A, are TxT coefficient matrices and C is a vector of
constant terms. The choice of six lags is motivated by computa-
tional considerations, as is the limitation of the estimation
procedures to single-equation techniques. It would be prohibi-
tively expensive to form the more accurate approximation of the
posterior mean generated by stacking the coefficient vectors of
the multiequation system. A viable alternative suggested by Sims
[13] would be to form a recursive system for which single-equation
methods are appropriate. Although we would expect some improve-
ment when applying such a system to the exercises considered here,

the results would probably not be very different because the
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forecast errors are not based on contemporaneous observations. In
a practical forecasting problem, however, some variables are
observed before others, and when that is the case this alternative
approach may have significant benefits. On the other hand, such
an approach is not simply a different estimation technique; it
also forces one to make substantive decisions about an ordering of
the variables.

At this stage in the specification process, the prior
distribution is flat with respect to own-lag coefficients and has
a mean of zero on lags of other variables in each equation. In
the prior, the distributions for each coefficient are treated as
independent and normal. The variances of the distributions for
coefficients on lags vary as a function of the lag number, being
tighter around lags further back in the distribution. The vari-
ance of the prior distribution for the coefficient on lag £ of

variable j in equation i is given by the formula

. (2)

For this prior, and all others described below, the
constant term in each equation is given a prior with & mean of
zero and a variance 106 times T, to represent lack of knowledge
about the means of the variables. The forecast results were not
significantly affected by order-of-magnitude changes in this
variance.

The prior distribution is parameterized by T, which

determines the tightness of the prior around zero for each of the
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coefficients on variables other than own lags in each equation.
The o's are the standard errors of errors in six-lag univariate
regressions over the full sample; they are included to scale the
prior to mke it independent of the units of the variables. The
computation of the posterior mean is an application of Theil's
[15] mixed estimation technique as described in Litterman [7].
The basic idea is to formulate a prior as a set of dummy observa-
tions that is added to the data. Ordinary least squares is then
applied, producing an approximation of the posterior mean. The
updating of estimates 1is accomplished using the Kalman filter
algorithm, a description of which can be found in Bertsekas [1].
By wvarying T, and following the out-of-sample forecast-
ing procedure described above, it is possible to map different
prior distributions, which vary according to how much miltivariate
interaction is allowed, into a measure of predictive accuracy.
The results of such an experiment are shown in table 2. This
mapping is the first example illustrating the assertion made above
that a Bayesian procedure could generate a class of models in
which a balance could be struck between oversimplification and

overparameterizatione.
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TABLE 2
Forecast results from the search along a dimension of the prior
allowing varying amounts of multivariate interaction

1-Step log-det results

Sub-periods

Values of 1 Overall 1 2 3

Univariate ~h2.626 ~hh,oho =L6.673 ~h1.772
.00005 k2,692 -45.091 -46.809 -41.840
.0001 =L2.696 =45.079 ~L6.787 =41.90L
+0005 -42.689 -45,005 =46, 702 -42.019
.001 -L2.678 -L4L,982 ~U6.6L6 =h2.022
.005 -L2,615 -4} ,891 IRV ¢ -h1.927
01 -42.535 =Lk, 736 -46.269 -41.832
.05 -h2.140 -13.989 -15.83L =L1.hk55
.1 -h1.885 -h3.52h -h5.632 =h1.250

1.0 -40.881 -h1.612 -h5.103 =ho.712

1-Step standard error results

Values of 1 GNP M1 Stocks Tbills Debt Prices Inven
Univariate 8457 .3812 3.305 .5380 13.72 .1866 5.506
.00005 .839k <3790 3.328 +53k4k 13.45 .1837 5.513
.0001 .8357 .3780 3.329 «5339 13.k40 .1843 5.518
.0005 8272 .37h0 3.336 «5298 13.35 .1885 5.536
.001 .8257 <3713 3.343 .526L 13.36 1911 5.545
.005 .8325 «36LkL 3.378 .51L48 13.55 .1986 5.590
.01 8423 .3626 3.402 «5092 13.71 «2029 5.628
.05 .88kl «3640 3.h0L 4995 1k.32 2176 5.790

.1 .9111 3671 3.552 o7k 1h.71 2258 5.894
1.0 1.0361 .3831 3.779 L1966 16.22 .2589 6.376

For this mapping, the results show that such a balance
requires tight priors around zero on coefficients of other vari-
ables in each equation. In the model that forecasts best, over-
all, the variance around the first lag (aside from a scale factor)

is only .0001. Although the improvement is not large in absolute



- 15 -

magnitude, it is quite consistent across variables, subperiods,
and forecast horizons. Notice also that the largest improvement
is apparent in subperiod 1, followed by subperiod 2 and then
subperiod 3. This result is consistent with the expectation that
prior inforration is most helpful when there is the least amount
of data.

To get a rough guide to the interpretation of the mgni-
tude of changes in the log-det statistics, notice that (aside from
the covariance terms) changes in the log-det approximate a sum of
the percent changes in the variance of forecast errors from each
equation. Thus, to get a rough estimate of the average percentage
of reduction in forecast standard errors in each equation, ml-
tiply the change in the log-det by 100/(7x2), approximately T. By
this guide the reduction in the one-step log-det, from -42.626 in
the univariate case to -U2.696 for the best value of Ty, repre-
sents an average reduction of about .5 percent. The actual aver—
age reduction in standard errors in this case was .78 percent.

Starting from the Ty = +001 model of the previous exer-
cise, it is natural to ask what possible improvement could be
obtained by restricting the own-lag coefficients in some manner.
This value of Ty was chosen despite the fact that the overall log-
det was minimized with w; = .0001. There are several reasons for
this choice. TFirst, notice that this wvalue of ™1 1is best in the
most recent subperiod. Also, the differences in log-dets between
the values of T in this range of values are not large. Finally,
these results were obtained with a flat prior on own-lag coeffi-

cients and no differentiation among coefficients of variables,
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except own versus other. VWhen, in later steps in the specifica-
tion process, such additional prior information is added, one
might expect more room for other variables to enter in each equa-
tion. In effect, this search over Ty is serving several roles,
one of which is to describe the tradeoff along this dimension and
another to serve as a rough guide to the location in a larger
dimensional space where the best forecasting performnces can be
found. If the computational expense were not excessive, one would
prefer to search directly over the larger space. The prior mean
for the own lags is taken to be a random walk specification; that
is, all coefficients are given a prior mean of zero except the own
first lag, which is given a prior mean of one. Another parameter,
To, determines a variance of the prior distributions around this

mean. The variance of own lag £ is given by the formula
2
_e (3)

Again, by varying To a class of estimators is generated that
balances tradeoff between oversimplification and overparameteriza-
tion, and again there is an interior minimum with respect to
movements along this dimension. The results of this search are

given in table 3.
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TABLE 3
Forecast results from the search along a dimension of the prior
that imposes a random walk specification for own lags

1-Step log-det results

Subperiods

Values of To Overall 1 2 3
Infinite -42,678 =44 ,982 =L6.646 =h2,022
1.0 42,717 -45,150 -46.668 -h2.,03L
o1 =42,790 =45,311 ~L4A.60L ~h2.004
.05 ~h2,808 ~h5.34) -46.683 =ho.127
.01 “ho. 772 k5,261 =h6.54T7 -42,182

1-Step standard error results

Values of To GNP M1 Stocks Tbills Debt Prices Inven
Infinite 8257 «3713 3.343 .526L 13.37 .1912 5.546
1.0 .8251 .3686 3.34k0 5245 13.3k .1909 5¢539
o1 .8225 3672 3.328 .5201 13.30 .1901 5.519
.05 .8221 3672 3.324 5185 13.32 .1902 5.519
.01 .8270 3671 3.325 .5166 13.50 .1932 5.588

The specification of LE} and To has generated a prior
that is represented in the accompanying schematic. Although this
prior contains no economic theory and treats each equation identi-
cally, it can lead to improvements in forecasting. The symmetry
of the prior is limiting and unnecessary, however, and a reason-
able next step is to ask whether further improvements can be
obtained by specifying prior information that is more specific to
each equation. One might want to include in a prior, for example,
one's knowledge that stock prices are more likely to respond like
a random walk than are changes in business inventories. A way to

include this information is to vary the variances of distributions
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for coefficients on different variables in each equation. For an
n variable vector autoregression, there are n decisions to be made
for each equation. Another way to differentiate different equa-—
tions is to change the prior mean; in particular, for wvariables
that are clearly stationary, it may be appropriate to use a prior
mean on the first own-lag coefficient that is somewhat less than
1.

Although we could use intuition guided by economic
theory to suggest more or less weight for each variable in a
particular equation, it is much more challenging to translate
those qualitative feelings into a quantitative prior. One way to
proceed is to specify a set of relative weights for the purpose of
scaling the variances for each variable in each equation, and then
to search over a dimension that determines how mich effect these
weights have. Such a search is demonstrated here by specifying a
set of weights, Wigo and defining the variance of the distribution

for lag &4 of variable i in equation j to be

m o exp(-m.) w
11 37 "ij (1)
L 02 )
J

The search over T3 defines a dimension of more or less differenti-
ation among variables. When w3 is zero, all variables are treated
symmetrically; as T3 increases, the limiting specification has
zero restrictions on all coefficients for which Vg is positive.
The weights used in this search are given in table L. Note that
the larger the weight, the faster the decrease of the variance on

that coefficient as T3 increases. The positive diagonal elements
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for stock prices and interest rates, for example, reflect a prior
that those variables are more likely to follow a random walk
processes

TABLE 4
Relative weights of variables in different equations

Equation GNP Ml Stocks Toills Debt Prices Inven
GNP 0.0 1.0 1.0 0.0 1.0 1.0 1.0
M1 1.0 0.0 1.0 0.0 1.0 1.0 1.0
Stocks 5.0 5.0 1.0 3.0 5.0 5.0 5.0
Tbhills 2.0 1.0 2.0 1.0 2.0 2.0 2.0
Debt 1.0 1.0 1.0 0.0 0.0 1.0 1.0
Prices 1.5 1.0 1.5 1.0 1.5 0.0 1.5
Inven 105 300 3.0 1-5 h.O 300 0.0

At the same time that these asymmetries in the prior
variances are introduced, the mean values for the first lag of two
variables--changes in business inventories and GNP--are changed in
their own equation from 1 to .8 and .95, respectively. The prior
means of 1 seemed reasonable for the other variables. The value
of Ty, was set at .05 for this search, and Ty remained at .001.
The results of the search are shown in table 5. The effects of
the changes in the prior means alone can be seen by comparing the

line m3 = 0.0, in table 5, with the line T = +05, in table 3.
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TABLE 5
Forecast results from the search along a dimension of the
prior that allows asymmetric treatment
of variables in different equations

1-Step log-det results

Subperiods
Values of m3 Overall 1 2 3
0.0 -L42,806 =h5,346 -46.685 -Lo,152
1.0 ~h2.854 -45.319 -46.755 ~h2,169
1.5 ~-42.868 -45,326 -46.793 -k2,16h
2,0 ~L2,875 -h5,338 ~46.810 ~h2.159
3.0 -h2.871 ~15.33h -16.819 -h2,102
1-Step standard error results
Values of w3 GNP M1 Stocks Thills Debt Prices Inven
. .8220 3672 3.32h .5185 13.32 .1902 5.510
. .8248 .3686 3.313 5227 13.29 L1847 5.501

.8261 3689 3.305 .5246 13.28 .1829 5.499
8273 .3690 3.299 +5258 13.27 .1818 5.h92
8292 3687 3.305 «5259 13.26 .1813 5.488

W= O

[eNeRV, NeoNel

The final step in this specification search is to esti-
mte a time-varying parameter representation. Up to this point,
the underlying model has been one in which it is assumed that the
true coefficients are constant through time. At best, this is
thought to be a reasonably good approximation, which is necessary
given the limitations in the information content of the data. Ve
could, however, proceed in a manner similar to the three searches
described above and generate a class of estimators that include
constant-coefficient specifications as one special case and that
allow time-varying parameters with various amounts of freedom.

Again, by wvarying a parameter, Ty, & balance can be obtained
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between the oversimplification of a constant-coefficient specifi-
cation and the overparameterization of a time-varying coefficients
model. Sims [13] reports an informal search of exactly this
type. Estimation of a time-varying parameters representation
requires a specification of the nature of this variation and of
the variances of the disturbances that cause the parameters to
change eé.ch period. The process considered here follows Sims's
suggestion that the parameters follow a random walk and that the
variances of the disturbances for each coefficient be proportional
to their wvariances in the prior distribution. The factor of
proportionality is m,; thus, when m), = 0.0 a constant-coefficients
result 1is obtained. As T), increases, more parameter variation is
alloweds The search takes values of T, and T, as before, and L
is set at 2.0. The results of this search, displayed in table 6,
again indicate that an improvement in forecast performance is
possible. A comparison of the forecast results between the best
univariate benchmrk model and those generated with the best value
of m) shows an average reduction of 1.7h percent in the standard

errors.
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TABLE 6
Forecast results from the search along a dimension of the
prior that allows time-varying coefficients

1-Step log-det results

Sub-periods

Values of my Overall 1 2 3

0.0 8 -42.876 -45,338 -46.810 -h2,159
.1x107 -12,88L -45.338 -h6.825 ~h2.170
.5x10-8 ~42,900 ~45.337 ~46.85L 42,192
.1x10~7 -42.910 -45,336 -46.870 -42,205
.5x10“£ -42,920 -45,324 -16.887 -42,220
.1x10™ -42,913 -45.308 -46.881 ~h2.207
«1x10™° ~42,785 -45,118 -46.766 -42,031

1~3tep Standard Error Results

Values of my GNP M1 Stocks Thbills Debt Prices Inven: -

0.0 8273 .3690 3.299 «5258 13.27 .1818 5.492
.1x10-8 8264 .3680 3.299 «5258 13.27 .1817 5.492
.5x10‘8 .8239 3661 3.300 5257 13.27 .1819 5.493
.1x10~7 .8222 .3651 3.300 «5257 13.27 .1821 5.493
.5x10~ [ .8202 364k 3.301 .5254 13.27 1824 5.493
.1x10“6 .8216 .365Lh 3.302 «5250 13.27 .1825 5.494
.1x10~° .8385 .3756  3.307  .5219  13.32  .1842  5.509

4. Conclusion

This paper has attempted to motivate and 1llustrate a
specification search for a vector autoregressive representation to
be used in short-run macroeconomic forecasting. In designing a
model for use in forecasting, we encounter a particularly crucial
tradeoff between oversimplification and overparameterization. A
Bayesian approach to the specification process suggests several
ways to balance this tradeoff. An example demonstrates that such

a procedure can lead to consistent improvements in out-of-sample

forecast performance.
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Appendix

The seven wvariables wused in this study are monthly
measures of real GNP, the GNP deflator, three-month Treasury bill
yields, the ML measure of the money supply, the flow of total
nonfinancial debt, the Standard and Poor's stock price index, and
change in business inventories. Only three of the series are
published on a monthly basis; the other four are constructed by
interpolating the quarterly series using related monthly series.
All series are seasonally adjusted except the interest rate and
stock price index. The money series is extended back from 1948:1
through 1958:12 using the old ML series scaled by a constant
factor.

The interpolation is accomplished using the Chow-Lin [2]
first-order Markov (M) procedure, which in a few cases is modified
to be a random walk Markov (RWM) procedure as suggested in Litter-
man [9]. Monthly real GNP is constructed as the sum of eight real
components, each of whicﬁ is either available monthly or is inter-
polated. For each component and for the other interpolated ser-
ies, the following list shows which procedure--M or RWM--was used
and which monthly series were used as explanatory variables. In
several cases, only nominal monthly series were available for
interpolating real quarterly data. In these cases, flagged by the
letters DFL, the monthly interpolated GNP deflator was used to
deflate the monthly series. 1In one case, flagge@ SA, the monthly
series required seasonal adjustment, which was accomplished using
a regression of the logged data on monthly seasonal dummies. All

equations included a constant and trend. In some cases where
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monthly series were not available for the entire sample, adgdi-

tional constant and trend dummies were added for those periods.

Real Consumption (available on a monthly basis)

Real Residential Fixed Investment (RWM)
Personal income DFL
New private construction DFL
Expenditures on private construction DFL
Total private construction put in place SA

Real Nonresidential Fixed Investment (M)
Contracts and orders for plant and equipment
Capital investment commitments 196T7=100
New orders, nondefense capital goods
Three-month Treasury bill yields
Industrial production index
Commercial and industrial loans DFL

Real Change in Business Inventories, Durable Goods (M)
Net change in inventories on hand and on order
Change in wholesale inventories, durable goods DFL
Change in inventories, durable goods DFL
Change in finished goods inventories, durable goods DFL

Real Change in Inventories, Nondurable Goods (M)
Net change in inventories on hand and on order
Change in wholesale inventories, nondurable goods DFL
Change in inventories, nondurable goods DFL
Change in finished goods inventories, nondurable goods DFL

Real Government Purchases of Goods and Services (RWM)

Real Exports
Exports, excluding military aid shipments DFL

Real Tmports
General imports, F.A.S. basis DFL

GNP Price Deflator (RWM)
Consumer price index
Producer price index
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Flow of Total Nonfinancial Debt (M)

Change in the Level of Consumer Installment Debt
Standard and Poor's stock price index
Three-month Treasury bill yield
Consumer price index
Commercial and industrial loans
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(31
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