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Abstract

This paper Iinvestigates--in the context of a simple
example—--the accuracy of an econometric technique recently pro-
posed by Kydland and Prescott. We consider a hypothetleal econo-
metrician who has a large sample of data, which is known to be
generated as a sgsolubtion to an infinite horizon, stochastic opti-
mization problem. The form of the optimization problem is known
to the econometrician. However, the values of some of the para-
meters need to be estimated. The optimizatlon preoblem—-~presented
in a recent paper by Long and Plosser—--is not linear quadratic.
Nevertheless, its closed form solution is known, although unot to
the hypothetical econcmetrician of this paper. The econometrician
ugses Kydland and Prescott's method to estimate the unknown struc—
tural parameters, Kydland and Prescotti's approach involves
replacing the glven stochastic optimization problem by sanother
which approximates it. The approximate problem is a element of
the class of linear quadratic problema, whose solution is well-
known-~even %o the hypothetical econometrician of +this peaper.
After examining <the probability limits of the econometrician's
estimators under "reasonable" specifications of model parameters,
we conclude that the XKydland and Prescott method works well in the
example consldered. It is left to future research to determine
the extent to which the results cbtained for the example in this

paper applies to a broader class of models,



1. Introduction and Summary

Much progress has been made in developing tools for econometrically esti-
mating the structural parameters of agents' dynamic decision rules when it is
agsumed that these represent solutions to dynamic, stochastic optimum problems.
Examples are the work of Chow (1979}, Hansen and Sargent (1980), Kennan (1980),
Sargent (1978}, and Long and Plosser {1982). With the exception of Long and
Plogser, advances in estimation technicue have come at the cost of assuming
quadratic optimum prohliems and linear transition laws (IQ problems)-1

This paper represents & flrst step towards evaluating the guality of an
estimation method which we refer to as the "IQ approximation method." The
method can be used when the analyst assumes a stochastic optimization problem
that is not IQ and for vwhich caleunlating the exact optimal decision rule is teoo
costly or intractable. The method involves replacing the assumed non-quadratic
problem with another—-referred to here as the "LD approximation problem"--which
is ID and which can be golved easily.

The 1O approximation method ig the following. It is assumed that the
problem can, by appropriate substitution, be converted into an infinite horizon
stochastic calculus of varlations problem wilth a return function which is not
necessarily quadratic.z The random wvariables of the problem are replaced by
their expected value and the steady state value of the state vector of the
resulting nonstochastic optimum problem is then calculated. (From here on, by
"gteadvy state values" we mean the unconditional expectation of the stochastic
term and the steady state of the state variables just described.) WNext, the
second order Taylor series expanslion of the return function about the steady

state values of the variables is computed. The result iz a stochastic ILQ



problem which has a clogsed form solution that is straightforward to calcu-
late. The closed form sclution to the L) problem, together with a statistical
model for the uncontrollable stochastic terms, approximates the exact reduced
form of the model. The approximate reduced form may be combined with the
available gample data to compute a likelihood function, which is to be maxi-
mized with respect to the unknown structural parameters of the problem.
Applications of the LY approximation method may be found in Kydland and
Prescott {1980, 1982). Related approximations are surveyed in Chow (1975} and
Mariane (1978).

The intuition underlying the 1Q method seems to be the following. fThe
certainty version of a nonguadratic problém and the certainty version of its LD
approximation have the same steady states by construction.> Because of this, a
sufficiently small deviation {"shock") in initial conditions from the steady
state generates simllar return paths to the steady state. (We assume stabil-
ity.) The expectation underlying the L method is that in the uncertainy case,
if the variances ont the random gshocks are small, then the dynamic behavior
akout the unconditional mean of the two systems will alsc be roughly similar.®
The latter, one expects, will lead %o estimators having good properties. We
formalize this idea below and show in Proposition 1 that this expectation is
fulfilled in the example considered in the paper.

We consider the accuracy of the LQ approximation method in the context of
a real model of the business cycle. The model is a scalar version of a model
presented and studied extensively in Long and Plosser (1982). Long and
Plosser's model was chosen for this study for two reasons. Pirst, although the
model is stochastic and nonquadratic, the exact closed form soclution is known.
Second, the model satisfies sufficient condltions for the solution to the IO

approximation problem toc be the first order Taylor's series expansion about the



exact solution evaluated at the steady state {Theorem 1). As & result, the
algebraic form of the mapping from the structural parameters of the model to
the parameters of the stochastic difference ecuation ("reduced form param-—
eters™) that solves the I approximation problem is clarified and shown to he
quite simple. This, together with the fact that the model is Jjust identified,
enables us to determine the associated inverse mapping. The latter is what is
required to calculate the probability 1imit of the econometrician's estimators.
The measure of approximation errcr that is used is the ratlo of the probablility
limit of the econometriclian's estimator of a parameter to its true wvalue.

There are just three free parameters in the model.

What we fina is that, for the example considered, the error of approxima-—
tion is negligible for reasonable valﬁes of the error variances.

The plan of the paper is as follows. In section 2 the IQ approximation
method is degcribed precisely. In section 3 the verslon of Long and Plosser's
model that is studied is presented. In sectlon 4 the probabllity limit of the
econometrician's estimator is calculated; given the model of section 3. In
section 5 numerical measures of approximation error under alternative param—

eterizations are tabulated and discussed. Conclusions appear iIn gection 6.

2. Preliminaries

This section begins by defining & linear quadratic approximation to a
given optimum problem. The approximate problem 1s referred to as the "LQ
approximation problem."™ A result is then presented which provides conditions
under which the first orde; Taylor serles expansion about the stationary feed-
back rule that solves the given problem solves the ILQ approximation problem.
This result greatly simplifies the calculations in sectiom 3. The "LQ
approximation method"--the econometric method that is the object of study in

this paper-—is defined at the end of this section.



2.1 The Exact Prohlem

Consider the problem of choosing a gegquence of contingent plans for

<«
setting {zt+j} 4=0 to maximize
o« (]
r J
(2.1 E Ljfo 8 u{zt+j, gyt vt+j) Ve zt-1J r D CBCT,

subject to (z v ) eT for all’ 3i> 0 and =z, 4, and Vv

£+g" TeEi=17 Tt t
fixed. Here, ze and vt are vectors of dimension n and m , respectively,
with vt baing a vector of random variables, and E(+}) dJderotes the mathemat-
jical expectation cperator. The return function, ul(*, °*, *} , is strictly
concave in its First two arcuments. The set T ¢ v 4o convex in its
first two dimensions. By this we mean that (z;, z1, v1}, (zé, zg, U1) £ T
implies (Az!, + (1—l)zé, lz1 + (1—k)zz, k1) €T, where 0 < A< 1.

We agsume that {Ut} is covariance stationary and has the following

representation

v T= 0

(2.2} v o= pv

’ T
+ p+ e g = Ee € =
& gq T VT & EEC =0, -

{ €
tt-T ; T#0

where p is a square matrix with eigenvalues inside the unit circle, U is a
vector of constants and Ve is positive semi definite. The process {Et} is
serially independent and Iindependent of {vt—s' 5 > 1} . Sincg we regulre |
only that {vt} be a vector process of finite dimension, the setup in (2.1}
can accommodate random variables with vector autoregressive representations of
arbitrary, finite, order (see Sargent [1979, pp. 272-73] or Chow [1975,

pp. 49-50]).

Suppose that the sequence of feasible ¢ontingent plans that maximize {2.1)

exists, is stationary and unicue and can be written in the following form:

(2.3} z . . =f

g (zt+j-1’ Vergr Vgh o 300 T e



Let Et+i, i >1 , dencte the wvector random variable

Note from (2.2) that v =\ .(Et+i

{£t+1' St 0t st+:‘.}’ i t+i P V) e BY

recursive substitution, (2.3} can be used to eXpress (zt+j' zt+j-1}'

J >0 as a function of Et+j, vt P Tl and ve' Write this

t+3

(z.32) (z = zZ({g °, =z Ver Vor i 3 >0,

£ Fragor’ te1"

} when 3 =20 .

t+3 31 =
with 2Z(= ’ v, Ve’ 3} = (f(zt-1' v

Zem1r Ve et Vel

Ze-1

Substituting the above expression into (2.1}, we obtain v(zt_1, Y, VS} s the

value of the optimal plan,

viz v, vs)

=17 Tt

(2.4) - . .
=5 [ & fuze?, 2 e, e vz ]

v, V. . 3), v
=0 &

t-1' "t 4+ tf

where the expectation is taken relative to the distribution of the random

Cahh

vector j*‘-‘" .

2.2 The 10O Approximation Problem

Problem (2.1) may be difficult to solve when the return function, ul=, =+, +) ,
is not quadratic, as we assume. In applied work one may choose to solve the
following LQ approximation problem instead. Take the 1imit as N + = of the

following sequence of problems., Maximize over plans of the form zt+j

() (W) . . -
= Lj (ztﬁj—1' vt+j)' where Lj are linear functionsg, J O, 15 vaes N, the
expression

Te
{2.5) B[ I U(zt+j' Zyiqqr vt+j) | zZ, s vtj .

=0

In (2.5), U{e, +, ¢) is a second order Taylor series expansion of u{=+, =, +}



about the points z, =2z, z _, = z v = Vo and is defined more precisely

(M)

below. Tet L 3 (z Yy , 93=20, 1, +++, N denote the solution to

t+3=1 Vbeq
the N periocd problem, N < =. In Lerma & (proved in Appendix A) it is

shown that the concavity sagsumption on the return function guarantees that a

eolution exists and that

{(2.5a) lim L(S)= L

Ko I

for a1l j. We refer to the stationary plan (L(zt_1, vt), L(zt, vt+1)’ e}

as the solution to the L) approximation problem.

The value of the IL{ approximation problem is defined as follows. TLet

(®) vt) be the value of (2.5} when the plan z = L(N)(

J t+g T T Pragerr Yoy

(= Y

t-1
3= 0, 1, +a+s ¥ is execuied. Then

3z, v,) = lim AR

N o

=11 vt) ’

is the walue of the I approximation problem. In Lemma & in Appendix A it is
shown that the concavity assumption on the return Ffunction in (2.1) gquarantees
the existence of J .

Calculating the solution to the LY approximation problem (e.g., the func-
ticns £ and J ) 1ls straightforward. For example, in Lemma 6 in 2Appendix A it
is shown how the I approximation problem can be written as a linear regqulator
problem. The problem of seolving a linear regulator problem has been studied
axtensively and is well understood. See, for example, Berisekas (1976), Chow
{1975), Hansen and Sargent (1981L), Xushner (1971), EKwakernaak and Sivan (1972}

and Sargent {(1980).



In (2.5),
(2-6) U(zt+j, zt+j_1r ut'i'j) = u(zsr zsf \)5)
+ u‘(zg, Zgr vs)(zt+j'“ zs) * “2“5‘ Zgt vs)(zt+j—1 - zs)

+ 113{281 zBr UB)(vt'*'j - vs}

1 - T -
+ /2 (zt+j zS) uTT(zB' zB’ Vs)(zt+j zs)

1 - T -
-+/§(zt+j_1 z_) oz, 2z, vs)(zt+j—1 z.)

1 - T -
2 Wy ~ Vgl Bag(Bgr Zoe VIV - V)

+ {z -z )Tu
8

£+ (zs, Z Vs)(z -z )

12 tbg=—1 s

T
+ (zt't"j - ZS) u13(zsr zsr vs)(vt+j - vs)

T
z ) uzg(zs, z . Us)(“£ - VS) .

(T T g +5

In {(2.6), vé- Evt ; and z, iz the steady state value {(we assume 1t exists,

is independent of zt_1 and vs' and that u(zs,zs,vs) is well defined) of

the following problem:

(2 73 v(zt; .Usr 0} = max I Bju(zt_[_j; zt+j"1' vS) r
. - o3 j-[}
feacible {zt+j}j=0

vwhich is deterministic. Freguently z, can be computed for (2.7) even when it

is not known how to calculate the values of {zt+j};;0 that solve (2.7).
When =z, cannot be calculated from (2.7}, then the LD approximation method we

congider breaks down.



In (2.6},

HE

3 u(x1f x?,’ 33)1

u(z , z_, v}
1 8 ] s

2
3 u(x1, X, x3)

i

u,.{z , = v}
i1 78’ T8’ s

We use the following convention with respect to differentiation.

vector of length n and

!"'-
7
3x1 3x1

A :
T
% ayn aYn
™ o,
When n = 1, then
J—
2
3y
ax 3}( LN}
5 1 1
¥y - :
3x3xT 2
_9y
ax 9x, °°°
m 1
N

2.3 A Theoren

T
axiaxj

X &a vector of length m,

Ay

L Y1
R
m

+ .

X =Z

W N

X, =Z

—

X, =2

W W

then

~

X =
B8

X, =V
s

x,.=V
8

When v is a

Suppose that the function defined in (2.3) is differentiable at least once

in each argument. Define



{2.8) g(zt_1, vt) = f(za, vs' Ve) + f1(zs; vsf Ve)(zt—1 - zs)

+ fz{zs, vs, Vs}(qt - vs) .

Also, dafine

Vize _qe V) = vizge Vo, Vo) + vilzg, Voo Velzy g - 20

(2.9) Tz Ve VIV = V)

T
+ 1/2(zt_ - zs) v (zs, Vs, VE)(zt_1 - zs}

1 11

* (zt—1 - zs?v12(zs, h vs)(vt - vs)

T
+ - V- .
1/2(Ut vs) v22(23' Ve VE)( t Us)
Evidently, the functions U(e+, *, *), g{*, *) and V(+, *} are functions of
z, and vs. In addition, the latter two functions are functions of VE. The
dependence is not made explicit in order to simplify the notation and in the
expectaiion that this will not cause confusion.

We are in & position to state the followlng theorem, the proof of which is

given in Appendix BA.

Theorem 1 If,
{1} +the solution to {2.1) exists, is unique, is of the form glven in

{2.3) and (f(zt_1, v, VE), } 1ls interior to the feaslible

t Ze-1

set T,
{ii) the statlionary state, Zy: of {(2.7) is finite, independent of
Z o _q¢ the initial condition, and u(zsr zé, VS) is well defined,
(1ii) +the value function v(*, °+, ¢} 1is differentiable at least iwice

in the £irst two arquments,
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{iv) the function £(+, +, *) given in (2.3) has at least one deriv-
ative in the first two arguments,

v.} is

v 1! t

(v} v V) o= v(z v) + V), vhere x"r’(zt_

Zgarr Ver £=1"

functionally independent of the elements of VE,
{vi) the return function wuf(-+, +, *} in (2.1} is strictly concave in
the first two arguments,
fvii) the set T is convex in its first two dimensions,
Then,
(viii) g = £, where g 1is defined in {(2.8), and the stationary plan
(E(z

ut), L(zt, v

t+1}’ ses} iB the solution to the LD

t-1’

approximation problem. (L is defined in (2.5alt.)

Summary of Proof

First we introduce some new notation. Let V¥V be the set of guadratic
functions in z,_, and Ve negative semidefinite in 2z, _,. Define the

operator W: V + V as follows:

(2.9) U(q)(zt_ vt) = eup, {v(z,, =

£r ZTpoqe Vy) ¢ BEalz, ey + wk g )Y,
zggk

1! t e
where g & V. The space V is closed under the U operator because of

(vi). Define the function V as follows:

q
Ut} +E[

B
1 -8

(2.10) v(z vy = V(zt_

et Ve )tr[vzztzs,us,vg)vsl + Q) - V)

.il
where V(e, ) 1is defined in (2.9), TFellowing is an ocutline of the proof to

Theorem 1.

{a}) ‘The function V 4in (2.10) is shown to be a fixed point of U in

;

Vv, i.e., O(V) = ¥V and \7~£ V.
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{(b) It iz shown that the Ffunction gl(+, *} defined in (2.8) achieves the

sup in (2.9) for g =V , That is,

ulglz,_,,v), 2 + BEV(glz, v )epy, + u+ g, )

-1 ) 41

> ufz V) + BEV(z ,0v, + u £ ),

e e t+1

for all z,¢ R

(¢) The optimal value for problem (2.5) i1s a function J ¢ V.
Moreover, J is the unique element in V such that w(J) = J.
Consequently,

(2.12) JT=V .

(d) The optimal linear feedback law for (2.5) exists and is a station-

ary plan (L(zt_1, vt), L(zt, ut+1), evs)s The linear function

I is the unigue function for which the sup in (2.9) is achieved

for q = J. ‘That is,

D(Llz, ., V), 2 v.) + BEI(L(z, _

' g’ vt],pvt+u+ £ )

17 £4+1

>U(zt, z vt) + BEJ(zt, pv, + u+ € )

=17 1
for all z, ¢ R". Taking (2.11) and (2.12) into account, it
follows that g = L.

Proof: (See Appendix A.)

Following is a brief discussion of the assumptions of the theorem. Con-
dition (i) simplifies the proof by guaranteeing that firgt order necessary
conditions for (2.3) to solve {2.1) are met as a strict equality for j = 0.

To illustrate the effect of (ii), it excludes the following prohlem, which

gatisfies all the other conditions of Theorem 1.
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V(zt—1' Ve vs)
(2.13) ° )
= Bup E{jfo BY Inlexp(Vi,0Zi 0y = Fyq/Zpegmn] 2 qr v}

where the sup 1ls evaluated over contingent plans for setting subject

fz g 1
o s
to {zt+j' zt+j~1' vt+j} €T for 4§ » 0., The set T is characterized by the
< 2 0. = +
condition 0 zt+j < exp(z t+j t+j—1 for all 3 Y Also, qt U €
and et is independently distributed with mean zerc and variance Vs. (The
vt process is a scalar version of (2.1) and (2.2) with p = 0.) It is shown

in Christianc and Prescott (1982) that

2 -8
(2.14) Vizg_os v, V) =ew (gl oz o+ Iy -
where
1 _ 8 B B(2 - B) B 8
c= (gl 2 - 1+ gl + +25) « 55—y * s G} -

In Christianc and Prescott (1982) it is shown that the following gta-

tionary feedback rule has value (2.14):

3
(2.15) z = (=P}

2 - B exp(z t]zt- .

In the certalnty case, with VE = 0 and vt replaced by its unconditional

expectation, vs(= ¥}, the solution to {(2.13}) is

1
- (B A 1

(2.18) 2, = G )t ey Vlz, -

From (2.16), we see that if vy = inlt{2 - 8)/81, then =z = z,_ 4, the initial

condition, while z = for “g > inl(2 - BY/8]. When vy < Inl(2 - BY/8],

then z, = 0, a point at which the return Ffunction in (2.13) is not defined.
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Conditions (iil}) a2nd (iv) are necessary if the Taylor series expansions in
{2.9) and (2.8), respectively, are to be well defined.

Benveniste and Scheinkman (1979) present conditions under which v(se, =, =}
has one derivative in z, , in the nonstochastic case with Vo= Vg for all
t. They do not consider the stronger condition (iii). This condition is
necesgary to compute the expression 5{-, «} in (2.10).

Condition (v} guarantees that the problem, (2.1), satisfies certainty
egquivalence., (See Lemma 2 in Appendix A.} This is because under (v} the feed-
back rule, £(e+, =, «}, in (2.3) is functionally unrelated to the elements of
Ve' In particular, setting vs = 0 amounts to applyving the E(+) operator in
(2.1} directly to Ut+j' 3 » 0. Consequently, the f(=, =, Vs} function that
gsolves (2.1) may be found by solving the certainty problem that results when
vt+j is replaced by its conditional expectation for all j » 0. This is the
principle of certainty equivalence discussed in, for example, Holt, et al. (1960).

The fact that certainty eguivalence obtains in (2.13) {and alsc in the
problem in Section 3) establishes that a guadratic return function iz not a

necessary condition for certainty egquivalence to hold. Certainty equivalence

is used extensively to establish the following two key facts:

viz \Jt) = U(g(zt—‘:'ut)' z vt) + BEV(q(zt_,I, vt), pY, + p 4+ & ) and

=1 (o I € £+

v,

Uplglzy_qo Vde 2 g0 V) + BEV, (alz

gt Velr PV ¥ M E £ ) = 0.

Condition (vi) is used to establish all the results described in the sum-
mary of the proof to Theorem 1 concerning the sclution to the IO approximation
problem (see {c¢) and {(d)). Conditions (vi} and (vii) are used to establish the

concavity of the function v in its £first arqument. The latter is what guar-

antees that G is an element of the get V.
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b feature of Theorem 1 which limits its general applicability is that it
makes aszumptions on the walue function, (2.4), and on the solution, (2.3). It
iz precisely the difficulty of obtalining these that leads one to solve the 1L
approximation problem in the first place. For this reason it would be prefer-
rable to state all the assumptions of Theorem 1 in terms of the implied
restrictions on the return function, wu, the feasibility set, T, and the
parameters of {(2.2), if these were known. In the meantime, for the purposes of
this paper, the theorem as it is stated@ is entirely adequate. In Section 3 we
apply the theorem to a problem for which the £ and v functions in (2.3) and
{2.4), respectively, are known. The advantage of the theorem is that 1t per-
mits us to solve the IO approximation problem posed in Section 3 by taking a
simple first order Taylor series expansion, This calculation is transparent
analytically, in contrast with a direct solution method such as the recursive
one used to solve the linear regulator problem. The theorem makes it possible
to write an analytic formula for the large sample approximation error implicit
in the LQ approximatioﬁ method applied to a particular problem. The formula is

presented in Section 4.

2.3 The LD Approximation Method Defined

The "L{ approximation method" is the following. f<The structural parameters
to be estimated--call these B-—are the parameters of u{s, +, +) and of
(2.12). Solwve the LQ approximation problem {2.4). Because the problem is
quadratic, the solution is a linear time series representation for {zt}- (zf
the conditions of Theorem 1 are met, then the solution is given by {2.8).)
Denote the parameters of this reduced form representation by T. The previocus
discussion implies that T = h(f) for some function h.

The parameters I can be estimated using standard technicques of time

gseries analysis {see, e.g., Granger and Newbold (1977} and Nerliove, Grether and



15

Carvalho (1979)). Call the estimates of T, F. Then, assuming parameter
identification, the implied estimate of § , call it § dis g =h (D) .
(Global parameter identification is equivalent with h"1(*) being a fune-
tion.) We use the phrase "LO approximation method" to denote this methoed of
estimating the structural parameters, f£. Unless u(e, =+, *} = U(e+, ¢, *}, the
method is an example of specification error. This is because the true func-

tional form of the reduced form representation of {zt} will not be the same

as the one implied by the LQ approximation problem.

3. The Example

The example we consider--a scalar version of an optimum problem studied in
Long and Plosser (1982)~—satisfies the conditions of Theorem 1. After presen—
ting the model, the £(=, =, *), and qg{+, *} functions (see (2.3) and (2.8),
respectively) implied by the example are derived. 3In the second part of this
gection the IO approximation method, as applied by a hypothetical econometrician
to estimate some of the parameters of the Long and Plosser model, is described
in detail, The specification error implicit in the 1D approximation method for
the example is made explicit in the third part of this section. Finally, three
expressions are presented which we shall use to characterize the econometri-

cian's loss from using the 1O approximation method in the example.

3.1 Long and Plosger's Model

We assume that the time series of decigion variables in a hypothetical
economy iz generated as a solution to a particular optimumm problem. The econcmy
is populated by a single representative agent ("Robinson Crusce”) who maximizes
utility subject toc a given production technology. The production technology is
Cobb-bouglas with a multiplicative shock term. ‘The shock process is not con-

trollable by the agent.
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The problem is to maximize over contingency plans for setfing {Lt+j' ct+j}§;0

o«

u]
(3.1) E, I g {In(H= Lt+j) + 8ln °t+j} 0<B<t,
=0
subject to
. . < . . . .
(3.2a) ct+j + xt+3 Yt+3' ct+j, xt+j >0, 0 < Lt+j <H
(3.2b) v o=, nliTe e 0 < ac<t
t+] tHy T e+ -1 T RS-

(3.2¢c) Lo g0 Xe_qv kt given .

Here,

¢, ~ consumption at time ¢,
X o~ investment at time t,
Y ~ output at time t,
Lt ~ labor supplied at time +, in hours,
H ~ total hours available at time ¢,
B (+} ~ mathematical expectation cperator conditioned on variables
dated t and earlier,
A, ~ stochastic term distributed lognormally,

€, o, 8 ~ parameters of the model.

2ccording to (3.1), on a particular date, say +, the representative agent has

at her/his disposal a known {because Lt x and A_ are known at ¢t}

17 T t
quantity of output, Y. Also available is the fixed quantity of time H. The

problem at time t iz to choose an optimal seguence of plans for determining

leisure {H - Lt+j) and consumption (ct+j) for 3 =0, ... subject to the

constraints (3.2) and the limit on time available, H. The problem is one of

decision making under uncertainty since values of A 3 > 0 are unknown at

t+j’
time <t.
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We assume that At may be written

{3.32} kt = exp(vt) r
where
(3.3b) Ve o= PV, F Ut B !p' <1, W constant, g ™ iidq n(o, ui} .

The random variable g, X 100 1is unit free and represents perturbations, in

percent terms, on Y. That is
(3.3c) g, =1lnY ~E in ¥, .

To get (3.1) into the digcrete time calculus of variations format of
section 2, substitute (3.2) into {3.1) vielding the problem of maximizing over

contingency plans for setting §;o v

{Lt+j’xt+j}

(3.4 B jfo 83 {in(n - Leps) * eln(expwuj)zélgf‘: eyt = Teag) b
subject to Lt—1' xt_1, vt given at time . Let

zi = (L, xt}
(3.5)  ulz,, z,_,, V) = In(8 - L) + Olnlexp(v)r T¥x® - x)) .

Bellman's ecquation for (3.4} is, using the above notation,

(3.6) V(Zeqr V) = iué’;“(zt' Zeoqr V) *OBRV(ZL, VO
t

where the constraint set, T, is characterized in (3.2). Iong and Plosser

{1982) discovered the sclution to the functional eguation (3.6), which is
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A -

{3.7) viz, . V) = [1 — Bp)“t + (1 - e)Ylan_ . + oylax,_, + K
where K = ——){in( = } + In(1 - Ba)

i- B8 1+ By(1 - o)

HEvy(1 - a) Byp
+ By(1 - a)ln(1 T By(T = a)) + Byalnfa + —— Sp}
]
YT TR

In Christianc and Prescott (1982} it is shown that the function v in (3.8) is
the optimal value of (3.4). That (3.7} does indeed sgolve (3.6) is verified by

*
simple gubstitution. A necessary condition that z, be an element of the

optimal program in (3.4) is, assuming an interior solution, that
*
Vt) + BEtv1(zt' Vt+1) =70 r

*
{3.8) u1(z r Z

£ t-1'

which implies,

* U HBY(1 - &)

. Le (1 + BY(t - a)]
(309&) z = =

t * {(1~a) o

X, Bo exp{vt)Lt_1 o
or,
b et 2

{3.9b) z, = (zt-T' Yy, de) .

It is straightforward to wverify that this example satisfies the conditions
of Theorem 1 in section 2.3. It follows that the solution to the LO

approximation problem for this example (see (2.8)) is

z, = G(Ztmt, vt) '
where,
HBy(1 - a)
1+ BY(1 - )
{3.10) g(zt_1, vt) = x o
e, o+ (1 - a)fzilLt_1 + xs{vt - v)



19

Here,

(3.102) B = Ba(1 EBJB"(&'I*-GL)) {(1-a)
(3.10b) L = [8_211/1-a
{3.10¢) x, = lexpls u 9)311/1-0.
{3.104} Y = 1_9 - .

3.2 The Hypothetical Experiment

The ﬁypothetical experiment we consider is the following. The econome-
trician knows the true form of the structural econometric model given by
{3.1), (3.2), and (3.3)., Some of the structural parameters of the model are
unknown and must be estimated using available data.

We assume

BI. the econometrician only observes {xt}, and not

v, }.

L b xl or {v}

The structural parameters are o, B, 8, p, u, and ci . We also assume that
all. the econometrician knows the true values of p, 8, and B8 .

It will be shown below that AII guarantees that the remaining parameters,
d, Y, and cﬁ , are identified given observations on {xt} .

The ecconometrician is assumed to be unaware tha® the exact solution to
{3.4) is given by (2.9). Consequently, the econometrician is led to employ the
LD approximation method--defined in Section 2.3--to estimate the unknown

parameters, o, ¥ and ci . A  description of the method, as applied to the

present example, follows,.
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Denote the econometrician's estimators of o, ¥, and % by %,ﬂw
and ai'T , respectively. The estimators aT and ﬂT are chosen Fo minimize a
least sgquares criterion, 8§ , to be described in detail below. The estimator
6§,T is a gimple function of the minimized value of §. T + 2 is the number

of observations in the sample. Write xT = {x1, es s xT} « Then the avallable

sample is {x _, = xT} . TWrite

-1 or

T
s= 8la, p, p, 9, B: X_or Xgr X Y .

By definition,

T
s( r r Ps er BF X r Xy X )
(3.11) e o0

T
-1 Xor ¥ ) v

< 5(w, u p, & & %
for all o such that 1a| <1, and for u ¢ R .
Given the known values of X q1r Xgr sser Epe Pr 8, B, and for given

valnes of ¢ and u , which we denote by uF and ur, 5 may be computed in

the following sequence of four stepé.

r
Step 1. Calculate X and LZ ; the steady state values of X, -and Ly for

cz = 0 and u; = ur/(1 - p), given the known values of p, 8, and B, and

given ar and ur. These may be found, for example, by so0lving the first order

necessary conditions of the certainty version of (3.4) (i.e., setting oi = 0).>

Step 2. Calculate the second order Tavlor series expansion of u(e, -, <) in
{2.1) about (Lt, Lioqr Xe_qr vt) = (Lz, L:, x:, x:, vi), to get the function

U(s, =, *) given in (2.6).,

Step 3. Find the I function that solves the gquadratic approximation problem
{2.5)}. 'This may be done using the recursive methods of dynamic programming

(see, e.g., Chow (1975) or Hansen and Sargent (1981)), or by using classical
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optimization techniques {sgee, e.g., Hansen and Sargent (1980)). The L

function may be written

t "
x, | B ogr Feoqr V)
t
(3.12)
hY
11 12 =1 4, €4
“la x tla Ve t f
|22 22 £=1 2 2

gay, where aij' d Sy i, j=1,2 are scalars.

i.r
It would appear, given the calculationsz just outlined, that closed form

expressions relating the aij's d;'s and ci's to GF, B, 8, p, and pr

would either not exist or would be exceedingly complicated. However, because

the conditions of Theorem 1 are satisfied, it follows that g = L, where g

is defined in (3.10).5 That is,

r
r, (s r
8070 B, =0, 2y = (=) 2y, =«
(3.13) . .
= ¥ _BBY (1 - o) rr
d1 Q, d2 xs, c1 = ol c2 = -xsvs .

1+ 87y (1 =)

The econometrician of ocur hypothetical experiment, who cannot make use of
Theorem 1, will nevertheless notice relations (3.13) after executing steps 1-3

several times.

Step 4. The econometrician is now in a position to caleculate S. 1In the
example, labor supply is constant {see the first line of (3.10)) and unobserved
{recall AI}., The econometrician is assumed to substitute this constant for

Ly_4 in the second equation in (3.10). This yields the following reduced form

equation:
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r by r b9 r
X, = 1 - « )x‘ + oX . + xs(vt - vs} .

Multiplving through by (1 - pL},

r r T r
(3.14)} (1 - pL)xt = (1 - o ){1 = p)xs + a (1 - p‘L)xt_1 * Wee
r r
say, where wt = xset. Then,
S(c‘-rr }Jrr Br B: B: X_1, xor XT)
.15
(3.15) - i} i} i} ,
= Y[t - Lyx = (1 = @)1 = odx_ - & (1 - p)x,_ |°,
=1
and
s(a®, v, o, 8 B x__, x., x )
. 2,r -1 0
(3016 ) a = .
€ T(xr]Z
=3
Write
{3.16) vy, = bO + b1y + w
t -1 t '
where
0
(3.16a) b= {1 - a)(1 - p)x5
(3.16b) b! = o
_ 2.2
{3.16c) oi- (xx) 9,
{3.1864) Ve = (1 - pL)xt .

Let B = (u, « oi':) denote the wvector of structural parameters that the econ-
ometrician wishes to estimate. Tet T = (bo, b1, di\) . Baquations (3.16a)-

{3.16¢c) represent a function, call it h{+), where I = h{g) .
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Bgquations (3.11}, (3.15) and (3.16) indicate that in our example, the
econometrician's egtimators, QT, ﬂT, Bi o are calculated as follows. First,
r
the regression indicated in (32.16} is calculated, producing estimators of the
reduced form coefficients bo, b1, and 02 : denoted by go, b1, 82 ’
(0] T T w, T
regpectively.

Then the following calculations are carried out.

-~

(3.17a) 8, = b;,
(3.17b) 2 = Sg/n - 8.)(1 - p)
(3.17¢) Yf = B/(1 - 6&6)

. HBY,(1 = &) (1 - 8y

T

(3.174) B, = B )

T = P E TR T Ty
(3.17e) &2 =8 T/(Qs 2

(1- ) ~

(3.17£) = logl_ 7 /B J(1 - 0] .

Here, (3.17a), (3.17e¢), and {(3.17f) are estimators of the structural parametrs
and (3.,17b}=(3,.17d) are intermediate calculations. Fguations (3.17) are the

inverse of the h{+) mapping defined above. In particular,

-~

-1
{3.18) 8,=h {rT) .

~

in obvious notation. As long as QT *#1 , the h™! mapping is well defined.
This establishes that a, u, and ci are identifiable. Had we not permitted
the econometrician to know the valnes of at leagt three parameters, as in AII,

the remaining parameters would not be identifiable,
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3.3 Characterizing the Specification Error in the Example

The example we consider permits an explicit characterization of the spec-
ification error invelved in applying the 1L approximation method. Loosely, the
specification error is one of estimating a linear regression in levels of wvari-
ables rather than in the logs. It is shown that the consequence of the specif-
ication error is not likely to be severe for small values of ci, where ci
is defined in (3.3b).

The true data generating mechanism in ocur example, is taking the logarithm
of the second line in (3.9a)

(1 - &)
. J

+tx2nxt + V.,

1 t
where Lg is defined in the first line of (3.%a). Multiplying both sides by

T o= pL,

{1 - o) u
fax, = (1 - p){ﬂn[SuLS | + - p} + {a + p}znxt_1 - opinx, ., + £

U {1t - o)
{(r - p){ﬂn[saexp(1 - p)Ls J} + {o+ p]ﬂ.nxt_1 - apﬁnxt_z + e -
Finally. taking (3.10¢} into account,
{3,19) ﬂnxt = {1 - p)1 - a)EnxS + (o + p)ﬂnxt_1 - ap!nxt_2 + €.

From the latter equation, it is evident that ﬂnxs = Eﬂnxt.

Suppoge the econcmetrician wishes to estimate o X0 and oi «» (If, as
elgsevhere in this paper, it is 1 and not Xg that is of interest, then yu
can be obtained from the known values of B, p, 9 H and the estimated values
of x and o). If it were known that the true data generating mechanism were

8
{(3.19), then the econometrician could consistently estimate o, X and Ui

s!

by the following procedure.

First, estimate the coefficients § 8 §. in the following regression.



(3.20) £nxt = 8, + 612nxt_1 + 52£nxt_2 + a,
2 5ok 2
subject to p° - 61p + 62 = 0, Call the estimates of 60, 61, 52 and L

Y ~
-~ -~

2 x
R &u regpectively. Then, iT = -52'T/p , or

e
~ -~

8§, =8 -0, %, o =em[s /O -8)0 - ], and SirT = aitT.

Next consider what our hypothetical econometrician, who uges the LO

approximation method, does. From (3.11) and (3.15) deduce that the econ-

ometrician estimates the coefficlents 50, 51, 62 in the projection of x, on
a constant and Xi_q, Xi_5¢
(3.21) X, = 50 + Gixt-1 + szt—z + Wy
2 Lo
— o = - = = -—

subject to p 61p 62 0. Then, aT 52rT/p, or QT 61,T )

" a2 2
2,oo= 8 /0= 80 -0, 82 =82 e 02

It is clear that Plim &T = ., However, in general, we would expect

2
Plim &T¢ ¢ . Values of Plim GT’ Plim GE T

and Plim ﬂT under altermative
14

parameterizations of the model in section 3.1 are presented in section.s.

The specification error the econometrician commits by applying the LO
approximation method in this example can be described consisely as follows,
The true data generating mechanism is (3.19), which is linear in the log of
X+ On the other hand, the econcmetrician proceeds as if the true model were
{3.19) with the logs removed and with the error variance multiplied by x: .

When ci, the variance of € in (3.19), is small, then the conse-
quenceg of the econometrician's specification error will be small, This is
because, for small enough values of ci, the covariogram of Xy generated by

(3.19), ci{T) , and that generated by x, are similar. We ghow this below by

looking at the series expansion of ci(r) .
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In Appendix B it is shown that the mean, L and covariogran, ci(r), T

integer, of an {xg process generated according to (3.19) is given by

2 iy
Ex, Ty =x_exp [(1/2)g(u, o8 O}UEJ
(3.22) 2
= xs[1 + R(a, p, GE}J
(1 = (u)? fexp g(a, o, DI - 1}
{3.23}
= gla, p, T)xiﬁi + F(a, P, T, oi) .
where,
P phl a GH
gla, p, T) = +

(1= 2231 - apd{p = &) (1 - &)1 - wp)la - p)

2 1 2
R{c, o, GE) = (1/2)gl{a, p, O)G§‘+E[1/2g(a, o o)cij + e .

and Flo, p, T, oi) is a function such that (F(a, o, T, ci)/oi] + 0 as

ci + 0 . Consequently,
cz(t)
x ) 2
3 > * gla, p, 'r)x‘3 '
o g +0D
> £
sc that
{3.24) Gz(T) = gl{a, p, T)x202 , for small 02 .
X 5 € £
Also, from {(3.22)
(3.25) B =x , for small 02 -
= s £

It can be verified that

{3.286) g{a, p, T) - {a + plgla, p, T1)} + cople, p, T=2) = 0O,

for T = 1,2,3;, cee
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The coefficients & §., in the projection eguation in (3.21) are

17 72
uniquely defined by the egquations

2 2 2
{(3.27) cx(T) = 6103(1-1) + Gzox(T-z)

for T = 1,2. Thus, when ci is small-—so that Oi(?) is nearly proportional

to g(a, p, T) by {(3.24}--{(3.26) and (3.27) indicate that 61 = (a+ p) and

62 =P .
The constant term, 60, in (3.21) is defined by

By (3.25), L where ci iz small, so that in this case,
60 & xs(1 - al(1 - p).

Finally, the variance of the projection error in {(3.21) can be shown, for
small ci to be approximately (xs)zci . In addition, as a small agide, it is
a simple exercise to show that the errors in the projection equation, (3.21),
will be serially correlated, and that this correlation goes to zero as
o + 0.

The preceding argument, according to which the consequences of the
specification error impliclit in the LQ approximatiocn method are less severe for
gmall values of ci , has been.nonrigorous and informal. Thig ig remedied in
gections 3.4 and 4. In the next section we develop three criteria that specify
a kind of loss function for the econometrician. This will provide a sense in
which we can say whether or not the consequences of specification error are
"very" severe. In section 4 we show rigorously that as cﬁ + 0, the

econometrician's loss goes to zero, The result is summarized in Proposition 1

in section 4.
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3.4 Measures of approximation Error

Let MT = (gv’T,ailT(oy,aich1)) dencte the mean, variance, and lag-one

covariance of a sample of observations on y.: {YO' Vyr eeer yT} (ye 1is

A

defined in (2.16d4)). memﬁwdﬁmpumﬂueumﬂm,lk are related

o MT as follows:

(3.29a) by = (a;Tm/o;’T{o)] + Ol
~0 =4 1
(3.29b) by = (1 - bT)ﬂy'T + 06z
(3.29¢) & = [1+ t£1>2J62 (0) ~ 261 8% (1) + ol
) »,T Yy, Ty, T T

where OL%) is a term which wvanishes in probability. Eguations ({(3.29)

represents a function r(+*)}, such that
(3.30) T = r(MT) .

T

Combining (3.18) and (2.30), we get
(3.31) 8. =h " (rtn ) = qm)
! T T T !

~
say. JIgnoring the cases where [b;1> 17, the gf{+)} function is continuous.

it follows (see, e.g., Theil [1971, p. 361]) that

focly )
Hi

(3.32) Plim BT = q{Plim MT) .

-~ -~

From here on we adopt the convention that a wvariable with a hat, but without a
subscript T denotes the probability limit of the same variable with a 7T
subscript.

We take the loss to the econometrician of using the LD approximation

methocd to be measured by the following three cobjects:
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(3.33) -% , — ,-% ,

o} = V8 .

where BE = Plim ce,T' e, T e, T

According to {3.21), in order to calculate (3.23), we require Plim MT.
We obtain this in the next section. Numerical values of (3.23) under alter-

native parameterizatioms of (3.1) are presented in section 5.

4. The Probability Limit of the Approximation Error Formula

In order to calculate (3.33), (3.32) indicates that we first require

-~

Plim MT = M= (uy, 05(0), 85(1)). We calculate these in this section. We

also examine the behavior of B = (o, u, ci) as Ui + 0. Results are
summarized in Proposition 1 below.
Let Mo oi(T), T inteqer, be the true mean and lagged-T covariance of

the Yy, Process. Then, since y = (1 - pL)xt.

{(4.1) ] uy = (1 - p)ux

2 2 2 2
(4.2} dy(T) = (1 + p )ci(T) - pcﬁ(r + 1) - Dﬁk(T - 1) .

We assume that {xt} is generated by (3.%a). For convenience we reproduce

(3.9a) here:

o - HBY(1 = a) y(1~-qa) - 2]
(4.3) xt = ltht—'] ’ B Bd(1 T BY(T — a)) r Y ma r 0 < <1
where
(4.4) A, =20 explu+ ) e ~itan(o, o2 , |o| < 1.

In Appendix B it is shown that,



30

1 + pa

{4.5) u, = [B exp(—t—)] =2 exp 5
(1 - p3(1 = ap¥(1 - &)

and,

2 2
oo p] 7| - oo a] 7}

2 2
(4.6) o#(r) = (ux) {exp[

(1=02) (1=0p) { p= 1) (1-02) (1-ap) (a=p)

for integer wvalues of ©. Substituting (4.5} and (4.6) into (4.1)-{(4-2), we
obtain the functions relating uY and di(T) to the parameters of the model:
o, B, 8, ci, ¥ and p.

From (3.92a) we see that {1nxt} is generated by a stationary first order
stochastic difference eguation. Consequently {(see Anderson (1971, pp. 193-98))
{lnxt} is ergodic in the mean and covariances. Since {xt} is the result of

a one-to-one, differentiable transform on {1nxt}, {xt} has the same ergodic

8/
properties as {lnxt}, It follows that
4.6a Plim == =
{ ) By vy = Yy
(4.6b) Plim 0% _ = o° = o .
¥.T ¥ b4

(4.7a) b = Plim b. = ¢2(1)/02(0)
T Y b4
~ A 62(1)
QO . 0 Yy
{4.7b) b = Plim b = {1 - Ju
T 2 b4
a” {0)
¥
2
- - o (1)
2 2 2 v 2
(4.7¢c) o, = Plm o . = crytO)[i - “] .
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In (4.7) we make use of the following two facts: if Plim Xp = x  and

Plim ¥p = ¥y, then Plim Xp¥q = Xy, and if g(+} is continuous, then
Plim g{xq) = g{x) (see, e.g., Theil (1971, p. 371)). Substituting (4.1) and
(4.2} into (4.7),

2
w1+ 2R - 0P (2) - pcR(0)
(4.8a) b = X x x

(1 + pz)oi(o) - 2pcz(1)

-~

(4.8b) % = (1 = b1 - oYm,
~ 2 1,2
(4.8¢) ci = [(t + p )cﬁ(O) - zpc§<1)1t1 - mh? o,

We conslder now the behavior of the approximation error formulae, (3.33},

2s ci + 0. Consider first o/a. From (3.17a), {(4.8a) and (4.6} we get,

‘ 2 2
-~ ~ 2 2.p 2.0 _ 2. p 2,07 2 2 _ _ 2
o) S El. (1 + pM1a, {0 )7a,(c) pd, (o )" 4 (o)) pd, (o }8, (g) — (1 - p)
- 3 x 2 2 2 2.0 2.0 2
al (1 + p9)4, (g )4, (0}) - 2pd, (o) 74, (6D = (1 - p)7]
2
_ h{o)
2 r
w;(ce)
say. BHere,
2 "ip
(4.92a) a,{o.) = exp | 5
(1 = p"Y(1 - ap)(p - )
. Fe
{4.9b) dz(cg) = exp| .

(1 - u?)(1 - ap){oa - p)

The functions h(oi) and g(si) are defined implicitly in (4.9). They are,
respectively, the numerator and denominator in the expression to the right of

the second equality in (4.9). Note that d1(0) = 62(0) = 1. Hence, h{0Q) =
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g{0) = 0, so that o/0 Is not defined at the peint Oi = 0, However, we can

obtair 1lim -% by applying L'Hospital's rule (see Rartle {1964, p. 215}).

02+0
£

Accordingly,

~ 13
R a . h(ce) h (Ua)
lim = = 1im > = >
t
c2+0 02+0 ug(ca) o (Ue)
€ E
02=0
£

where the prime symbol denotes differentiation with respect to oi. Algehra

vields that (h'{0)/g'(0)) = o. Consequently,

o
(4.10) l;m - !
G 0
£
2
Since u, = [B EXP(1 E ]J1_a at the point di = 0, and is continuous there,
° A
4 -0 M 1-a
(4.11) lzm b” = (1 - a}{(1 - p)IB exp[1 - p]J .
o +0
£

Similarly, from (4.8c},

(4.12) lim %=[(1+p2) 0 - 20011 -1 =0.
o250

Taking the probability limit of (3.17b), letting o2 + 0 and substituting

from (4.11) and (4.10),

{4.13) lim ; = [B exp( L ]J1-a .
o 5 1T - R
UE+0

Doing the same for {(3.17c) and (3.17d) we get

{4.14) lim {r= 9/(1 - aB) = ¥

2
GE+O



33

(4.15) lim B = Bof
2
g0

HBY(1 ~ o) )(1-0:)t B .

T+ By(1 - o)

Substituting these results into (3.17e) and (3.17f), we get

(4.16) lin & = (in ;i]/(lim 58]2 = 0
02+O 02+0 cz+ 0
£ € €

(4.17) 1im p = 1n[B exp(1 E )71 - o) = (2 p](1 -~ p) = u .

0’2-"0
£

P

In deriving (4.10)-{(4.17} use has been made of the fact that the functions
involved satisfy the appropriate continuity ¢onditions., We summarize the

regults obtained as follows:

Proposition 1

If,
(i} estimators for parameters o, u, ci are given in (3.17),
(i1) yo = (1 - pL)xt and the {xt} process is generated by (3.%9a),
then
(iii} the probability limit of the estimators for a, w and oi, denoted
by &, ;, ;i, respectively, is given bv substituting (4.5}, (4.8)
and (4.8) into the probability limit of the expressions in (3.17)},

{(iv) 1lim (o, y. Gi) = (a, u, di).

2
G€+0

Statement (iv) of Proposition 1 is consistent with the intuition men-

tioned in the introduction. Given gufficiently small variances in the random

variables of the problem, one expects the LO approximation method to imply
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little error of inference. In interpreting Proposition 1t it is important to
keep in mind the fact that it applies toc a particular example (condition (ii1})
and that no évidence is presented here as to robustness.

In fact, statement (iv) is neither sufficient nor even necessary for an
esctimator to be a "good"™ one. The data which the econometrician confronts
usually implies a value of oi significantly different from zero. In the

next section numerical values of the error criterion, (3.33}, are tabulated

for "“reasonabhle" values of 02.

5. Numerical Results

In this section resulis of the previous section are used to +tabulate
values of the measurement error formulae, {(3.33), under alternative parameter-

izations, In all cases we have set H =1, 8= 2, B = = 1 and

—1_
1.05" *
¢ = .25, while GE(E Vci) and p are permitted to vary. Settings for

Ue and p, given the fixed parameters, imply values for the standard

deviation in the natural logarithm of output, ¥., which we dencte cinY'

output, Y. is related to inputs according to (3.2b). We congider

"reasonable"” wvalues for to be In the range .017-,036. Taylor {(1980;

UinY
table 1, p. 221) reports that the standard deviation of the linearly detrended

log of real, annual cutput falls in this range for ten industrial countries
over the 1954-1876 period.

We compute Oy 28 follows. Taking the logarithm of (3.2b),

H-a}+ alnx v, o, '

(5.1) lnYt = lnLt__1 1 A

Substituting from (3.2b) intc the second row of (3.%a), we find that the

optimal choice of x, is x, = BdLiE:a)x:_1At = BdYt. Substituting this and

the first row of (3.9) into {5.1), we get
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Iny = In{B/Ba} + alnBoth_1 + v,

{5.2)
= [InB - (1 - a)lnBal + qlnYt_1 + vt .

Writing (5.2) in lag operator form,

£
= - - H t
{1 - c!L)lnYt [lnB {1 a}lnfo + — pJ + =
or,
Ey
= !
(5.3) ¥y = C oG - )

where C' = (

: thatgf

—1—)[1nB - (1 - a)Inga + & 51, Given (5.3) it can be shown

(5.4) o, =0 P + 2 P&.
Y e 01 - apdlp - @ (1 - &)1 - ap)la - p)

The result that emerges from Tables 1 and 2 1s that for all values of p
and de considered that place UinY in the "reasonable" range, the neasures
of approximation error equal 1 to within two significant digits. The standard
deviation in lnYt has to reach itwenty percent before estimators are 1 or 2
percent off their mark in probability. The detericration in the accuracy of
estimators appears to be nonlinear in GE and p. For example, in Table 1
when p = .1, doubling Us from .01 to .02 leads to no perceptible decline
in the accuracy of the estimator, while doubling Ue from .5 to 1. leads to a
substantial decline in accuracy. Similarly, fixing cE = ,03 in Table 2
there is no perceptible decline in accuracy when p 1is doubled from -.1 to
-+2. Doubling p ¥from -.4 to -.8, on the other hand, leads to a one percent
drop in accuracy in the estimators for o and Op0 (The term “accuracy" is

being used here to denote the ratio of the probability limit of an estimator

to its true wvalue.)



36

6. Conclusions and Suggestions for Further Research

This paper has shown that, for a particular example, the LQ approximation
method is highly accurate, given the kind of wvariability one £inds in economic
data 8/ mhis result in itself gives little comfort to the analyst who uses
the approximation method, since no evidence is presgented ag to the robustness
of the result, It is hoped, however, that the approach taken in the paper can
be generalized to obtain bounds on specification error given general condi~
tions on return functions and constraint sets,

A weaker result than that of obtaining bounds on specification error is
to establish that the specification error vanishes in probahility as the
underliying error variances become arbitrarily small. This result, for
problems that satisfy the conditions of the theorems, seems quite likely to be
true, although this paper provides a rigorous proof only in a special case
{Proposition 1).

Most of the conditions of Theorem 1 restrict the exact value function and
optimal decision rule of a problem. This serves the purposes of the paper
since the wvalue function and exact cptimal decision rule are known for the
example studied. When the LO approximation method ls applied in practice,
however, this is done precisely because the exact value function and decision
rules are unknown. Conseguently, Theorem 1 would bhe more useful if the
implications for the return function and constraints of the conditions asaumed

3

by the theorems were known.
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TABLE 1
A L A B S
£ Us u a Iiny oe i1 [+ iny
.005  1.000 1.000 1.000 .005 1.000 1.000 1.000 .00%
010 1,000 1.000  1.000 .010 1,000 1,000 1.000 .010
.020 1,000 1.000 1.000 .021 1.000 1.000 1.000 021
.030 1,000 1.000  1.000 .031 1.000 1.001 1.000 .031
040  1.000 1.000 .999 .041 1.000  1.001 .999 .04z
.050  1.001  1.002 .999 .052 1,001  1.002 .999 .052
L1700 1.003  1.007 .996 .103 1.003 1.008 .995 .108
.200  1.012  1.030 .984 .207 1.013 1.031 .981 .209
.500  1.077  1.191 .902 .516 1.082  1.204 .884 .524
1.000 1.363 1.838 L6417  1.033 1.386  1.921 573 1.047
p= .1 p = .2
.005 1.000 1,000 1.000 .005 1.000 1.000 1.000 .006
.010  1.000 1.000 1.000 011 1.000 1,000 1.000 L011
.020 1,000 1,000 1.000 .021 1.000 1.000 1.000 .022
.030 1.000 1.001 1.000 .032 1,000  1.001 .999 .033
.040  1.001  1.00% .999 .043 1.001  1.001 .999 .044
.050  1.001  1.002 .999 .053 1.001  1.002 .998 .055
.100 1.003  1.008 .994 .106 1.004  1.009 .993 L1111
.200 1.013  1.033 .978 .213 1.016  1.037 <971 .222
L6500 1.088  1.217 .865 .532 1.103 1.243 .824 .554
1.000 1.414 2.0%4 .503 1,064 1.489 2,238 .356 1.108
p = .4 P = .8
.005 1.000 1.000 1.000 .006 1.000 1.000 1.000 L011
.010 1.000 1,000 1.000 .012 1.000 1.000 1.000 .021
.020 1.000 1.000 1.000 .025 1.001  1.001 .999 .042
.030  1.001  1.001 .999 .037 1.002  1.001 .998 .063
.040 1.001  1.002 .998 .050 1.003  1.002 .996 .084
L050  1.001  1.003 .997 .062 1.005 1.003 .994 .105
100 1.006  1.011 .98% .125 1.021  1.013 977 .211
.200  1.023  1.043 .956 .249 1.086 1.054 .911 .422
500  1.153  1.296 .730 .623 1.674  1.359 .493 1,054
1.000 1.765 3.412 .041 1,246 o** o 0 0
p = .9
.005  1.000  1.000 1.000 .015
010 1.000  1.000  1.000 .030
.020  1.002  1.001 .999 060
.020 1.004  1.001 .998 .089
040 1.007 1.002 .996 .119
.050  1.011  1.003 .593 .149
.100  1.044  1.014 .974 .298
.200 1.188 1,054 .897 .596
.500 2.936  1.331 .458  1.489
1.000 0 0 0 0

(*}, (**)See notes +to Table 2
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*
TABLE 2
A Y B
> c H o iny g u o iny
£ £
p = -,05 p ==,
.305 1.000 1.000 1.000 ~005 1.000 1.000 1.000 .005
010 1.000 1.000 1.000 010 1.000 . 1.000 1.000 .00
020 1.000 1.000 1.000 .020 1.000 1.000 1.000 020
.030 1.000 1.001 1.000 031 1.000 1.001 1.000 .030
040 1.000 1.001 .999 041 1.000 1.001 1.000 . 040
050 1.001 1.002 .999 «051 1.001 1.002 999 « 051
. 100 1.003 1.007 997 .102 1.003 1.007 997 +101
«200 1.011 1.028 987 204 1.011 1.026 8990 «202
+500 1.073 1,179 920 «511 1.070 1.166 ° .938 .506
1.000 1.344 1.761 L7080 1.0 1.330 . 1.690 .775 1.012
p = ~,2 p= —.4
.005 1.000 1,000 1.000 _.005 1.000 1.000 1.000 . 005
010 1.000 1.000 1,000 .010 1.000 1.000 1.000 010
.020 1.000 1.000 1.000 .020 . 1000 1.000 1.000 .020
.030 1.000 1.000 1.000 0320 1.000 1.000 1.000 031
040 1.000 1.00 1.000 .040 7T.000 1,000 1.000 041
050 1 .001 1.001 1.000 . 050 1.001 1.001 1.001 . 051
. 100 1.003 1.006 .998 100 1.003 1.002 1.003 .102
200 1.010 1.022 996 «201 1.011 1.010 1.011 . 204
.500 1.067 1.139 974 501 1.074 1.066 1.066 <510
1.000 1.315 1.560 .908 1.003 1.345 1.314 1.208 1.019
p= -8 p o= -9
.005 1.000 1.000 3 .000 <007 1,000 .999 1.001 - 003
010 1.000 «999 1.001 014 1.001 .994 1.005 .018
.020 1,001 .986 1.004 .028 1,002 277 1.018 038
030 1.001 291 1.008 042 1.005 950 1,041 <057
. 040 1.003 .984 1.014 056 1.009 2913 1.071% 075
050 1.004 975 1.023 . .070 1.015 .873 1.110 .094
. 100 1.016 .809 1.087 T4t 1.053 627 1.388 .188
=200 1.059 _ ,.728 1.310 « 281 1.167 .314 2.058 -377
- 500 1.312 481 2.066 . 703 1.718 303 2.970 «942
1.000 2.384 «871 2,426 1.405 Q¥* 0 o] 0
”’In all cases H=1, p= 1, a= ,25, B= 1/1.05, 8= 2, & f, GE are the
probability limits of estimators of o, u, ¢, respectively, which make use of

the LQ approximation method. They are compu%eé by substituting (4.7} into the
probability limit of the expressions in {3.17) {(e.g., dropping the T subscript
on all variables). The calculations were performed in double precision on the
University of Minnesota Cyber 172 computer.

(**)a zero indicates the calculations could not be completed due to computer
overflow problems.
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APPENDIX A

This appendix provides a proof of Theorem 1 stated in sectiom 2 of the

text. We begin with six lemmas that are required in the proof.

Lemma 1

Given the process defined in (2.2} and an arbitrary vector Vg

(@ By 7 V) T P T ) * Lu s (T - v
) T
B (Veer - 1".tz;”k"”l-_+1 T L AL L
T T
(i1} + = (I - p)vs](vt - vs) P+ p(vt - vs)[u - (I - p)vsl

T
+Ir- (T - PV IH- (T -pV] +7_,

(iid) (1 - p)E\Jt = 11,
Procft
By (2.2), vt+1 - vs = p{vt - vs) + = (T - p}vB + €t+1' Beuation (i)
follows because Etzt+1 = {.
Substitoting,
T
E (Vepq = V) Wpq = V) =B llpty, = v )+ u -1 - 9V + e}

T
x {[p(ut = V) H U= (T - e v o+ etH}

L4

T
= [g(vt - vg) + u=- (I - p)vsltp(vt - vs) + - (I~ p)vs] +v€

T T
since Et€t+1st+1 = Estet Vs and Et{p(yt - vs) + p- (I - p)vs]st+1 = 0.

Equation (il} then follows.
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Taking unconditional expectations of (2.2} EV, = pE

kY, +
& =1 B since

Est = . But {yt} is stationary in the mean, so that (I - p}Evt = 1, which

is (iii). Q.E.D.

L.emma 2 (“"Certainty Equivalence™)

If,

(1) vt Ve V) = v

Zioq1 Ve Vt) + 2V ), where viz

vt) is

R t=1'

functionally independent of the elements of VS, and v is
defined in‘(2.4),
{ii) the solution to (2.1) exists, is unique and is of the form given
in (2.3),
then,
(iii) the function £ in (2.3) is functionally independent of the

elements of va.

Proof
The proof is accomplished by assuming the contrary of (iii) and
deriving a contradiction. -

o* —~
Write z, = £ v, Ve). Let Ve be a poslitive semi-definite

Rt L
matrix obtained by altering one or geveral of the elements in VE. Write

i
z = f(=z

£ v, v } and suppose that

t=1" 't €

(Ap I ’ -4 .',f k4 !t)I ome z Vv °
i s

=1 't
Condition (1i) implies that

L 3

ulz, . z

t Ve

*
ge1r V) P BBLVOEL Vg V) P ulze Z e V) o+ BEV(Z,, V0 Y,

for all =z, such that (zt, Zi_qr Ut) T. In particular,

& * ke ~k
(Re2) ulz ., 2 .0 V) + BV, V0 V) >ulz, 2z Vol ot Bz e Vg T
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Arguing along the same lines, get

~

it e -~ w *
(A.3) ulz , oz _qr V) + BB vz o V0 V) 2ulz oz g0 V) + BB VZ, V40 V) .

Adding B( 2.(V8) - 2.(\778)) to both sides of (A.3) and making use of (i},

- -~ * v
. -+ .
(2.4) u(ztt zt—T' vt) th(zt' Ut+1' vs) 4 U-(ztr zt—1’ \’t) + &tV(zt' vt+1’ VE)

Relations (A.2) and (A.4) imply

~ale -~
(a.5) v(zt__l, Ut, VE) = u(zt, Zo_qr Ut) + &tv(zt, vt-1-1' Ve) .
According to (AR.5) the following plan:
{Eta g Ve V0 Sz V0 V) Bz e V0 VO e |

produces the same return as the different (see (A.1)} plan

{f(zt_.‘r \)‘t' va): f(ztr vt+1' vs)r f(zt'l"l’ ut_l_z.r va}r e } .

This contradicts (iil), according to which the latter is the unique
optimizing plan. Q.E.D.

T.emma 3

If,
v = - i .
{1) V(Zt_1r g ! VE) V(ztﬂ‘!’ \)t) + E(VE}, where v(zt__l, vt) is
functionally independent of the elements of vs,

{ii) the solution to (2.1} exists, is of the form given in (2.3) and

yt) is interior to the feasible set T,

1

{f(zt_1r vt' VE:)' z

then

BE(v(z . V40 VI|v, = v

(1ii)
= Bvlz_, v, V) + (1 - BILUV ) - 2UQ)]
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ve)tvt = vs] = v1(zs, vs, VE)

(iv) E[V"{ZS’ “t+1r

() E[vz(zs, \Jt+1, VE}|\)t = '\)S] p = vz(zs, \}B, Ve)p
fT( v, VIE[v,,( v v ilv = vl
1'% Vg7 Ve 11V %7 Vegqr Vel I s
(wi)

T
= f1(25' “s' VE)V11(z r Vgr VS)

n

"
] B"zz(zs’ vs. Vs)p + B£

| S

{zs' Us’ Va)v12(zs, vs' Vs)p

T —
(vii) p BE[V22(ZS' Vw1’ Vs) v, = vslp

T
+ BE (2 e v, VOBV Gz, v VO v = v e

T
BEy (2 e Yoy VIBIV  (a s Vg Vo [y = v
. T ,
{viii) + P BELv, (2, V.. Va)l"t =]

T T
= v o, Vv v v + p" Bv z AY v
sz(zs, B E) 11(25' s’ E) 21( s’ 8’ Yo
W v = Ev .,
here E

Proof
Consider each formula in the order in which it appears, beginning with

(iii}.

Formmla (iii}: By (ii)

viz v, , VE) = u(fiz

=17 & Vele 2

=17 V)

+ BElv(flz,__,» Ver Vele Voo

£-17 Ver

{A.6)
4t VS) vt] -

Under (1), {A.6) implies

v{zt_1, vt) + l{ve) = u(f(zt-‘!' v, 1 VE), Z gt vt)
+ BEEV(f{Zt_.lr vtf VE)' vt+1} Vt] + Bz(vE) [}

g0 that, when Bo_q4 = Zg and vt = vs,



43

(A.7) szs, V) ot UV = oulz, oz, V) BE[szB, M, = v+ BT .

Yert1' 1

In (A.7} the fact z, = f(zs, “s' 0) = f(zs, vs, Vv ), establisghed in Lemma 2,

€

has been used.
The argument leading to {A.7) applies for the case VE = 0 also, that
is,

{a.8) v(zs, vs) + 2(0) = u(zs, Zs vs} + DV(zs, Vs) + BR&(O} .

-~

Subtracting (A.8) from (A.7),

UV ) = UQ = pE{viz_, v, V[ = v - B (2, V) - 8LQ)

= BElv(z_, Y r V[V = V1 - 8oz, v, V)

+ 8[2(VE) - 2(0)1 .

-

Formula {iii) follows.

Formula (iv): Because the solution is interjior to the feasible set, the

following condition obtains,

W Bz _qr Vs Vo Z_gr V) + BEIV, (E(zg_qr Voo Voo Ve VOV
A.9 '
¢ ! = 0 = h(zt_1, Ve v o

v such that (f(z

Zo_qr % v ) is interior

say, for all v, ),

=17 &7 Te=1t

to T. In the case vs =9 ,

u1(f(zt_1.r vt' Q,)r zt_.‘r Ut)

A.10
¢ ) + B'V.l(f(zt_.‘r vt.r Q')f p\’t + H, Q,) = 0 .
Use the fact, f(zt_1, vt, 0} = f(zt_1, vt, Ve), established in Lemmz 2 and

subtract (A.10} from (A.9) to get
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E[V1(f(zt_1, vtr vsjf “t+1r vE:) Vt]
(A.T1)

= vy Elz g0 Y

tf VE) r pv’t + u! VE) r

where the fact v1(°, . Q) = v1(°, ., VE} from (i) has been used. Formula

(iv) follows upon substituting 2z, _g = Zg and ?t = vs into {(A.11) and using

z = £(z_, v, Q = £flz_, v, V).

Formula (v): Differentiate (A.6} with respect to vt to get

Vz(zt_.‘r vt: VE) = h(zt_.lr \)tr vg}fz(zt_zf vt' VE)
(3. 11%) + BE[V2{f(zt"*1' vt! ve)r vt""-T' VS) vt]p
+
Uy (E(z qr Vee Vedo Zogr V) - -

where the function h, which is identically zero, igs defined in (A.9). Thus,

(A.17; implies

Vo Zpaqr Ver Vet = BEIV,(£(zy qr Ver Vds Vpgqr Vd|V1P
(B, 12)
*ug B g Ver Vo Zpoqe W) -
Setting Zpq = Zg and vt = vs in (A.12),
- -= u v = -
{A 13) VZ(ZBr \JS' vs) BE[Vz(zs, t'{"“' Vs) + Vslp + u3(zs, ZB, \’B}

The argument leading to (A.13) is also valid for the case 'vs = 0, so that,
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(A.14) Vz(zsi “gr 0) = &Vz(zsf vsr VE)D + u3(z8p ZS' vs) -

Subtracting (A.14) from (A.13) and taking the fact vz(zs, vs' 0} = vz(zs, vs’ vs)

into acecount, formula (v) follows.

Formaula (vi): TUsing the function h defined in (2.9),

dhiz, _,r Vo, V)
e-1' & Ve s
z__, Fy(mpqr Vor VI BB e Ve Vo 2 g0 V)
T
FOBLE (g Ve VIV B g Ve Ve Vg VY
{A.15} tu, (Flz g Ve V)2 L0 V) =0

The same result holds for the case VE = 0. TFormula {vi} follows upon setting

= Vv = -
zt_1 zB, o e ! taking into account the fact z8 f(zs, vs, vs) and

comparing (A.15) with

ah(zt_.‘r vt' 0)
3z *
-1 o1 T s
Vt = vs

Formula {vil}: Differentiate fR+12) with respect to V_ to get

VoolZeoqr Vpr V) = 5502 40 Ve VIR (B2, 00 Ve Ve 240 V)

T g (Elzy g0 Ver Yk Zp_g0 W)

(A.16) T
e BE{vzz(f(zt-1' Ver Velr Vpgqr VN0

T
+ Bf (z o, VE)EV12(f(zt_

2 2 g Yy v Y i, v vs) vt]p .

17 ¢ & ++1

Formula (vii} follows upon noting that (R.17} holds for Va = 0, that

f(zt'_.1.r Utr VS) = f(zt_1f vt.r Q)r v.‘z('r *, vE) = 012('1 *r Q) and
Voo (ot =r V) = v (% * Q).
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Formala {(viii}: Differentiate (A.9) with respect to vt’

WM(zy_qr Vpr Vel Tia
av A

t

(B.17) v o}

Ver VU Bz g0 Vs Ve 2 g0

17 Tt t
g Bz g Ve Voo B_ge V)

T
+ Bz, 40 Voo vE}E[v11(f(zt_1, Ver Vede v

17 ¢ t e TV = v

7
+ Bp E[v21(f(zt_ VoV, v

17 ‘¢ et Vel 1V T Vgl =0 .

Forrmula (vili) follows after noting that (A.17) is valid for vs = 0, making

~

use of Lemma 2, and using the facts v, . {*, *; Ve) = v

11 {*) = Q),

11

v, b, o, V) =vw__(* = Q)- Q.E.D.

Lemma 4
IE,
{i} +the solution to (2.1) exists, is unigque, is of the form given in (2.3)

and (f(=z V. oy VS)’ z

1’ Ve Vv.} is interior to the feasible set, T,

t=17 ¢t

{ii) the stationary state, =z of (2.6) 1s finite, independent of

s’ zt_

11 the initial condition, and U(Zs: z , Us) is well defined,

(111} the value function wv{+, =+, *} is differentiable at least twice in
the first two arguments,

{(iv} the function £{(+*, +, *) given in (2.3) has at least one derivative
in the first two arguments,

(v} V(zt_1, vt’ VE} = V(zt-T’ yt} + £(VE), where v(zt_1, vt) is

functicnally independent of the elements of va’

then

{vi) V(Zt_.!f vt) > H(g{zt_.lr \’t): zt_1r vt) + BEV(g(Zt_1, Ut}r vt+1) )

where v(zt__l,vt) = ¥(z

1/ B
g=t V) F E(Tﬁ)trwzztzs'vs’vs)vsj QY - AT
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and U(+, »*, *), g{e*, *} and W¥V{e-, *} are given in (2.6}, (2.8) and
(2.9), respectively, and,

(vii) U1(g(z vy, oz

A = .
e-1' t)r Feeqr Vels Vi) = O

Vo) o+ BEtV(g(zt_1,

Proof
-_— .

First we obtain (vi) of the Lemma. Substituting (2.6), {2.8) and
(2.9} into the right hand side of (vii), and making use of L.emma 1 and

Lemma 2 we get

Ulglz, _q 0 Vo)Yr 2 _yr V) + BE Vg2 0 Vs V)
{AR.18}
= W(zt~1' vt)' BaY.
Here,
W(zt_1, vt) = WO + W1(zt_1 - zs) + Wz(vt - vs)
1 - T. - 15 (v - viTw (v = v
(n.19) AR AC I S R - - A M R VIS M
T
+ (Ut - VB) WS(ztr1 - zs) .
where
- 1 B -
(A.192) Wy = u+ By + Y5 (5= B]tr VooVe * BLR(Q) = &V )]
{A.19b) W1 = u151 + u, + BV.‘f‘I
{A.192) Wz = u1f2 + u3 + Bv1f2 + szp
G T iy
(A.194) W3 f1u11f1 + LI + 2f1u12 + Bf1v11f1

7 T T T e
(R.18e) W, = fou . f, +ouy, 20w+ BE v, F 28E v et BV

22°
T T T T
(B.19F) .Ws fougqf, ¥ Eyuy, vug f, b o, 4 Bf2v11f1 + Bpivo,E, .
For the sake of notational simplicity, we drop the argument list of a function

when it is evaluated at Zor Us, vE and 1t appears that doing so does not lead
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to confuegion. For example, v = viz , vs' Vs)’ u

S u,(=z z A and
s ,1( s! Sl s)!

1

f2 = fz{zs, vs' VE). Also, the functions ¥{e, +) in {(2.9) and wW{e, *) in

{A.2) are functions of Z ¢ VE and vs, although this is not made explicit.

We accomplish the first part of the proof by establishing that
#

W(zt_1, \)t) L V(zt_1, 'Ut}-
When the initial condlitions, L vt, are z g and vs, respectively,
then (AR.%9} becomes
(R.20) hz , v, Vo) =u, + BElv,(z_, v .» VO|y =v)=0.
Here we have made use of the fact that =z = f(z , v, Q) = f{z , v, V_},
g s s’ ~ 5 s £

from Lemma 2. Substituting formula (iv), Lemma 3 into (A.2),

{A.21) h(zs, Usf VE) = u, + Bv1 = 0 .
When Zy_q = Zr vt = vs, then Bellman's optimality relation is
- = -+ = »
(A.22) v o= ou BE[v(zB: Viwt? v Ve = V]

Adding ‘%GTﬂg—E)tr szvs + {0} - £(V£) to both sides_of (A.22) and taking

formula (iii}, Lemma 3 inte account

(75 )erv

- B Ve ¥ 20y - £(V€)

-

22

{A.23) =u+ B+ (1 - BV - (D)

1B
3l - Y - ) =y

by (a.19}).
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Differentiating (A.6) with respect to Zi_q*

ValZpqr Ver V) = Bz _gr Voo VIE (2 g0 Ve V)
v v
(R.24) Fup Bz g Ve Vedo zo g V)
= U g Ve Ve Tegr V) -
Evaluating (A.24) at To_q = Zge vt = \:8 and making use of (A.271),
(A.25) v, = u1f1 + Bv1f1 + u2 = W1 r
by (A.19b).
Differentiating (A.24) with respect to Typ_qr
2
.- v(zt_1, 'ot, vs) I . v
2z 8T ST %1 e e
(h.26) e T
= £z 40 Vr V) u12(f(zt_1, V1 Vs Z _qr yt)
¥ U (Elz g Ve Yk Zpge V)
substituting L z, and vt = Vs Intoe (A.15),
(A.27) fTu + u + BfTE[v {z v v )|u = y] =0 .
1711 21 1 1 %87 e+1" T’ e s

Making use of formula (vi), Lermma 3, the latter eguation is seen to reduce to

(A.28) fTu + 0 + éf?vﬂ

= 0 .

Substituting Zo_q4 ™ Egr v, = vs into (AR.26), postmultiplying {R.28) by £y

and adding,

LT T T
(A.29) Va4 f11:l.12 + PPN + :?‘11.1_1‘1:?1 + 1121f1 + Bf1v11f1 .

It is easily verified using (2.29) and (A.19d4) that for an arbitrary

{conformable) vector x,

1 T - T
{(A.30) /o X Vg% x W3x .
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Adding (A.21) and (R.13),

= 3 + [4
v u, f. + BV,‘f2 v, 3E[v2\zs,

2 172 ve) 2 vs]p *

vt+1’

Applying formula {v), Lemma 3, this reduces to

(AR.31} v, = u1f2 + Bv,‘f2 + u, + 5vzp = Wz ;

by (A.19¢). Evaluating (A.17) at Ty q ™ 2,0 v o= v,

T T
£0,, * Ug, + BEEIV, (z_, V_ ., ve)|“t = v_]

T
+ 0 BBV, (z 0 Y, vs}‘vt =v]=0.

Applying formula (viii}, Temma 3, this reduces to

iy T T
(.32} fzu11 + Uy g + Bf2v11 + p Bv21 =0 .

Differentiating (A.12) with respect to vt'

= T
( Vir Ve = £,( Ve v u13(f(zt_1, v

+’ va)' z

v

Vo Zeaq! Zimqt £=1" 't

T
r vt) + p BE v (f(zt—T’ v ., VE}’ v Yo

(A.33) toug(flz g v V), o2 722 t t+1

t t=-1

Vv

T
+ v .
BEp(Zioqr Ver Vo) Be¥qpElzi g0 Vpr Voo Vpgqe VP

Postmultiplying (R.32) by £,, substituting Ziq = Zge vt = “s in (R.33),

applying formula (vii}, Tremma 3, and adding yields,

£

T . . T T
= + + £+
v f.u u 4+ o Ev22p 52u11‘2 us, £,

22 2713 33
(a.34)

7 7 T
*OBE v Ty F B,y + B VLR

°

Given an arbltrary (conformable) vector x, (A.1%e) and {(AR.34) imply

{A.35) xow ® = xTW X .



51

Differentiating (A.24) with respect to V

tf
2
TrlEerr Y Ve (z v, V)
3 T T 21 =1 & e
v 3z
(A.36) £t T
= I (T g Ve YV u Bz 4 Ve Ve T e V)
Foug (Elz o Vo V) oz g0 V) -

Postmultiplying (A.32} by £4, substituting Ziq = Zgr vt = vs inte (A.36)

and adding,

T T ™ ™
(R.37) wo, = Fouy + ug, + fou,,fy 4wy B+ BE v E, F Bev, By = W

from {(A.19f).

From {A.23), (2.25), {(A.30), {(BA.31), (R.35) and (A.37) it follows that

V) = G(z

(A.38) W(zt_1, e =17

Vt) '

which establishes {vi).
Next, we establish (vii) of the Lemma., Differentiating (2.6) with

respect to z_ (j = 0) and evaluating the result at z_-= g{z V.Y,

= t t=1" 't
U (glz, ., V), z vy =u, + (2, , ~ 2 ) 1fTu,, + u,,]
1 =1 £7 Te=1’ Tt 1 -1 s 1711 21
{A.39)
T
+ (vt - us) [fzu11 + u31] .

Differentiating v(zt, Y, defined in (2.9), with respect to =z,

L evalu-

vt+1

ating the result at zt = g(zt_1, vt) and applying the Et(-) operator

vields,



52

7T T
BVAGlze_qr Vb Vpq) = v (2 g T m TRV (N = Ve vy
(A.40)
w7
+ (yt - vs) P v21 .
pdding (A.39) and the product of (A.40) and B,
Uylelze _qe Vs B g0 W) BEVLLGlz g0 Vs Vi g)

-z )T{fTu + 1 + BfTv 1

=n 1 s 1911 21 1711

+ BV1 + (zt_

{(2.41) 1

G T i
+ (vt - vs) [f2u11 + Uy + sf2v11 + Bp v21] .

By (A.21), the constant term in (A.41) wvanishes. Equations (A.28) and (A.32)}

indicate that the coefficient matrices on - zs)T and (vt - vs)T,

respectively, also vanish. This establishes (vii) and, hence, the I.emma.

Zem1

0.E.D.

Lemma S5
If,
(i) problem (2.1} has the solution, (2.3},
(ii} the set T is convex in its first two dimenslons
{1ii) the return Ffunction, wu(*, *, *) is concave in its first two
arguments
then,
{iv) the return function, v, defined in (2.4), is concave in its first

argument.
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proof

Consider the initial conditions (z_1, vn) and (zl1, uo), where

zl1 # z_y {In this proof we set +t = 0.) Fix et for t > 0. By
definition,
(Z(eS, z ., V., V., t), V. (€5, v }) €T
r -1 Ul Er r t r 0
(A.41) ‘
(Z(ES, z'., V., V., t), V.(£5, v)) ¢ T
r _1? 0" 8! r t r 0 ¥

for all t # 8, where the 2% function is defined in (2.3a).

Consider z_1(l) = Az_T + (1 - l)z:1 for 0 < A < 1. Define

Z(e r T 1(;'~)' “'U.r U'E’ t)\
( ) = :LZ(E z v vV t}
A.42 r 1! Df El
+ (I - X)Z(E z Y V. .r t) )
’ 1! Ur £

for t * 0. (E iz not necessarily optimal. Tt is feasible becaunse of the

convexity of T.) Because of (ii), (A.41) and (A.42) imply,

. ~ & , t
(2.42") (zle, z_1(l), Vor Ve t), qt(a r vo)) €T

for all t #? 0. Condition (il) implies

w(Z(e%, z_ (N, v

t
or Ver t}, vt(e ' vU))

» ha(z(et, z

t
-1’ vﬂ' vE' t), Vt(ﬁ r '\)0}}

t t
+ (1 = ANu(z(e, 2l Vor Voo £), V(e Vi)

for all t * 0, which implies
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[~ )
I Eu(EsS, z_ (N, Y,

+
o o0 Ve' £), vt(s Y

5))

-] . )
(R.43) >2 I Bulale, z_,, vy,

=0

t
1" ve’ t), vt(s R vh))

o
£ =0 I gzt 2
t=0

: t
1; \,or VE; t)l \'lt(e I uU)} L4

Because of (A.42), which indicates that Z is feasible,

.ot t . t
(R.48)  wlz_ (N, v, V) »E[ I Su(Z(e,z_ (M, v,V ), v (e, D]

0 t=0

a0
where the expectation is taken over the random vectors {Et}t-T'

expectations on both sides of (A.43} and taking (B.44) into account,

Taking

viz_ (A, v

o' VE} # Av(z_.lr UO' VE) + {1 - l)v(zl.lr v

0; VE) .

QoE-D-

Before proceeding with Lemma € it is useful to introduce some new
notation. Tet a be a scalar, b and ¢ be vectors of dimension n and
m, respectively and let B, D and £ be matrices. The latter are of
dimension n Xn, n Xxm, and m X m, respectively. Also, B and E are

symmetric. Define the following set of functions:

v) = a+ sz + ch

(5.45) v = {aqlz,_,, v |alz,__,, v, 1 £

T T i
-+ -+ v+ <
Z,_4BZ._q * E,_ DV * VEV, , B <0,z _4¢€ R , v, € Y

where B < 0 indicates negative semidefinite. Evidently, V is the set of
guadratic functions in the variables z,_4 and vt and negative semidefinite

in z,_4-



befine the operator U with domain V as follows:

(A.46) U(J)(zt_ V) = sup {v(z_, =z ¥l

1t p £r Feorr V) FOFBT(E e oV +u ke
zt 4

t t+1
for J ¥. The function U{+*, *, *} is defined in (2.6). An element

3 ¥ is said to be a fixed point in V under U if J° = 0(I"). If,the

function in brackets in (A.46) 1s quadratic and strictly concave in =z, then

there is a unigue linear function L(z vt} such that the sup 1s achieved

-1

by zt - L(zt_1,

the following condition:

vt). Also, the function L is the only one that satisfies

v}, =

{n.47) U1 (L(zt_.‘r t =1

Vo) o+ BB T Lz, L0 V). PV R 47 =0 .

Cer

Lemma &
If,
(i) the function wu{*, +*, *} in (2.1) is strictly concave in its first
two arguments,
then,
{ii) +the optimal value of-the 1O approximation problem, (2.5), is a
function J € W,
(iii) J 1isg the unique fixed point in V under the U operator,
(iv) the optimal linear feedback law that solves (2.55 is stationary and is

the only function that satisfies (2.47).

Proof
The proof is accomplished by expressing {2.5) as a linear regqulator

problem and making use of results established elsewhere for that problem.

iy

Zo_qr Qi]T. Evidently, Yy is an {(n + m} x 1 vector. The

Let Yo ™ {

function (2.6) may be written as follows,
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{a.48} U(z e + &t + @Tz

T = T T =
= + + +
er4? Tery) Y44 erd T Ve iag T Ty 2yt+szt+j} '

where 6 ~(n+m) X1, ¢ ~n x1, R ~{(n + m) x (n + m),
F ~(n+m Xn, Q ~nXn, 320 and ¢ is =z constant term.

It is easily verified that

_ Y22 Ya3 _ Y21
(R.49) R="%| . y 9=Yhu,, , F= .
F23 Uiz Y31

Here, as in the proof to Lemma 4, the argument list of a function is dropped if

the function is evaluated at Fiq4 ™ zs, :-.‘h = zs, vt = vs. Thus, in (A.49),
= v Y.
Bay = Ug3{Egs 7 V)
Let
- R LR ¥ ] Fyt
R == . F = ’ X =
e 1 T t
* |
728 % 1%{n+m} 224 L
(A.50) - - . -
T E',--nxn Q-nXm Qn:d an1
n —
= = 0 =
B 0 ¢+ B mxn P me1 S Ceat
~(m+1)m
2 Yo ! Lt

where p is the m X m matrix defined in (2.2). Define

R=R-r0 'FY, v =2z +0 '

{A.51)

In {(A.51), the invertibility of ©Q follows from the negative definiteness of
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uyqr 2 consequence of {1). Specifically,
(A.52) o -=1/2 u“ is negative definite .
Using the notation of (A.50) and (A.51), (A.48) may be written

\ o 7.7 T
(R.48%) U(zt_l_j, yt+j) {xt+ijt+j + vt_l_ijt_‘_j + c}t .

Then, problem (2.5) may be formulated as a standard discounted linear regulator

problem as follows. Take the limit as W + «® of the following sequence of

N
problems. Maximize, over p;ans of the form vt+j = -Fg )xt+j' J =0, 1; ese,
N, the expression
{(A.53a) E g Bj{xT RX " ov + e}

' §m0 L i T35 £ :
subject to
N ' .
where {wt+j}j=0 is serially independent and
{A.53c) Ew wT = W 3 =0, 1, o., ¥ .
t+j t+j r ’ r
Here,
1 X
Lo xn Qnn L1
(A.538) = Qoo Ve Q1 | 7
Lgﬂxn Qan O1>c1

and vs is the m *m sgymmetric matrix defined in {(2.2).
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Partition the matrices A and B in {(A.50) and (A.51) as follows:

Bqq Ao By
nXm nx(m+1) nxn
(A.54) A = , B = .
Bot Bao By
(m+1) *n (m+1) X(m+1) . (m+1) ¥n

From (A.50) and {A.51) deduce that, in (A.54),

[p 0

fi=)
-—h

. T4

Tt follows that the rank of the matrix |B, - RygBy s oven . Al4 B1] is n, so

1
that (A11, B1) is completely controllable. Because of this and the fact that

1
the elgenvalues of B AZAzz lie inside the unit circle, conclude that

(A.55) (/B A, VB B) is stabilizable .

{See Sargent [1980, Section II] and Rwakermaak and Sivan [1972, page 452] for a

discussion of stabilizability.)

The partition of A and B in (R.54) implies the following partition
of Kyr
4,644 Vit
(B.56) X =

I © T T Terr  T2,ees T
2,t1+j

3= 0, «o¢ » Partition the matrix R defined in (A.51) conformably with the

partition of x. in (A.56):

{A.57} R =
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Bubstituting from (A.49) and {A.50) into (A.51), it may be verified that

-1.T

=1 -
(3.58) Ry =Y lu, - w61,

1 ) .

Condition (i) of the Lemma implies that R4, is negative definite. This is
shown as follows. ¥irst,

(A.59)

is negative definite. But, a matrix i1s negative definite 1f, and only if, its
inverse is (Proposition 59, Dhrymes [1978, page 488l!}. In the case of (A.58)

this implies that

1 =17 _ =1
Y1 B2 \ v Uy gty 8
{R.60) ='\ -1 ’
Y21 Y22 1~y ®
where € = (u - 1 u~1u )-1 Y= (u - u u-1u )_ is negative
22 21711712 d 11 12722721

definite. But (A.60) being negative definite implies that & and, hence,
871 is. But 61 = 2R,,, yielding the result sought.

Since Ry, is negative definite, +R,, is positive definite. This is

equivalent with the exlstence of a nonsinguiar matrix. & such that
(A.61) -R;q = B1S .

(See Dhrymes {1978, page 4801. Wote, Ryq is symmetric.)
1
Consider the matrix pair (872 A,,r §). This is said to be detectable if,
1
and only if, (B 72 A?_‘, §7) is stabilizable. But this follows trivially From
1
the Ffact that (8 /23?1, ST} iz completely controllable. Conseguently,
. s .
(a.62) (B A”, §) i= detectable .

{See Bargent [1980] for a discussion .of detectability.)
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SN), ceey FéN]} dencte the segquence of optimal linear feedback

Let {F
rules for problem (A.53) and for Finite N. It can be shown {see Sargent
[1980]) that this seguence exists and is unidque. (Note, the assumptions we
make here are weaker than the agsumptions that are usually made for these
problems. TFor example, Bertsekas [19761, Chow [1975, Chatper 7], Kushner

[1971] and ¥Kwakernaak and Sivan [1972] assume that R 1is negqative semi-

definite.}

(W)

Let Fj denocte the jth element (0 €4 < W} in the seguence of optimal

linear feedback rules described in the previcus paragraph. Sargent (1980,

pages IIIL.30-III.31) proves that under (A.52), (A.55) and (A.62)},

(R.63) 1im 7\ -
Nao 3 -

for all 3. 1In {(R.63),
(A.64) G= (P8 + Q) '&TEA ,
where P is the unigue symmetric matrix with negative semidefinite upper left

n X n block which solves the following matrix Riccati eguation

(A.65) P = Ba PA + R - B°ATPB(BBPE + Q)  'BPA .

Thus, the solution to problem (A.53) exlists, is unigue and of the form

(A.66) vt+j = —Gxt+j j *0 .

Sargent shows that the value of problem (A.53) converges, as N + =, +to

T 8 *
{3.67) T T XeFR t T B,V = q (x.)

say, where ©P,, is the middle block in the following partition of P:
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P P P
1 1
nxljl n)?r% n)a
P = P P P .

SR S+
PE LIS - B

Substituting from (A.51), (A.66) may be rewritten

(3-68) z b L( ) r

£44 Zeadel’ Vi+d

T

where Lz y L= *{Q-1F + G)}. Egquation (A.68) gives the

hH ]
T T
optimal linear Ffeedback law for (2.5) in térms of the notation used there.

Define the following gset of functions:

(A.69) ¥ = {a(x)|q(x) = x'Hx + &, the upper left n xn block

of H is negative semidefinite, x = (yT, T
vy e RO g¢ g, B is symmetric.}.

Define the the operator _5 on the space Vv as follows. For a E‘a,

. - T T
(A.70) U(q)(xt) sup {c + xtth + thvt + BEq(xt+1)} ’
n
v.ER )
- + + i
where X1 Axt th W, and where the expectation is taken over the

distribution of Vi given in {(A.53c) and (A.53d). It may be verified that

for the q function defined in {A.87)},

w* ~

-~ * x
{(a.71) Uig ) =g , g € V.

BSargent establishes that q* is the only element of V that satisfies
(A.71}). (Bssentially, this follows from the fact that the solution to (A.65)
is unicque in the class of P matrices with negative semidefinite upper left

T
n Xxn block.)
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Note that the sets V and ¥, defined in (R.69) and (A.45), respec-

tively, coincide. Iet J be the function q* when X is replaced by

T T

(zz_1, v., 1T That is,
g =)
+
TCZ g V) =TT PppVe * T8 T Fas
T T
+ “+ >
(B.72) 2 1P11%e-1 T 2% Po1%ian
T
= VP v+ 4 v .
T2V T PPaqZiq ¥ 2PV

Since J ¥V, {(ii) of the Lemma is established.

8ince the distinction between the operator U on V and the operator
U on V 1is one of notation only, the fact that q* ig the unique fixed point
under U on ¥V is ecuivalent with the faect that J 1s the unique fixed
point under U on V. This establishes (iii) of the Lemma. Finally, consider
(iv) of the Lemma.

Substitute q* into the expression con the right side of (A.70) and then

-1..T T T T
replace Ve by Zy + Qz 'F Xy and Xy by (zt_1, vt' 1) to get,
L + { .
(2.73) sup_ Wz, z. ,r V) + BET{z, PV + BE Iz, oV + u+ g O}

z,€ R

The functleon in (A.73) is quadratic in z.. It is strictly concave since

Uqq is negative definite and Pyyq is negative semidefinite. Conseguently,

*
the sup in (2.73} is achieved by a2 unicue point =z i It can be verified

+ €
*
that z, = L(zt~1' vt). This establishes (iv) of the Lemma.

Q.E.D.
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Proof of Theorem 1

Define the guadratle function

VIZ, _qr V) = VzZ,_ge V)

(2.10) + 1% [1 '_3 B]tr[vzztzs, vor VIV ]

+ Y - UV

defined in (2.10) in the text and reproduced here for convenlence. In {(2.10),
U(*, *, *), g{*, *} and V(e+, *) are given in (2.6}, (2.8) and (2.9),

respectively, DLemma 4 asserts that (i)=~(v) imply

iz g V) = 0Galz gy VY B e V)
(A.74) .
+ BE Vlglz,_ v V)r V)
and
{3.75) U1(g(zt—1’ vt), Z,_q7 Vt) + BE£V1(g(zt_1, vt), Vt+1) =0 .

Lemma 5 establishes that, if (2.1) has the solution, (2.3), and (vi} angd
{(vii) hold, then the function wv(-, *, *), defined in (2.4) is concave in its

first argument. Consequently, v

11(23, zZ_s VE) is negative semidefinite. It

follows that the guadratic function V¥ in (2.10) is negative semidefinite in
its first argument. That 1is, V € ¥ (see (A.45) for V).
By (vi) U(e, =+, *) is negative definite in its first argument.

Consequently,

(R.76) Uz, 2, _yr V) + BE Wz, , v )

is a2 negative definite quadratic function in z,- A necessary and sufficient

* n * -
condition for z, € R, where z = zt(

e Ut), to maximize (R.76),

R
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therefore, is that

*
{(B.77} U1(zt, Z,

~ %*

Thus, (A.75) establishes that gz V. ) maximizes the function (B.76}.

=17 ¢
Relation (A.74) then indicates that v is a fixed point under thg ¥ mapping
defined in {(A.46). That is, U(V) = V.

According to Lemma 6, {vi) implies that the value of the solution to
(2.5), call it J, is gquadratic in z,_, and vt and negative semldefinite
in Z,_q+ In addition it is shown that U{J) = J and that. J is the unique
fixed point under U in V. Conclude that J = V. That is, V is the value

of problem (2.5).

Lemma € also asserts that the optimal linear feedback law that solves

(2.5} is stationary, call it L(=z vt}. In addition, it 1s shown that

=1

¥
z, = L{zt_1, vt) is the only function guaranteeilng (A.77). Conclude that

g = L. Q-EnD-
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Appendix B
In this appendix we calculate the mean and covariogram of {xt} ; where
(B.1a) x, = lth:__1 r B = Bct(1 Eﬂgff:i-_a;)]“_a), Y = ?_-q_ﬂ&-' 0 < ac1
and
(8.2b) A = AL, ewp(u+ £) g ~viiawo, 03, . [p| <1 .

Assume that

{xt} started up at + = t,

X, and A being nonstochastic.

di(r). Consider the {kt} process first:

A = AP exp{p + € }
t0+1 ty t0+1
P
ps A expl{u + € )
t0+2 +.0+1 t0+2
92
= ;‘t expl{(u + €, +1)p]exp(u + £
0 0
pi i=-1 3
(B.3) A = A I expl{p + & _a)P7] .
Tt ty 3=0 toti=d

We proceed now to calculate

= ~oo with the initial conditions

and
ux

}
t 0-1-2
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Next, consider {xt]. Making use of {B.3),

o o
= X +
+ exp(u £ +1)th

0 0 0
= A(pz'Hm) (u + + o)l + £ 31 {140 Gz
Xt 42 t expl(y + € ,,)(p + Slexplly 42’ 1P XL
0 . 0 1] v; 0
i=1 .
(= o*?) } 1 4
) 4=0 jI'I [{ + )(IZ‘I Clj r-—-j] —1] (j}:oa ) i
x = exp|fu £ o p P = o .
t0+:i. to - t0+3,+1 r 30 B xto
Substituting t = t4 + i,
-t t—to (=t )
[p - ]t-tﬁ - (1-(1 - ] (=t )
i-o/p p = 1= 0
x, = A I exp[(u+s )( ]}B X «
t 0 =i Tt -1 p - o to
Letting to - we getb
1
- r )
p - 1=
(B.4) x = [ expl(u + stH__r)( — )i}
L r=1
Then, making use of the independence of {etl,
1
o - & __._)
- _ p - =
m, FEx. = 0 OEexpllu+ e, ) (—-—-—-——p —)e
r=1
(B.5) 1
) £ & e of - 2
=B § exp[(Gop e+ 5 ()]

£
= -
2 - - e - d)



6.

The second eguality in (B.5) makes use of the formula for the mean of a log-

normally distributed random variable (see,

2
Next, consider o (7) = Ex. x . -~ (Ex
2
- o ‘
XX _.= B I oexpl(u+ e,
- r-"l
[ =]
x T exp[tu+ ¢
e’ t+1
1Eq z
= B it exp[(u * g
T
L]
x 1 expliu+ e
=t t+1

Making use of the independence of

normal variable, one obtains (after some a

e.g., Maddala (1977, p. 33)).

t)z for T > 0. Using (B.4),

g - oy

-r) P -«

92 - az
sl

r r
Pl - d
) =)
™ aT+2 p2 _ ai
Twi)( p-a R p—— -

{Et} and the formula for the mean of a log-

lgebra),

- &2 2
p T ey« T
2 £ - £ a
BxyXe o = (1)) expl—y 1P em[—s "
(1=p"){1-op)(p-a)} (1=} (1-ap) (a~p)
It may be verified that the above formula holds In the 7t = 0 case. Then for
T=20, 1, £ 2, ... , we have,
()
2 2
P ]p!r[ oo alr[

= (ux)z{exp[

z
(5.6) (1 - p“)J(1 - ep)(p - @

- 1}

expl 5
(1 - )1 - ap){a -~ p)
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FOOTNOTES

TRelated work that also does not rely on the linear quadratic assumption
is found in Hansen and Singleton (1982). Using results in Hansen {1982), they
propose an estimation method that exploits the orthogonality properties that a
sclution to an optimum problem must satisfy, Their approach does not regquire
that an optimum problem be linear quadrétic and can be used to estimate the
parameters of private agents' objective functions even when it is not known how
to calculate the decision rule that solves the objective function.

2Here, the phrase "return function" denotes the surmand in the calculus of
variations problem.

3Here, by the *certainty wersion of a problem" is m=ant the problem in
which random variahles are replaced by their unconditional expectation,

4The "steady state" as it has been defined, and the unconditional mean of
the stochastic process in the state variable are not in general the same. This
has been pointed out in Merton (1375} and in bDanthine and Donaldson (1981}.

See fFootnote 6 below,

sDifferentiatinq the certainty wversion (ci = 0) of (3.4} with respect

to Lt+j and Xied vields, after setting the resulis to zero:

1 _ “ - c!)Beyt:+j+1"’1’t-1—j
H=Leis Teagar ~ Feaga
Bay .
B _ B dvt+j+1/xttl
- r
Yt+j xt+j Yt+j+1 xt+j+1
M (1-a) o .

where Yt+k = exp [1 m_ t+k—1xt+k—1 s k=49, 3+ 1. Setting xt+j = xt+j+1

] r r
= %, and Lt+j+1 = Lpyy = Lg vyields (3.10b) and (3.10¢), X, and Ls are

cbtained by evaluating {(3.10b) and (3.10¢c) at o« = ar, HEES ur -
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S1t is of interest to note that the analog to the result in {3.13) fails
to hold Af the guadratic approximation described in step 2 is caleculated about

(Lty L Ut) = (L, L, X, X, vs) # (Ls' Ls' X v X vg). That is, in

=17 Fer Feaqr s

this cage the golution to the LO approximation problem is not a first order

Taylor series expansion of the exact feedback rule, {3.9}, about

(Ly_qr X,_qr V) = (L X, v) Bn example will illustrate this point. Let H
-1,u=1,02E-2,p-1f2,B=2,U,=.25,B=T—JCE. Then, the exact
solution to (3.1) is, from (3.9)

« 75425
(a) X, .238 exp(vt)Lt_1xt_1, v, = .5\Jt_1 + 1.0 + £
{b) L, = .652 .

In this case Ls = 652 , v, = 2.0 , x, = 1.385 , and Ex, = 1.663, Consider
(E, E, vs) = (,652, 1.663, 2.0} . Solving the 10 approximation problem with
the medification that the quadratic expansion is taken about (ﬁ;, ﬁ; vs) we
get the following solution:

= g . - . T 2
{c) x 4.5624 + 0340xt_1 + 2 3256Lt~1 2 0502Vt

(a) L. = ,6311 + .0031L + .00D4x

& -1 + .DD?Svt .

-1
The first order Taylor series expansion of (a) and (h) about

(L X Vt) = (.652, 1.663, 2.0} is

=17 Te-1'

= =L + . - .
{e) Xt 2.8998 21803t_1 + 1 6674Lt*1 + 1 4500Vt

(£} L, = .652 .

Evidently (c) and (e} and {(d) and (f) do not match up. These expressions would
have matched up had the calculations been done on the basis of (ﬂi §} us}

= (.652, 1.385, 2.0) = (Ls, X 1 UQ) .

Trrom equation (3.10c), the steady state value of X, when Ve isg

g 1

replaced by its unconditional mean is x = [exp(u/{1 - p})B i-a « PFor

cﬁ > 0 this is strictly less than Ex,, according to (4.5). The two are equal

£rom u2 = O ,
£
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8See Hannan {1970, Chapter IV},

90ne way of calculating this is as follows. The covariance generating

function (see Sargent (1979, Chapter XI)} of RnYt, anY(Z) ¥
2
40 g
2 k £
gﬂ.nY(Z) = 1 ch(k)z = = et
k=——oo (1 - p2){1 - &){1 - pz (1 = oz )

where c%nY(k) = E(2nY, - EnY J{gny, ., - Efa¥Y, , ] . Then (see e.q., Sargent

{1979, p.232)),

2 1 az
(1) 0y o(0) = oy jc 9 oy'2) = -

where C is the unit clrcle .and the integration is carried out in a cocunter-
clockwise direction. The function qan(z)%- is analytic on the unit circle.
It is analytic everywhere inside C except at the points z = o and z = p .,
By the residue theorem (see, e.g., Churchill {1976, p. 172)} the expression to
the right of the eguality in (1) equals Ra + Rp’ where R, and Rp are the

residues of gan(z)%- at the points z = a¢ and =z = p, respectively, These

are defined as follows:
R = lim(z - o (z)l- R = lim(z - p) {z)l
a Iy 2z ? p Pl Sony'®l 0
Z 0 Z+p

Evaluating Ra and Rp and taking their sum yvields {5.4).

10mhe result appears to be consistent with conclusions reached by Zellner
and Geisel (1968) in a framework related to the one we consider. They examine
several single period stochastic optimization problems and find that replacing
the objective function by a quadratic approximation has little effect on the
optimal setting of the control variable, unless there is a pronounced asymmetry
in the objective function. The objective function used in this paper, (3.4},
does not, for example, exhibit significant agsymmetrics relative to variations

in Lt and Ky o
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