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ABSTRACT

We develop a theory of general equilibrium with endogenous debt limits in the form of individual
rationality constraints similar to those in the dynamic consistency literature. If an agent defaunlts on
a contract, he can be excluded from future contingent ¢laims markets trading and can have his assets
secized. He cannot be excluded from spot markets trading, however, and he has some private
endowments that cannot be seized. All information is publicly held and common knowledge, and
there is a complete set of contingent claims markets. Since there is complete information, an agent
cannot enter into a contract in which he would have an incentive to default in some state. In general
there is only partial insurance: variations in consumption may be imperfectly correlated across
agents; interest rates may be lower than they would be without constraints; and equilibria may be
Pareto ranked.
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1. Introduction

It is well known that changes in individual consumption are imperfectly correlated with those
'in aggregate consumption. One way to model this phenomenon is to impose constraints on the
collection of debts. The goal of this paper is to provide a theoretical foundation for such models.
Our theory considers an infinite horizon general equilibrium model in which endogenous debt limits
have the form of individual rationality constraints similar to those in the dynamic consistency
literature. If an agent defaults on a contract, he can be excluded from future contingent claims
markets trading and can have his assets seized. He cannot be excluded from spot market trading,
however, and he has some private endowments that cannot be seized. All information is publicly
held and common knowledge, and there is a complete set of contingent claims markets. Since there
is complete information, an agent cannot enter into a contract in which he would have an incentive
to default in some state, In general there is only partial insurance: variations in consumption may
be imperfectly correlated across agents; interest rates may be lower than they would be without
constraints; and equilibria may be Pareto ranked.

We draw a distinction between economies in which the aggregate social endowment exceeds
the sum of the individual private endowments and those in which the two are the same. In the
former case, we say that the economy has positive assets. The interpretation is that private endow-
ments represent things that cannot be seized in order to collect debts; the remaining part of the social
endowment represents assets that can be seized. Our point of view is similar to that taken in the
study of the time consistency of government debt by Chari, Kehoe, and Prescott (1987) and by Chari
and Kehoe (1988). Here we focus on the extent fo which private debt and insurance markets can
be enforced by the threat of exclusion from intertemporal and interstate trade. This limits attention

to allocations that are not only socially feasible, but that are individually rational in the sense that,




at each time and in each state, each agent receives at least the present value of utility he could
receive by trade on spot markets alone.

We examine both allocations that are efficient relative to the individual rationality constraints,
and competitive equilibria in which the budget set reflects these constraints as well as the usual
income constraints. We then relate these ideas to each other: In the case of what we call identically
homothetic preferences, an allocation is constrained efficient if and only if it can be decentralized
as a constrained competitive equilibrium with transfer payments. An important special case is when
there is a single good.

The case in which preferences are not identically homothetic is more complicated. We show
that the technical role played by the notion of efficiency in the analogues of the two welfare theorems
is assumed here by a technical concept that we call conditional efficiency. We also show by means
of two examples that conditional efficiency is neither necessary nor sufficient for constrained
efficiency. We then use technical results analogous to the two welfare theorems, which relate
conditionally efficient allocations to equilibria, to argue that these two examples serve as counter-
examples to the two welfare theorems in their usual form.

Examining efficient allocations, we find a kind of “Folk theorem,” most clearly related to
that in Friedman (1971) and Fudenberg and Maskin (1986): for discount factors close enough to
one, first best allocations may be sustained. We show by example that, even when the first best is
not attainable, intertemporal and interstate trade is still possible. Consequently, this is a legitimate
madel of partial insurance, The story of limited intersectoral insurance is an attractive one: A
successful sector will not pay an unsuccessful one unless sufficient future compensation is offered.
This limits the amount of insurance that can be provided, however. If too much debt is incurred,

it will not be repaid.



There are alternative explanations of the imperfect correlation between changes in individual
and in aggregate consumption. Within the Arrow-Debreu framework, state dependent preferences
are a possible explanation. It is also true that if there are many goods, individual consumption may
be imperfectly correlated with aggregate wnsmption merely because of price fluctuation in spot
markets and income effects on spot demand. Neither of these explanations seem particularly
plausible in light of the fact that the decline of entire industries and regions seem to have a perma-
nent effect on the welfare of individual workers: Why are the unsuccessful sectors not paid off by
the successful ones? It is, of course, possible to explain the facts by means of the incomplete market
theory introduced by Radner (1972), but this begs the question: Why are some markets closed?
With. the notable exception of Allen and Gale (1988), there has been little research on this question.

One approach to explaining imperfect insurance relies on private information problems, either
in the form of moral hazard or of adverse selection. Green (1987), Hammond (1987), and Banerjee
and Newman (1988) have explored models of this type, and there are some general theorems in the
finite horizon case due to Prescott and Townsend (1984a,b). These private information models are
complicated to begin with, and Prescott and Townsend (1984a,b) argue that to decentralize equilibria
it may be necessary to introduce price lotteries. Such schemes may, however, be difficult to enforce
in practice. From the empirical point of view, it is unclear that this explanation really comes to grips
with the problem of the absence of intersectoral insurance. Would there really be an important moral
hazard problem, for example, if line workers (who are heavily monitored anyway) received payments
contingent on the overall economic success of their industry or region?

Yet another framework that leads to partial insurance is the overlapping generations model
with uncertainty. Since one can argue that in practice a major problem is that of young workers

(who are more mobile and enter more successful sectors) not insuring older workers (who may be

stuck in a declining sector), this is a potentially atfractive explanation. But it flies in the face of




substantial evidence of the importance of bequest motives (see, for example, Darby 1979 and
Kotlikoff and Summers 1981), and Barro’s (1974) observation that with a bequest motive overlapping
generations behave as a single infinitely-lived family.

The notion of debt constraints is not new in economics. Many empirical researchers,
including Hayashi (1985) and Zeldes (1989), have found evidence of debt constraints in individual
consumption patterns. As a theoretical issue it has been studied primarily in monetary theory where
money is the only asset and the inability to sell it short creates a debt constraint. With the exceptions
of Townsend (1987) and Levine (1989), who consider a private information interpretation, the lack
of a richer menu of assets in this type of model is not explained.

The line we take here is most heavily influenced by Prescott and Townsend (1984a,b) and
the related work of Atkeson and Lucas (1991). Rather than focus on incentive compatibility
constraints as they do, we focus on individual rationality constraints. The constraints that we impose
are similar in spirit to those in the international debt literature: Schechtman and Escudero (1977)
and Manuelli (1986), for example, allow countries to borrow only as much as they have an incentive
to pay back, no matter what the realization of uncertainty. To simplify matters, we assume that it
is possible to exclude traders from intertemporal trade, but not from spot markets. This is consistent
with the observations that it is relatively easy to deny credit, somewhat more difficult to seize assets,
and extraordinarily costly to tax spot trade in order to collect debts. We should point out that it is
important that it is possible to prevent debtors in default from making loans and to seize their assets:
Bulow and Rogoff (1989) show that merely denying credit is not a sufficient threat to create a loan
market.

Our theory has interesting empirical implications. Unlike the incomplete markets model,
there is no limit here on the types of contingent claims that can be traded. Rather, the amount of

contingent claims of a particular type that can be sold are limited by the extent to which the debt will



be honored. One consequence is that, as in the overlapping generations model and debt constrained
monetary models, real interest rates tend to be lower than the subjective discount factor: Borrowers
are constrained, lenders are not. To induce lenders to offer a low quantity of loans, they are offered
a low return.

In summary, we present a relatively simple theory for the case of identically homothetic
preferences, a condition that is always satisfled when there is just a single good. The first and
second welfare theorems hold, and there are second best equilibria in which intertemporal markets
are active. This theory has the potential to explain the existing lack of correlation between private
and aggregate consumption. The picture when there are income effects is more disturbing. Here
we have the beginnings of a theory of mechanism design where it is impossible to prevent certain
types of trade, This places a potentially intolerable burden on the price system: Not only must
prices serve to facilitate trade, but they must keep individuals from reneging on contracts. As a

result, both welfare theorems may fail.

2. The Model

Both time and uncertainty are discrete. All information is publicly held and common
knowledge. Information at time t = 1, 2, ..., about current and future conditions is indexed by the
state 1,. There are k different states. Information states form a Markov chain. The transition
probability from 7 to 3’ is =(y’[%). The probability distribution over states is fixed by the transition
probabilities induced by a historically given initial state n,. A (staze) history s = (111,%2,...,1y) lists
the states that have occurred up to some date t. We let t(s) denote the length of the history s and
let S denote the countable set of all possible histories. The Markov transition probabilities induce

a probability distribution over S:

Ty = T W] DTy | M7 (01 | 10)-



To simplify notation, we use %, to denote 7, the last state in the history s, and we write ¢ = s if
8 = (gy-eeotl) A0 0 = (q,..., MMt 1r-+-»1,), that Is, if o is a logically possible continuation of s.

The economy has m agents and n goods in each history. Let x}, 2 0 be the consumption of
good j by agent i in history s. Deleting a subscript or superscript yields a vector: x|} is the
consumption vector by agent i in history s, x! is the consumption plan for all state histories, and x
is the consumption plan for all agents, that is, an allocation. If x; = x(z,), that is, if the allocation
at s depends only on the current state, we say that the allocation is stationary.

The preferences of agent i are given by the von Neumann-Morgenstern utility function

Ui = (1-8) ¥ 8@~ lrutxing).
13

Notice that &, the subjective discount factor, is the same for all agents.

(A.1) ul-,n) is continuous, concave, strictly quasi-concave, and strictly monotonically increasing.

For xi > 0, u,(xi 1) is continuously differentiable.

There are two types of endowments in this economy, private endowments and assets. The
private endowment of agent i in history s depends only on the current state and is denoted Xi(z,).

We assume that private endowments are strictly positive:
(A2) @ >0, i=1,....,myp=1, ..,k

(We adopt the convention that > for vectors means strictly greater in every component.) The

aggregate social endowment in state 5 is denoted X(),

A3) 2 = L 8m), 1=1,...k

j=1




Notice that we do not assume equality in (A.3): the social total may strictly exceed the sum of
private endowments. The interpretation is that the private endowment Xi(y) represents goods and
services, such as labor, that cannot be physically disassociated from the agent. Let w(n) = X() —
L% _,%'(); these are assets, such as land, that are available for consumption but can change hands.
Since we assume that assets can be seized for nonpayment of debts but private endowments cannot,
this distinction is important in considering individual rationality constraints. If strict equality holds
in (A.3), we say that the economy has no assets. If, on the other hand, for every state 3 = 1, ...,
k, w(n) > 0, we say that the economy has positive assets.

The assumptions that Xi(y) > 0 and, if there are positive assets, that w(x) > 0 are, unfortu-
nately, not compatible with thinking of private endowments and assets as being composed of distinct
goods. These assumptions are overly strong, however. They are made only to ensure that the
consumer’s income is strictly positive in any quasi-equilibrium and, in the case of positive assets,
that the value of his assets is strictly positive in any quasi-equilibrium. It is trivial to replace these
assumptions with any of a number of assumptions about monotonicity of utility and irreducibility of
the economy and obtain the same results.

Our basic supposition is that private contracts can neither prohibit agents from engaging in
trédes in spot markets nor tax agents’ endowments. They can, however, exclude agents from
engaging in intertemporal transactions and tax agents’ assets. This means that agents can be denied
credit and that any assets held by agents can be attached for the payment of past debts. We could
interpret this supposition as a reasonable representation of the way in which actual asset markets
work: Although it is possible in principle to garnish wages to collect past debts, it is not very
practical to do so. Debtors’ prisons no longer exist, and, indeed, modern bankruptcy laws make it

possible for agents to preserve some assets even in the face of bankruptcy.




Within the context of this paper, however, it is preferable to interpret this supposition solely
in terms of the physical structure of the environment: There is a continuum of identical agents of
each type i. On one hand, trades on spot markets are anonymous, and private endowments cannot
be physically disassociated from agents. On the other hand, agents must identify themseives to make
contracts and to collect on them in contingent claims markets. Therefore, creditors can seize the
assets of debtors who defanlt on their debts and keep track of any future attempts of these debtors
to enter contingent claims markets. Furthermore, these debtors would never find it possible to pay
off their creditors in order to be allowed renewed access to contingent claims markets: Since there
is complete information about what would happen at every state history and every conceivable type
of asset is allowed, the possibility of such a mutually advantageous transaction would already have
been part of the original contingent claims contract between the two.

To describe the individual rationality constraints, we must add to the model the notion of spot
prices. Letp,, = 0 denote the spot price of good j at history s. We denote by p the infinite vector
of spot prices. Letting y! denote the income of agent i in history s, we define the indirect utility

Sunction vp,,yl,n,) as the solution to

max uy(xi,n)
subject to

P:°%; = Yi.
We say that the allocation-price pair (x,p) is spor market supporting if
SS)  uxi1) = ViPePs- X},

for each state history s and agent i. In other words, no agent has any incentive to recontract in spot

markets.



An allocation-price pair (x,p) is said to be (inferim) individually rational if, for each state
history s and agent i,

(R) (-3Y 8O~ Oguxin) = 1-8 Y 8 ®x vp,.p, Xn,).1,)-

-1 o=

This condition requires that the utility of the allocation x be at least as high as that which can be
attained in spot markets alone.

It is worth pointing out that our assumptions of no intertemporal production and additively
separable preferences play important simplifying roles here. The right-hand side of the individual
rationality condition (IR) is relatively simple because it depends only on private endowments (and
prices) in the state history ¢, If preferences were not separable, the optimal plan upon withdrawing
from the economy would depend upon consumption prior to that time. Similarly, if private
intertemporal production were possible, plans between different periods would again be interdepen-
dent. In either case the ability of private individuals to substitute between periods independent of
the economy at large would enable them to provide a degree of self-insurance to substimte for
insurance provided by markets. The effect would be to strengthen the individual rationality
constraint; that is, fewer social plans would be admissible in a world in which self-insurance is
available to individuals who elect not to participate in the economy. In this sense, the assumptions
of no intertemporal production and additively separable preferences should be seen as an extreme
case, and indeed the least favorable one for our theory.

The assumption that all agents have the same discount factor is a similar extreme case. If
the economy consisted of two class of consumers, for example, one more impatient than the other,
then the impatient consumers would want to borrow from the patient consumers and to then default.

Like the assumptions of additively separable preferences and no production, the assumption of
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identical discount factors gives the least possible role for debt constraints to make a difference on
equilibrium outcomes. That we have a rich theory even under these extreme assumptions indicates
that our specification of debt constraints would have even more itpact on equilibria in economies
where these assumptions are relaxed.

An allocation is socially feasible if for each state history s

SH Y x5 = Xy.

i=1

An allocation-price pair (x,p) is said to be admissible if it satisfies spot market supporting, individual
rationality, and social feasibility. An allocation-price pair is efficient if it is admissible and cannot
be dominated by any other admissible allocation-price pair. It is conditionally efficient (that is,
conditional on a given vector of spot prices p) if it is admissible and it cannot be Pareto dominated
by any allocation £ such that (%,p) satisfies T p,.%! < p,-%(y and (IR). Conditional efficiency
is stronger than efficiency in the sense that X need not be admissible because (%,p) may violate (SS),
or indeed (SF). On the other hand, it is weaker than efficiency in the sense that an allocation
individually rational at prices other than p might Pareto dominate x. Finally, an allocation is first
best if it cannot be Pareto dominated by any other socially feasible allocation.

It is easy to show that conditional efficiency is equivalent to another concept of efficiency:
We say that (x,p) is financially efficient if it is admissible and there exists no altocation ¥ of incomes
to consumers in each state such that, for each i and s,

m

ig Ji < pyE(no)

(1-3) Y 8O~ Og vp Fin) =2 1-0) ¥ 8O v, .p,*X(7,).1,)

X8 F=3

1-8) Y, 80 lrv(p,.5im) = U()
s€S
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with at least one of the last inequalities being strict. In other words, there is no Pareto superior
reallocation of incomes in each state that satisfies individually rationality.

Although efficiency is the obvious notion of constrained efficiency for this economy, it is the
notion of conditional efficiency that plays the more important role, for example, in the analogues of
the two welfare theorems. (For another model in which an alternative notion usurps the position of
the obvious efficiency criterion, see Grossinan 1977.) If there is only one good in each state history,
however, there are no spot markets, so efficiency and conditional efficiency are the same, Another
situation in which efficiency and conditional efficiency coincide is when the state utility functions u;
are {dentically homothetic. This means that there are k homogeneous of degree one utility functions
u(+,m, 7 = 1, ..., k, that satisfy (A.1) and m X k monotonically increasing functions g;(+,n) such

that

u(em = g(-mm, i=1,..,m

and uy(+,n) satisfies (A.1). Notice that this condition does not in any sense reduce the model to a
representative consumer model. As we shall see, however, it does effectively reduce it to a one-
good model.

The distinction between efficiency and conditional efficiency arises because of the role played
by spot prices in the admissibility concept. One way to avoid the problems caused by this distinction
would be to deny defaulters access to spot markets. This would replace vi(p,.p, * X(,),%,) in the
rationality constraints with u,(¥'(y,),n,); spot prices would not show up. This would involve a very
different set of assumptions about the environment and the nature of the enforcement technology.

A consumption plan x! may be thought of as a map from S to R®, and can be viewed as an

element of R, Restricting traders to bounded consumption plans puts x! in £,,. (Recall that ¢,
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is the Banach space of sequences (¥;,¥,,...) with |y;] bounded and fyl = suply;]; see, for
example, Dunford and Schwartz 1957.) Intertemporal prices q are then an element of the dual of
this space, £%, the space of bounded linear functions on f,. (Recail that, although £X contains ¢,
the Banach space of sequences (y1,¥2.--.) With % _,ly;| bounded and [y] = E%_,I%:l, it
unfortunately also contains functions not in £,.) I.eﬁiné € be the plan consisting of consuming one
unit of good j in history s and zero of all other goods in all other histories, we define q;; = qfe;,)
and q; = (Qyg---sGug)-

A constrained transfer equilibrium is a triple (x,p,q) with the allocation x € £, spot prices
p € R™, and intertemporal prices ¢ € £¥ such that the allocation is socially feasible (SF); it

exhausts the value of the social endowment,

E.1) Y aqxh) = q®);

i=1

each agent’s allocation x' maximizes utility subject to a budget constraint and interim individual

rationality constraints,

(E.2) max Uyz)
subject to
a@) = qx)

(1-8) ¥ 8" x nyzlp) = (1-8) Y M Ox vip,.p,*X@,)\1,), 8 € S;
aT=5 F=5

and the spot prices p are consistent with the intertemporal prices q in the sense that

(E3) x, z€{,, andp,"x, =p,Z; forals € S imply q(x) = qz).
Notice that this last condition implies that p, and g, must be proportional if ¢, 0. p, = 0 is

impossible because of (A.1), (SS), and (SF). The interpretation of equilibria is that each agent is
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constrained by his individual rationality constraint: no one would agree to trade with him in
violation of this constraint, since they know that the corresponding loan would never be repaid.

A particularly important type of constrained transfer equilibrium is a constrained ownership
equilibrium for a given initial asset distribution. An inirial asset distribution assigns each agent in

each state a vector of goods wi(n) = 0, such that

Y, &) + wi@) = ().

i=1

If wi(y) > O forally = 1, ..., k, we say that agent i has positive assets. A constrained ownership
equilibrium is a constrained transfer equilibrium (x,p,q) such that q(x}) = g(x'+wh).

To understand the import of these definitions, it is useful to review the several (mutually
equivalent) definitions of a transfer payments equilibrium in the Arrow-Debreu setting. One
definition is as we have given: a socially feasible allocation x and prices q such that x! is utility
maximizing given the income g(x%). Alternatively, the definition may be made in terms of unit of
account transfer payments: a vector of lump sum subsidies ¢, a socially feasible allocation x, and
a price g such that ' is utility maximizing given the income q(X'+w') + ¢, Even in our constrained
setting, these two definitions are equivalent, since we can define ¢ = q(x) — q(Xi+w'), or vice
versa. In the Arrow-Debreu setting, there is yet a thifd equivalent definition, and that is to make
the transfer in terms of goods; that is, a transfer payments equilibrium may be defined as a socially
feasible endowment %, a socially feasible allocation x, and prices q such that x' is utility maximizing
given the income q(XY). (The real subsidy is £ —%\.) If we wish, we may take £ = x. In our
setting, such a definition is not well defined or equivalent. It is not well defined, because we must
specify two endowments: private endowments and assets. If we allow private endowments to be
redistributed, this will change the individual rationality constraint, and in general the set of alloca-

tions that can be supported as equilibria. Moreover, this violates the spirit of the idea that private
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endowments cannot be taken from the person to whom they adhere. If we allow only the redistribu-
tion of assets, there may not be enough assets to redistribute to generate all transfer payments
equilibria. This may be seen most easily in case there are no assets (w' = 0). If we define a
transfer equilibrium by means of real transfers of assets, then a transfer payments equilibrium (by
this definition) is the same as an ownership equilibrium. But if we allow unit of account transfers
the two definitions are not equivalent, and is not true that when there are no assets that the set of
transfer equilibria (by the original definition) are the same as the ownership equilibria: if the
individual rationality constraints do not bind at all (see the example of efficient transfer equilibria
below), then it will be possible to make unit of account transfers that change the allocation of
resources to favor particular individuals.

Since it makes a difference in this setting whether transfers in terms of goods or in terms of
the unit of account, we ought to indicate why the unit of account definition is the right one. If we
wish, we may regard the transfer either as government enforced, or as an entry fee for participating
in the economy. In the former case, the government police powers are limited in that it cannot
violate individual rationality constraints. In neither case is there implicit any restriction that transfers
be in terms of goods. The initial unit of account lump sum tax is simply a debt that must be paid
by the individual in question. In equilibrium it is possible to pay the debt, and doing so is preferable

”»
to not joining the economy, Like any other debt in our framework, this debt is denoEed in units of
account. Notice, incidentally, that another interpretation of a transfer equilibrium is simply as an
equilibrium of an economy in which there is preexisting debt. The set of constrained transfer

equilibria simply characterizes the types of preexisting debt that can potentially be repaid in an

equilibrium.
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3. A Cyclic Economy

Characterizing equilibria is difficult in our general framework. In this section we explore
the properties of a deterministic economy with two states that alternate over time. Although the
equilibrium that we study is neither a first-best equilibrium nor a barter equilibrium, where intertem-
poral markets do not operate, its allocation is stationary. Furthermore, although there are no assets,
the equilibrium is conditionally efficient. Because there is only one good, it is also efficient.
Perhaps the most interesting feature of this econoiny is that the interest rate is lower in the con-

strained equilibrium than it is in the unconstrained equilibrium.

Example 1. There are three states: 7, = 3, 7(1|3) = 7(2|3) = 1/2, and 7(1/2) = w(2|1) = 1.
In other words, there is a 50-50 chance of the state being 1 or 2 in the first period, and after that
they alternate. There are two agents and one good. Each agent has the same utility function, which

does not depend on that state,
wExy) =logx, i=1,2;9=1,2.

It is the private endowment that varies with the state, }(1) = %3(2) = %; and &!(2) = g%(1) = %,.
There are no assets.
If there were no individual rationality constraints, we could solve for the unique equilibrium,

which is also the unique symmetric Pareto optimum. It is

qjt = at_l’ j = 1: 2; t= 1, 2, res

X, = ®A5)R, i=1,2%j=1,2%t=12, ..

Notice that the constant rate of interest is q/q;,; — 1 = 1/6 — L.
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When we add the individual rationality constraints, the problem faced by agent i becomes

max(1/2)(1 — a)z 5! log x§, + (1/2)(1- a)E 81 log xi,
t=1
subject to

E (Qh.xlt + thXZt) = E (QItxlt + Chxxz:)

toam]
(1—5)2‘1 & tlog xi, = (1- a))'_‘: tlogxl, j=1,2,t=1,2, ..
= =

x}t =0

The first-order conditions are

A-8)51 L — Ng; + (1~9) Eat-f‘ =0 j=12t=12..
2xjt T=| X

Notice that the number of Lagrange multipliers p,ﬁ in these conditions gets larger as t gets larger; x; _|t
shows up in more and more rationality constraints.

For this example to be interesting it must be the case that the unconstrained equilibrium
violates the individual rationality constraints. Suppose that (X;,X;) = (15,4) and § = 1/2. Then the
utility of agent 1 in state i is log(19/2) in the unconstrained equilibrium. Suppose that y; = i so that
%; = 15 then the utility of agent i in autarky is (2/3) log 15 + (1/3) log 4. This exceeds the utility
in the unconstrained equilibrium since 1524 > (19/2)°. Consequently, the unconstrained equilibrium
violates the individual rationality constraints.

Consider, however, the allocation x!(1) = x%(2) = 10, x!(2) = x*(1) = 9. The utility of

agent i in state i is (2/3) log 10 + (1/3) log 9, which equals the utility in autarky since 10?9 = 1524,
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The individual rationality constraints of agent i in state j, j » i, are obviously satisfied since the
agent has no incentive to renege on the contract when it is his turn to collect.

Notice that since the rationality constraints only bind every other period, the multipliers #}t
can be nonzero only every other period. Letq, = (5/9)*" L, t=1,2, ..., and

t
3o 2l = (109 ~ 1, t=1,3,5, ...

T=1

ifi =j. Ifi # j, the formula holds fort = 2, 4, 6, .... The allocation then satisfies the first order
conditions when A, = A, = 1/9 and satisfies the budget constraints. Consequently, it is an equilib-
rium. Notice that the constant interest rate in this equilibrium is 9/5 — 1 = 4/5, which is less than
the unconstrained equilibrium interest rate 2 - 1 = 1.

If the two consumers are patient enough, then the threat of exclusion from intertemporal trade
is enough to enforce the first-best allocation as an equilibrium. We can calculate the value of 6 for
which the unconstrained equilibrium satisfies the individual rationality constraints:

log(19/2) = (1—5)i 8% 21og 15 + (1—3)§ 8%~ 10g 4.

t=1 t=1

It is

5= log15 +log2 —log 19 _ 4 sy00s
ST g -lgd-lgz oo

For all 8 such that § < & < 1, the unconstrained equilibrium is the unique equilibrium of the debt

constrained economy.,

4. Efficiency

Our goal is to show that efficient allocation-price pairs exist and describe in a rough way

what they are like. For discount factors close enough to one, a kind of “Folk theorem” shows that
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there are spot prices such that some first best allocations are interim individually rational. The

proofs of the following two results can be found in the appendix.

Proposition 1. Efficient allocation-price pairs exist.

Proposition 2. Suppose that the Markov chain 7 has a single ergodic class and no transient states.
Suppose further either (§) that every agent has positive assets or (ii) that y, is strictly concave. Then
there is a discount factor 8 < 1 and an allocation-price pair (x,p) with x stationary such that for all

8,8 < & < 1, (x,p) is efficient, conditionally efficient, and first-best.

Recall that we have assumed that individuals are infinite-lived. What role does this play in
the analysis? It is not hard to show that Proposition 2 continues to hold in an economy with finite-
lived agents and strictly positive assets, provided that, in addition to having a discount factor
sufficiently close to one, agents are sufficiently long-lived. With no assets and strictly concave
utility, however, Proposition 2 will not hold with finite lifetimes: in the final period of life no debts
will be honored, 50 no lending or borrowing will take place in the previous period, and so forth.
In other words, and more generally, if there are no assets, nonbarter equilibria in this model unravel
in the finite horizon in a way similar the way that equilibria in finite horizon monetary models do,
and for similar reasons. On the other hand, with even a small amount of assets, this will not happen,
in much the same way that a small amount of government backing of the money supply will prevent
finite horizon unraveling in monetary models. (Notice, however, that in such models as the
overlapping generations model with money it is the time horizon for the economy as a whole that
is important, here it is the length of an agent’s life.) In this sense the infinite life assumption shouid

not be viewed as crucial, since the case of positive assets is the most interesting one.
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We now turn our attention to the relation between our concepts conditional efficiency and
efficiency. The next result, whose proof can be found in the appendix, provides an interesting case

where the two concepts are the same.

Proposition 3. If utility functions are identically homothetic, then an allocation-price pair is efficient

if and only if it is conditionally efficient.

If utility functions are not identicaily homothetic, then there may be efficient allocation price

pairs that are not conditionally efficient, as the next example demonstrates.

Example 2. There are four states. The initial state is 5, = 1. Conditional on 1 there is a 50—50
chance of either 2 or 3; #(2{1) = =(3|1) =-1/2. Conditional on 2 or 3, state 4 occurs and is
absorbing; #n(4|2) = w(4[3) = w(4]|4) = 1. In states 2 and 4 there is one good. In state 4 there
are no assets. This effectively reduces the economy to a one-period, two-state economy because
nothing can happen in state 4, and state 1 is unreachable. (That this example violates the assumption
of the same number of goods in every state is, of course, inconsequential; we could modify easily
our assumptions or include an additional good in states 2 and 4.)

Each consumer has preferences
Ux) = (1/2)alxi — (172)0)bitxis)~* + bixiy ™),

where (a',b},bl) = (1,1,243) and (a%,b,b3) = (2,243,1). In state 2 each consumer has a private
endowment of 1, and the social endowment is 4. State 3 has two goods, as illustrated in the
Edgeworth box in Figure 1. Consumer 1 has the private endowment %,(3) = (1,12), and consumer 2

has %,(3) = (11,1). The social endowment is (13,13). Corresponding to the endowment point E,,
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which assigns- the assets (1,0) fo consumer 2, there are three static competitive equilibria, as
illustrated in Figure 1.

Consider now the allocation-price pair where x1 = x2 = 2 and (x,x3) = ((3.25, 9.75),
(9.75, 3.25)) together with the spot prices p; = (1,1). We want to show that this allocation-price
pair, which corresponds to point A in Figure 1, is efficient but not conditionally efficient. Let us
first argue that this allocation-price pair is not conditionally efficient: The consumers’ preferences
have been constructed so that some movement up the contract curve in state 3 along with agent 1
paying agent 2 in state 2 is Pareto improving. In fact, for every point on the segment AB there
exists a trade from agent 1 to agent 2 in state 2 so that both consumers are better off; here B is
(3.96586, 10.37420). Let (%1,%2) be a point in this segment, for example, (%},%2) = ((3.5, 9.98780),
(9.5, 3.01220)). If we reallocate in state 2 so that ii = 1.8, i% = 2.2, then it is easy to check that
both consumers are better off. Since % is socially feasible, it satisfies £?_,p, &} = p,*%(n), s = 2,
3. The allocation-price pair (X,p) also satisfies the individual rationality constraint (IR): Neither
consumer wouid want to defauit in state 2 since each receives more than the private endowment
gi(2) = 1,i =1, 2. Consumer 1 would not want to default in state 3 since %] yields higher utility
than does x, which is the best that he can do when faced with spot prices p; = (1,1) and income
p3+%!(3). Consumer 2 would not want to default either, however, since then he would only have
income p; - ¥2(3) because he would lose his assets; this corresponds to point E, in the figure. The
best that consumer 2 can do with this income, (9,3), yields a lower level of utility than does :'E%

The allocation-price pair (x,p) is efficient, however: Since there is no possibility of enforcing
any intertemporal contracts after the first period, the only admissible allocation-price pairs corre-
spond to static equilibria in the Edgeworth box for some endowment point between E; and E,. None

of these allocations can Pareto dominate x: as we move up the contract curve, the relative spot
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prices move in the wrong direction, as shown in Figure 1. The possibility of Pareto improving

trades is exhausted long before we arrive at the next equilibrium.

Conversely, there are examples of economies with allocation-price pairs that are conditionally

efficient but not efficient.

Example 3. There are two goods per period, two agents, and two equally probable i.i.d. states.
There are no assets and a total endowment of two units of each good each period. Each agent has
a fixed endowment of 1 of good 2. The endowment of good 1 is random and either 0 or 2 depend-
ing on the state: The endowment is either (XI(1),82(1)) = ((0,1),(2,1)) in state 1 or the reverse in
state 2. Preferences are identical and do not depend on the state, u(xi,xi,n) = log(xi—a) + xi,
o < 1. See Figure 2. The symmetric first best point A has (x},,x}) = (x3,,x3) = (1,1) and spot
prices p, = (1,1—a). Corresponding to the endowment E, in state 1 is the static competitive
equilibrium B with (x},,x3,) = 2—x%,2—x3,) = (1 —a,0) and spot prices p, = (1,1—a/2).

The barter allocation switches randomly between B and its reflection depending on the state,
We now argue that there is a choice of é such that the barter allocation-price pair is conditionally
efficient. It is easy to show that, since the spot prices are constant, if there is an allocation that
Pareto dominates the barter allocation and satisfies £2_,p, *x! = p, +X and the individual rationality
constraints, then there is such an allocation that is symmetric and stationary. Let z be both the
transfer from consumer 2 to consumer 1 if state 1 occurs and the transfers from consumer 1 to

consumer 2 if state 2 occurs. For the corresponding allocation to satisfy the individual rationality

constraints at spot prices p,, it must be the case that

(1 —8){py,0p* X1(2) — 2) + (3/2){v(Dy,py, *X'(1) + 2) + vp,,pp-X'(2) — 2)
> (1—-8)v(py,Dp * X(2)) + (3/2)(V(Dy,Pp = X(1)) + V{py,Dp * X1(2))
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(1 =8)vlpy,pp * XX(1) + z) + (6/2)(v(Dy,Dp *XX(1) + 2) + vpy,pp-X12) — 2)
= (L—8)v(Py,Py* K1) + (B2)(V(DpPy* K1) + Wpy,py, - XH2)).

The concavity of utility implies that the second of these inequalities, which says that the transfer z
must increase utility if the bad state occurs, holds only if z = 0. 1t is easy to show that we can
always choose § > (0 small enough so that z = 0 is the only solution to these inequalities. Indeed,

in our example the first inequality becomes, for z small enough,

(1~8/2) [log[z—;—a—] +2- Zza] + (6/2) log [_,__2‘3“”2]

2

= (1-5/2) [1og[3.%‘£ + 2] + (3/2) Iog[

23«

> |-
The concavity of the utility function now implies that, if there is no improvement in utility for a
small z, then there can be no improvement. Differentiating the left-hand side of this inequality with
respect to z, we find that § = (2-3a)/(2-2a) is necessary for an improvement in welfare.

Consequently, if

0<6< 2~ 32
2 - o

then the barter allocation-price pair B is conditionally efficient.
We now argue that we can choose « so that it satisfies the above condition and so that the
first best allocation-price pair A is also conditionally efficient. For A to satisfy the individual

rationality constraints at spot prices p,, it must be the case that
u(i,1) = (1=9VpypyX'D) + G2PwPy T (D)) + Vppp,  H ).

(That utility at A is greater than the expected discounted value of utility in the bad state is obvious.)

In our example, this inequality becomes
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log(l—a) + 1 = (1~8/2) [log(l—a) + i--‘ Z + (8/2) log(1—20)

‘g' [k’g 11:20; * i::] =1 = &

Notice that for any value of 8 > O this inequality is satisfied for « close enough to 0.5. In fact, it
is easy to check that, if 6 = 0.5 and o = 0.499, both barter and the first best are conditionally
efficient. Since the first best allocation Pareto dominates the barter allocation, however, only the
first best allocation-price pair is efficient.

To keep the calculations simple, this example, has relied on a simple utility function that
bounds consumption of the first good away from zero and allows corner solutions. Neither of these
features is necessary, however, to produce this sort of example. All that we need is a nonhomothetic
utility function such that, first, the relative spot price of the second good is higher at barter than it
is at the first best and, second, the best utility obtainable in the bad state when faced with the spot
prices of the first best allocation-price pair is very low. The reader should compare Figures 2 and

3 to see how such examples can be constructed.

5. Equilibrium

We now turn to constrained transfer equilibria. Afier describing prices in a rough way, we
consider the decentralizability of conditionally efficient allocations. In an economy with positive
assets, this is always possible: We show that analogs of the first and second welfare theorem both
hold. Example 3 shows that it may be possible to Pareto-rank conditionally efficient allocations,
however, so the welfare theorems do not rule out the possibility of coordination failure. In the case
of strictly positive assets, we are also able to show that ownership equilibria exist.

The proof of the next result is completely standard.
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Proposition 4 (First welfare theorem). If (x,p,q) is a constrained transfer equilibrium, then (x,p) is

conditionally efficient.

Since this result says that no allocation-price pair that is not conditionally efficient can be
made into a constrained transfer equilibrium, Example 2 illustrates 2 failure of the usual second
welfare theorem. There the efficient allocation-price pair that is not conditionally efficient cannot
be decentralized as a constrained transfer equilibrium.

To prove the analogue of the second welfare theorem for conditionally efficient allocation-
price pairs, we define the concept of a quasi-equilibrium: A (constrained) quasi-equilibrium is a
triple (x,p,q) with g = O that potentially differs from a transfer equilibrium in that we require only
that, if 2! is individually rational and Uyz) = U;(x’), then q(z) = g(x!). We do not require that,
if Uz > UyxY, then q(z}) > q(x'). Naturally, every transfer equilibrium is a quasi-equilibrium.
The following lemma, whose proof can be found in the appendix, says that if every agent has a
cheaper point in his constraint set, then a quasi-equilibrium is a transfer equilibrium (compare with

Debreu 1962).

Lemma 1. Suppose that (x,p,q) is a quasi-equilibrium and that, some agent i, there exists %! that is
individually rational and satisfies q(f) < q(x'). Then z! individually rational and Uy(z}) > U,x)

imply q(z) > q(x!). Furthermore, g, # O forany s € S.

We now examine the structure of prices in quasi-equilibria. Denofe the set of prices q €
£* such that g(x!) = q(z)) if x! and z' are the same except in a finite number of components as fa.
Recall that fa is the closed linear subspace of finitely additive measures in £% and that £% = £, +
fa. We write q! and ¢ for the respective components of ¢ € £%. Forx! € ¢, we say that x! = 0

ifxi = 0 foralls € §; €, is the set of all nonnegative elements of £,,. If x! is interior to £onts




we say that X' > 0. If g € €% and q(x) = 0 for all x! € £, we say that ¢ = 0. If, in
addition, q(x)) > O for all x* € £, such that x* 0, we say that ¢ > 0. For a proof of the

following result, see the appendix.
Lemma 2. If (x,p,q) is a quasi-equilibrium, then q!, of, q = 0.

We would like the finitely additive part of prices, qf, to be zero. The following result, whose
proof is presented in the appendix, shows that, at least when assets are strictly positive, this must

be the case. See Bewley (1972) and Prescott and Lucas (1972) for related results.

Lemma 3. Suppose that there are positive assets and that (X,p,q) is a quasi-equilibrium. Then

qf(w) = 0. Furthermore, there exists b > 1 such that, for all T,

Y qewln) = 0-D7T Y geewimy).
t(s)=T t(g)=1

That is, the value of assets in all histories in period T is bounded by the value of assets in all

histories in the first period multiplied by a scalar that decreases exponentially in T.

Proposition § (Second welfare theorem). Suppose that (x,p) is conditionally efficient. Then there

exist prices ¢ € £% such that (x,p,q) is a constrained quasi-equilibrium.

Proof. Normalize p, to lie in the unit simplex, and consider the one-good economy with preferences.

Vi) = 1-8) ¥ 89 1mvi(p,.yimy)

F1=3

where v, is the indirect utility function defined previously. The consumption sets are

og=s g8

Yi= {yi € 2,|(1-9) Y 8O 1 viip,,yim) = 1-5Y 8OO x vip p,-x i(n,,),nc,)},
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which are convex and closed and have nonempty interior in £,. The social feasibility condition is

Y yi < p,-%(n), s ES.

i=1

The conditional efficiency of (x,p) implies that the allocation y with yi = p,+x! is efficient in this
artificial one-good economy. A standard argument, due to Debreu (1954), says that there exist
prices r € £X* such that the allocation y and the prices r are an unconstrained quasi-equilibrium of
the artificial economy. For any consumption plan in the original economy zi, we define y(z') =

p.+2zi. We define q € £X as
Q@) = ry@), alz e f,. 0O

In the usual welfare theory, the second welfare theorem is typic‘;ally strengthened by assuming
that the allocation to be supported assigns every agent positive consumption of some good. This
ensures that every agent has a cheaper point in his consumption set and, hence, that the quasi-
equilibrium is in fact an equilibrium. Here the analogous assumption is that the allocation-price pair
assigns every agent a consumption plan that is larger in every component than the barter consumption
plan. This assumption cannot be satisfied if there are no assets and may not be satisfied even if there
are.

In one interpretation of the usual welfare theory, it is not the set of equilibria but rather the
set of efficient quasi-equilibria that plays the central role. The first welfare theorem says that this
set includes all equilibria. The second welfare theorem says that it is exactly the same as the set of
efficient allocations. What we have shown here is that the same situation holds with debt constrained
asset markets, except that the concept of conditional efficiency replaces the standard concept of
efficiency. Our examples in Section 4 show that conditional efficiency and efficiency are quite

distinct concepts, so this is a significant departure from the usual theory.
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As noted above, Example 2 is a counterexample to the usual second welfare theorem: If the
efficient allocation-price pair in that example could be deceniralized as a transfer equilibrium, then
it would be conditionally efficient by Proposition 5, but it is not. Similarly, Proposition 6 combined
with Example 3 illustrates a failure of the usual first welfare theorem. There the allocation-price pair
that is conditionally efficient but not efficient can be decentralized as a constrained transfer equilib-
rium: Although Lemmas 1 and 3 do not apply directly, we can nevertheless exploit the stationarity
of the allocation-price pair to directly compute supporting prices in ¢, such that each agent is at a
utility maximum subject to his constraints. In addition, the first best allocation, which is also
conditionally efficient, can also be supported as a transfer equilibria. Consequently, Example 3
represents a failure of the usual first welfare theorem in the strong sense that there are two equilibria

that can be Pareto ranked.

6. Ecxistence of Equilibrium

As well as characterizing equilibria in this type model we are interested in computing them.
One approach is to compute equilibria of a truncated version of the model. This approach to
computation is closely related to proofs of existence that prove existence for a truncated model then
take limits (see, for example, Bewley 1972 and Wilson 1981). Unfortunately, even here there are
problems that do not come up in models without debt constraints.

A T-truncated constrained transfer equilibrium is a triple (x,p,q) with the allocation x € £,
p € R™, and q € ¢, such that the allocation is socially feasible, it exhausts the value of the social
endowment, and each agent’s allocation maximizes T-truncated utility subject to the budget constraint

and T-truncated interim individual rationality constraints:

max(1-8) ¥, 8@ 'nu(z,n)
t(s)<T

subject to
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q@) = qx)
t{o)<T

(1-5) 22: 6'(")“(“)7rau-,(zf,,n,,)
[ =4

Ho)<T
= (1-0) 3 80~0r v(p,p, %)), &) < T.

c2%

As before, we require that, if p,-x, = p,*z, for all s € S, then q(x) = g(z). Notice that we can
set ¢, = O for t(s) > T since x, has no value in consumption and no role in interim individual
rationality. We define the notion of a T-truncated constrained ownership equilibrium in which

q(xh) = q(x+w') simitarly.
Lemma 4. If every agent has positive assets, a T-truncated constrained ownership equilibrium exists.

Proof. Individual optimization is a finite horizon problem since q; = O for t(s) > T. Define excess
demand as solution subject to additional constraint that z} < 2%(y,). For any p let i(p) maximize
u,(zi,1,) subject to p, =z} < p,+%¥(n,). Then the plan Ri(p) + (L/2)% strictly satisfies all constraints.
Familiar arguments now imply that aggregate excess demand is a convex-valued, upper-hemi-

continuous correspondence and that an equilibrium exists. [J
Proposition 6. If every agent has positive assets, then a constrained ownership equilibrium exists.

Proof. Lemma 4 yields a sequence of truncated ownership equilibria (x¥,pT,q7). We can normalize
qF so that || Z,5.192(W(n)) [ = 1 and normalize p” so that pT lies in the unit simplex. The same
argument that provides the exponential bound on q in Lemma 3 can be used to find a similar bound
on qf where the constant b is independent of T. This implies that the closure of {qf €
£2,1&",pT,qb) is a truncated ownership equilibrium} is compact in ¢, (see, for example, Dunford and

Schwartz 1957, p. 338). Since {xT € £,,[(x",pT,q") is a truncated ownership equilibrium} is
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bounded in £, by the Alaoglu Theorem, its closure is compact in the weak* topology on £,.
Consequently, there is a subsequence (x*,pT,q"), which we can take to be indexed in the same way
as the original (x7,pT,q"), so that x* converges to x in the weak* topology, pT converges to p in the
product topology, and qT converges to q in the norm topology. Since x* is bounded, gT(x'T)
converges to q(x). Therefore, q(x) = q(X +w’). Moreaver, since xT converges to x in the weak*
topology, it converges pointwise to x. Therefore, x is socially feasible. Since p' also converges to
pointwise to p, (x,p) satisfles (SS). In addition, because of discounting, (x,p) also satisfies (IR).
Finally, the convergence of ! to q in the norm topology and the convergence of p¥ to p in the
product topology assure us that g, and p, are proportional.

What we must show is that x! is really optimal given constraints induced by q. Suppose
instead that &' is better, Construct % by selling ¢ > 0 of assets and using half the proceeds to
purchase 2%(,) in all states s with t(s) > T and ¢’ of ail goods in all states. For fixed ¢, we can
obviously balance the budget by making T large enough and €' small enough. Notice that for ¢ small
enough all the constraints in the consumer’s problem are (uniformly) strictly satisfied. Let %7 be
the truncated version of this plan. It follows, since q* converges to g in the norm topology, that,
for T large enough, %'T satisfies the budget constraint. Moreover, individual rationality is clearly
satisfied for t(s) = T. Moreover, for some T, oT is very small. Then take T so large that p! is
nearly p, fort(s) < T+ Tandsothat T = T + T. Fori(s) < T, individual rationality must be

satisfied because they are strictly satisfied at q. [1

7. Efficiency Versus Equilibrium

With more than one good per period and utility functions that are not identicaily homothetic,

transfer equilibria may fail to be constrained efficient allocation-price pairs and vice-versa. If we

accept the logic that any admissible allocation-price pair can be implemented by a central credit
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agency, then the agency may wish to use a nonmarket rationing scheme to carry out intertemporal
trade. This leaves open the possibility that a small coalition may meet secretly to defeat the credit
agency by writing private contracts. If this is possible, then not all admissible allocation-price pairs
can be impiemented.

There is also a sense in which the definition of equilibrium is too strong. We should again
imagine a central credit agency enforcing the individual rationality constraints by completely
excluding defaulters from intertemporal trade. While the central credit agency by assumption cannot
carry ouf more extreme punishments for default, however, there i8 no reason it should not use less
extreme punishments. This leads us to define the idea of an equilibrium with partial exclusion. We
argue that equilibria with partial exclusion are essentially the same as the allocation-price pairs that
cannot be blocked by small coalitions.

From an economic point of view, the most significant element of this theory is that equilibria
with partial exclusion may be either betier or worse than equilibria with full exclusion. Even if it
is possible to exclude defaulters permanently from intertemporal trade, it may not be desirable to do
so. Since it is a feature of modern economies that punishments for default are typically less than the
maximum possible and indeed, do not fully exclude individuals from intertemporal trade, debt
constrained asset markets with income effects provide a possible explanation. (Private information
problems that lead to a positive probability of default in equilibrium provide another.)

A transfer equilibrium with partial exclusion is a triple (x,p,q) such that x is socially feasible
(SF), (x,p) satisfies spot market supporting (5S), (x,q) exhausts the value of social endowment (E.1),
there exist constants Ul such that x' maximizes utility subject to the budget constraint and individual
rationality constraints

max u(zd)

subject to
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@) < qx)

(1-8) Y ) Oruig) = UL, s€S,

o=3

and the spot prices p are consistent with intertemporal prices in the sense that (E.3) holds. This
definition is the same as that of a transfer equilibrium with complete exclusion except that we replace
the individual rationality constraints with the strong individual rationality constraints (with respect

to given constants Uf)

SIR) (1-8 Y 8O Oxa(zlg) = UL

g8

Notice the constants Ul must also satisfy these constraints when z! = x' since otherwise x itself
would violate (SIR). Notice too that, if (x,p,q) is a transfer equilibrium with complete exclusion that

we can replace the constants Ul with constants U} that satisfy

"“: = (1 """6) E 6t(0) _l{s)rgvi(pa’pa * ii(no') ’nﬂ')'

i1 4

This obviously implies that every transfer equilibrium with complete exclusion is a transfer equilib-
rium with partial exclusion.

How do we interpret the constants U} that define the individual rationality constraints (SIR)?
If default takes place, current utility is the indirect utility from the endowment. In future periods,
the penalty for default must be paid. This can have the form of exclusion from intertemporal trade
for some random number of periods. No such penalty can leave the agent with less utility than the
indirect utility from his endowment in each state. If he is not excluded from trade at all, however,
he would receive the same utility as in the original allocation x. In this case, where there is no
penalty at all for default, the average present value of default exceeds that of x as long as the agent

was making (rather than receiving) payments in the initial period. Clearly then, we can construct
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any penalty utility in between no penalty and complete exclusion simply by randomizing between
complete exclusion and no penalty at all. The argument of the previous paragraph shows that the
broadest range of possible equilibrium allocations is obtained when the penalty exactly equals the one
time gain from default: any less, and x itself will violate the constraints; any more, and certain
allocation price pairs may be ruled out by permitting seemingly beneficial trades.

Our analogues of the first and second welfare theorem now apply directly to transfer
equilibrium with partial exclusion (or the corresponding quasi-equilibrium in the case of the second
welfare theorem). We say that an allocation-price pair is weakly conditionally efficient (with respect
to given constants UY) if potential blocking allocations must satisfy (SIR) rather than (IR). Indeed,
if we ask how a social planner might prevent a blocking allocation, we see that he has the option of
not enforcing certain private contracts. In other words, a blocking allocation must have the feature
that agents would not want to give it up and resume the original plan, ﬁlat is, would have to satisfy
(SIR). There is no reason, however, to consider only blocking by the coalition of all agents. If no
coalition can block an admissible allocation-price pair subject to feasibility for the coalition and
(SIR), then we say that it is strongly admissible.

Just as the proof of the first welfare theorem may be easily strengthened to show that every
competitive equilibrium is in the core, here it may be strengthened to show that every equilibrium
with partial exclusion is strongly admissible. Since every strongly admissible allocation-price pair
is weakly conditionally efficient, it follows from the second welfare theorem that every strongly
admissible allocation-price pair may be supported as a quasi-equilibrium with partial default.
Observe, however, that the conditions under which a quasi-equilibrium is an equilibrium are no
longer useful.

What do we gain or lose from weakening the notion of equilibrium in this way? If we

reexamine Example 2, we discover that the efficient allocation that is not conditionally efficient is
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weakly conditionally efficient. The only reason that agent 1 can trade with agent 2 in state 3 is
because there are assets, so agent 2’s individual rationality constraint is not binding. We could make
the strong individual rationality constraint U} be the utility yielded by the original allocation x,
however, so any movement up the contract curve would violate 2’s strong individual rationality
constraint. This example shows how it may be desirable not to use the greatest possible punishment
in competitive equilibrium: the efficient allocation-price pair that is not conditionally efficient is
weakly conditionally efficient and hence can be implemented as a transfer equilibrium with partial
exclusion.

If we consider the identically homothetic case, we see that, since the first and second welfare
theorems have their usual interpretations, there is a loss from weakening the notion of equilibrium.
Let us reexamine Example 1 and consider stationary allocations. The agent with the large endow-
ment then receives average present value utility (2/3) log(15—z) + (1/3) log(4+z), where z is the
constant amount traded from the high endowment agent to the low endowment agent. Starting at
z = (), this function initially increases until it reaches a maximum at z = 7/3, then it decreases until
at z = 5 it has the same value as at z = 0. Consequently at z = 5 the individual rationality
constraint binds, and this is the constrained equilibrium that we have already calculated. On the
other hand, any z greater or equal 7/3 and less or equal 5 corresponds to a stationary equilibrium
with partial exclusion: in each case additional trade would lower the high endowment agent’s utility
below that in the proposed allocation, and so it violates the individual rationality constraints. Notice
that any z less than 7/3 does not correspond to an equilibrium with partial exclusion: in this case
the additional trade increases both agents’ utility and so cannot violate the constraints.

The benefit of allowing partial exclusion is that it may be possible to implement socially
desirable allocations that cannot be implemented without partial exclusion. The cost is that there are

many more undesirable equilibria, and the system may wind up at one of these “by accident.”
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There is one question left unanswered in this discussion: Can every efficient allocation be
implemented as an equilibrium with partial exclusion? Or more weakly, Is every efficient allocation
strongly adrnissible? We conjecture that the answer is no in general, but the difficulty of actually
computing an efficient allocation that is not first best, not identically homothetic, and has an infinite
horizon has prevented us from constructing a counterexample.

One important case in which the answer is yes is in the case of finite horizon models such
as Example 2. Let us declare that a model is finite horizon if there is an absorbing state in which
there are no assets that is reached in a fixed finite time with probability one. Notice that, if there
are assets, the truncated equilibrium existence theorem, Lemma 4, guarantees there is an ownership
equilibrium, while the proof of Proposition 6 shows that the equilibrium correspondence is upper-
hemi-continnous as the time horizon goes to infinity. On the other hand, any infinite horizon
equilibrium can be realized as a finite horizon equilibrium by having assets of the correct utility in
the terminal state. Moreover, the welfare theorems apply directly. The major difference is that in
the finite horizon case, since there are no assets and no uncertainty after a finite time, there is no
intertemporal trade after this time. If there are no assets even in the initial periods, then there is no
intertemporal trade at all. This follows from the fact that there is no trade in the terminal state and
backwards induction, This argutnent also shows that any admissible allocation is weakly condition-
ally efficient: since the strong individual rationality constraints are defined by the admissible
allocation itself, there are (thinking of this allocation as the endowment) no assets, and consequently
no additional trade beyond that implicit in the allocation. In this sense we see that equilibrium with

partial exclusion can support essentially all admissible allocations.
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Appendix

Proof of Proposition 1. For each state history s, let o be a vector of utility weights, one for each
agent, lying in the unit simplex in R™. (A.1) implies that, for each «,, there is a closed, convex set
of allocations in R™*" that maximize

m - »
E a;ui(x:’ﬂn)

j=l

subject to social feasibility constraints, that is, allocations that are efficient at #, relative to the
weights o;. (A.1) implies that there is a unique vector of Lagrange multipliers p, € R" associated
with the social feasibility constraints. We can normalize p, to lie in the unit simplex in R® (although
it is then no longer a vector of Lagrange multipliers). In this way, each infinite vector o gives rise
to a set of allocation-price pairs (x,p). By construction, any such pair satisfies (SS) since it is
efficient within each state history.

Consider «, x, and p each as vectors in R* in the product topology. The set of @ € R
such that ¢ is in the unit simplex for each s € S is clearly compact. Furthermore, it is easy to
show that the correspondence F: R* -» R™ X R® defined by the rule F(e)) = (x(0),p(e)) is upper-
hemi-continuous. It is also easy to show that the set X of allocation-price pairs (x,p) that are socially
feasible and satisfy (IR) is a closed set. Since F is upper-hemi-continuous, F~1(X) is closed and
therefore compact. In fact, F~(X) is also nonempty. Fix an initial asset distribution and, for each
7, calculate a single-period competitive equilibrium (x(n),p(n)) and associated welfare weights ce(n).
Then the infinite vector (x,p) with x, = x(n,), p, = p{n,), s € 5, satisfies F{o) = (x,p) for ¢ =

a(n,). Since xi(y,) is in a single period competitive allocation for prices p(y,) where the income of

agent i is
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png)-[xin) + winy) = plny) -%(n,),
it follows that

wfzin) e = vipm),plny) - ), ng-

Multiplying by the probability =, and the appropriate power of the discount factor é and adding up
yields (IR). In other words, if there is never a single-period gain from defaulting on contingent
claims contracts, there can never be an intertemporal gain from doing so.

We now choose x, p, and « to solve

max i Ui(xi)

i1

subject to

(x,p) € F(@)

a € F7I(X).

Since the objective function is continuous and the constraint set compact, it follows that a maximum

exists. The corresponding (x,p) is an eflicient aliocation-price pair. [1

Proof of Proposition 2. Suppose that x is first best. Then x; must be Pareto efficient in the ordinary
sense for the static economy at #,. Notice that this does not depend on 8. Let p, be the efficiency
prices corresponding to x,. Clearly, (x,p) satisfies (SS)I. If it also satisfies (JR), then it is both
efficient and conditionally efficient. It therefore suffices to find a first best allocation x that together
with efficiency prices p satisfy (IR) for all & near enough to one.

Since # has a single ergodic class and no transient states, it has a unique stationary distribu-
tion 7*(y) > 0. Consider the static economy with m agents and n X k goods with preferences

k
ﬁi(xi) = E T*(n)ul(xl(n)?")

=1
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and social endowment X(y). (Here xi(7) denotes the quantity of good j consumed by agent i in
state 9.) If X is Pareto efficient for this static economy, then the stationary allocation %, = Z(ny)
is first best in the dynamic economy.

Let % be a competitive equilibrium of this static economy with endowments X! + w'. The

corresponding efficiency prices are p. Then X is Pareto efficient and

k k
El &), ) = El T*)V{P(n). () - ®(m) + win)),n]
- n=

since the ordinary budget constraint allows trade on spot markets. Since f(s) = 0 and wi(y) = 0,

k k
El T*muy(Rm),m) = El T ()v,(B(n),Bn) « X(),m)-
n= 7=

If each agent has positive assets, this inequality is strict. 'We first consider this case. Since the

probability that n, = 7 conditional on #, converges exponentially to 7*(s), as 8 approaches one,

k
(1-8 Y 8 Or uZm)m,) ~ 3 TMuEH).m)-

o=E n=1
Similarly,

k
(1-8) Y 8OO 5@ M),50,) - K@) m,) = Y, v B@).5) - E@m).m).

c=s i=1

Since the rate of convergence depends only on #_, which can take on only finitely many values,

convergence in both cases is uniform, and we conclude that for 4 close enough to one,

(1-8) ¥ 0 n &) > (1-8) Y, 8O r viB(n,), o) - X(n).m0)

=8 FxE

which is (IR).
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Consider now the case where

k k
El T, ) = El )V, (B(),50n) - Xi(n),m),
= 7=

but where u; is strictly concave. The strict concavity of u; implies that

(&), = vi®®).b0) -Xm),m).

Letting n be the appropriate 4,, and multiplying by 84°*®x_, and adding up yields

(1-8 Y, O Oru @ @), = 1-8) Y, 8~ Or v(p(n,).p(,) *X(1,),m,)
g3 F=8

which again is (IR), this time with exact equality, [

Proof of Proposition 3. Since utility is identically homothetic and differentiable, a vector of spot
prices such that (S8) is satisfied is proportional to p, = Du(X(n,),4,). If we normalize p, to lie on
the unit simplex in R®, then it is unique. In other words, all admissible allocations have the same
spot prices.

To see the conditional efficiency implies efficiency, suppose that (x,p) is conditionally
efficient but dominated by an admissible ailocation (X,p). Since (,P) satisfies (SS), p = p and (x,p)
is not conditionally efficient. To see the converse, that efficiency implies conditional efficiency,
suppose that (x,p) is efficient but dominated by (X,p) that is socially feasible and satisfies (IR) but
violates (SS). Then for each s we can find £, that is efficient at 5, and dominates £,. Consequently,
(%,p) satisfies (SS), and since (X,p) satisfies (IR) so does (,p). This implies that (%,p) is admissible

and dominates (x,p), which contradicts the efficiency of (x,p). [

Proof of Lemma 1. Assume not, that z' is individually rational, U,(z) > Uy(xY), and q(z) = q(x}).

The concavity of utility implies that, for 0 < A < 1, A& + (1—A\)Z' is individually rational. As




39

A0, U + 1-Nz) - U,z > Uxd) since U, is continuous in the ¢,, topology. For all
0 < X < 1, however qF + (1-M2) = A& + 1 -Ngq@E) < q(xb), a contradiction.

Let e;, be the consumption plan that places unit weight on consumption of good j in state s
and zero weight elsewhere, and let e, = £3_,e;,. The monotonicity of u; implies that Ui(xi+e,) >
Uy(x}) and that x! + e, is individually rational. Consequently, if there exists %' individually rational
such that (&) < q(x), then q(xi+e,) = q(x) + qley) > q(x’). Therefore, q(e,) > 0, which implies

q = 0. 0O

Proof of Lemma 2. Suppose that ¢ < 0. Then, for some e, g'(e;) = q(e) = g < 0.
Consequently, q'(x'+e;) < g'(x)), which implies q(x+e;) < q(x'). Since u; is monotonically
increasing, however, Ui(xi+ejj,,) = Ui(xi) and x! + &;, individually rational. This contradicts (x,p,q)
being a quasi-equilibrium.

Suppose now that q(%) < 0 for some £ = 0. For T > 0 consider the consumption plan
#T, %iT = 0 for t(s) = T and %iT = ! for t(s) > T. Then ¢f&T) = qf(x) since xiT and & differ
only in a finite number of components. As T - oo, however, q'('T) - 0, which implies that
g(x*+%T) < g(x!) for some T. Once again, U;x'+%T) = Ux’) and x' + &7 individually rational

contradict (x,p,q) being a quasi-equilibrium. [

Proof of Lemma 3. Let & € £, be such that w(&,n,) = v(p,,p,* X(,),n,) for all s € S. Define
%* to be such that £i* = I for ¢ = s and %i* = x! otherwise. Similarly define X** to be such that
it = zi(y,) for ¢ = s and %1* = x} otherwise. Notice that p,+%i* = p,-%* for all s € S implies

that q(®) = q(X*®). Now define w* = w(n,) for o = s and w? = O otherwise. For some agent i

q(x!—%1% = qx!-%¥) = qw*/m = Q = 0.



40

Define w; = w(y,) forc = sand o} = 0 0ther§vise. Consider the consumption plan
2 = &5 + (Q/Qg(e)))u’.

Notice the &! costs strictly less than x! and that & satisfies the individual rationality constraints since
it provides more consumption than %, which is individually rational. Consequently, since (x,p,q)
is a quasi-equilibrium, U;(®) = Uxh.

The set of allocations that are socially feasible and yield higher utility than the private
endowment in every state is compact. The monotonicity and differentiability of utility therefore
implies that there exists some ¢ > 0 such that, for all z, that are socially feasible and yield higher

utility than the private endowment and ali A > 0,
ufzl + Aw(ny), 1)) = wzln) + Ae.
Setting z' = %' and A = Q/(2q(«®)), we can multiply by probabilities and sum across states to yield

U®) — Uix) = UE) + eQ/2q(?)) — Uyx)

z UiX) ~ Ui + eQ/(2q(w).
Consequently,
eQ = 29(H(UE — U,EY)

or, defining B = 2m(U(X) — Uy x))/e,

q(w®) < Bg,*w(z,).

In other words, the value of assets in all histories that follow s is bounded by a multiple of the value

of assets at s.
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Summing histories over t(s) = T, we obtain

BY g wn)= ¥ aw) = Y q-wn) + q’w).

t(s)=T (@)=T s)=T

Since q € £%, Lyy=1s* W) = L1, " W(n,) approaches zero as T approaches infinity. Conse-
quently, ¢(w) = 0.
To prove the second half of the lemma, define vy = Ey,y .14, W(n,). We can sum the above

inequality over histories t(s) = t to find

Bv, = ¥ v,

=t
Consequently,

o T
v, = B-1)! E v, = B-1)"! E V.

r=t+1 r=t+1

We can now calculate recursively,
T T
vi =2 B-D7 v, + Evt = B-D"YB-D"! + I)E v,
t=3 t=3

T
> B-DYB-D + DY v, = B-DHB-D + )T %,

t=4

Setting b = (B—1)"! + 1 now yields the desired inequality, [
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